
1

An Overview of End-to-End Entity Resolution for Big Data

VASSILIS CHRISTOPHIDES, ENSEA, ETIS Lab, France
VASILIS EFTHYMIOU, IBM Research, USA
THEMIS PALPANAS, Universite de Paris & French University Institute (IUF), France
GEORGE PAPADAKIS, National and Kapodistrian University of Athens, Greece
KOSTAS STEFANIDIS, Tampere University, Finland

One of the most critical tasks for improving data quality and increasing the reliability of data analytics is
Entity Resolution (ER), which aims to identify different descriptions that refer to the same real-world entity.
Despite several decades of research, ER remains a challenging problem. In this survey, we highlight the novel
aspects of resolving Big Data entities when we should satisfy more than one of the Big Data characteristics
simultaneously (i.e., Volume and Velocity with Variety). We present the basic concepts, processing steps and
execution strategies that have been proposed by database, semantic Web and machine learning communities in
order to cope with the loose structuredness, extreme diversity, high speed and large scale of entity descriptions
used by real-world applications. We provide an end-to-end view of ER workflows for Big Data, critically
review the pros and cons of existing methods, and conclude with the main open research directions.

ACM Reference Format:
Vassilis Christophides, Vasilis Efthymiou, Themis Palpanas, George Papadakis, and Kostas Stefanidis. 2020. An
Overview of End-to-End Entity Resolution for Big Data. ACM Comput. Surv. 1, 1, Article 1 (January 2020),
37 pages. https://doi.org/10.1145/3418896

1 INTRODUCTION
In the Big Data era, business, government and scientific organizations increasingly rely on massive
amounts of data collected from both internal (e.g., CRM, ERP) and external data sources (e.g., the
Web). Even when data integrated from multiple sources refer to the same real-world entities, they
usually exhibit several quality issues such as incompleteness (i.e., partial data), redundancy (i.e.,
overlapping data), inconsistency (i.e., conflicting data) or simply incorrectness (i.e., data errors). A
typical task for improving various aspects of data quality is Entity Resolution (ER).
ER aims to identify different descriptions that refer to the same real-world entity appearing

either within or across data sources, when unique entity identifiers are not available. Typically, ER
aims to match structured descriptions (i.e., records) stored in the same (a.k.a., deduplication), or
two different (a.k.a., record linkage) relational tables. In the Big Data era, other scenarios are also
considered, such as matching semi-structured descriptions across RDF knowledge bases (KB) or
XML-files (a.k.a., link discovery or reference reconciliation). Figure 1(a) illustrates descriptions of
the same movies, directors and places from two popular KBs: DBpedia (blue) and Freebase (red).

Authors’ addresses: Vassilis Christophides, ENSEA, ETIS Lab, France, vassilis.christophides@inria.fr; Vasilis Efthymiou,
IBM Research, USA, vasilis.efthymiou@ibm.com; Themis Palpanas, Universite de Paris & French University Institute
(IUF), France, themis@mi.parisdescartes.fr; George Papadakis, National and Kapodistrian University of Athens, Greece,
gpapadis@di.uoa.gr; Kostas Stefanidis, Tampere University, Finland, konstantinos.stefanidis@tuni.fi.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2020 Association for Computing Machinery.
0360-0300/2020/1-ART1 $15.00
https://doi.org/10.1145/3418896

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/3418896
https://doi.org/10.1145/3418896

1:2 V. Christophides et al.

e2 dbpedia:A_Clockwork_Orange_(film)

dbpedia-owl:director dbpedia:Stanley_Kubri

ck

dbpedia-

owl:Work/runtime

“136”

rdfs:label “A Clockwork Orange

(film)”

foaf:name “A Clockwork Orange”

e3 dbpedia:Stanley_Kubrick

dbpedia-owl:birthPlace dbpedia:Manhattan

dbpedia-

owl:activeYearsEndYear

1999-01-01

dbpedia-

owl:activeYearsStartYear

1951-01-01

rdf:type foaf:Person

rdf:type yago:AmericanFilmDirect

ors

rdf:type yago:AmateurChessPlay

ers

e1 dbpedia:Eyes_Wide_Shut

dbpedia-owl:director dbpedia:Stanley_Kubr

ick

dbpedia-

owl:Work/runtime

“159”

dbpedia-owl:starring dbpedia:Nicole_Kidman

dbpedia-owl:starring dbpedia:Tom_Cruise

rdfs:label “Eyes Wide Shut”

foaf:name “Eyes Wide Shut”

e4 dbpedia:Manhattan

rdf:type yago:IslandsOfTheHudsonRiver

rdfs:label “Manhattan”

foaf:name “Manhattan”

e6 fbase:m.06mn7

fbase:type.object.name “Stanley

Kubrick”

fbase:people.person.place_of_

birth

fbase:m.0cc56

fbase:people.person.year_of_d

eath

1999

fbase:people.person.parents fbase:m.02g68r

fbase:people.person.parents fbase:m.02g65

6g

e8 fbase:m.0cc56

fbase:type.object.name “Manhattan”

fbase:common.topic.alias “New_York_Coun

ty”

rdf:type travel.travel_dest

ination

fbase:location.administrative_

division.capital

fbase:m.0jvw4b_

fbase:location.administrative_

division.country

fbase:m.09c7w0

e7 fbase:m. 02qcr

fbase:type.object.name “Eyes Wide Shut”

fbase:film.film.tagline “Cruise. Kidman.

Kubrick”

rdfs:label “Eyes Wide Shut”

fbase:film.film.runtime “159”

fbase:ilm.film.soundtrack fbase:m.01frx9q

e5 fbase:m.05ldxl

fbase:film.film.film.directed_by m.06mn7

fbase:film.film.runtime “137”

fbase:film.film.starring m.0235qd0

fbase:film.film.starring m.0jsq1s

(a)
(b)

Fig. 1. (a) Movies, directors and locations from DBpedia (blue) and Freebase (red), where 𝑒1, 𝑒2, 𝑒3 and 𝑒4
match with 𝑒7, 𝑒5, 𝑒6 and 𝑒8, resp. (b) Value and neighbor similarity distribution of matches in four datasets.

Each entity description is depicted in a tabular format, where the header row is the URI of the
description and the remaining rows are the attribute (left) - value (right) pairs of the description.

ER aims to classify pairs of descriptions that are assumed to correspond to the same (vs. different)
entity into matches (vs. non-matches). An ER process usually encompasses several tasks, including
Indexing (a.k.a., Blocking), which reduces the number of candidate descriptions to be compared in
detail, and Matching, which assesses the similarity of pairs of candidate descriptions using a set
of functions. Several ER frameworks and algorithms for these tasks have been proposed during
the last three decades in different research communities. In this survey, we present the latest
developments in ER, explaining how the Big Data characteristics call for novel ER frameworks that
relax a number of assumptions underlying several methods and techniques proposed in the context
of the database [34, 50, 58, 106, 124], machine learning [72] and semantic Web communities [127].

Our work is inspired by the Linked Open Data (LOD) initiative [37], which covers only a small
fragment of the Web today, but is representative of the challenges raised by Big Data to core ER
tasks: (𝑎) how descriptions can be effectively compared for similarity, and (𝑏) how resolution
algorithms can efficiently filter the number of candidate description pairs that need to be compared.
Big Data Characteristics. Entity descriptions published as LOD exhibit the 4 “V”s [49] that
challenge existing individual ER algorithms, but also entire ER workflows:

• Volume. The content of each data source never ceases to increase and so does the number of
data sources, even for a single domain. For example, the LOD cloud currently contains more
than 1,400 datasets from various sources (this is an x100 growth since its first edition) in 10
domains with >200B triples (i.e., < 𝑠𝑢𝑏 𝑗𝑒𝑐𝑡, 𝑝𝑟𝑒𝑑𝑖𝑐𝑎𝑡𝑒, 𝑜𝑏 𝑗𝑒𝑐𝑡 >) describing more than 60M
entities of different types1; the life-science domain alone accounts for >350 datasets.

• Variety. Data sources are extremely heterogeneous, even in the same domain, regarding both
how they structure their data and how they describe the same real-world entity. In fact, they
exhibit considerable diversity even for substantially similar entities. For example, there are
∼700 vocabularies in the LOD cloud, but only ∼100 of them are shared by more than one KB2.

• Velocity. As a direct consequence of the rate at which data is being collected and continuously
made available, many of the data sources are very dynamic. For example, LOD data are rarely

1https://lod-cloud.net
2https://lov.linkeddata.es/dataset/lov

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://lod-cloud.net
https://lov.linkeddata.es/dataset/lov

An Overview of End-to-End Entity Resolution for Big Data 1:3

static, with recent studies reporting that 23% of the datasets exhibit infrequent changes, while
8% are highly dynamic in terms of triples additions and deletions3.

• Veracity. Data sources are of widely differing quality, with significant differences in the cover-
age, accuracy and timeliness of data provided. Even in the same domain, various forms of
inconsistencies and errors in entity descriptions may arise, due to the limitations of the auto-
matic extraction techniques, or of the crowd-sourced contributions. A recent empirical study
[44] shows that there are several LOD quality problems, as their conformance with a number
of best practices and guidelines is still open. For example, in Figure 1(a), the descriptions of
“A Clockwork Orange" from DBpedia (𝑒2) and Freebase (𝑒5) differ in their runtime.

Big Data Entity Resolution. Individual characteristics of Big Data have been the focus of previous
research work in ER. For example, there is a continuous concern for improving the scalability of
ER techniques over increasing Volumes of entities using massively parallel implementations [29].
Moreover, uncertain entity descriptions due to high Veracity have been resolved using approximate
matching [50, 69]. However, traditional deduplication techniques [35, 58] have been mostly con-
ceived for processing structured data of few entity types after being adequately pre-processed in a
data warehouse, and hence been able to discover blocking keys of entities and/or mapping rules
between their types. We argue that ER techniques are challenged when more than one of the Big
Data “V”s have to be addressed simultaneously (e.g., Volume or Velocity with Variety).

In essence, the high Variety of Big Data entities calls for a paradigm shift in all major tasks of ER.
Regarding Blocking, Variety renders inapplicable the traditional techniques that rely on schema and
domain knowledge to maximize the number of comparisons that can be skipped, because they do
not lead to matches [133]. As far as Matching is concerned, Variety requires novel entity matching
approaches that go beyond approximate string similarity functions [107]. This is because such
functions are applied on the values of specific attributes among pairs of descriptions, which are
difficult to be known in advance. Clearly, schema-aware comparisons cannot be used for loosely
structured and highly heterogeneous entity descriptions, such as those found in LOD. Similarity
evidence of entities can be obtained only by looking at the bag of literals contained in descriptions,
regardless of the attributes they appear as values. Finally, as the value-based similarity of a pair
of entities may still be weak due to Veracity, we need to consider additional sources of matching
evidence related to the similarity of neighboring entities, which are connected via relations.

The previous challenges are exemplified in Figure 1(b), which depicts the two types of similarity
for entities known to match from four established benchmark datasets: Restaurant4, Rexa-DBLP5,
BBCmusic-DBpedia6 and YAGO-IMDb7. Every dot corresponds to a different matching pair, while
its shape denotes the respective dataset. The horizontal axis reports the normalized value similarity
based on the common words in a pair of descriptions (weighted Jaccard [111]), while the vertical
one reports the maximum value similarity of their respective entity neighbors. We can observe that
the value-based similarity of matching entities significantly varies across different datasets. For
strongly similar entities (e.g., value similarity > 0.5), existing duplicate detection techniques work
well, but to resolve nearly similar entities (e.g., value similarity < 0.5), we need advanced ways of
exploiting evidence about the similarity of neighboring entities, due to the Variety in entity types.

Additional challenges are raised by the Velocity of Big Data Entities. Even though ER is historically
framed as an offline task that improves data quality in data warehouses upon completion of data

3http://km.aifb.kit.edu/projects/dyldo
4http://oaei.ontologymatching.org/2010/im
5http://oaei.ontologymatching.org/2009/instances
6http://datahub.io/dataset/bbc-music, http://km.aifb.kit.edu/projects/btc-2012
7http://www.yago-knowledge.org, http://www.imdb.com

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://km.aifb.kit.edu/projects/dyldo
http://oaei.ontologymatching.org/2010/im
http://oaei.ontologymatching.org/2009/instances
http://datahub.io/dataset/bbc-music
http://km.aifb.kit.edu/projects/btc-2012
http://www.yago-knowledge.org
http://www.imdb.com

1:4 V. Christophides et al.

integration, many services now require to resolve entities in real-time. Such services strive for
incremental ER workflows over dynamic sources that can sacrifice completeness of the resulting
matches as long as query-based [5, 17] or streaming [96] execution strategies can be supported.
Contributions. Record linkage and deduplication techniques for structured data in data warehouse
settings are the subject of numerous surveys and benchmarking efforts [34, 35, 54, 58, 80, 87, 106,
124]. Approximate instance matching is surveyed in [50], link discovering algorithms in [127], and
uncertain ER in [69]. Recent efforts to enhance scalability of ER methods by leveraging distribution
and parallelization techniques are surveyed in [29], while overviews of blocking and filtering
techniques are presented in [132, 140]. In contrast, our goal is to present an in-depth survey on all
tasks required to implement complex ER workflows, including Indexing, Matching and Clustering.
To the best of our knowledge, this is the first survey that provides an end-to-end view of ER

workflows for Big Data entities and of the new entity methods addressing the Variety in conjunction
with the Volume or the Velocity of Big Data Entities. Throughout this survey, we present the basic
concepts, processing tasks and execution strategies required to cope with the loose structuredness,
extreme structural diversity, high speed and large scale of entity descriptions actually consumed by
Big Data applications. This survey is intended to provide a starting point for researchers, students
and developers interested in recent advances of schema-agnostic, budget-aware and incremental ER
techniques that resolve nearly similar entity descriptions published by numerous Big Data sources.
The remaining of this survey is organized as follows. Section 2 presents the core concepts and

tasks for building end-to-end ER workflows. Each workflow task is then examined in a separate
section: Blocking in Section 3, Block Processing in Section 4, Matching in Section 5, and Clustering
in Section 6. All these sections study methods for batch ER, while budget-aware and incremental
ER are described in Sections 7 and 8, respectively. Section 9 covers complementary ER methods
along with the main systems for end-to-end ER, while Section 10 elaborates on the most important
directions for future work. Finally, Section 11 summarizes the current status of ER research.
Note that two of the authors have also published a survey on blocking and filtering (similarity

join) techniques for structured and semi-structured data [140], which covers only two steps of
the end-to-end ER workflow for Big Data entities - Blocking in Section 3 and Block Processing
in Section 4. In contrast, this survey covers the entire end-to-end ER workflow, including Entity
Matching, Clustering, and topics such as budget-aware, incremental, crowd-sourced, rule-based,
deep learning-based and temporal ER. The overlap of the two surveys is kept to the minimum.

2 ER PROCESSING TASKS ANDWORKFLOWS
The core notion of entity description comprises a set of attribute-value pairs uniquely identified
through a global id. A set of such descriptions is called entity collection. Two descriptions that are
found to correspond to the same real-word object are called matches or duplicates. Depending on
the input and its characteristics, the ER problem is distinguished into [56, 136, 153, 161]:
(1) Clean-Clean ER, when the input comprises two overlapping, but individually clean (i.e.,

duplicate-free) entity collections and the goal is to find the matches between them.
(2) Dirty ER, where the goal is to identify the duplicates within a single entity collection.
(3) Multi-source ER, when more than two entity collections are given as input.
All previous instances of the ER problem involve general processing tasks as illustrated in the

end-to-end workflow of Figure 2(a) [37, 166]. As every description should be compared to all others,
the ER problem is by nature quadratic to the size of the input entity collection(s). To cope with
large Volumes of entities, Blocking (a.k.a., Indexing) is typically applied as a first processing task to
discard as many comparisons as possible without missing any matches. It places similar descriptions
into blocks, based on some criteria (typically, called blocking keys) so that it suffices to execute

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:5

Entity Resolution

Entity

Collection
Blocking

Block

Processing
Resolved

Entities

Query/Stream

of entity

descriptions

Entity

Matching

Entity

Clustering

(a) (b)

Fig. 2. (a) The generic end-to-end workflow for Entity Resolution. (b) Budget-aware Matching.

comparisons only between descriptions co-occurring in at least one block. In other words, Blocking
discards comparisons between descriptions that are unlikely to match, quickly splitting the input
entity collection into blocks as close as possible to the final ER result.

To address Variety in Big Data, Blocking operates in a schema-agnostic fashion that considers all
attribute values, regardless of the associated attribute names [141]. The key is redundancy, i.e., the
act of placing every entity into multiple blocks, thus increasing the likelihood that matching entities
co-occur in at least one block. On the flip side, the number of executed comparisons is extremely
big. This is addressed, though, by a second processing task, called Block Processing. Its goal is to
restructure an existing block collection so as to minimize the number of comparisons, without any
significant impact on the duplicates that co-occur in blocks. This is achieved by discarding two
types of unnecessary comparisons: the redundant ones, which are repeated across multiple blocks
and the superfluous ones, which involve non-matching entities.
The next task is Matching, which, in its simplest form, applies a function 𝑀 that maps each

pair of entity descriptions (𝑒𝑖 , 𝑒 𝑗) to {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, with𝑀 (𝑒𝑖 , 𝑒 𝑗) = 𝑡𝑟𝑢𝑒 meaning that 𝑒𝑖 and 𝑒 𝑗 are
matches, and 𝑀 (𝑒𝑖 , 𝑒 𝑗) = 𝑓 𝑎𝑙𝑠𝑒 that they are not. Typically, the match function is defined via a
similarity function 𝑠𝑖𝑚 that measures how similar two descriptions are to each other, according to
certain comparison criteria. Finding a similarity function that perfectly distinguishes all matches
from non-matches for all entity collections is rather hard. Thus, in reality, we seek a similarity
function that is only good enough, minimizing the number of false positive or negative matches.
Recent works have also proposed an iterative ER process, which interleaves Matching with

Blocking [148, 194]: Matching is applied to the results of (Meta-)Blocking and the results of each
iteration potentially alter the existing blocks, triggering a new iteration. The block modifications are
based on the relationships between the matched descriptions and/or on the results of their merging.
The final task in the end-to-end ER workflow is Clustering [80, 126, 153–155], which groups

together the identified matches such that all descriptions within a cluster match. Its goal is actually
to infer indirect matching relations among the detected pairs of matching descriptions so as to
overcome possible limitations of the employed similarity functions. Its output comprises disjoint
sets of entity descriptions 𝑅 = {𝑟1, 𝑟2, . . . , 𝑟𝑚} , such that: (𝑖) ∀𝑒𝑖 , 𝑒 𝑗 ∈ 𝑟𝑘 𝑀 (𝑒𝑖 , 𝑒 𝑗) = 𝑡𝑟𝑢𝑒 , (𝑖𝑖)
∀𝑒𝑖 ∈ 𝑟𝑘∀𝑒 𝑗 ∈ 𝑟𝑙 𝑀 (𝑒𝑖 , 𝑒 𝑗) = 𝑓 𝑎𝑙𝑠𝑒 , and (𝑖𝑖𝑖) ∪𝑟𝑖𝑟𝑖 ∈ 𝑅 = E, where E stands for the input entity
collection. This partitioning corresponds to the resulting set of resolved entities in Figure 2(a).
Figure 2(b) illustrates the additional processing tasks that are required when an ER workflow

is subject to budget restrictions in terms of time or number of comparisons. These restrictions
essentially call for an approximate solution to ER, as an indirect way of addressing Volume. Rather
than finding all entity matches, the goal of budget-aware ER is to progressively identify as many
matches as possible within a specified cost budget. It extends batch, budget-agnostic ER workflows
with a Planning and Update phase that typically work on windows [2]. Planning is responsible for
selecting which pairs of descriptions will be compared for matching and in what order, based on the
cost/benefit trade-off. Within every window, it essentially favors the more promising comparisons,
which are more likely to increase the targeted benefit (e.g., the number of matches) in the remaining

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:6 V. Christophides et al.

