
Noname manuscript No.
(will be inserted by the editor)

Matrix Profile Goes MAD: Variable-Length Motif And
Discord Discovery in Data Series

Michele Linardi · Yan Zhu · Themis
Palpanas · Eamonn Keogh

Received: date / Accepted: date

Abstract In the last fifteen years, data series motif and discord discovery
have emerged as two useful and well-used primitives for data series mining,
with applications to many domains, including robotics, entomology, seismol-
ogy, medicine, and climatology. Nevertheless, the state-of-the-art motif and
discord discovery tools still require the user to provide the relative length. Yet,
in several cases, the choice of length is critical and unforgiving. Unfortunately,
the obvious brute-force solution, which tests all lengths within a given range,
is computationally untenable. In this work, we introduce a new framework,
which provides an exact and scalable motif and discord discovery algorithm
that efficiently finds all motifs and discords in a given range of lengths. We
evaluate our approach with five diverse real datasets, and demonstrate that it
is up to 20 times faster than the state-of-the-art. Our results also show that
removing the unrealistic assumption that the user knows the correct length,
can often produce more intuitive and actionable results, which could have
otherwise been missed.

Michele Linardi
University of Paris
E-mail: michele.linardi@parisdescartes.fr

Themis Palpanas
University of Paris and French University Institute (IUF)
E-mail: themis@mi.parisdescartes.fr

Yan Zhu and Eamonn Keogh
University of California at Riverside
E-mail: yzhu015@ucr.edu, eamonn@cs.ucr.edu

2 Michele Linardi et al.

1 Introduction

Data series1 have gathered the attention of the data management community
for more than two decades [1,24,60,9,56,6,26,72,7,11,83,74,25,53,30,58,86,
84,20,13,14,75,31,3,57,4,59,54,19]. They are now one of the most common
types of data, present in virtually every scientific and social domain [51,61,43,
28,55,2].

Over the last decade, data series motif discovery has emerged as perhaps
the most used primitive for data series data mining, and it has many appli-
cations to a wide variety of domains [73,76], including classification, cluster-
ing, and rule discovery. More recently, there has been substantial progress on
the scalability of motif discovery, and now massive datasets can be routinely
searched on conventional hardware [73].

Another critical improvement in motif discovery, is the reduction in the
number of parameters that require specification. The first motif discovery al-
gorithm, PROJECTION [10], requires that the users set seven parameters,
and it still only produces answers that are approximately correct. Researchers
have “chipped” away at this over the years [48,64], and the current state-of-
the-art algorithms only require the user to set a single parameter, which is the
desired length of the motifs. Paradoxically, the ease with which we can now
perform motif discovery has revealed that even this single burden on the user’s
experience or intuition may be too great.

For example, AspenTech, a company that makes software for optimizing
the manufacturing process for the oil and gas industry, has begun to use motif
discovery in their products both as a stand-alone service and also as part
of a precursor search tool. They recently noted that, “our lighthouse (early
adopter) customers love motif discovery, and they feel it adds great value [...]
but they are frustrated by the finicky setting of the motif length.” [50]. The
issue, of being restricted to specifying length as an input parameter, has also
been noted in other domains that use motif discovery, such as cardiology [69]
and speech therapy [71], as well as in related problems, such as data series
indexing [35,34].

The obvious solution to this issue is to make the algorithms search over
all lengths in a given range and rank the various length motifs discovered.
Nevertheless, this strategy poses two challenges. First, how we can rank motifs
of different lengths? Second, and most important, how we can search over this
much larger solution space in an efficient way, in order to identify the motifs?

In this work, we describe the first algorithms in the literature that address
both problems. The proposed solution requires new techniques that signifi-
cantly extend the state-of-the-art algorithms, including the introduction of a
novel lower bounding method, which makes efficiently searching a large num-
ber of potential solutions possible.

1 If the dimension that imposes the ordering of the series is time, then we talk about time
series. However, a series can also be defined through other measures (e.g., angle in radial
profiles in astronomy, mass in mass spectroscopy, position in genome sequences, etc.). We
use the terms time series, data series, and sequence interchangeably.

Title Suppressed Due to Excessive Length 3

0 10 seconds 12 seconds

Xylem Ingestion

Stylet passage through plant
cells

Fig. 1 An existence proof of semantically different motifs, of slightly different lengths,
extracted from a single dataset.