Similarity
Evidence

Nature of
Matching

Processing
Modes

Schema-
aware

Schema-
agnostic

Semi-
structuredStructured

Attribute-
based Collective

Merging-
based

Relationship-
based

Batch/
Static

Incremental/
Dynamic

Budget-
agnostic

Budget-
aware

Query-
based Streaming

Entity Resolution (ER)

Fig. 3. Taxonomy of ER settings and approaches.

budget. Those comparisons are performed first in the current window and thus, a higher benefit is
achieved as early as possible. The Update phase takes into account the results of Matching, such that
Planning in a subsequent window will promote the comparison of pairs influenced by the previous
matches. This iterative ER process continues until the budget is exhausted. Both phases rely on a
graph of dependencies among descriptions [48], which leverages budget-agnostic blocking methods.
Finally, to resolve in real time entities provided as queries against a known entity collection,

or arriving in high Velocity streams, incremental ER workflows should be supported. In the first
case, a summarization of the entity collection can reduce the number of comparisons between a
query description and an indexed entity collection, by keeping - ideally in memory - representative
entity descriptions for each set of already resolved descriptions [96]. Thus, each query (description)
corresponds either to descriptions already resolved to a distinct real-world entity, or to a new one, if
it does not match with any other description [17, 164, 191]. To boost time efficiency, ER workflows
should support dynamic indexing/blocking at varying latencies and thus be able to compare only a
small number of highly similar candidate pairs arriving in a streaming fashion. Fast algorithms
are also required to incrementally cluster the graph formed by the matched entities in a way that
approximates the optimal performance of correlation clustering [77].
Taxonomy of ER settings and approaches. Overall, Figure 3 illustrates the taxonomy of ER
settings based on the key characteristics. Blocking, Matching and Clustering methods that operate
on relational data are schema-aware, as opposed to the schema-agnostic methods, which are more
flexible regarding the structure, since they consider all attribute values. In the context of Big Data,
nearly similar entities are resolved by going beyond attribute-based ER techniques, which examine
each pair of descriptions independently from other pairs. To match graph-based descriptions of
real-world entities, collective ER techniques [16] are used to increase their matching evidence
either by merging partially matched descriptions of entities or by propagating their similarity to
neighbor entities via relations that will be matched in a next round. These techniques involve
several iterations until they converge to a stable ER result (i.e., no more matches are identified).
Thus, collective ER is hard to scale, especially in a cross-domain setting that entails a very large
number of sources and entity types. Finally, we distinguish between batch (or static) ER, which
operates on a given input entity collection, and incremental (or dynamic) ER, which operates on
entities arriving in streams or provided by users online as queries. A fine-grained classification of
the previous ER settings and approaches will be presented in the following subsections.

3 BLOCKING
This step receives as input one or more entity collections and returns as output a set of blocks
B, called block collection, which groups together similar descriptions, while keeping apart the
dissimilar ones. As a result, each description can be compared only to others placed within the

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:7

same block(s), thus reducing the computational cost of ER to the comparison of similar descriptions.
Blocking is thus crucial for successfully addressing the Volume of Big Data.

The desiderata of Blocking are [35]: (i) to place all matching descriptions in at least one common
block, and (ii) to minimize the number of suggested comparisons. The second goal dictates skip-
ping many comparisons, possibly leading to many missed matches, which hampers the first goal.
Therefore, Blocking should achieve a good trade-off between these two competing goals.

In this survey, we provide an overview of Blocking for semi-structured data, which require no
domain or schema knowledge - unlike the schema-aware methods that are crafted for structured
data (we refer the interested reader to [34, 35, 140] for more details). Instead of relying on human
intervention, they require no expertise to identify the best attribute(s) for defining blocking keys.
They operate in a schema-agnostic way that disregards the semantic equivalence of attributes, thus
being inherently crafted for addressing the Variety of highly heterogeneous semi-structured data.
We distinguish them into non-learning and learning-based methods.
Non-learning methods. Semantic Graph Blocking [131] considers exclusively the relations be-
tween descriptions, i.e., foreign keys in databases and links in RDF data. For every description 𝑒𝑖 ,
it creates a block 𝑏𝑖 that contains all descriptions connected with 𝑒𝑖 through a path of restricted
length, provided that the block size does not exceed a predetermined limit.
The textual content of attributes is considered by Token Blocking (TB) [136], which creates a

block 𝑏𝑡 for every distinct attribute value token 𝑡 , regardless of the associated attribute names: two
descriptions co-occur in 𝑏𝑡 ∈ B, if they share token 𝑡 in any of their attribute values. This crude op-
eration yields high recall, due to redundancy (i.e., every entity participates in multiple blocks), at the
cost of low precision. This is due to the large portion of redundant comparisons, which are repeated
in different blocks, and superfluous ones, which involve non-matching entities [133, 136, 138].
Discarding these two types of comparisons, especially the superfluous ones, we can raise TB’s

precision without any (significant) impact on recall. Attribute Clustering Blocking [136] clusters
together attributes with similar values and applies TB independently to the values of every attribute
cluster. RDFKeyLearner [165] applies TB independently to the values of automatically selected
attributes, which combine high value discriminability with high description coverage. TYPiMatch
[116] clusters the input descriptions into a set of overlapping types and then applies TB indepen-
dently to the members of each type. Unlike TB, which tokenizes URIs on all their special characters,
Prefix-Infix(-Suffix) Blocking [135] uses as blocking keys only the infixes of URIs - the prefix de-
scribes the domain of the URI, the infix is a local identifier, and the optional suffix contains details
about the format, or a named anchor. For example, in "https://dl.acm.org/journal/csur/authors", the
prefix is "https://dl.acm.org/journal", the infix is "csur" and the suffix is "authors".
Another family of Blocking methods stems from generalizing TB’s functionality to the main

schema-aware non-learning techniques. By using the same blocking keys as TB, we can apply
traditional Blocking methods to heterogeneous semi-structured data [133] and significantly improve
their recall, even over structured data. This has been successfully applied to the following techniques:
Suffix Arrays Blocking [1] converts each TB blocking key (i.e., attribute value token) into the

suffixes that are longer than a specific minimum length 𝑙𝑚𝑖𝑛 . Then, it defines a block for every suffix
that does not exceed a predetermined frequency threshold𝑏𝑚𝑎𝑥 , which specifies the maximum block
size. Extended Suffix Arrays Blocking [35, 133] considers all substrings (not just the suffixes) of TB
blocking keys with more than 𝑙𝑚𝑖𝑛 characters, so as to support noise at the end of blocking keys (e.g.,
“JohnSnith" and “JohnSmith"). Similarly, Q-grams Blocking [35, 133] converts every TB blocking key
into sub-sequences of 𝑞 characters (𝑞-grams) and defines a block for every distinct 𝑞-gram. Extended
Q-Grams Blocking [35, 133] concatenates multiple 𝑞-grams to form more distinctive blocking keys.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:8 V. Christophides et al.

Canopy Clustering [35, 118] iteratively selects a random description 𝑒𝑖 and creates a new block 𝑏𝑖
for it. Using a cheap string similarity measure, it places in 𝑏𝑖 all descriptions whose TB blocking keys
have a similarity to 𝑒𝑖 higher than 𝑡𝑖𝑛 ; descriptions with a similarity higher than 𝑡𝑒𝑥 (> 𝑡𝑖𝑛) participate
in no subsequent block. Extended Canopy Clustering [35, 133] replaces the weight thresholds with
cardinality ones: for each randomly selected description, the 𝑘1 most similar descriptions are placed
in its block, while the 𝑘2 (≤ 𝑘1) most similar ones participate in no other block.

Finally, Sorted Neighborhood [84] sorts TB blocking keys in alphabetical order. A window of fixed
size𝑤 slides over the sorted list of descriptions and compares the description at the last position
with all descriptions in the same window. This approach is robust to noise in blocking keys, but
small𝑤 trades high precision for low recall and vice versa for large𝑤 [35]. To address this issue,
Extended Sorted Neighborhood [35, 133] slides the window𝑤 over the sorted list of blocking keys.
Learning-based methods. Hetero [100] is an unsupervised approach that maps every dataset to a
normalized TF vector, and applies an efficient adaptation of the Hungarian algorithm to produce
positive and negative feature vectors. Then, it applies FisherDisjunctive [99] with bagging to achieve
robust performance. Extended DNF BSL [101] combines an established instance-based schema
matcher with weighted set covering to learn supervised blocking schemes in Disjunctive Normal
Form (DNF) with at most 𝑘 attributes.
Parallelization. Parallel adaptations of the above methods have been proposed in the literature.
They rely on the MapReduce paradigm [43]: following a split-apply-combine strategy, MapReduce
partitions the input data into smaller chunks, which are then processed in parallel. A Map function
emits intermediate (key, value) pairs for each input split, while a Reduce function processes the list
of values that correspond to a particular intermediate key, regardless of the mapper that emitted
them. The two functions form a MapReduce job, with complex procedures involving multiple jobs.

Using a single MapReduce job, TB builds an inverted index that associates every token with all
entities containing it in their attribute values [37, 57]. For Attribute Clustering, four MapReduce
jobs are required [37, 57]: the first one aggregates all values per attribute, the second one estimates
the similarity between all attributes, the third one associates every attribute with its most similar
one, and the fourth one assigns to every attribute a cluster id and applies the TBMapReduce job.
Prefix-Infix(-Suffix) Blocking requires three jobs [37, 57]: the first two extract the prefixes and the
optional suffixes from the input URIs, respectively, while the third one applies TB’s mapper to the
literal values and a specialized mapper that extracts infixes to the URIs.

A crucial aspect of the MapReduce paradigm is the load balancing algorithm. To balance the cost
of executing the comparisons defined in an existing block collection, Dis-Dedup [38] formalizes
load balancing as an optimization problem that minimizes not only the computational, but also
the communication cost (e.g., network transfer time, local disk I/O time). The proposed solution
provides strong theoretical guarantees for a performance close to the optimal one.

3.1 Discussion
Table 1 organizes the main schema-agnostic Blocking methods in a two-dimensional taxonomy
that is formed by two criteria: (i) Indexing Function Definition, which determines whether learning
is used to extract blocking keys from each entity description, and Redundancy attitude, which
determines whether the outcome is a redundancy-positive block collection, where the more blocks
two descriptions share, the more likely they are to be matching, or a redundancy-neutral one
otherwise. We observe that most methods involve a non-learning functionality that produces
redundancy-positive blocks. Among them, TB tries to maximize recall by assuming that duplicate
entities share at least one common token in their values. Extensive experiments have shown that
this assumption holds for KBs in the center of the LOD cloud [37, 57]. Yet, this coarse-grained

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:9

Table 1. A taxonomy of the Blocking methods discussed in Section 3 (in the order of presentation).

Indexing Function Definition Redundancy attitude

non-learning learning-based redundancy-positive redundancy-neutral

Semantic Graph Blocking [130]

Token Blocking [135]

Attribute Clustering Blocking [135]

Prefix-Infix(-Suffix) Blocking [134]

Suffix Arrays Blocking [1]

Extended Suffix Arrays Blocking [34,132]

Q-Grams Blocking [34,132]

Extended Q-Grams Blocking [34,132]

Canopy Clustering [34,117]

Extended Canopy Clustering [34,132]

Sorted Neighborhood [83]

Extended Sorted Neighborhood [83]

Hetero [99]

Extended DNF BSL [100]

approach typically leads to very low precision, since most of the pairs sharing a common word are
non-matches. Attribute Clustering Blocking increases TB’s precision by requiring that the common
tokens of matching entities appear in attributes with similar values. Prefix-Infix(-Suffix) Blocking
applies only to RDF data. However, it has been shown that both methods perform poorly when
applied to KBs from the periphery of the LOD cloud [37, 57]. The reason is that they exclusively
consider the noisy content of descriptions, disregarding the valuable evidence that is provided
by contextual information, such as the neighboring descriptions, i.e., entities of different types
connected via important relations. TYPiMatch also attempts to raise TB’s precision, by categorizing
the given entities into overlapping types, but its recall typically drops to a large extent, due to the
noisy, schema-agnostic detection of entity types [141].
Overall, the schema-agnostic Blocking methods address both Volume and Variety of Big Data

entities, consistently achieving high recall, due to redundancy. Their precision, though, is very low,
due to the large portion of redundant and the superfluous comparisons in their overlapping blocks.
We refer to [34, 35, 140] for a more detailed overview of Blocking methods.

4 BLOCK PROCESSING
This step receives as input a set of blocks B and produces as output a new set of blocks B ′ that has
similar recall, but significantly higher precision. This is achieved by discarding most superfluous
and redundant comparisons in B. The relevant techniques operate at the coarse level of entire
blocks (Block Cleaning) or at the finer level of individual comparisons (Comparison Cleaning).

4.1 Block Cleaning
Methods of this type are static, i.e., independent of Matching, or dynamic, i.e., interwoven with it.
Static methods. The core assumption is that excessively large blocks (e.g., those corresponding to
stop-words) are dominated by unnecessary comparisons. In fact, the larger a block is, the less likely
it is to contain unique duplicates, i.e., matches that share no other block. Hence, they discard the
largest blocks, raising precision, without any significant impact on recall. To this end, Block Purging
sets an upper limit on the number of comparisons [136] or the block size [135]. Block Filtering
applies a limit to the blocks of every description, retaining it in 𝑟% of its smallest blocks [139, 141].
More advanced methods, like a MapReduce-based blocking algorithm [119], learning-based

(supervised) method Rollup Canopies [157] and Size-based Block Clustering [65], split excessively

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:10 V. Christophides et al.

large blocks into smaller sub-blocks until they all satisfy the maximum block size limit. The last
method may merge back small blocks with similar blocking keys, in order to raise recall.
Dynamic methods. Assuming that Matching is performed by a perfect oracle, these methods
schedule the processing of blocks on-the-fly so as to maximize ER effectiveness and time efficiency.
For Dirty ER, Iterative Blocking [194] merges any new pair of matching descriptions, 𝑒𝑖 and 𝑒 𝑗 , into
a new one, 𝑒𝑖, 𝑗 and replaces both 𝑒𝑖 and 𝑒 𝑗 with 𝑒𝑖, 𝑗 in all blocks that contain them. The already
processed blocks are reprocessed so that 𝑒𝑖, 𝑗 is compared with all others; the new content in 𝑒𝑖, 𝑗
may yield different similarity values that designate previously missed matches.
For Clean-Clean ER, Block Scheduling orders blocks in ascending order of comparisons [163],

or block size [136], so as to detect matches as early as possible. These matches are propagated
to subsequently processed blocks in order to reduce the superfluous comparisons. This yields a
block processing order with decreasing density of detected matches. Based on this observation,
Block Pruning [136] terminates the entire ER process as soon as the average number of executed
comparisons for detecting a new pair of duplicates drops below a predetermined threshold.

4.2 Comparison Cleaning
Most methods of this type operate on redundancy-positive block collections, where the more blocks
two descriptions share, the more likely they are to be matching. This characteristic allows for
weighting all pairwise comparisons in proportion to the matching likelihood of the corresponding
descriptions, a process that has been formalized by Meta-blocking [137].
Meta-blocking converts the input block collection B into a blocking graph 𝐺𝐵 , where nodes

correspond to descriptions and unique edges connect every pair of co-occurring descriptions. The
edges are weighted in proportion to the likelihood that the adjacent descriptions are matching.
Edges with low weights are pruned, as they probably correspond to superfluous comparisons. A
new block is then created for every retained edge, yielding the restructured block collection B ′. In
this process, various techniques can be used for weighting and pruning the graph edges [137].

For edge pruning, the following algorithms are available: Weighted Edge Pruning [137] removes
all edges that do not exceed the average edge weight; Cardinality Edge Pruning retains the globally
𝐾 top weighted edges [137, 200];Weighted Node Pruning (WNP) [137] and BLAST [161] retain in
each node neighborhood the descriptions that exceed a local threshold; Cardinality Node Pruning
(CNP) retains the top-𝑘 weighted edges in each node neighborhood [137]; Reciprocal WNP and
CNP [139] retain edges satisfying the pruning criteria in both adjacent node neighborhoods. Other
methods perform edge pruning inside individual blocks [47], while Disjunctive Blocking Graph [56]
associates every edge with multiple weights to express composite co-occurrence conditions.
On another line of research, Transitive LSH [167] converts LSH blocks into an unweighted

blocking graph and applies a community detection algorithm, such as [40], while SPAN [160] uses
matrix representations and operations to enhance the input block collection. The only approach
that applies to any block collection B, even one that is not redundancy-positive, is Comparison
Propagation [136], which merely discards all redundant comparisons from B.
Learning-based methods. Supervised Meta-blocking [138] casts edge pruning as a binary classifi-
cation problem: every edge is annotated with a vector of schema-agnostic features, and is classified
as likely match or unlikely match. BLOSS [18] further cuts down on the labelling effort, by
selecting a very small training set that maintains high effectiveness.
Parellelization. Meta-blocking has been adapted to both multi-core [134] and MapReduce paral-
lelization [55]. Regarding the latter, the entity-based strategy [55] aggregates for every description
the bag of all description ids that co-occur with it in at least one block. Then, it estimates the edge
weight that corresponds to each neighbor based on its frequency in the co-occurrence bag. An

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:11

Table 2. A taxonomy of the Blocking Processing methods discussed in Section 4 (in the order of presentation).

Granularity of Functionality Matching awareness Pruning Definition

Block Cleaning Comparison Cleaning dynamic static non-learning learning-based

Block Purging [135,134]

Block Filtering [138,140]

Rollup Canopies [156]

Size-based Block Clustering [64]

Iterative Blocking [193]

Block Scheduling [135,162]

Block Pruning [135]

Weighted Edge Pruning [136]

Cardinality Edge Pruning [136,199]

(Reciprocal) Weighted Node Pruning [136,138]

BLAST [160]

(Reciprocal) Cardinality Node Pruning [136,138]

Disjunctive Blocking Graph [55]

Transitive LSH [166]

SPAN [159]

Comparison Propagation [135]

Supervised Meta-blocking [137]

BLOSS [17]

alternative approach is the comparison-based strategy [55]: the first pre-processing job enriches each
block with the list of block ids associated with every description. This allows for computing the edge
weights and discarding all redundant comparisons in the Map phase of the second job, while the
superfluous comparisons are pruned in the ensuing Reduce phase. Both strategies rely on the load
balancing algorithm MaxBlock [55] to avoid the underutilization of the available resources. BLAST
is parallelized in [162], exploiting the broadcast join of Apache Spark for very high efficiency.

4.3 Discussion
Table 2 presents an overview of the Block Processing methods discussed above. The resulting
taxonomy consists of three criteria: granularity of functionality, matching awareness (i.e., whether
a method is dynamic, depending on the outcomes of Entity Matching method, or static) and pruning
definition (i.e., whether the search space is reduced through a learning process that involves labelled
instances or not). Most Block Processing techniques involve a comparison-centric, static and non-
learning functionality that can be seamlessly combined with any Blocking technique. Numerous
studies have demonstrated that Block and Comparison Cleaning are indispensable for schema-
agnostic Blocking, raising precision by orders of magnitude, without hurting recall [136, 141, 161].
Multiple Block Cleaning methods can be part of the same end-to-end ER workflow, as they are
typically complementary; e.g., Block Purging is usually followed by Block Filtering [139]. Yet, at
most one Comparison Cleaning method can be part of an ER workflow: applying it to a redundancy-
positive block collection removes its co-occurrence patterns and renders all other techniques
inapplicable. The top performer among non-learning techniques is BLAST [161], while BLOSS
performs better by labelling just ∼50 instances [18]. We refer to [140] for a more detailed overview
of Block Processing techniques.

5 MATCHING
At the core of ER lies theMatching task, which receives as input a block collection and for each pair
of candidate matches that co-occur in a block, it decides if they refer to the same real-world entity.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:12 V. Christophides et al.

5.1 Preliminaries
The matching decision is typically made by a match function𝑀 , which maps each pair of entity
descriptions (𝑒𝑖 , 𝑒 𝑗) to {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒}, with𝑀 (𝑒𝑖 , 𝑒 𝑗) = 𝑡𝑟𝑢𝑒 meaning that 𝑒𝑖 and 𝑒 𝑗 are matches, and
𝑀 (𝑒𝑖 , 𝑒 𝑗) = 𝑓 𝑎𝑙𝑠𝑒 meaning that 𝑒𝑖 and 𝑒 𝑗 are not matches.
In its simplest form, 𝑀 is defined via a similarity function 𝑠𝑖𝑚, measuring how similar two

entities are to each other, according to certain comparison attributes. 𝑠𝑖𝑚 can consist of an atomic
similarity measure, like Jaccard similarity, or a composite one, e.g., a linear combination of several
atomic similarity functions on different attributes of a description. To specify an equivalence
relation among entity descriptions, we need to consider a similarity measure satisfying the non-
negativity, identity, symmetry and triangle inequality properties [198], i.e., a similarity metric.
Given a similarity threshold 𝜃 , a simple matching function can be defined as:

𝑀 (𝑒𝑖 , 𝑒 𝑗) =
{
true, if 𝑠𝑖𝑚(𝑒𝑖 , 𝑒 𝑗) ≥ 𝜃,
false, otherwise.

In more complex ER pipelines, such as when matching rules are manually provided, or learned
from training data, the matching function𝑀 can be defined as a complex function involving several
matching conditions. For instance, two person descriptions match if their SSN is identical, or if
their date of birth, zip code and last names are identical, or if their e-mail addresses are identical.

Finding a similarity metric which can perfectly distinguish all matches from non-matches using
simple pairwise comparisons on the attribute values of two descriptions is practically impossible.
In particular, similarity metrics are too restrictive to identify nearly similar matches. Thus, in
reality, we seek similarity functions that will be only good enough, i.e., minimize the number of
misclassified pairs, and rely on collective ER approaches to propagate the similarity of the entity
neighbors of two descriptions to the similarity of those descriptions. In this inherently iterative
process, the employed match function is based on a similarity that dynamically changes from
iteration to iteration, and its results may include a third state, the uncertain one. Specifically, given
two similarity thresholds 𝜃 and 𝜃 ′, with 𝜃 ′ < 𝜃 , the match function at iteration 𝑛,𝑀𝑛 , is given by:

𝑀𝑛 (𝑒𝑖 , 𝑒 𝑗) =

true, if 𝑠𝑖𝑚𝑛−1 (𝑒𝑖 , 𝑒 𝑗) ≥ 𝜃,
false, if 𝑠𝑖𝑚𝑛−1 (𝑒𝑖 , 𝑒 𝑗) ≤ 𝜃 ′,
uncertain, otherwise.

Based on the characteristics of the entity collections (e.g., structuredness, domain, size), the
nature of comparisons (attribute-based or collective), as well as the availability of known, pre-
labeled matching pairs, different methodologies can be followed to identify an appropriate similarity
function and thus, a fitting match function. In what follows, we explore alternative methodologies
for the matching task and discuss the cases in which those methodologies are more suited.

5.2 Collective methods
To minimize the number of missed matches, commonly corresponding to nearly similar matches, a
collective ER process can jointly discover matches of inter-related descriptions. This is an inherently
iterative process that entails additional processing cost. We distinguish between merging- and
relationship-based collective ER approaches. In the former, new matches can be identified by
exploiting the merging of the previously found matches, while in the latter, iterations rely on the
similarity evidence provided by descriptions being structurally related in the original entity graph.

Example 5.1. Consider the descriptions in Figure 4(a), which stem from the knowledge base
KB1. They all refer to the person Stanley Kubrick. Initially, it is difficult to match KB1:SKBRK
with any other description, since many people named Kubrick may have been born in Manhat-
tan, or died in the UK, respectively. However, it is quite safe to match the first two descriptions

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:13

(c)

Fig. 4. (a) A merging-based collective ER example and (b) a relationship-based collective ER example. (c) Two
different descriptions of the movie A Clockwork Orange and its cast in XML.

(KB1:Stanley_Kubrick and KB1:Kubrick). By merging the first two descriptions, e.g., using the union
of their attribute-value pairs, it becomes easier to identify that the last description (KB1:SKBRK) also
refers to the same person, based on the name and the places of birth and death. Consider now the
descriptions in Figure 4(b), which stem from the knowledge bases KB1 and KB2. The descriptions
on the left (KB1:SKBRK and KB2:SKubrick) represent Stanley Kubrick, while the descriptions on the
right (KB1:Manhattan and KB2: MNHT) represent Manhattan, where Kubrick was born. Initially, it
is difficult to identify the match between the descriptions on the left, based only on the common
year of death and last name. However, it is quite straightforward to identify the match between the
descriptions of Manhattan, on the right. Having identified this match, a relationship-based collective
ER algorithm would re-consider matching KB1:SKBRK to KB2:SKubrick, since these descriptions
are additionally related, with the same kind of relationship (birth place), to the descriptions of
Manhattan that were previously matched. Therefore, a relationship-based ER algorithm would
identify this new match in a second iteration.

Note that the structuredness of the input entity collection to be resolved is a key factor for
the nature of collective approaches. Merging-based methods are typically schema-aware, since
structured data make the process of merging easier. On the other hand, collective methods dealing
with semi-structured data are typically relationship-based, since merging would require deciding
not only which values are correct for a given attribute, but also which values are available for
similar attributes and can be used to merge two descriptions.

5.2.1 Schema-aware methods. In merging-based collective ER, the matching decision between two
descriptions triggers a merge operation, which transforms the initial entity collection by adding the
new, merged description and potentially removing the two initial descriptions. This change also
triggers more updates in the matching decisions, since the new, merged description needs to be
compared to the other descriptions of the collection. Intuitively, the final result of merging-based
collective ER is a new entity collection, which is the result of merging all the matches found in the
initial collection. In other words, there should be an 1-1 correspondence between the descriptions
in the resolution results and the actual real-world entities from the input entity collection.

Considering the functions of matching𝑀 and merging 𝜇 as black boxes, Swoosh [15] is a family of
merging-based collective ER strategies that minimize the number of invocations to these potentially
expensive black boxes; D-Swoosh [14] introduces a family of algorithms that distribute the workload
of merging-based ER across multiple processors. Both works rely on the following set of 𝐼𝐶𝐴𝑅
properties, that, when satisfied by𝑀 and 𝜇, lead to higher efficiency:

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:14 V. Christophides et al.

• Idempotence: ∀𝑒𝑖 , 𝑀 (𝑒𝑖 , 𝑒𝑖) = 𝑡𝑟𝑢𝑒 and 𝜇 (𝑒𝑖 , 𝑒𝑖)=𝑒𝑖
• Commutativity: ∀𝑒𝑖 , 𝑒 𝑗 , 𝑀 (𝑒𝑖 , 𝑒 𝑗)=𝑡𝑟𝑢𝑒 ⇔ 𝑀 (𝑒 𝑗 , 𝑒𝑖)= 𝑡𝑟𝑢𝑒 and 𝜇 (𝑒𝑖 , 𝑒 𝑗) = 𝜇 (𝑒 𝑗 , 𝑒𝑖)
• Associativity: ∀𝑒𝑖 , 𝑒 𝑗 , 𝑒𝑘 , if both 𝜇 (𝑒𝑖 , 𝜇 (𝑒 𝑗 , 𝑒𝑘)) and 𝜇 (𝜇 (𝑒𝑖 , 𝑒 𝑗), 𝑒𝑘) exist, 𝜇 (𝑒𝑖 , 𝜇 (𝑒 𝑗 , 𝑒𝑘))=𝜇 (𝜇 (𝑒𝑖 , 𝑒 𝑗), 𝑒𝑘)
• Representativity: If 𝑒𝑘 = 𝜇 (𝑒𝑖 , 𝑒 𝑗), then for any 𝑒𝑙 such that𝑀 (𝑒𝑖 , 𝑒𝑙) = 𝑡𝑟𝑢𝑒 ,𝑀 (𝑒𝑘 , 𝑒𝑙) = 𝑡𝑟𝑢𝑒
Regarding the match function, idempotence and commutativity have been already discussed in Sec-
tion 5.1, as reflexivity and symmetry, respectively, while representativity extends transitivity, by also
including the merge function. Note that if associativity does not hold, it becomes harder to interpret
a merged description, since it depends on the order in which the source descriptions were merged.

R-Swoosh [15] exploits the 𝐼𝐶𝐴𝑅 properties as follows. A set E of entity descriptions is initialized
to contain all the input descriptions. Then, in each iteration, a description 𝑒 is removed from E
and compared to each description 𝑒 ′ of the, initially empty, set E ′. If 𝑒 and 𝑒 ′ are found to match,
then they are removed from E and E ′, respectively, and the result of their merging is placed into E
(exploiting representativity). If there is no description 𝑒 ′ matching with 𝑒 , then 𝑒 is placed in E ′.
This process continues until E becomes empty, i.e., there are no more matches to be found.

In relationship-based collective ER, the matching decision between two descriptions triggers
discovering new candidate pairs for resolution, or re-considering pairs already compared; matched
descriptions may be related to other descriptions, which are now more likely to match to each other.

To illustrate the relationships between the descriptions of an entity collection E, usually, an entity
graph𝐺E = (𝑉 , 𝐸) is used, in which nodes,𝑉 ⊆ E, represent entity descriptions and edges, 𝐸, reflect
the relationships between the nodes. For example, such a match function could be of the form:

𝑀 (𝑒𝑖 , 𝑒 𝑗) =
{
𝑡𝑟𝑢𝑒, if 𝑠𝑖𝑚(𝑛𝑏𝑟 (𝑒𝑖), 𝑛𝑏𝑟 (𝑒 𝑗)) ≥ 𝜃
𝑓 𝑎𝑙𝑠𝑒, else,

where 𝑠𝑖𝑚 can be a relational similarity function and 𝜃 is a threshold value. Intuitively, the
neighborhood 𝑛𝑏𝑟 (𝑒) of a node 𝑒 can be the set of all the nodes connected to 𝑒 , i.e., 𝑛𝑏𝑟 (𝑒) =

{𝑒 𝑗 | (𝑒, 𝑒 𝑗) ∈ 𝐸}, or the set of edges containing 𝑒 , i.e., 𝑛𝑏𝑟 (𝑒) = {(𝑒, 𝑒 𝑗) | (𝑒, 𝑒 𝑗) ∈ 𝐸}.
Collective ER [16] employs an entity graph, following the intuition that two nodes are more

likely to match, if their edges connect to nodes corresponding to the same entity. To capture this
iterative intuition, hierarchical agglomerative clustering is performed, where, at each iteration, the
two most similar clusters are merged, until the similarity of the most similar clusters is below a
threshold. When two clusters are merged, the similarities of their related clusters, i.e., the clusters
corresponding to descriptions related to the descriptions in the merged cluster, are updated. To
avoid comparing all the pairs of input descriptions, Canopy Clustering [118] is initially applied.

Hybrid Collective ER [48] is based on both partial merging results and relations between descrip-
tions. It constructs a dependency graph, where every node represents the similarity between a pair
of entity descriptions and every edge represents the dependency between the matching decisions of
two nodes. If the similarity of a pair of descriptions changes, the neighbors of this pair might need
a similarity re-computation. The dependencies between the matching decisions are distinguished
between Boolean and real-valued. The former suggest that the similarity of a node depends only
on whether the descriptions of its neighbor node match or not, while in real-valued dependencies,
the similarity of a node depends on the similarity of the descriptions of its neighbor node. Boolean
dependencies are further divided into strong (if a node corresponds to a match, its neighbor pair
should also be a match), and weak (if a node corresponds to a match, the similarity of its neighbor
pair is increased). Initially, all nodes are added to a priority queue. On each iteration, a node is
removed from the queue and if the similarity of the node is above a threshold, its descriptions are
merged, aggregating their attribute values, to enable further matching decisions; if the similarity
value of this node has increased, its neighbor nodes are added to the priority queue. This iterative
process continues until the priority queue becomes empty.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:15

5.2.2 Schema-agnostic methods. Collective ER for tree (XML) data is studied in [190]. Entity de-
scriptions correspond to XML elements composed of text data or other XML elements, and domain
experts specify which XML elements are match candidates, thus, initializing a priority queue of
comparisons. Entity dependency takes the following form in this case: an XML element 𝑐 depends
on another XML element 𝑐 ′, if 𝑐 ′ is a part of the description of 𝑐 . Consequently, identifying the
matches of 𝑐 is not independent of identifying the matches of 𝑐 ′. Even if two XML elements are ini-
tially considered to be non-matches, they are compared again, if their related elements are marked
as matches. A similar approach is based on the intuition that the similarity of two elements reflects
the similarity of their data, as well as the similarity of their children [189]. Following a top-down
traversal of XML data, the DELPHI containment metric [6] is used to compare two elements.

Example 5.2. Figure 4(c) shows two different descriptions of the movie A Clockwork Orange in
XML. This representation means that the element movie consists of the elements title, year and
cast, with the last one further consists of actor elements. To identify that the two XML descriptions
represent the same movie, we can start by examining the cast of the movies. After we identify that
actors 𝑎11 and 𝑎21 represent the same person, Malcolm McDowell, the chances that the movies𝑚1
and𝑚2 match are increased. They are further increased when we find that actors 𝑎12 and 𝑎22 also
match, representing Patrick Magee. The same matching process over all the sub-elements of𝑚1
and𝑚2 will finally lead us to identify that𝑚1 and𝑚2 match.

SiGMa [111] selects as seedmatches the pairs that have identical entity names. Then, it propagates
thematching decisions on the compatible neighbors of existingmatches. UniqueMapping Clustering
is applied for detecting duplicates. For every new matched pair, the similarities of the neighbors
are recomputed and their position in the priority queue is updated.

LINDA [21] follows a very similar approach, which differs from SiGMa mainly in the similarity
functions and the lack of a manual relation alignment. LINDA relies on the edit distance of the
relation names used in the two KBs to determine if they are equivalent or not. This alignment
method makes a strong assumption that descriptions in KBs use meaningful names for relations
and similar names for equivalent relations, which is often not true in the Web of Data. Rather than
using a similarity threshold, the resolution process in LINDA terminates when the priority queue
is empty, or after performing a predetermined number of iterations.
RiMOM-IM [114, 159] initially considers as matches entities placed in blocks of size 2. It also

uses a heuristic called “one-left object”: if two matched descriptions 𝑒1, 𝑒 ′1 are connected via aligned
relations 𝑟 and 𝑟 ′ and all their entity neighbors via 𝑟 and 𝑟 ′, except 𝑒2 and 𝑒 ′2, have been matched,
then 𝑒2, 𝑒 ′2 are also considered matches. Similar to SiGMa, RiMOM-IM employs a complex similarity
score, which requires the alignment of relations among the KBs.

PARIS [169] uses a probabilistic model to identify matching evidence, based on previous matches
and the functional nature of entity relations. A relation is considered to be functional if, for a
given source entity, there is only one destination entity (e.g., wasBornIn). The basic matching idea
is that if 𝑟 (𝑥,𝑦) is a function in one KB and 𝑟 (𝑥,𝑦 ′) is a function in another KB, then 𝑦 and 𝑦 ′ are
considered to be matches. The functionality, i.e., degree by which a relation is close to being a
function, and the alignment of relations along with previous matching decisions determine the
decisions in subsequent iterations. The functionality of each relation is computed at the beginning
of the algorithm and remains unchanged. Initially, instances with identical values (for all attributes)
are considered matches and based on those matches, an alignment of relations takes place. In every
iteration, instances are compared based on the newly aligned relations, and this process continues
until convergence. In the last step, an alignment of classes (i.e., entity types) also takes place.
On another line of research, MinoanER [56] executes a non-iterative process that involves four

matching rules. First, it identifies matches based on their name (rule R1). This is a very effective

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:16 V. Christophides et al.

and efficient method that can be applied to all descriptions, regardless of their values or neighbor
similarity, by automatically specifying distinctive names of entities based on data statistics. Then,
the value similarity is exploited to find matches with many common and infrequent tokens, i.e.,
strongly similar matches (rule R2). When value similarity is not high, nearly similar matches are
identified based on both value and neighbors similarity using a threshold-free rank aggregation
function (rule R3). Finally, reciprocal evidence of matching is exploited as a verification of the
returned results: only entities mutually ranked in the top matching candidate positions of their
unified ranking lists are considered as matches (rule R4).