Note that even if the user has good knowledge of the data domain, in
many circumstances, searching with one single motif length is not enough,
because the data can contain motifs of various lengths. We show an example
in Figure 1, where we report the 10-second and 12-second motifs discovered
in the Electrical Penetration Graph (EPG) of an insect called Asian citrus
psyllid. The first motif denotes the insect’s highly technical probing skill as it
searches for a rich leaf vein (stylet passage), whereas the second motif is just
a simple repetitive “sucking” behavior (xylem ingestion). This example shows
the utility of variable length motif discovery. An entomologist using classic
motif search, say at the length of 12 seconds, might have plausibly believed
that this insect only engaged in xylem ingestion during this time period, and
not realized the insect had found it necessary to reposition itself at least twice.

The two motif pairs are radically different, reflecting two different types of
insect activities. In order to capture all useful activity information within the
data, a fast search of motifs over all lengths is necessary.

Another popular and well-studied data series primitive, the discord [78,29,
80,65,40], is proposed to discover subsequences that represent outliers. Surpris-
ingly, the solutions to this problem that have been proposed in the literature
are not as effective and scalable as practice requires. The reasons are twofold.
First, they only support fixed-length discord discovery, and as we explained
earlier, this rigidity with the subsequence length restricts the search space,
and consequently, also the produced solutions and the effectiveness of the
algorithm. Second, the existing techniques provide poor support for enumer-
ating multiple discords, namely, for the identification of multiple anomalous
subsequences. These works have considered only cases with up to 3 anomalous
subsequences.

Therefore, we extend our motif discovery framework, and propose the first
approach in the literature that deals with the variable-length discord discovery
problem. Our approach leads to a scalable solution, enabling the identification
of a large number of anomalous patterns, which can be of different lengths.

In this work2, we make the following contributions:

– We define the problems of variable-length motif and discord discovery,
which significantly extend the usability of their operations, respectively.

2 A preliminary version of this work has appeared elsewhere [36,37].

4 Michele Linardi et al.

– We propose a new data series motif and discord framework. The Variable
Length Motif Discovery algorithm (VALMOD) takes as input a data series
T , and finds the subsequence pairs with the smallest Euclidean distance
of each length in the (user-defined) range [`min, `max]. VALMOD is based
on a novel lower bounding technique, which is specifically designed for the
motif discovery problem.

– Furthermore, we extend VALMOD to the discord discovery problem. We
propose a new exact variable-length discord discovery, which aims at find-
ing the subsequence pairs with the largest Euclidean distances of each
length in the (user-defined) range [`min, `max].

– We evaluate our techniques using five diverse real datasets, and demon-
strate the scalability of our approach. The results show that VALMOD
is up to 20x faster than the state-of-the-art techniques. Furthermore, we
present real case studies with datasets from entomology, seismology, and
traffic data analysis, which demonstrate the usefulness of our approach.

2 Problem Definition

We begin by defining the data type of interest, data series:

Definition 1 (Data series) A data series T ∈ Rn is a sequence of real-valued
numbers ti ∈ R [t1, t2, ..., tn], where n is the length of T .

We are typically not interested in the global properties of a data series,
but in the local regions known as subsequences:

Definition 2 (Subsequence) A subsequence Ti,` ∈ R` of a data series T is
a continuous subset of the values from T of length ` starting from position i.
Formally, Ti,` = [ti, ti+1, ..., ti+`−1].

2.1 Motif Discovery

In this work, a particular local property we are interested in is data series
motifs. A data series motif pair is the pair of the most similar subsequences of
a given length, `, of a data series:

Definition 3 (Data series motif pair) Ta,` and Tb,` is a motif pair iff
dist(Ta,`, Tb,`) ≤ dist(Ti,`, Tj,`) ∀i, j ∈ [1, 2, ..., n − ` + 1], where a 6= b and
i 6= j, and dist is a function that computes the z-normalized Euclidean distance
between the input subsequences [10,48,71,73,76].

Note, that we can consider more motifs, beyond the top motif pair. To
that extent, we can simply build a rank of subsequence pairs in T (of length
`), according to their distances in ascending order. We call the subsequences
pairs of this ranking motif pairs of length `.

We store the distance between a subsequence of a data series with all the
other subsequences from the same data series in an ordered array called a
distance profile.