5.3 Learning-based methods
The first probabilistic model for ER [63] used attribute similarities as the dimensions of comparison
vectors, each representing the probability that a pair of descriptions match. Following the same
conceptual model, a large number of works try to automate the process of learning such probabilities
based on manually or automatically generated, or even pre-existing training data. Next, we explore
different ways of generating and exploiting training data.
Supervised Learning. Adaptive Matching [41] learns from the training data a composite function
that combines many attribute similarity measures. Similarly, MARLIN [20] uses labeled data at
two levels. First, it can utilize trainable string similarity/distance measures, such as learnable edit
distance, adapting textual similarity computations to specific attributes. Second, it uses labeled
data to train a classifier that distinguishes pairs between matches and non-matches, using textual
similarity values for different attributes as features.
Gradient-based Matching [150] proposes a model that can adjust its structure and parameters

based on aggregate similarity scores coming from individual similarity functions on different at-
tributes. Its design allows for locating which similarity functions and attributes are more significant
to correctly classify pairs. For its training, it employs a performance index that helps to separate
descriptions that have already been matched from those that have not been matched as yet.

BN-based Collective ER [89] adapts a relationship-based collective ER approach (similar to [48])
to a supervised learning setting. A Bayesian network is used to capture cause-effect relationships,
which are modeled as directed acyclic graphs, and to compute matching probabilities. The lexical
similarity in the attribute values of the descriptions as well as their links to existing matches
constitute positive matching evidence, which incrementally updates the Bayesian network nodes,
similar to the incremental updates that take place in the graph-based dependency model of [48].
GenLink [91] is a supervised, genetic programming algorithm for learning expressive linkage

rules, i.e., functions that assign similarity values to pairs of descriptions. GenLink generates linkage
rules that select the important attributes for comparing two descriptions, normalize their attribute
values before similarity computations, choose appropriate similarity measures and thresholds,
and combine the results of multiple comparisons using linear as well as non-linear aggregation
functions. It has been incorporated into the Silk Link Discovery Framework [180] (see Section 9.5).
Weakly Supervised Learning. Arguably, the biggest limitation of supervised approaches is the
need for a labeled dataset, based on which the underlying machine learning algorithm will learn
how to classify new instances. Methods of this category reduce the cost of acquiring such a dataset.
A transfer learning approach is proposed in [173] with the aim of adapting and reusing labeled

data from a related dataset. The idea is to use a standardized feature space in which the entity
embeddings of the reused and the targeted dataset will be transferred. This way, existing labeled
data from another dataset can be used to train a classifier that can work with the target dataset, even
if there are no explicitly labeled data for the target dataset. A similar transfer learning approach is
also followed in [152] to infer equivalence links in a linked data setting.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:17

Snorkel [149] is a generic tool that can be used to generate training data for a broader range of
problems than ER. It relies on user-provided heuristic rules (e.g., several matching functions) to
label some user-provided data and evaluate this labeling using a small pre-labeled dataset. Instead of
attribute weighting, Snorkel tries to learn the importance of the provided matching functions. This
approach of weighting matching rules, instead of features, resembles and complements existing
works in ER. For example, the goal in [184] is to identify which similarity measure can maximize
a specific objective function for an ER task, given a set of positive and negative examples. Those
examples can be generated manually one-by-one, or by leveraging tools like Snorkel.
Unsupervised Learning.Unsupervised Ensemble Learning [94] generates an ensemble of automatic
self-learning models that use different similarity measures. To enhance the automatic self-learning
process, it incorporates attribute weighting into the automatic seed selection for each of the self-
learning models. To ensure that there is high diversity among the selected self-learning models,
it utilizes an unsupervised diversity measure. Based on it, the self-learning models with high
contribution ratios are kept, while the ones with poor accuracy are discarded.
Rather than relying on domain expertise or manually labeled samples, the unsupervised ER

system presented in [102] automatically generates its own heuristic training set. As positive
examples are considered the pair of descriptions with very high Jaccard similarity of the token sets
in their attribute values. In the context of Clean-Clean ER, having generated the positive example
(𝑒1, 𝑒2), where 𝑒1 belongs to entity collection E1 and 𝑒2 to E2, for every other positive example (𝑒3,
𝑒4), where 𝑒3 ∈ E1 and 𝑒4 ∈ E2, it further infers the negative examples (𝑒1, 𝑒4) and (𝑒3, 𝑒2). The
resulting training set is first used by the system for Schema Matching to align the attributes in the
input datasets. The attribute alignment and the training sets are then used to simultaneously learn
two functions, one for Blocking and the other for Matching.

5.4 Parallel methods
We now discuss works that are able to leverage massive parallelization frameworks.

A framework for scaling collective ER [16] to large datasets is proposed in [148], assuming a
black-box ER algorithm. To achieve high scalability, it runs multiple instances of the ER algorithm
in small subsets of the entity descriptions. An initial block collection is constructed based on the
similarity of the descriptions using Canopy Clustering [118]. Each block is then extended by taking
its boundary with respect to entity relationships. Next, a simple message-passing algorithm is run,
to ensure that the match decisions within a block, which might influence the match decisions in
other blocks, are propagated to those other blocks. This algorithm retains a list of active blocks,
which initially contains all blocks. The black-box ER algorithm is run locally, for each active block,
and the newly-identified matches are added in the result set. All the blocks with a description of
the newly-identified matches, are set as active. This iterative algorithm terminates when the list of
active blocks becomes empty.

LINDA [21] scales out using MapReduce. The pairs of descriptions are sorted in descending order
of similarity and stored in a priority queue. Each cluster node holds: (i) a partition of this priority
queue, and (ii) the corresponding part of the entity graph, which contains the descriptions in the
local priority queue partition along with their neighbors. The iteration step of the algorithm is that,
by default, the first pair in the priority queue is considered to be a match and is then removed from
the queue and added to the known matches. This knowledge triggers similarity re-computations,
which affect the priority queue by: (i) enlarging it, when the neighbors of the new match are added
again to the queue, (ii) re-ordering it, when the neighbors of the identified match move higher in
the rank, or (iii) shrinking it, after applying transitivity and the constraint for a unique match per
KB. The algorithm stops when the priority queue is empty, or after a specific number of iterations.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:18 V. Christophides et al.

Table 3. Taxonomy of the Matching methods discussed in Section 5. MB stands for Merging-based, RB for
Relationship-based, S for Supervised, WS for Weakly Supervised and U for Unsupervised Learning.

Schema awareness Nature of comparisons Algorithmic foundations

Schema-
aware

Schema-agnostic Attribute-based Collective Learning-based
Non-

learning

Swoosh [14] MB

D-Swoosh [13] MB

Collective ER [15] RB

Hybrid Collective ER [47] MB,RB

Collective ER for XML [189] RB

SiGMa [110] RB

LINDA [20] RB

RiMOM [113, 158] RB

PARIS [168] RB

MinoanER [55] RB

Adaptive Matching [40] S

MARLIN [19] S

Gradient-based Matching [149] S

BN-based Collective ER [88] RB S

GenLink [90] S

Transfer learning [172] WS

Transfer learning for RDF [151] RB WS

Unsupervised ensemble [93] U

Unsupervised ER for RDF [101] U

Large-scale Collective ER [147] RB

Finally, Minoan-ER [56] runs on top of Apache Spark. To minimize its overall run-time, it applies
Name Blocking, while extracting the top similar neighbors per entity and running Token Blocking.
Then, it synchronizes the results of the last two processes: it combines the value similarities
computed by Token Blocking with the top neighbors per entity to estimate the neighbor similarities
for all entity pairs with neighbors co-occurring in at least one block. Matching rule R1 (finding
matches based on their name) starts right after Name Blocking, R2 (finding strongly similar matches)
after H1 and Token Blocking, R3 (finding nearly similar matches) after R2 and the computation
of neighbor similarities, while R4 (the reciprocity filter) runs last, providing the final, filtered
set of matches. During the execution of every rule, each Spark worker contains only the partial
information of the blocking graph that is necessary to find the match of a specific node.

5.5 Discussion
Table 3 presents an overview of the Matching methods discussed in this section. They are or-
ganized according to schema-awareness (schema-aware or schema-agnostic), nature of compar-
isons (attribute-based or collective), and algorithmic foundations (non-learning or learning-based).
Collective methods are further refined as merging-based (MB) or relationship-based (RB), and
learning-based methods as supervised (S), weakly supervised (WS) and unsupervised (U).

We observe that all schema-agnostic methods that have been proposed are collective, and more
specifically, relationship-based. This happens because, unlike the schema-aware methods, the
schema-agnostic ones cannot rely on attribute-level similarities for attributes that are not known
in advance, or it is not known if they are actually used by the descriptions. Hence, those methods
propagate the information provided by entity neighbors as matching evidence whenever possible.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:19

Consequently, as a rule of thumb that depends on the nature of the input data, we recommend
merging-based collective ER methods, which are schema-aware, for data coming from a single dirty
entity collection (e.g., for the deduplication of a dirty customer data base) and relationship-based
collective ER methods, which are schema-agnostic, for data coming from multiple, curated entity
collections (e.g., for finding equivalent descriptions among two or more Web KBs).
Note that the learning-based methods can be seen as attribute-based, since they essentially try

to learn the probability that two descriptions match based on previous examples of similar pairs,
or collective, since their models are trained on sets of pairs, or even on vectorial representations
of entity descriptions, or the words used in the values of those descriptions. For completeness,
Table 3 classifies them as attribute-based, following the traditional learning approach, because
their collective nature cannot be easily labeled as merging-based or relationship-based. We believe
that the learning-based methods are gaining ground as new and more effective ways to represent
individual or groups of entity descriptions appear (see Section 9.1). The emergence of weakly
supervised and transfer-learning methods seem to alleviate the problem of generating a labeled
set for training data. Therefore, when labeled examples are available (e.g., in transfer learning), or
are easy to generate using existing tools (e.g., [149]), and the test data are not expected to deviate
considerably from the training data, those methods seem to be the most promising ones. Before
choosing learning-based or non-learning methods, one should also consider the desired frequency
of re-training a new classification model, the memory footprint of each method (i.e., whether the
whole model needs to reside in memory or not) and the time needed for training and classification.

In general, recent studies [52, 104, 122] show that the learning-based techniques achieve higher
accuracy than the rule-based ones that are used in several practical scenarios. Yet, despite some past
efforts (e.g., [90, 105, 106]), we notice the lack of a systematic benchmarking of matching methods.
A comprehensive benchmark should evaluate effectiveness (i.e., quality of the output matches), time
and space efficiency (i.e., the time required for pre-processing, training, and matching, the memory
and disk space required by each method), and scalability (i.e., using the same computational and
storage resources, what is the data limit that each method can handle).

6 CLUSTERING METHODS
Typically, clustering constitutes the final task in the end-to-end ERworkflow, followingMatching. Its
input comprises the similarity graph, where the nodes correspond to the descriptions and each edge
connects a pair of descriptions that were compared during Matching; the edge weights, typically in
[0, 1], are analogous to the matching likelihood of the adjacent descriptions. Clustering aims to infer
more edges from indirect matching relations, while discarding edges that are unlikely to connect
duplicates in favor of edges with higher weights. Hence, its end result is a set of entity clusters, each
of which comprises all descriptions that correspond to the same, distinct real-world object.

In the simplest case, Connected Components [80, 153] is applied to compute the transitive closure
of the detected matches. This naive approach increases recall, but is rather sensitive to noise. False
positives have a significant impact on precision, leading to entity clusters that are dominated
by non-matching descriptions. For this reason, more advanced clustering techniques have been
proposed to leverage the weighted edges in the similarity graph. In general, these techniques are
distinguished into three categories, according to the type of the ER task at hand:

1) For Clean-Clean ER, clustering typically relies on the 1-1 correspondence between the input
data sources. The most popular technique is Unique Mapping Clustering [21, 111], which first sorts
all edges in decreasing weight. At each iteration, the top edge is considered a match, if none of
the adjacent descriptions has already been matched. The process ends when the top edge has a
similarity lower than a threshold 𝑡 . Essentially, this approach provides an efficient solution to
the Stable Marriage problem for unequal sets [120], given that Clean-Clean ER forms a (usually

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:20 V. Christophides et al.

unbalanced) bipartite similarity graph. The Hungarian algorithm is also applicable, though at a
much higher computational cost, unless an approximation is used, as in [46, 108].
2) For Dirty ER, the core characteristic of clustering algorithms is that they produce a set of

disjoint entity clusters without requiring as input the number of clusters or any labeled dataset for
training [80]. Center Clustering [82] iterates once over all edges and creates clusters around nodes
that are selected as centers. Its functionality is enhanced by Merge-Center Clustering [81], which
merges together clusters with centers similar to the same node. Star Clustering [10] begins with
sorting all similarity graph nodes in descending order of degree. Then, the top node becomes the
center of a cluster that includes all its direct neighbors. The same process is repeatedly applied
to the remaining nodes, until all nodes belong to a cluster. The resulting clusters are overlapping,
unless post-processing assigns each node to a single cluster. Ricochet Clustering [195] comprises a
family of techniques based on two alternating stages: the first one determines the centers of clusters
(like Star Clustering), while the second one (re-)assigns nodes to cluster centers (like K-Means).

Other techniques focus on the relative strength of the links inside and across clusters, i.e., the
intra- and inter-cluster edges. Markov Clustering [175] uses random walks to strengthen the intra-
cluster edges, while weakening the inter-cluster ones. Cut clustering [66] iteratively identifies the
minimum cut of maximum flow paths from a node to an artificial sink node. This way, it detects
small inter-cluster cuts, while strengthening intra-cluster links. Correlation Clustering [12] solves
an optimization task, where the goal is to maximize the sum of the intra-cluster edges, while
minimizing the sum of the inter-cluster ones. This is an NP-hard problem that is typically solved
through approximations, such as Clustering Aggregation [73] and Restricted Correlation Clustering
[109]. The latter is a semi-supervised approach that leverages a small labeled dataset, which is
carefully selected via an efficient sampling procedure based on LSH.
3) For Multi-source ER [153], we can use most algorithms for Dirty ER, but the multitude of

input entity collections calls for specialized clustering methods. SplitMerge [126] applies Connected
Components clustering and cleans the resulting clusters by iteratively removing entities with low
similarity to other cluster members. Then, it merges similar clusters that are likely to correspond
to the same real-world entity. CLIP [155] assumes duplicate-free entity collections as input. First, it
computes the transitive closure of the strong links, i.e., the edges that correspond to the maximum
weight per source (entity collection) for both adjacent nodes. The remaining graph is cleaned from
the weak links, i.e., the edges that do not correspond to the maximum weight per source for neither
adjacent node. Finally, the transitive closure is computed and its clusters are processed to ensure
that they contain at most one description per source.
Discussion. The relative performance of Dirty ER methods has been experimentally evaluated
in [80]. As expected, Connected Components exhibits the worst accuracy. Ricochet Clustering
performs well only over entity collections with uniformly distributed duplicates, while Markov
Clustering consistently achieves top performance. Surprisingly enough, the highly scalable, single-
pass algorithms Center and Merge-Center clustering provide comparable, if not better, results than
more complex techniques, like Cut and Correlation Clustering.
The relative performance of Multi-source ER algorithms is examined in [153, 154], using their

parallelization in Apache Flink. The experiments show that SplitMerge and CLIP achieve the top
performance, with the latter providing a better balance between effectiveness and time efficiency.

7 BUDGET-AWARE ER
Unlike the budget-agnostic methods presented above, budget-aware ER provides the best possible
partial solution, when the response time or the available computational resources are constrained. It
is driven by a pay-as-you-go paradigm that sacrifices the completeness of results, when the number

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:21

of data sources or the amount of data to be processed is ever increasing. For example, the number
of high-quality HTML tables on the Web is in the hundreds of millions, while the Google search
system alone has indexed ∼26 billion datasets [75]. This unprecedented volume of data can only
be resolved progressively, using matching pairs from former iterations to generate more accurate
candidate pairs in the latter iterations as long as the allocated budget is not exhausted.

Typically, budget-aware methods rely on blocking as a pre-processing task that identifies similar
entity descriptions. They differ, though, on how they leverage the resulting blocks in the Planning
step - see Figure 2(b). Four categories of granularity functionality are defined [163]:
(1) Block-centric methods produce a list of blocks that are sorted in descending order of the

likelihood that they include duplicates among their descriptions. All the comparisons inside
each block are generated iteratively, one block at a time, following that ordered list.

(2) Comparison-centric methods provide a list of description pairs sorted in descending order
of matching likelihood. These pairs of descriptions are emitted iteratively, one at a time,
following that ordered list.

(3) Entity-centric methods provide a list of descriptions sorted in descending order of duplication
likelihood. All comparisons of every description are generated iteratively, one description at
a time, following that ordered list.

(4) The hybrid methods combine characteristics from two or all of the previous categories.
Depending on their blocking keys, budget-aware methods are further classified into [163]:
(1) Sort-based methods, which rely on the similarity of blocking keys. They produce a list of

descriptions by sorting them alphabetically, according to their blocking keys, and assume
that the matching likelihood of two descriptions is analogous to their proximity after sorting.

(2) Hash-based methods, which consider identical blocking keys and typically assume redundancy-
positive blocks, i.e., the similarity of two descriptions is proportional to their common blocks.

In the sequel, we examine separately the schema-aware and the schema-agnostic methods.

7.1 Schema-aware methods
The budget-aware methods that are suitable for structured data rely on schema knowledge. This
means that their performance depends heavily on the attribute(s) that provide the schema-aware
blocking keys they leverage, typically requiring domain experts to fine-tune them.
The core comparison-centric method is Progressive Sorted Neighborhood (PSN) [193]. Based on

Sorted Neighborhood [84], it associates every description with a schema-aware blocking key. Then,
it produces a sorted list of descriptions by ordering all blocking keys alphabetically. Comparisons are
progressively defined through a sliding window,𝑤 , whose size is iteratively incremented: initially,
all descriptions in consecutive positions (𝑤=1) are compared, starting from the top of the list; then,
all descriptions at distance𝑤=2 are compared and so on, until termination.

The above approach produces a static list of comparisons, which remains immutable, regardless
of the duplicates that are identified. As a result, PSN cannot react to the skewed distribution of
duplicates. To ameliorate this issue, a dynamic version of the algorithm was proposed in [143]. Its
functionality is integrated with Matching to adjust the processing order of comparisons on-the-fly.
Arranging the sorted descriptions in a two-dimensional array 𝐴, if position 𝐴(𝑖, 𝑗) corresponds to a
duplicate, the processing moves on to check positions 𝐴(𝑖 + 1, 𝑗) and 𝐴(𝑖, 𝑗 + 1).