Title Suppressed Due to Excessive Length 5

Definition 4 (Distance profile) A distance profile D ∈ R(n−`+1) of a data
series T regarding subsequence Ti,` is a vector that stores dist(Ti,`, Tj,`), ∀j ∈
[1, 2, ..., n− `+ 1], where i 6= j.

One of the most efficient ways to locate the exact data series motif is to
compute the matrix profile [80,82], which can be obtained by evaluating the
minimum value of every distance profile in the time series.

Definition 5 (Matrix profile) A matrix profile MP ∈ R(n−`+1) of a data
series T is a meta data series that stores the z-normalized Euclidean distance
between each subsequence and its nearest neighbor, where n is the length of
T and ` is the given subsequence length. The data series motif can be found
by locating the two lowest values in MP .

To avoid trivial matches [4], in which a pattern is matched to itself or a
pattern that largely overlaps with itself, the matrix profile incorporates an
“exclusion-zone” concept, which is a region before and after the location of
a given query that should be ignored. The exclusion zone is heuristically set
to `/2. The recently introduced STOMP algorithm [82] offers a solution to
compute the matrix profile MP in O(n2) time. This may seem untenable
for data series mining, but several factors mitigate this concern. First, note
that the time complexity is independent of `, the length of the subsequences.
Secondly, the matrix profile can be computed with an anytime algorithm, and
in most domains, in just O(nc) steps the algorithm converges to what would
be the final solution [80] (c is a small constant). Finally, the matrix profile can
be computed with GPUs, cloud computing, and other HPC environments that
make scaling to at least tens of millions of data points trivial [82].

We can now formally define the problems we solve.

Problem 1 (Variable-Length Motif Pair Discovery) Given a data series
T and a subsequence length-range [`min, ..., `max], we want to find the data
series motif pairs of all lengths in [`min, ..., `max], occurring in T .

One naive solution to this problem is to repeatedly run the state-of-the art
motif discovery algorithms for every length in the range. However, note that
the size of this range can be as large as O(n), which makes the naive solution
infeasible for even middle-size data series. We aim at reducing this O(n) factor
to a small value.

Note that the motif pair discovery problem has been extensively studied
in the last decade [80,82,46,32,48,45,44]. The reason is that if we want to
find a collection of recurrent subsequences in T , the most computationally
expensive operation consists of identifying the motif pairs [82], namely, solving
Problem 1. Extending motif pairs to sets incurs a negligible additional cost
(as we also show in our study).

Given a motif pair {Tα,`, Tβ,`}, the data series motif set S`r, with radius
r ∈ R, is the set of subsequences of length `, which are in distance at most r
from either Tα,`, or Tβ,`. More formally:

6 Michele Linardi et al.

Definition 6 (Data series motif set) Let {Tα,`, Tβ,`} be a motif pair
of length ` of data series T . The motif set S`r is defined as: S`r =
{Ti,`|dist(Ti,`, Tα,`) < r ∨ dist(Ti,`, Tβ,`) < r}.

The cardinality of S`r, |S`r|, is called the frequency of the motif set.
Intuitively, we can build a motif set starting from a motif pair. Then, we

iteratively add into the motif set all subsequences within radius r. We use
the above definition to solve the following problem (optionally including a
constraint on the minimum frequency for motif sets in the final answer).

Problem 2 (Variable-Length Motif Sets Discovery) Given a data series
T and a length range [`min, . . . , `max], we want to find the set S∗ = {S`r|S`r is
a motif set, `min ≤ ` ≤ `max}. In addition, we require that if S`r, S

′`′
r′ ∈ S∗ ⇒

S`r ∩ S′`
′

r′ = ∅.

By abuse of notation, we consider an intersection non-empty in the case
where subsequences have different lengths, but the same starting position offset
(e.g., S200

r = {T4,200}, S500
r′ = {T4,500} ⇒ S200

r ∩ S500
r′ 6= ∅).

Thus, the variable-length motif sets discovery problem results in a set, S∗,
of motif sets. The constraint at the end of the problem definition restricts each
subsequence to be included in at most one motif set. Note that in practice we
may not be interested in all the motif sets, but only in those with the k smallest
distances, leading to a top-k version of the problem. In our work, we provide
a solution for the top-k problem (though, setting k to a very large value will
produce all results).

2.2 Discord Discovery

In order to introduce the problem of discord discovery, we first define the
notion of best match, or nearest neighbor.