The same principle lies at the core of the dynamic, block-centric method Progressive Blocking [143].
Initially, a set of blocks is created and its elements are arranged in a two-dimensional array𝐴. Then,
all comparisons are executed inside every block, measuring the number of duplicates per block.
Starting from the block with the highest density of duplicates in position 𝐴(𝑖, 𝑗), its descriptions
are compared with those in the blocks 𝐴(𝑖 + 1, 𝑗) and 𝐴(𝑖, 𝑗 + 1) in order to identify more matches.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:22 V. Christophides et al.

A static, block-centric method is the Hierarchy of Record Partitions (HRP) [193], which presumes
that the distance of two records can be naturally estimated through a certain attribute (e.g., product
price). Essentially, it builds a hierarchy of blocks, such that the matching likelihood of two descrip-
tions is proportional to the level in which they co-occur for the first time: the blocks at the bottom
of the hierarchy contain the descriptions with the highest matching likelihood, and vice versa for
the top hierarchy levels. Then, the hierarchy of blocks is progressively resolved, level by level, from
the leaves to the root. A variation of this approach is presented in [3]: every block is divided into a
hierarchy of child blocks and an advanced strategy optimizes their processing on MapReduce.
An entity-centric improvement of the HRP is the Ordered List of Records [193], which converts

the hierarchy of blocks into a list of records sorted by their likelihood to produce matches. In this
way, it trades lower memory consumption for a slightly worse performance than HRP.

Finally, a progressive approach for Multi-source ER over different entity types is proposed in
[2]. During the scheduling phase, it divides the total cost budget into several windows of equal
cost. For each window, a comparison schedule is generated by choosing the one with the highest
expected benefit among those with a cost lower than the current window. The cost of a schedule is
computed by considering the cost of finding the description pairs and the cost of resolving them.
Its benefit is determined by how many matches are expected to be found by this schedule and how
useful they will be to identify more matches within the cost budget. After a schedule is executed,
the matching decisions are propagated to all related comparisons so that they are more likely to be
chosen by the next schedule. The algorithm terminates upon reaching the cost budget.

7.2 Schema-agnostic methods
The budget-aware methods for semi-structured data rely on an inherently schema-agnostic func-
tionality that completely disregards any schema information. Thus, they are independent of expert
knowledge and require no labeled data for learning how to rank comparisons, blocks or descriptions.

The cornerstone of sort-based methods is the Neighbor List [163], which is created by the schema-
agnostic adaptation of Sorted Neighborhood [133]: every token in any attribute value is considered
as a blocking key and all descriptions are sorted alphabetically according to these keys. Thus, each
description appears in the Neighbor List as many times as the number of its distinct tokens.
The naive progressive approach would be to slide a window of increasing size along this list,

incrementally executing the comparisons it defines, as in PSN. This approach, however, results in
many repeated comparisons and a random ordering of descriptions with identical keys.

To ameliorate this issue, Local Schema-agnostic PSN [163] uses weights based on the assumption
that the closer the blocking keys of two descriptions are in the Neighbor List, the more likely
they are to be matching. Every comparison defined by the current window size is associated with
a numerical estimation of the likelihood that it involves a pair of matches through the schema-
agnostic weighting function 𝑓 𝑟 𝑗,𝑖

𝑓 𝑟𝑖+𝑓 𝑟 𝑗−𝑓 𝑟𝑖,𝑗 , where 𝑓 𝑟𝑘 is the number of blocking keys associated
with description 𝑒𝑘 (i.e., its occurrences in the Neighbor List), while 𝑓 𝑟 𝑗,𝑖 denotes the frequency of
comparison < 𝑒𝑖 , 𝑒 𝑗 > within the current window. All repeated comparisons within every window
are eliminated, but there is no way to avoid emitting the same comparison in other window sizes.
To address this drawback, Global Schema-agnostic PSN [163] defines a global execution order for
all comparisons in a specific range of window sizes [1,𝑤𝑚𝑎𝑥], using the same weighting function.
A different approach is implemented by the hash-based method Progressive Block Scheduling

[163]. First, the input blocks are ordered in increasing cardinality such that the fewer comparisons
a block entails, the higher it is ranked. Then, the sorted list of blocks is processed, starting from the
top-ranked (i.e., smallest) block. Inside every block, one of Meta-blocking’s weighting schemes is
used to specify the processing order of comparisons, from the highest weighted to the lowest one.
During this process, all repeated comparisons are discarded before computing their weight.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:23

Table 4. A taxonomy of the budget-aware methods discussed in Section 7 (in the order of presentation).

Schema-awareness Key Functionality Granularity of Functionality Type of Ordering

schema-aware schema-agnostic hash-based sort-based block-centric comparison-centric entity-centric static dynamic

 Progressive Sorted Neighborhood (PSN) [192]
 Dynamic PSN [142]
 Progressive Blocking [142]
 Hierarchy of Record Partitions [192]
 Ordered List of Records [192]
 Progressive Relational Entity Resolution [2]
 Local Schema-agnostic PSN [162]
 Global Schema-agnostic PSN [162]
 Progressive Block Scheduling [162]
 Progressive Profile Scheduling [162]

Finally, Progressive Profile Scheduling [163] is a hybrid method that relies on the notion of
duplication likelihood, i.e., the likelihood of an individual description to have one or more matches.
This is estimated as the average edge weight of its node in the corresponding blocking graph. This
method processes the input descriptions in decreasing duplication likelihood. For each description,
all non-repeated comparisons that entail it are ordered in decreasing weight, as estimated through
a Meta-blocking weighting scheme, and the top-k ones are emitted.

7.3 Discussion
All budget-aware methods apply ER in a pay-as-you go manner. To address Volume, they all rely
on blocking methods. The schema-agnostic budget-aware methods are also capable of addressing
Variety. Table 4 organizes all methods discussed above into a taxonomy formed by the four afore-
mentioned criteria: schema-awareness, functionality of blocking keys, granularity of functionality
and type of ordering. We observe that there is no dynamic schema-agnostic method that adapts its
processing order as more duplicates are identified. More research is required towards this direction.
For dynamic schema-aware methods, a noisy matching method should be used, instead of the
ideal one that is currently considered. Intelligent ways for tackling the errors introduced by noisy
matchers are indispensable for a realistic budget-aware scenario.
Regarding the relative performance of static methods, the schema-agnostic ones consistently

outperform the schema-aware ones over several established structured datasets [163]. Among the
schema-agnostic methods, the two sort-based ones achieve the best performance for structured
datasets, with the difference between them being statistically insignificant. As a result, Local PSN
is more suitable in cases of limited memory, but all other settings call for Global PSN, given that it
avoids multiple emissions of the same comparisons. For large, heterogeneous datasets, Progressive
Profile Scheduling exhibits the overall best performance, followed by Progressive Block Scheduling.

8 INCREMENTAL ER
Some Big Data applications need to resolve descriptions that arrive in high Velocity streams or are
provided as queries against a known entity collection. Rather than a static, offline process over all
available entity descriptions, such applications process as much entities as needed as long as they
resolve specific (query) descriptions in (near) real time. The same applies to clean, but evolving
data repositories, such as data warehouses and knowledge bases, where new entities should be
incrementally added, without repeating the entire ER process to the already matched descriptions.

As an example, consider an application resolving the entities described across news feeds, which
arrive in a streaming fashion [9, 19, 96]. A journalist using this application could be provided
with several facts regarding a breaking news story (e.g., persons, buildings, services affected by
an earthquake), as they get published by different agencies or witnesses, enabling her/him to

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:24 V. Christophides et al.

form a complete picture of the events as they occur, in real-time. This would require storing only
some parts of the entire entity collection, and discarding the rest, as more descriptions are fed
to the system. To evaluate which parts of the collection are more useful to keep, we can design
different strategies. For example, we may want to keep the latest entities, since new input entities
are more likely to be connected to them. Another strategy would be to keep the entities with many
relationships with other entities, since they are more likely to influence the matching decisions.
Such applications call for small memory footprint and low latency, rendering inapplicable the

static approaches described above. Novel techniques that dynamically adapt to data are required.
Note that we could distinguish the dynamic methods into those answering to a user-provided query
and those resolving streams of entities, but this distinction is orthogonal - streaming methods can
be seen as query-based ones that handle streams of queries instead of a single query (e.g., [96]).

8.1 Dynamic Blocking
Unlike the works in Section 3, which produce immutable (static) blocks, the dynamic indexing
techniques update their blocks, depending on the descriptions that are submitted as queries.
One of the earliest approaches is the Similarity-aware Index [36]. The main idea is to pre-

calculate similarities between the attribute values that co-occur in blocks in order to avoid similarity
calculations at query time, and minimizing response time. This approach uses three indexes that
associate blocking keys to attribute values, that contain pre-calculated similarities between attribute
values that co-occur in a block, and that associate distinct attribute values with record ids.

This approach is extended by DySimII [147] so that all three indexes are updated as query entities
arrive. Both its average record insertion time and its average query time remain practically stable,
even when the index size grows. Interestingly, the index size can be reduced, without any significant
loss in recall, by indexing only a certain portion of the most frequent attribute values.
On another line of research, F-DySNI [145, 146] extends the Sorted Neighborhood method by

converting the sorted list of blocking keys into an index tree that is faster to search. This is actually
a braided AVL tree, i.e., a combination of a height balanced binary tree and a double-linked list
[151]: every tree node is linked to its alphabetically sorted predecessor node, to its successor node
and to the list of ids of all entities that correspond to its blocking key. F-DySNI actually employs
a forest of such index trees, with each tree associated with a different blocking key definition.
This forest is updated whenever a query entity arrives and is compatible with both a fixed and an
adaptive window. The former defines the rigid number of neighboring nodes that are considered,
while the latter considers only the neighbors that exceed a predetermined similarity threshold.

Finally, summarization algorithms for speeding up dynamic ER are presented in [96]. SkipBloom
summarizes the input descriptions, using their blocking keys, to accelerate comparisons. BlockSketch
summarizes a block to achieve a fixed number of comparisons per given entity description during
Matching, yielding a bounded computational time. Each block is split into sub-blocks based on
the distances of the block contents to the blocking key. Each query description is then compared
against the sub-block with the smallest distance. to its contents SBlockSketch adapts BlockSketch to
streaming data, maintaining a fixed number of blocks in memory, with a time overhead each time
any of those blocks needs to be replaced with blocks residing in secondary storage. To minimize
this overhead, a selection algorithm chooses the blocks to be replaced (considering age and size).

8.2 Dynamic Matching
These methods resolve online parts of the entity collection that are of interest to a user/application.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:25

Query-driven ER [17] uses a two-stage expand-and-resolve query processing strategy. First, it
extracts the related descriptions for a query using two expansion operators. Then, it resolves the ex-
tracted descriptions collectively, leveraging an existing relevant technique [16]. Due to the complex-
ity of the collective ER strategy, this approach cannot provide real-time answers for large datasets.
In Query-driven ER with uncertainty [88], the attribute-level facts for the input entities are

associated with a degree of uncertainty, reflecting the noise from imperfect extraction tools. Matches
are identified using existing ER algorithms and are assigned a probability value. At this offline stage,
no merging takes place. When a query arrives, the descriptions that need to be merged in order to
provide an answer to the query are identified. Then, different merging scenarios are explored and
the one with minimum uncertainty is selected and returned as an answer.
UDD [168] is an unsupervised method that identifies matches from the results of a query over

multiple Web KBs. First, it removes duplicate descriptions stemming from the same KB, and it
generates a training set. Based on this set of non-matching examples, as well as on similarity
computations between descriptions, it iteratively identifies matches in the query results through
two cooperating classifiers: a weighted component similarity summing and an SVM.

Sample-and-clean [182] leverages sampling to improve the quality of aggregate numerical queries
on large datasets that are too expensive to resolve online. It resolves a small data sample and exploits
those results to reduce the impact of duplicates on the approximate answers to aggregate queries.
QuERy [5] aims to answer join queries over multiple, overlapping data sources, operating on a

block level. It identifies which blocks need to be resolved for the requested join and then assumes
that any matching method can be applied for the matching task.
Complementary to this work, QDA [4] tries to reduce the data cleaning overhead and issues

the minimum number of necessary steps to answer SQL-like selection queries that do not involve
joins, in an entity-pair level. It performs vestigiality analysis on each block individually to identify
matching decisions whose answers are guaranteed to not affect the query answers and, thus, need
not be performed, reducing the matching tasks. In fact, it creates an entity graph for the contents
of a block and resolves edges belonging to cliques that may affect the query answer. As opposed to
Sample-and-Clean [182], QDA provides exact query results.
Finally, Adaptive Product Normalization [19] presents an online supervised learning approach

for resolving different descriptions of the same product. The steps of this approach include: (i)
blocking [118], which defines an initial set of basis functions to compute the similarity between
specific attributes of the descriptions, (ii) a learning algorithm for training the parameters of a
composite similarity function, and (iii) clustering [92]. The composite similarity function is trained
incrementally, using an efficient, online variation of the voted perceptron algorithm [67].

8.3 Dynamic Clustering
Special care should be taken to update the entity clusters in an efficient way, as more entities arrive
in the form of queries or streams. To this end, Incremental Correlation Clustering [77] supports
all kinds of updates (i.e., inserting, deleting and changing individual descriptions from clusters
as well as merging and splitting entire clusters), without requiring any prior knowledge of the
number of clusters. It also allows for fixing prior errors in view of new evidence. Due to its high
complexity, though, a greedy approximation of polynomial time is also proposed. Constrained
versions of incremental correlation clustering in other contexts have been proposed in [25, 117].

8.4 Discussion
Table 5 organizes all methods discussed in this section into a taxonomy formed by three criteria:
the ER workflow task corresponding to each method, its schema-awareness and its algorithmic
foundation (learning-based or non-learning). These works are crafted for resolving entities in

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:26 V. Christophides et al.

Table 5. A taxonomy of the incremental methods discussed in Section 8 (in the order of presentation).

Workflow step Schema awareness Algorithmic foundation

Blocking Matching Clustering Schema-aware Schema-agnostic Learning-based Non-learning

 Similarity-Aware Index [35]

 DySimII [146]

 F-DySNI [144,145]

 SBlockSketch [95]

 Query-driven Collective ER [16]

 Query-driven ER with uncertainty [83]

 UDD [167] Unsupervised

 Sample-and-clean [181]

 QuERy [5]

 QDA [4]

 Adaptive Product Normalization [18] Supervised

 Incremental Correlation Clustering [76]

(near) real time, not necessarily covering the whole input entity collections, but only a subset
that is associated with a user-defined query or a stream of descriptions. In these cases, resolving
the whole input set of descriptions would be unnecessarily costly in terms of time and resources.
We believe that in the new Big Data era of unprecedented Volume and Velocity, incremental ER
methods are becoming far more prevalent, gradually displacing traditional, batch ER methods. Yet,
all existing methods are schema-aware, being incapable of addressing Variety. More research is
required towards schema-agnostic methods or other approaches that inherently support Variety.
This also requires the development of incremental schema-agnostic block processing techniques.

9 OTHER ER METHODS
We now cover important ER systems and methods complementary to those presented above.

9.1 Deep Learning
The latest developments in deep learning have greatly influenced research in ER. The basic con-
structs of deep learning methods for ER are Recurrent Neural Networks (RNNs) [59, 196] and word
embeddings [13]. RNNs are neural networks with a dynamic temporal behavior. The neurons are
fed information not only from the previous layer, but also from their own previous state in time, to
process sequences of inputs. Word embeddings are vectorial representations of words, enabling
words or phrases to be compared using their vectors. Word embeddings are commonly used with
RNNs for speech recognition [121] and similar NLP tasks [32].

AutoBlock [202] trains on a set of matches to perform Blocking. First, it converts every token in
an attribute value into a word embedding. Then, a neural network combines word embeddings into
several attribute embeddings per description, which are fed into multiple indexing functions. The
blocking model is learned from training data so that the difference between matching and non-
matching descriptions is maximized. LSH is used to detect the most likely matches per description.

DeepER [52] explores two methods to generate entity embeddings, i.e., vectorial representations
of entity descriptions. The first one exploits word embeddings of tokens appearing in the values of
the descriptions, while the latter uses RNNs to convert each description to a vector. DeepER can
operate both with pre-trained word embeddings [144], and without, proposing ways to create and
tune such embeddings, customized for ER. The embedding vector of every description is indexed
by LSH, whose parameters are set according to a theoretical analysis and the desired performance.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:27

Then, each entity creates a block that contains its top-N nearest neighbors. We note that more
efficient high-dimensional vector similarity methods (than LSH) are now available [53].

DeepMatcher [122] extends DeepER by introducing an architecture template for deep learning ER
methods with three main modules: (i) attribute embedding, which converts sequences of words used
in the attribute values of an entity description to word embedding vectors; (ii) attribute similarity
representation, which applies a similarity function on the attribute embeddings of two descriptions
to obtain a final similarity value of those descriptions (i.e., it learns the similarity function); and (iii)
a classifier, which uses the similarities between descriptions as features for a classifier that decides
if a pair of descriptions is a match (i.e., it learns the match function). For each module, several
options are available. The main ones (e.g., character-level vs word-level embeddings, pre-trained vs
learned embeddings, fixed vs learnable similarity function) are used as representative points for
those modules and are experimentally evaluated, showing their strengths and weaknesses.
Multi-Perspective Matching [68] adaptively selects (among the similarity measures of Deep-

Matcher’s RNN, the Hybrid similarities for textual attributes, and several established approaches
for string and numeric attributes) the optimal similarity measures for heterogenous attributes. First,
a unified model for all attributes is built and the supported similarity measures are applied to every
attribute value pair. A gate mechanism adaptively selects the most appropriate similarity measure
per attribute and the selected measures are concatenated into a comparison vector. Finally, a neural
network receives the comparison vector as input and produces the matching probability as output.
Other works examine ways of optimizing the use of Deep Learning techniques: to minimize

the number of required labelled instances, transfer learning is examined in [203] and pre-trained
subword embeddings are combined with transfer and active learning in [97]; the use of the main
attention-based transformer architectures is examined in [22]; pre-trained word embeddings are
coupled with online user reviews for each entity description (e.g., restaurant) in [158].
As we have seen, conventional ER methods identify similar entities based on symbolic fea-

tures (e.g., names, textual descriptions and attribute values). However, the computation of feature
similarity often suffers from the semantic heterogeneity between different Knowledge Graphs
(KG). Recently, representation learning techniques have been proposed for Clean-Clean ER, also
called Entity Alignment, where the key idea is to learn embeddings of KGs, such that entities with
similar neighbor structures in the KG have a close representation in the embedding space. While
several existing techniques learn entity embeddings in the context of the same KG, doing the
same for entities of different KGs remains an open challenge. In this setting, MTransE [27] learns a
mapping between two KG embedding spaces, using a seed set of aligned entities from the two KGs,
though, this is rarely available. JAPE [170] jointly trains the attribute and structure embeddings
using skip-gram and translational models, respectively, to align entities. GCN-Align [188] employs
Graph Convolutional Networks (GCNs) to model entities based on their neighborhood information.
However, GCN-Align only considers the equivalent relations between entities, neglecting the use of
additional KG relationships. IPTransE [205] and BootEA [171] integrate knowledge among different
KGs by enlarging the training data (prior alignments) in a bootstrapping way. KDCoE [26] itera-
tively co-trains multilingual KG embeddings and fuses them with entity description information
for alignment. The above iterative methods improve performance mainly by increasing the num-
ber of pre-aligned training entity pairs, a strategy that could benefit most alignment approaches.
Non-iterative methods could achieve better results through bootstrapping.

Methods leveraging additional types of features to refine relation-based embeddings include the
following. AttrE [174] uses character-level literal embeddings over a unified vector space for the
relationship embeddings after merging the two KGs based on predicate similarity (i.e., predicate
alignment). [201] introduces a framework that unifies multiple views of entities to learn embeddings
for entity alignment that is capable of incorporating new features. Specifically, it embeds entities

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:28 V. Christophides et al.

based on the views of entity names, relations and attributes, with several combination strategies,
and considers cross-KG inference methods to enhance the alignment between two KGs. A thorough
experimental evaluation of supervised and semi-supervised methods for embedding-based entity
alignment has been conducted in [172]. The results on sparse and dense datasets recognize the
difficulty of existing methods in aligning (the many) long-tail entities [112]. Finally, we note that
the hierarchical structure of KGs (in particular, ontologies) has not been well studied in this context.
Thus, more complex KG embeddings (going beyond Euclidean models) are worth exploiting [129].

9.2 Crowdsourcing-based ER methods
Crowd-sourcing is a recent discipline that examines ways of pushing difficult tasks, called Human
Intelligence Tasks (HITs), to humans, a.k.a., workers, at a small price [86]. In the case of ER, one of the
most difficult tasks is to decide whether two descriptions match or not. Crowd-sourced ER assumes
that humans can improve the effectiveness (i.e., accuracy) of Matching by leveraging contextual
information and common sense. Therefore, it asks workers questions about the relation between
descriptions for a small compensation per reply. Four main challenges arise in this context:

Challenge 1: How should HITs be generated?
Challenge 2: How should HITs be formulated?
Challenge 3: How can we maximize accuracy, while minimizing the overall monetary cost?
Challenge 4: How can we restrict the labour cost?

Below, we examine the main solutions to each challenge.
Challenge 1: To generate HITs, a hybrid human-machine approach is typically used [28, 113]. First,
machine-based techniques are used to do an initial, coarse pass over all pairs of candidate matches,
discarding the majority of non-matches, and then, the crowd is asked to verify only the remaining
candidate matches. This approach was first introduced by CrowdER [181], which automatically
computes the similarity between description pairs and discards those below a predetermined
threshold. Similarly, ZenCrowd [45] combines machine-based pre-processing with crowd-sourced
matching, with the latter clarifying low confidence matches produced by the former. A probabilistic
framework is used to refine crowd-sourced matches from inconsistent human responses.
Challenge 2: Two are the main approaches to formulating HITs [28]: pair-based and cluster-based
(a.k.a.multi-item)HITs. The former type asks workers questions of the form “is 𝑒𝑖 matching with 𝑒 𝑗?”
[64, 177, 179, 183, 192], whereas the latter type involves groups with more than two descriptions,
requesting workers to mark all duplicates within each group [181]. There is a trade-off between
accuracy and efficiency in terms of cost and time between these two approaches [178]: pair-based
HITs are simpler, allowingworkers to providemore accurate responses, while the cluster-based HITs
enable humans to mark many pairs of records with a few clicks, but their generation constitutes an
NP-hard problem that is solved greedily by CrowdER [181]. Hybrid HITs are used byWaldo [178],
which argues that the error rate of workers is different for different description pairs. Thus, the high
error-rate pairs (i.e., the most “difficult” ones) should be formulated as pair-based HITs, whereas the
low error-rate ones should form cluster-based HITs. Waldo formalizes the generation of the best
hybrid HITs as an optimization task with a specific budget and provides solutions with probabilistic
guarantees. Finally, Crowdlink [199] decomposes each pair of descriptions into attribute-level HITs to
facilitate workers when processing descriptions with overwhelming information, i.e., with complex
structures and attributes. A probabilistic framework then selects the 𝑘 best attributes.
Challenge 3: To optimize the trade-off between accuracy and monetary cost, the transitive relation
is typically leveraged; if the relation between two descriptions can be inferred by transitivity from
the already detected duplicates, it is not crowd-sourced. This inference takes two flavours [28]:
positive transitivity suggests that if 𝑒𝑖 ≡ 𝑒 𝑗 and 𝑒 𝑗 ≡ 𝑒𝑘 , then 𝑒𝑖 ≡ 𝑒𝑘 , whereas negative transitivity

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:29

indicates that if 𝑒𝑖 ≡ 𝑒 𝑗 , but 𝑒 𝑗 . 𝑒𝑘 , then 𝑒𝑖 . 𝑒𝑘 . These relations lie at the core of several
approaches [64, 98, 179, 183, 192] that minimize the number of HITs submitted to workers, reducing
significantly the crowd-sourcing overhead. Their key insight is that finding matches before non-
matches accelerates the ER process, by making the most of the transitive closure.
Yet, these works assume that workers are infallible, operating as an oracle, which means that

uncertainty comes exclusively from the machine-generated similarities. In practice, though, the high
accuracy workers have an error rate up to 25%, due to lack of domain expertise, individual biases,
tiredness, malicious behaviors as well as task complexity and ambiguity [185, 197]. When human
errors occur, the above methods amplify them, thus compromising the overall ER accuracy [185].
More realistic and robust approaches minimize HITs despite noisy workers, operating on top of a
noisy matcher that introduces uncertainty by returning possibly false results [23, 24, 103, 177, 197].
Other approaches correct the responses of an oracle through indirect “control queries” [70], or
refine the original crowd-sourced entities based on correlation clustering and additional HITs [185].
Challenge 4: A major disadvantage of Crowd-sourced ER is the development cost that is required
for applying it in practice. To address this issue, Corleone [74] implements a hands-off crowd-
sourcing solution for the entire ER workflow that involves no software developers. It automatically
generates blocking rules, learns a matcher from the HITs that are iteratively answered by workers
(active learning minimizes the monetary cost), and finally returns the equivalence clusters. However,
Corleone does not scale to large datasets, as it exclusively runs in-memory on a single machine. To
address this issue, Falcon [42] runs Corleone on a MapReduce cluster, exploiting crowd-time to run
machine tasks. Experiments have shown that it scales to 2.5 million descriptions in 2-14 hours for
only ∼$60. CloudMatcher [76] goes one step further, implementing Falcon as a cloud service.

9.3 Rule-based ER methods
This category includes methods that leverage the knowledge of domain experts, who can provide
some generic initial rules (e.g., “if two descriptions have a similar address values, then they are
matches”) that will help an ER algorithm to find some or all matches in a given task.

HIL [83] is a high-level scripting language for expressing such rules. A HIL program determines
complex ER pipelines, capturing the overall integration flow through a combination of SQL-like
rules that link, map, fuse and aggregate descriptions. Its data model makes uses of logical indices
to facilitate the modular construction and aggregation of complex entity descriptions. Its flexible,
open type system allows HIL to handle irregular, sparse or partially known input data.

Reasoning and discovery techniques have also been proposed for automatically obtaining more
matching rules. Dependency-based reasoning techniques to help define keys for Matching and
Blocking are introduced in [61, 62]. At their core lie matching dependencies (MDs), which allow to
infer matches, based on the similarity of database records on some attributes in relational schemata.
MDs can be used in both Blocking and Matching to directly infer matches, but they can also be
extended and used to infer new MDs, minimizing manual effort and leading to more matches.
Even though the MDs are looser versions of the strict functional dependencies in relational

databases, they may still be too strict in practice. To address this issue, the conditional MDs (CMDs)
[187] bind MDs to a certain subset of descriptions in a relational table and have more expressive
power than MDs for declaring constraints with conditions, allowing a wider range of applications.

Certus [110] introduces graph differential dependencies (GDDs) as an extension of MDs and CMDs
that enables approximate matching of values. It adopts a graph model for entity descriptions, which
enables the formal representation of descriptions even in unstructured sources, while a specialized
algorithm generates a non-redundant set of GDDs from labeled data. Certus employs the learned
GDDs for improving the accuracy of ER results. Unlike MDs and CMDs, which operate only on
structured data, Certus can identify matches irrespective of structure and with no assumed schema.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:30 V. Christophides et al.

Table 6. The main open-source ER Tools (a feature in parenthesis is partially supported).

Tool Blocking Block Matching Clustering Parallelization Bugdet- Incremental GUI Language
Processing aware ER ER

Dedupe [20] ✓ - ✓ - multi-core - - - Python
DuDe [51] ✓ - ✓ - - - - - Java
Febrl [33] ✓ - ✓ - multi-core - - ✓ Python
FRIL [93] ✓ - ✓ - - - - ✓ Java
OYSTER [125] ✓ - ✓ - - - - - Java
RecordLinkage [156] ✓ - ✓ - - - - - R
Magellan [104] ✓ - ✓ - (Apache Spark) - - ✓ Python
FAMER [153] - - - ✓ Apache Flink - - - Java
Silk [91] ✓ - ✓ - Apache Spark - - ✓ Scala
LIMES [128] ✓ - ✓ - (multi-core) - - ✓ Java
Duke ✓ - ✓ - - - ✓ - Java
KnoFuss [130] ✓ - ✓ - - - - - Java
SERIMI [8] ✓ - ✓ - - - - - Ruby
MinoanER [56] ✓ ✓ ✓ - Apache Spark - - - Java
JedAI [142] ✓ ✓ ✓ ✓ Apache Spark ✓ - ✓ Java

9.4 Temporal ER methods
Entity descriptions are often associated with temporal information in the form of timestamps
(e.g., user log data or sensor data) [31, 123] or temporal validity of attributes (e.g., population,
marital status, affiliation) [85]. ER methods exploiting such temporal information may show better
performance than those ignoring it [30]; rather than deciding if two descriptions match, they try
to decide if a new description matches with a set descriptions that have been already identified
as matches. The probability of a value re-appearing over time is examined in [30]. Intuitively, a
description might change its attribute values in a way that is dependent on previous values. For
example, if a person’s location has taken the values Los Angeles, San Francisco, San Jose in the past,
then these values are more likely to appear in this person’s future location than Berlin or Cairo.
SFDS [31] follows a “static first, dynamic second” strategy: initially, it assumes that all descriptions
are static (i.e., not evolving over time) and groups them into clusters. These are later merged in the
dynamic phase, if the different clusters correspond to the same entities that have evolved over time.

9.5 Open-source ER tools
We now elaborate on the main systems that are crafted for end-to-end Entity Resolution. We
examined the 18 non-commercial and 15 commercial tools that are listed in the extended version
of [104]8 along with the 10 Link Discovery frameworks surveyed in [127]. Among them, we
exclusively consider the open-source systems, since the closed-code and the commercial ones
provide insufficient information about their internal functionality and/or their algorithms.
A summary of the main open-source ER systems appears in Table 6. For each one, we report

whether it involves one or more methods per workflow step of the general end-to-end ER pipeline in
Figure 2(a), whether it supports parallelization, budget-aware or incremental methods, a graphical
user interface (GUI) as well as its programming language. To facilitate their understanding, we
group all systems into 3 categories, depending on their input data: (i) systems for structured data,
(ii) systems for semi-structured data, and (iii) hybrid systems.

The tools for structured data include Dedupe [20], FRIL [93], OYSTER [125], RecordLinkage
[156], DuDe [51], Febrl [33], Magellan [104] and FAMER [153]. All of them offer at least one method
for Blocking and Matching, while disregarding Clustering. The only exception is FAMER, which
exclusively focuses on Clustering, implementing several established techniques in Apache Flink.
Febrl involves the richest variety of non-learning, schema-aware Blocking methods, which can be
combined with several similarity measures and top-performing classifiers for supervised matching.
8http://pages.cs.wisc.edu/~anhai/papers/magellan-tr.pdf

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

http://pages.cs.wisc.edu/~anhai/papers/magellan-tr.pdf

An Overview of End-to-End Entity Resolution for Big Data 1:31

Magellan conveys a Deep Learning module, which is a unique feature among all ER tools. Most
systems are implemented in Java or Python, with just three of them offering a GUI.

The systems for semi-structured data receive as input RDF dump files or SPARQL endpoints. The
most prominent ones are Silk [91] and LIMES [128], which are crafted for the Link Discovery prob-
lem (i.e., the generic task of identifying relations between entities). Restricting them to the discovery
of sameAs relations renders them suitable for ER. Both systems involve custom blocking techniques
along with a large variety of character- and token-based similarity measures. Combinations of
these similarity measures are learned in a (semi-)supervised way for effective Matching. Both tools
offer an intuitive GUI, unlike the remaining ones, namely SERIMI [8], Duke9 and KnoFuss [130].
These systems merely apply simple Blocking techniques to literal values and focus primarily on
Matching, providing effective, but custom techniques based on similarity measures.

The hybrid tools, MinoanER [56] and JedAI [142], apply uniformly to both structured and semi-
structured data. This is possible due to the schema-agnostic functionality of their methods. In fact,
they implement the main non-learning, schema-agnostic techniques for Blocking, Matching and
Clustering. They are also the only systems that offer Block Processing techniques.
Overall, we observe that all open-source systems focus on Matching, conveying a series of

string similarity measures for the comparison of attribute values. More effort should be spend
on covering more adequately all workflow steps of the general end-to-end ER workflow. Most
importantly, except for Duke’s Incremental ER and JedAI’s Progressive ER, no system supports any
other processing mode other than budget-agnostic ER. This should be addressed in the future.

9.6 Discussion
Even though Rule-based and Temporal ER constitute important topics, more effort is lately directed
at leveraging Deep Learning techniques for ER. These efforts have already paid off, as the resulting
techniques achieve the state-of-the-art performance for several established benchark datasets [122],
outperforming methods based on traditional machine learning. Yet, the time efficiency and the
availability of a representative set of labelled instances remain important issues. The latter is
intelligently addressed by a series of Crowdsourcing-based ER methods. Despite the considerable
recent advancements, though, Crowdsourced ER still suffers from significant monetary cost and
high latency, while it can only be used by expert users. Systems like CloudMatcher contribute
to its democratization, while systems like MinoanER and JedAI aim to act as libraries of the
state-of-the-art methods for end-to-end ER over Big Data.

10 DIRECTIONS FOR FUTUREWORK
As we have just begun to realize the need for Entity Resolution Management Systems [104], we next
highlight few critical research directions for future work, which aim to support advanced services
for specifying, maintaining and making accountable complex ER workflows.
Multi-modal ER. In the Big Data era, multi-modal entity descriptions are becoming increasingly
common. Factual, textual or image-based descriptions of the same real world entities are available
from different sources and at different temporal, or spatial resolutions. Each modality carries a
specific piece of information about an entity and offers added value that cannot be obtained from
the other modalities. Recent years have witnessed a surge of the need to jointly analyze multi-modal
descriptions [204]. Finding semantically similar descriptions from different modalities is one of the
core problems of multi-modal learning. Most current approaches focus on how to utilize extrinsic
supervised information to project one modality to the other, or map two modalities into a commonly
shared space. The performance of these methods heavily depends on the richness of the training

9https://github.com/larsga/Duke

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://github.com/larsga/Duke

1:32 V. Christophides et al.

samples. In real-world applications though, obtaining matched data from multiple modalities is
costly, or impossible [71]. Thus, we need sample-insensitive methods for multi-modal ER, and in
this respect, we can leverage recent advances in multi-modal ML techniques [11].
Debugging and Repairing ER workflows. Current ER research mainly focuses on developing
accurate and efficient techniques, which in reality are constrained by a number of factors, such as
low quality entity descriptions, ambiguous domain knowledge and limited ground truth. Hence, it
is difficult to guarantee the quality of ER workflows at specification time. To support a continuous
specification of ER workflows, an iterative approach is needed to refine ER workflows by identifying
and analyzing the mistakes (false matches and non-matches) of ER enactments at each iteration step.
Debugging ER workflows requires to: (a) understand the mistakes made by Blocking or Matching
algorithms; (b) diagnose root-causes of these mistakes (e.g., due to dirty data, problematic feature
sets, or even tuning parameters of algorithms); and (c) prioritize mistakes and take actions to fix
them [104]. We note that not all categories of mistakes have the same impact on the end-to-end
quality of ER workflows. For example, the removal of outliers from input data often leads to
overfitting problems of learning-based matchers. Recognizing patterns of mistakes reproduced
under similar conditions can provide valuable insights in order to repair ER workflows. The focus
of ER work so far was in preventing rather than repairing mistakes in ER results. Recent work on
debugging and repairing Big Data analytics pipelines can be leveraged in this respect [39, 78, 115].
Fairness in Long Tail Entities Resolution. The reported accuracy scores of several ER ap-
proaches are fairly high, giving the impression that the problem is well-understood and solved. At
the same time, recent works (e.g., [60, 176]) claim that ER systems base their performance on entity
popularity, while their performance drops significantly when focusing on the rare, long tail entities.
However, the lack of formal definitions regarding what is popular and long tail entities for the ER
task prevents the identification of the difficult cases for ER, for which systems need to be adapted
or new approaches need to be developed [186]. Better understanding such cases will be helpful for
ER, since knowledge about long tail entities is less accessible, not redundant and hard to obtain.
Diversity of Matching Entities.Works in budget-aware ER typically focus on maximizing the
reported matches, by potentially exploiting the partial matching results obtained so far in an
iterative process. Then, it will be interesting to measure the added knowledge that the ER process
could achieve after merging the matches, similar to the notion of diversity in information retrieval.
Our intuition is that merges resulting from somehow similar entities are more beneficial when
compared to merges from strongly similar entities. Thus, given a constraint in the number of
possible merges, the goal is to perform those that contribute most in diversifying the knowledge
encoded in the result. Added knowledge can be measured by the number of relationships of a
merged entity with other entities. We consider such relationships as a unit of knowledge increase:
when two relationships represent two different knowledge units, they are both useful; when they
overlap, they represent the same knowledge unit, so we do not gain by knowing both of them.
Bias in ER. Similarity measures lie at the core of Matching . However, it is well known that not
all similarity measures are appropriate for all types of data (e.g., strings, locations, and videos).
Moreover, when focusing on particular types of measures, e.g., measures for string matching, we
do not know beforehand which is the ideal measure for counting similarities with respect to the
semantics of the strings to be compared. For instance, we possibly need different measures for
computing similarities between American names than for Chinese names. In such scenarios, we
typically exploit some solid empirical evidence, which, based on some of the characteristics that
our data have, leads us to select, unintentionally, a particular measure. This fact can be considered
as algorithmic bias [79]. As a first step, for achieving unbiased and fair results, it is important to

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:33

experimentally study if there is bias in ER algorithms [7, 95]. Moving forward to the next generation
of approaches, we need to propose solutions and provide guidelines that make ER algorithms fair.

11 CONCLUSIONS
Although ER has been studied for more than three decades in different computer science commu-
nities, it still remains an active area of research. The problem has enjoyed a renaissance during
recent years, with the avalanche of data-intensive descriptions of real-world entities provided by
government, scientific, corporate or even user-crafted data sources. Reconciling different entity
descriptions in the Big Data era poses new challenges both at the algorithmic and the system level:
Volume, due to the very high number of entities and data sources, Variety, due to the extreme
schema heterogeneity, Velocity, due to the continuously increasing volume of data, and Veracity,
due to the high level of noise and inconsistencies. In this survey, we have focused on how the main
algorithms in each step of the end-to-end ER workflow address the combination of these challenges.
Blocking and Block Processing, two steps that by definition tackle Volume, also address Variety
mainly through a schema-agnostic, non-learning functionality. Most Matching methods employ a
schema-agnostic, collective functionality, which leverages information provided by related entities,
in order to address Variety and Veracity. Budget-aware ER methods rely on Blocking and a usually
schema-agnostic functionality to simultaneously address Volume and Variety, while Incremental
Methods address Volume and Velocity through Blocking, but their schema-aware functionality
prevents them from tackling Variety, too. In all cases, massive parallelization, usually through
the MapReduce framework, plays an important role in further improving scalability and, thus,
addressing Volume. Note, though, that we share the view of ER as an engineering task by nature,
and hence, we cannot just keep developing ER algorithms in a vacuum [104]. In the Big Data era,
we opt for open-world ER systems that allow to plug-and-play different algorithms and can easily
integrate with third-party tools for data exploration, data cleaning or data analytics.
Acknowledgements. This work was partially funded by the EU H2020 project ExtremeEarth
(825258).

REFERENCES
[1] A. N. Aizawa and K. Oyama. A fast linkage detection scheme for multi-source information integration. In WIRI, 2005.
[2] Y. Altowim, D. V. Kalashnikov, and S. Mehrotra. Progressive approach to relational entity resolution. PVLDB, 7(11), 2014.
[3] Y. Altowim and S. Mehrotra. Parallel progressive approach to entity resolution using mapreduce. In ICDE, pages 909–920, 2017.
[4] H. Altwaijry, D. V. Kalashnikov, and S. Mehrotra. QDA: A query-driven approach to entity resolution. TKDE, 29(2), 2017.
[5] H. Altwaijry, S. Mehrotra, and D. V. Kalashnikov. Query: A framework for integrating entity resolution with query processing. PVLDB,

9(3):120–131, 2015.
[6] R. Ananthakrishna, S. Chaudhuri, and V. Ganti. Eliminating fuzzy duplicates in data warehouses. In VLDB, pages 586–597, 2002.
[7] R. Angell, B. Johnson, Y. Brun, and A. Meliou. Themis: automatically testing software for discrimination. In ESEC/FSE, 2018.
[8] S. Araújo, D. T. Tran, A. P. de Vries, and D. Schwabe. SERIMI: class-based matching for instance matching across heterogeneous

datasets. TKDE, 27(5):1397–1410, 2015.
[9] T. B. Araújo, K. Stefanidis, C. E. S. Pires, J. Nummenmaa, and T. P. da Nóbrega. Schema-agnostic blocking for streaming data. In ACM

SAC, pages 412–419, 2020.
[10] J. A. Aslam, E. Pelekhov, and D. Rus. The star clustering algorithm for static and dynamic information organization. J. Graph

Algorithms Appl., 8:95–129, 2004.
[11] T. Baltrusaitis, C. Ahuja, and L.-P. Morency. Challenges and applications in multimodal machine learning. In The Handbook of

Multimodal-Multisensor Interfaces, pages 17–48. ACM and Morgan & Claypool, 2019.
[12] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. Machine Learning, 56(1-3):89–113, 2004.
[13] Y. Bengio, R. Ducharme, P. Vincent, and C. Janvin. A neural probabilistic language model. JMLR, 3:1137–1155, 2003.
[14] O. Benjelloun, H. Garcia-Molina, H. Gong, H. Kawai, T. E. Larson, D. Menestrina, and S. Thavisomboon. D-swoosh: A family of

algorithms for generic, distributed entity resolution. In ICDCS, page 37, 2007.
[15] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and J. Widom. Swoosh: a generic approach to entity resolution.

VLDB J., 18(1):255–276, 2009.
[16] I. Bhattacharya and L. Getoor. Collective entity resolution in relational data. TKDD, 1(1):5, 2007.
[17] I. Bhattacharya and L. Getoor. Query-time entity resolution. J. Artif. Intell. Res., 30:621–657, 2007.
[18] G. D. Bianco, M. A. Gonçalves, and D. Duarte. BLOSS: effective meta-blocking with almost no effort. Inf. Syst., 75:75–89, 2018.
[19] M. Bilenko, S. Basu, andM. Sahami. Adaptive product normalization: Using online learning for record linkage in comparison shopping.

In ICDM, pages 58–65, 2005.
[20] M. Bilenko and R. J. Mooney. Adaptive Duplicate Detection using Learnable String Similarity Measures. In SIGKDD, 2003.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:34 V. Christophides et al.

[21] C. Böhm, G. de Melo, F. Naumann, and G. Weikum. LINDA: distributed web-of-data-scale entity matching. In CIKM, 2012.
[22] U. Brunner and K. Stockinger. Entity matching with transformer architectures - A step forward in data integration. pages 463–473,

2020.
[23] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. Cost-effective crowdsourced entity resolution: A partial-order approach. In SIGMOD, 2016.
[24] C. Chai, G. Li, J. Li, D. Deng, and J. Feng. A partial-order-based framework for cost-effective crowdsourced entity resolution. VLDB

J., 27(6):745–770, 2018.
[25] M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and dynamic information retrieval. SIAM J. Comput.,

33(6):1417–1440, 2004.
[26] M. Chen, Y. Tian, K. Chang, S. Skiena, and C. Zaniolo. Co-training embeddings of knowledge graphs and entity descriptions for

cross-lingual entity alignment. In IJCAI, 2018.
[27] M. Chen, Y. Tian, M. Yang, and C. Zaniolo. Multilingual knowledge graph embeddings for cross-lingual knowledge alignment. In

IJCAI, 2017.
[28] X. Chen. Crowdsourcing entity resolution: a short overview and open issues. In GvDB, pages 72–77, 2015.
[29] X. Chen, E. Schallehn, and G. Saake. Cloud-scale entity resolution: Current state and open challenges. OJBD, 4(1), 2018.
[30] Y. Chiang, A. Doan, and J. F. Naughton. Modeling entity evolution for temporal record matching. In SIGMOD, pages 1175–1186, 2014.
[31] Y. Chiang, A. Doan, and J. F. Naughton. Tracking entities in the dynamic world: A fast algorithm for matching temporal records.

PVLDB, 7(6):469–480, 2014.
[32] K. Cho, B. van Merrienboer, Ç. Gülçehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio. Learning phrase representations

using RNN encoder-decoder for statistical machine translation. In EMNLP, pages 1724–1734, 2014.
[33] P. Christen. Febrl -: an open source data cleaning, deduplication and record linkage system with a graphical user interface. In KDD,

pages 1065–1068, 2008.
[34] P. Christen. Data Matching. Springer, 2012.
[35] P. Christen. A survey of indexing techniques for scalable record linkage and deduplication. TKDE, 24(9):1537–1555, 2012.
[36] P. Christen, R. W. Gayler, and D. Hawking. Similarity-aware indexing for real-time entity resolution. In CIKM, pages 1565–1568, 2009.
[37] V. Christophides, V. Efthymiou, and K. Stefanidis. Entity Resolution in the Web of Data. Morgan & Claypool, 2015.
[38] X. Chu, I. F. Ilyas, and P. Koutris. Distributed data deduplication. PVLDB, 9(11):864–875, 2016.
[39] Y. Chung, T. Kraska, N. Polyzotis, K. Tae, and S. E. Whang. Slice finder: Automated data slicing for model validation. In ICDE, 2019.
[40] A. Clauset, M. E. Newman, and C. Moore. Finding community structure in very large networks. Physical review E, 70(6):066111, 2004.
[41] W. W. Cohen and J. Richman. Learning to match and cluster large high-dimensional data sets for data integration. In SIGKDD, 2002.
[42] S. Das, P. S. G. C., A. Doan, J. F. Naughton, G. Krishnan, R. Deep, E. Arcaute, V. Raghavendra, and Y. Park. Falcon: Scaling up hands-off

crowdsourced entity matching to build cloud services. In SIGMOD, pages 1431–1446, 2017.
[43] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters. Commun. ACM, 51(1):107–113, 2008.
[44] J. Debattista, C. Lange, S. Auer, and D. Cortis. Evaluating the quality of the LOD cloud: An empirical investigation. Semantic Web,

9(6):859–901, 2018.
[45] G. Demartini, D. E. Difallah, and P. Cudré-Mauroux. Large-scale linked data integration using probabilistic reasoning and crowd-

sourcing. VLDB J., 22(5):665–687, 2013.
[46] J. A. Díaz and E. Fernández. A tabu search heuristic for the generalized assignment problem. EJOR, 132(1):22–38, 2001.
[47] D. C. do Nascimento, C. E. S. Pires, and D. G. Mestre. Exploiting block co-occurrence to control block sizes for entity resolution. Knowl.

Inf. Syst., 62(1):359–400, 2020.
[48] X. Dong, A. Y. Halevy, and J. Madhavan. Reference reconciliation in complex information spaces. In SIGMOD, pages 85–96, 2005.
[49] X. L. Dong and D. Srivastava. Big Data Integration. Morgan & Claypool, 2015.
[50] C. F. Dorneles, R. Gonçalves, and R. dos Santos Mello. Approximate data instance matching: a survey. KAIS, 27(1):1–21, Apr 2011.
[51] U. Draisbach and F. Naumann. Dude: The duplicate detection toolkit. In QDB, 2010.
[52] M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and N. Tang. Distributed representations of tuples for entity resolution.

PVLDB, 11(11):1454–1467, 2018.
[53] K. Echihabi, K. Zoumpatianos, T. Palpanas, and H. Benbrahim. Return of the lernaean hydra: Experimental evaluation of data series

approximate similarity search. PVLDB, 13(3), 2019.
[54] V. Efthymiou, O. Hassanzadeh, M. Rodriguez-Muro, and V. Christophides. Matching web tables with knowledge base entities: From

entity lookups to entity embeddings. In ISWC, pages 260–277, 2017.
[55] V. Efthymiou, G. Papadakis, G. Papastefanatos, K. Stefanidis, and T. Palpanas. Parallel meta-blocking for scaling entity resolution over

big heterogeneous data. Inf. Syst., 65:137–157, 2017.
[56] V. Efthymiou, G. Papadakis, K. Stefanidis, and V. Christophides. MinoanER: Schema-agnostic, non-iterative, massively parallel reso-

lution of web entities. In EDBT, pages 373–384, 2019.
[57] V. Efthymiou, K. Stefanidis, and V. Christophides. Big data entity resolution: From highly to somehow similar entity descriptions in

the web. In IEEE Big Data, pages 401–410, 2015.
[58] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios. Duplicate record detection: A survey. TKDE, 19(1):1–16, 2007.
[59] J. L. Elman. Finding structure in time. Cognitive Science, 14(2):179–211, 1990.
[60] J. Esquivel, D. Albakour, M. Martinez-Alvarez, D. Corney, and S. Moussa. On the long-tail entities in news. In ECIR, 2017.
[61] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma. Dynamic constraints for record matching. VLDB J., 20(4):495–520, 2011.
[62] W. Fan, X. Jia, J. Li, and S. Ma. Reasoning about record matching rules. PVLDB, 2(1):407–418, 2009.
[63] I. P. Fellegi and A. B. Sunter. A theory for record linkage. Journal of the American Statistical Association, 64:1183–1210, 1969.
[64] D. Firmani, B. Saha, and D. Srivastava. Online entity resolution using an oracle. PVLDB, 9(5):384–395, 2016.
[65] J. Fisher, P. Christen, Q. Wang, and E. Rahm. A clustering-based framework to control block sizes for entity resolution. In SIGKDD,

pages 279–288, 2015.
[66] G. W. Flake, R. E. Tarjan, and K. Tsioutsiouliklis. Graph clustering and minimum cut trees. Internet Mathematics, 1(4):385–408, 2003.
[67] Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm. Machine Learning, 37(3):277–296, 1999.
[68] C. Fu, X. Han, L. Sun, B. Chen, W. Zhang, S. Wu, and H. Kong. End-to-end multi-perspective matching for entity resolution. In IJCAI,

pages 4961–4967, 2019.
[69] A. Gal. Tutorial: Uncertain entity resolution. PVLDB, 7(13):1711–1712, 2014.
[70] S. Galhotra, D. Firmani, B. Saha, and D. Srivastava. Robust entity resolution using random graphs. In SIGMOD, pages 3–18, 2018.
[71] N. Gao, S.-J. Huang, Y. Yan, and S. Chen. Cross modal similarity learning with active queries. Pattern Recogn., 75(C):214–222, 2018.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:35

[72] L. Getoor and A. Machanavajjhala. Entity resolution: Theory, practice & open challenges. PVLDB, 5(12):2018–2019, 2012.
[73] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. TKDD, 1(1):4, 2007.
[74] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. W. Shavlik, and X. Zhu. Corleone: hands-off crowdsourcing for entity

matching. In SIGMOD, pages 601–612, 2014.
[75] B. Golshan, A. Y. Halevy, G. A. Mihaila, and W. Tan. Data integration: After the teenage years. In PODS, pages 101–106, 2017.
[76] Y. Govind, E. Paulson, P. Nagarajan, P. S. G. C., A. Doan, Y. Park, G. Fung, D. Conathan, M. Carter, and M. Sun. Cloudmatcher: A

hands-off cloud/crowd service for entity matching. PVLDB, 11(12):2042–2045, 2018.
[77] A. Gruenheid, X. L. Dong, and D. Srivastava. Incremental record linkage. PVLDB, 7(9):697–708, May 2014.
[78] M. A. Gulzar, M. Interlandi, S. Yoo, S. D. Tetali, T. Condie, T. Millstein, and M. Kim. Bigdebug: Debugging primitives for interactive

big data processing in spark. In ICSE, pages 784–795, 2016.
[79] S. Hajian, F. Bonchi, and C. Castillo. Algorithmic bias: From discrimination discovery to fairness-aware data mining. In KDD, 2016.
[80] O. Hassanzadeh, F. Chiang, R. J. Miller, and H. C. Lee. Framework for evaluating clustering algorithms in duplicate detection. PVLDB,

2(1):1282–1293, 2009.
[81] O. Hassanzadeh and R. J. Miller. Creating probabilistic databases from duplicated data. VLDB J., 18(5):1141–1166, 2009.
[82] T. H. Haveliwala, A. Gionis, and P. Indyk. Scalable techniques for clustering the web. In WebDB, pages 129–134, 2000.
[83] M. A. Hernández, G. Koutrika, R. Krishnamurthy, L. Popa, and R. Wisnesky. HIL: a high-level scripting language for entity integration.

In EDBT, pages 549–560, 2013.
[84] M. A. Hernàndez and S. J. Stolfo. The merge/purge problem for large databases. In SIGMOD, pages 127–138, 1995.
[85] J. Hoffart, F. M. Suchanek, K. Berberich, and G.Weikum. YAGO2: A spatially and temporally enhanced knowledge base fromwikipedia.

Artif. Intell., 194:28–61, 2013.
[86] J. Howe. The rise of crowdsourcing. Wired magazine, 14(6):1–4, 2006.
[87] I. F. Ilyas and X. Chu. Data Cleaning. ACM, 2019.
[88] E. Ioannou, W. Nejdl, C. Niederée, and Y. Velegrakis. On-the-fly entity-aware query processing in the presence of linkage. PVLDB,

3(1):429–438, 2010.
[89] E. Ioannou, C. Niederée, and W. Nejdl. Probabilistic entity linkage for heterogeneous information spaces. In CAiSE, 2008.
[90] E. Ioannou, N. Rassadko, and Y. Velegrakis. On generating benchmark data for entity matching. J. Data Semantics, 2(1):37–56, 2013.
[91] R. Isele and C. Bizer. Learning expressive linkage rules using genetic programming. PVLDB, 5(11):1638–1649, 2012.
[92] A. K. Jain, M. N. Murty, and P. J. Flynn. Data clustering: A review. ACM Comput. Surv., 31(3):264–323, 1999.
[93] P. Jurczyk, J. J. Lu, L. Xiong, J. D. Cragan, and A. Correa. Fine-grained record integration and linkage tool. BDR, 82(11), 2008.
[94] A. Jurek, J. Hong, Y. Chi, and W. Liu. A novel ensemble learning approach to unsupervised record linkage. Inf. Syst., 71:40–54, 2017.
[95] A. Karakasidis and E. Pitoura. Identifying bias in name matching tasks. In EDBT, pages 626–629, 2019.
[96] D. Karapiperis, A. Gkoulalas-Divanis, and V. S. Verykios. Summarization algorithms for record linkage. In EDBT, pages 73–84, 2018.
[97] J. Kasai, K. Qian, S. Gurajada, Y. Li, and L. Popa. Low-resource deep entity resolution with transfer and active learning. In ACL, pages

5851–5861, 2019.
[98] X. Ke, M. Teo, A. Khan, and V. K. Yalavarthi. A demonstration of PERC: probabilistic entity resolution with crowd errors. PVLDB,

11(12):1922–1925, 2018.
[99] M. Kejriwal and D. P. Miranker. An unsupervised algorithm for learning blocking schemes. In ICDM, pages 340–349, 2013.
[100] M. Kejriwal and D. P. Miranker. A two-step blocking scheme learner for scalable link discovery. In OM, pages 49–60, 2014.
[101] M. Kejriwal and D. P. Miranker. A DNF blocking scheme learner for heterogeneous datasets. CoRR, abs/1501.01694, 2015.
[102] M. Kejriwal and D. P. Miranker. An unsupervised instance matcher for schema-free RDF data. J. Web Sem., 35:102–123, 2015.
[103] A. R. Khan and H. Garcia-Molina. Attribute-based crowd entity resolution. In CIKM, pages 549–558, 2016.
[104] P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan, J. R. Ballard, H. Li, F. Panahi, H. Zhang, J. F. Naughton, S. Prasad, G. Krishnan,

R. Deep, and V. Raghavendra. Magellan: Toward building entity matching management systems. PVLDB, 9(12), 2016.
[105] H. Köpcke and E. Rahm. Frameworks for entity matching: A comparison. Data Knowl. Eng., 69(2):197–210, 2010.
[106] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity resolution approaches on real-world match problems. PVLDB, 3(1), 2010.
[107] N. Koudas, S. Sarawagi, and D. Srivastava. Record linkage: Similarity measures and algorithms. In SIGMOD, pages 802–803, 2006.
[108] J. M. Kurtzberg. On approximation methods for the assignment problem. J. ACM, 9(4):419–439, 1962.
[109] S. Kushagra, H. Saxena, I. F. Ilyas, and S. Ben-David. A semi-supervised framework of clustering selection for de-duplication. In ICDE,

pages 208–219, 2019.
[110] S. Kwashie, J. Liu, J. Li, L. Liu, M. Stumptner, and L. Yang. Certus: An effective entity resolution approach with graph differential

dependencies (gdds). PVLDB, 12(6):653–666, 2019.
[111] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Graepel, and Z. Ghahramani. Sigma: simple greedy matching for aligning large

knowledge bases. In SIGKDD, pages 572–580, 2013.
[112] F. Li, X. L. Dong, A. Langen, and Y. Li. Knowledge verification for longtail verticals. PVLDB, 10(11), 2017.
[113] G. Li, Y. Zheng, J. Fan, J. Wang, and R. Cheng. Crowdsourced data management: Overview and challenges. In SIGMOD, 2017.
[114] J. Li, J. Tang, Y. Li, and Q. Luo. Rimom: A dynamic multistrategy ontology alignment framework. TKDE, 21(8):1218–1232, 2009.
[115] D. Logothetis, S. De, and K. Yocum. Scalable lineage capture for debugging disc analytics. In SoCC, pages 17:1–17:15, 2013.
[116] Y. Ma and T. Tran. Typimatch: type-specific unsupervised learning of keys and key values for heterogeneous web data integration.

In WSDM, pages 325–334, 2013.
[117] C. Mathieu, O. Sankur, and W. Schudy. Online correlation clustering. In STACS, pages 573–584, 2010.
[118] A. McCallum, K. Nigam, and L. H. Ungar. Efficient clustering of high-dimensional data sets with application to reference matching.

In SIGKDD, pages 169–178, 2000.
[119] W. McNeill, H. Kardes, and A. Borthwick. Dynamic record blocking: efficient linking of massive databases in mapreduce. In QDB,

2012.
[120] D. G. McVitie and L. B. Wilson. Stable marriage assignment for unequal sets. BIT Numerical Mathematics, 10(3), 1970.
[121] G. Mesnil, X. He, L. Deng, and Y. Bengio. Investigation of recurrent-neural-network architectures and learning methods for spoken

language understanding. In INTERSPEECH, pages 3771–3775, 2013.
[122] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep, E. Arcaute, and V. Raghavendra. Deep learning for entity

matching: A design space exploration. In SIGMOD, pages 19–34, 2018.
[123] C. Nanayakkara, P. Christen, and T. Ranbaduge. Robust temporal graph clustering for group record linkage. In PAKDD, 2019.
[124] F. Naumann and M. Herschel. An Introduction to Duplicate Detection. Morgan & Claypool, 2010.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

1:36 V. Christophides et al.

[125] E. Nelson and J. Talburt. Entity resolution for longitudinal studies in education using oyster. In IKE, 2011.
[126] M. Nentwig, A. Groß, and E. Rahm. Holistic entity clustering for linked data. In IEEE ICDM Workshops, pages 194–201, 2016.
[127] M. Nentwig, M. Hartung, A. N. Ngomo, and E. Rahm. A survey of current link discovery frameworks. Sem. Web, 8(3):419–436, 2017.
[128] A. N. Ngomo and S. Auer. LIMES - A time-efficient approach for large-scale link discovery on the web of data. In IJCAI, 2011.
[129] M. Nickel and D. Kiela. Poincaré embeddings for learning hierarchical representations. In NIPS, 2017.
[130] A. Nikolov, V. S. Uren, E. Motta, and A. N. D. Roeck. Integration of semantically annotated data by the knofuss architecture. In EKAW,

pages 265–274, 2008.
[131] J. Nin, V. Muntés-Mulero, N. Martínez-Bazan, and J. Larriba-Pey. On the use of semantic blocking techniques for data cleansing and

integration. In IDEAS, pages 190–198, 2007.
[132] K. O’Hare, A. Jurek-Loughrey, and C. de Campos. A review of unsupervised and semi-supervised blocking methods for record linkage.

In Linking and Mining Heterogeneous and Multi-view Data, pages 79–105. Springer, 2019.
[133] G. Papadakis, G. Alexiou, G. Papastefanatos, and G. Koutrika. Schema-agnostic vs schema-based configurations for blocking methods

on homogeneous data. PVLDB, 9(4):312–323, 2015.
[134] G. Papadakis, K. Bereta, T. Palpanas, and M. Koubarakis. Multi-core meta-blocking for big linked data. In SEMANTICS, 2017.
[135] G. Papadakis, E. Ioannou, C. Niederée, T. Palpanas, and W. Nejdl. Beyond 100 million entities: large-scale blocking-based resolution

for heterogeneous data. In WSDM, pages 53–62, 2012.
[136] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, andW. Nejdl. A blocking framework for entity resolution in highly heterogeneous

information spaces. TKDE, 25(12), 2013.
[137] G. Papadakis, G. Koutrika, T. Palpanas, and W. Nejdl. Meta-blocking: Taking entity resolution to the next level. TKDE, 26(8), 2014.
[138] G. Papadakis, G. Papastefanatos, and G. Koutrika. Supervised meta-blocking. PVLDB, 7(14):1929–1940, 2014.
[139] G. Papadakis, G. Papastefanatos, T. Palpanas, andM. Koubarakis. Scaling entity resolution to large, heterogeneous data with enhanced

meta-blocking. In EDBT, pages 221–232, 2016.
[140] G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas. A survey of blocking and filtering techniques for entity resolution. CSUR, 53(2).
[141] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas. Comparative analysis of approximate blocking techniques for entity resolution.

PVLDB, 9(9):684–695, 2016.
[142] G. Papadakis, L. Tsekouras, E. Thanos, N. Pittaras, G. Simonini, D. Skoutas, P. Isaris, G. Giannakopoulos, T. Palpanas, andM. Koubarakis.

Jedai3 : beyond batch, blocking-based entity resolution. In EDBT, pages 603–606, 2020.
[143] T. Papenbrock, A. Heise, and F. Naumann. Progressive duplicate detection. TKDE, 27(5):1316–1329, 2015.
[144] J. Pennington, R. Socher, and C. D. Manning. Glove: Global vectors for word representation. In EMNLP, pages 1532–1543, 2014.
[145] B. Ramadan and P. Christen. Forest-based dynamic sorted neighborhood indexing for real-time entity resolution. In CIKM, 2014.
[146] B. Ramadan, P. Christen, H. Liang, and R. W. Gayler. Dynamic sorted neighborhood indexing for real-time entity resolution. J. Data

and Information Quality, 6(4):15:1–15:29, 2015.
[147] B. Ramadan, P. Christen, H. Liang, R. W. Gayler, and D. Hawking. Dynamic similarity-aware inverted indexing for real-time entity

resolution. In PAKDD Workshops, pages 47–58, 2013.
[148] V. Rastogi, N. N. Dalvi, and M. N. Garofalakis. Large-scale collective entity matching. PVLDB, 4(4):208–218, 2011.
[149] A. Ratner, S. H. Bach, H. R. Ehrenberg, J. A. Fries, S. Wu, and C. Ré. Snorkel: Rapid training data creation with weak supervision.

PVLDB, 11(3):269–282, 2017.
[150] O. F. Reyes-Galaviz, W. Pedrycz, Z. He, and N. J. Pizzi. A supervised gradient-based learning algorithm for optimized entity resolution.

Data Knowl. Eng., 112:106–129, 2017.
[151] S. V. Rice. Braided avl trees for efficient event sets and ranked sets in the simscript iii simulation programming language. In WMC,

2007.
[152] S. Rong, X. Niu, E. W. Xiang, H. Wang, Q. Yang, and Y. Yu. A machine learning approach for instance matching based on similarity

metrics. In ISWC, pages 460–475, 2012.
[153] A. Saeedi, M. Nentwig, E. Peukert, and E. Rahm. Scalable matching and clustering of entities with FAMER. CSIMQ, 16:61–83, 2018.
[154] A. Saeedi, E. Peukert, and E. Rahm. Comparative evaluation of distributed clustering schemes for multi-source entity resolution. In

ADBIS, pages 278–293, 2017.
[155] A. Saeedi, E. Peukert, and E. Rahm. Using link features for entity clustering in knowledge graphs. In ESWC, pages 576–592, 2018.
[156] M. Sariyar, A. Borg, and K. Pommerening. Controlling false match rates in record linkage using extreme value theory. Journal of

biomedical informatics, 44(4):648–654, 2011.
[157] A. D. Sarma, A. Jain, A. Machanavajjhala, and P. Bohannon. An automatic blocking mechanism for large-scale de-duplication tasks.

In CIKM, pages 1055–1064, 2012.
[158] A. T. Schneider, A. Mukherjee, and E. C. Dragut. Leveraging social media signals for record linkage. InWWW, pages 1195–1204, 2018.
[159] C. Shao, L. Hu, J. Li, Z. Wang, T. L. Chung, and J. Xia. Rimom-im: A novel iterative framework for instance matching. J. Comput. Sci.

Technol., 31(1):185–197, 2016.
[160] L. Shu, A. Chen, M. Xiong, and W. Meng. Efficient spectral neighborhood blocking for entity resolution. In ICDE, 2011.
[161] G. Simonini, S. Bergamaschi, andH. V. Jagadish. BLAST: a loosely schema-awaremeta-blocking approach for entity resolution. PVLDB,

9(12):1173–1184, 2016.
[162] G. Simonini, L. Gagliardelli, S. Bergamaschi, and H. V. Jagadish. Scaling entity resolution: A loosely schema-aware approach. Inf.

Syst., 83:145–165, 2019.
[163] G. Simonini, G. Papadakis, T. Palpanas, and S. Bergamaschi. Schema-agnostic progressive entity resolution. TKDE, 31(6), 2019.
[164] Y. Sismanis, L. Wang, A. Fuxman, P. J. Haas, and B. Reinwald. Resolution-Aware Query Answering for Business Intelligence. In ICDE,

pages 976–987, 2009.
[165] D. Song and J. Heflin. Automatically generating data linkages using a domain-independent candidate selection approach. In ISWC’11.
[166] K. Stefanidis, V. Efthymiou, M. Herschel, and V. Christophides. Entity resolution in the web of data. In WWW, pages 203–204, 2014.
[167] R. C. Steorts, S. L. Ventura, M. Sadinle, and S. E. Fienberg. A comparison of blocking methods for record linkage. In PSD, 2014.
[168] W. Su, J. Wang, and F. H. Lochovsky. Record matching over query results from multiple web databases. TKDE, 22(4), 2010.
[169] F. M. Suchanek, S. Abiteboul, and P. Senellart. PARIS: probabilistic alignment of relations, instances, and schema. PVLDB, 5(3), 2011.
[170] Z. Sun, W. Hu, and C. Li. Cross-lingual entity alignment via joint attribute-preserving embedding. In ISWC, 2017.
[171] Z. Sun, W. Hu, Q. Zhang, and Y. Qu. Bootstrapping entity alignment with knowledge graph embedding. In IJCAI, 2018.
[172] Z. Sun, Q. Zhang, W. Hu, C. Wang, M. Chen, F. Akrami, and C. Li. A benchmarking study of embedding-based entity alignment for

knowledge graphs. CoRR, abs/2003.07743, 2020.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

An Overview of End-to-End Entity Resolution for Big Data 1:37

[173] S. Thirumuruganathan, S. A. P. Parambath, M. Ouzzani, N. Tang, and S. Joty. Reuse and adaptation for entity resolution through
transfer learning. CoRR, abs/1809.11084, 2018.

[174] B. D. Trisedya, J. Qi, and R. Zhang. Entity alignment between knowledge graphs using attribute embeddings. In AAAI, 2019.
[175] S. M. Van Dongen. Graph clustering by flow simulation. PhD thesis, Utrecht University, 2000.
[176] M. van Erp, P. N. Mendes, H. Paulheim, F. Ilievski, J. Plu, G. Rizzo, and J. Waitelonis. Evaluating entity linking: An analysis of current

benchmark datasets and a roadmap for doing a better job. In LREC, 2016.
[177] V. Verroios and H. Garcia-Molina. Entity resolution with crowd errors. In ICDE, pages 219–230, 2015.
[178] V. Verroios, H. Garcia-Molina, and Y. Papakonstantinou. Waldo: An adaptive human interface for crowd entity resolution. In SIGMOD,

pages 1133–1148, 2017.
[179] N. Vesdapunt, K. Bellare, and N. N. Dalvi. Crowdsourcing algorithms for entity resolution. PVLDB, 7(12):1071–1082, 2014.
[180] J. Volz, C. Bizer, M. Gaedke, and G. Kobilarov. Silk - A link discovery framework for the web of data. In LDOW, 2009.
[181] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. Crowder: Crowdsourcing entity resolution. PVLDB, 5(11):1483–1494, 2012.
[182] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska, and T. Milo. A sample-and-clean framework for fast and accurate query

processing on dirty data. In SIGMOD, pages 469–480, 2014.
[183] J. Wang, G. Li, T. Kraska, M. J. Franklin, and J. Feng. Leveraging transitive relations for crowdsourced joins. In SIGMOD, 2013.
[184] J. Wang, G. Li, J. X. Yu, and J. Feng. Entity matching: How similar is similar. PVLDB, 4(10):622–633, 2011.
[185] S. Wang, X. Xiao, and C. Lee. Crowd-based deduplication: An adaptive approach. In SIGMOD, pages 1263–1277, 2015.
[186] X. Wang, L. M. Haas, and A. Meliou. Explaining data integration. IEEE Data Eng. Bull., 41(2):47–58, 2018.
[187] Y. Wang, S. Song, L. Chen, J. X. Yu, and H. Cheng. Discovering conditional matching rules. TKDD, 11(4):46:1–46:38, 2017.
[188] Z. Wang, Q. Lv, X. Lan, and Y. Zhang. Cross-lingual knowledge graph alignment via graph convolutional networks. In EMNLP, 2018.
[189] M. Weis and F. Naumann. Detecting duplicate objects in XML documents. In IQIS, pages 10–19, 2004.
[190] M. Weis and F. Naumann. Detecting duplicates in complex XML data. In ICDE, page 109, 2006.
[191] M. J. Welch, A. Sane, and C. Drome. Fast and accurate incremental entity resolution relative to an entity knowledge base. In CIKM,

pages 2667–2670, 2012.
[192] S. E. Whang, P. Lofgren, and H. Garcia-Molina. Question selection for crowd entity resolution. PVLDB, 6(6):349–360, 2013.
[193] S. E. Whang, D. Marmaros, and H. Garcia-Molina. Pay-as-you-go entity resolution. TKDE, 25(5):1111–1124, 2013.
[194] S. E. Whang, D. Menestrina, G. Koutrika, M. Theobald, and H. Garcia-Molina. Entity Resolution with Iterative Blocking. In SIGMOD,

pages 219–232, 2009.
[195] D. T. Wijaya and S. Bressan. Ricochet: A family of unconstrained algorithms for graph clustering. In DASFAA, pages 153–167, 2009.
[196] R. J. Williams and D. Zipser. A learning algorithm for continually running fully recurrent neural networks. Neural Computation,

1(2):270–280, 1989.
[197] V. K. Yalavarthi, X. Ke, and A. Khan. Select your questions wisely: For entity resolution with crowd errors. In CIKM, 2017.
[198] P. Zezula, G. Amato, V. Dohnal, and M. Batko. Similarity Search - The Metric Space Approach. Kluwer, 2006.
[199] C. J. Zhang, R. Meng, L. Chen, and F. Zhu. Crowdlink: An error-tolerant model for linking complex records.
[200] F. Zhang, Z. Gao, and K. Niu. A pruning algorithm for meta-blocking based on cumulative weight. In JPCS, volume 887, 2017.
[201] Q. Zhang, Z. Sun, W. Hu, M. Chen, L. Guo, and Y. Qu. Multi-view knowledge graph embedding for entity alignment. In IJCAI, 2019.
[202] W. Zhang, H. Wei, B. Sisman, X. L. Dong, C. Faloutsos, and D. Page. Autoblock: A hands-off blocking framework for entity matching.

In WSDM, pages 744–752. ACM, 2020.
[203] C. Zhao and Y. He. Auto-em: End-to-end fuzzy entity-matching using pre-trained deep models and transfer learning. InWWW, pages

2413–2424, 2019.
[204] Q. Zheng, X. Diao, J. Cao, X. Zhou, Y. Liu, and H. Li. Multi-modal space structure: a new kind of latent correlation for multi-modal

entity resolution. CoRR, abs/1804.08010, 2018.
[205] H. Zhu, R. Xie, Z. Liu, and M. Sun. Iterative entity alignment via joint knowledge embeddings. In IJCAI, 2017.

ACM Comput. Surv., Vol. 1, No. 1, Article 1. Publication date: January 2020.

	Abstract
	1 Introduction
	2 ER Processing Tasks and Workflows
	3 Blocking
	3.1 Discussion

	4 Block Processing
	4.1 Block Cleaning
	4.2 Comparison Cleaning
	4.3 Discussion

	5 Matching
	5.1 Preliminaries
	5.2 Collective methods
	5.3 Learning-based methods
	5.4 Parallel methods
	5.5 Discussion

	6 Clustering Methods
	7 Budget-aware ER
	7.1 Schema-aware methods
	7.2 Schema-agnostic methods
	7.3 Discussion

	8 Incremental ER
	8.1 Dynamic Blocking
	8.2 Dynamic Matching
	8.3 Dynamic Clustering
	8.4 Discussion

	9 Other ER Methods
	9.1 Deep Learning
	9.2 Crowdsourcing-based ER methods
	9.3 Rule-based ER methods
	9.4 Temporal ER methods
	9.5 Open-source ER tools
	9.6 Discussion

	10 Directions for future work
	11 Conclusions