Definition 7 (mth best match) Given a subsequence Ti,`, we say that its
mth best match, or Nearest Neighbor (mth NN) is Tj,`, if Tj,` has the mth

shortest distance to Ti,`, among all the subsequences of length ` in T , excluding
trivial matches.

In the distance profile of Ti,`, the mth smallest distance, is the distance of
the mth best match of Ti,`. We are now in the position to formally define the
discord primitives, we use in our work.

Definition 8 (mth discord [29]) The subsequence Ti,` is called the mth

discord of length `, if its mth best match is the largest among the best match
distances of all subsequences of length ` in T .

Intuitively, discovering the mthdiscord enables us to find an isolated group
of m subsequences, which are far from the rest of the data. Furthermore, we
can rank the mthdiscords, according to their mth best matches. This allows
us to define the Top-k mth discords.

Title Suppressed Due to Excessive Length 7

Definition 9 (Top-k mth discord) A subsequence Ti,` is a Top-k mth-
discord if it has the kth largest distance to its mth NN, among all subsequences
of length ` of T .

Top-1 1st discord

Top-1 2nd discord

1stNN

2nd NN

Top-2 1st discord

1stNN

Fig. 2 A dataset with 12 subsequences (of the same length `) depicted as points in 2-
dimensional space. We report the Top-k mth discords. They belong to groups of subsequences,
whose cardinality depends on m. The index k ranks the subsequences according their mth

best match distances, in descending order.

In Figure 2, we plot a group of 12 subsequences (represented in a
2-dimensional space), and we depict three Top-k mth discords (groups of
red/dark circles). Remember that m represents the number of anomalous sub-
sequences in a discord group. On the other hand, k ranks the discords and im-
plicitly the groups, according to their mth best match distances, in descending
order (e.g., Top− 1 1st discord and Top− 1 2nd).

Given these definitions, we can formally introduce the following problem:

Problem 3 (Variable-Length Top-k mth Discord Discovery) Given a
data series T , a subsequence length-range [`min, ..., `max] and the parameters
a, b ∈ N+ we want to enumerate the Top-k mth discords for each k ∈ {1, .., a}
and each m ∈ {1, .., b}, and for all lengths in [`min, ..., `max], occurring in T .

Observe that solving the Variable-Length Top-k mth Discord Discovery
problem is relevant to solving the Variable-Length Motif Set Discovery prob-
lem: in the former case we are interested in the subsequences with the most
distant neighbors, while in the latter case we seek the subsequences with the
most close neighbors. Therefore, the Matrix Profile, which contains all this
information, can serve as the basis to solve both problems.

3 Comparing Motifs of Different Lengths

Before introducing our solutions to the problems outlined above, we first dis-
cuss the issue of comparing motifs of different lengths. This becomes relevant
when we want to rank motifs of different lengths (within the given range),
which is useful in order to identify the most prominent motifs, irrespective of

8 Michele Linardi et al.

their length. In this section, we propose a length-normalized distance measure
that the VALMOD algorithm uses in order to produce such rankings.

The increased expressiveness of VALMOD offers a challenge. Since we can
discover motifs of different lengths, we also need to be able to rank motifs of
different lengths. A similar problem occurs in string processing, and a com-
mon solution is to replace the edit-distance by the length-normalized edit-
distance, which is the classic distance measure divided by the length of the
strings in question [41]. This correction would find the pair {concatenation,
concameration} more similar than {cat, cot}, matching our intuition, since
only 15% of the characters are different in the former pair, as opposed to 33%
in the latter.

Researchers have suggested this length-normalized correction for time se-
ries, but as we will show, the correction factor is incorrect. To illustrate this,
consider the following thought experiment. Imagine that some process in the
system we are monitoring occasionally “injects” a pattern into the time series.
As a concrete example, washing machines typically have a prototypic signa-
ture (as exhibited in the TRACE dataset [63]), but the signatures express
themselves more slowly on a cold day, when it takes longer to heat the cooler
water supplied from the city [18]. We would like all equal length instances of
the signature to have approximately the same distance. As a consequence, we
factorize the Euclidean distance by the following quantity: sqrt(1/`), where `
is the length of the sequences. This aims to favor longer and similar sequences
in the ranking process of matches that have different lengths.

In Figure 3(left) we show two examples from the TRACE dataset [63],
which will act as proxies for a variable length signature. We produced the vari-
able lengths by down sampling. In Figure 3(center), we show the distances be-
tween the patterns as their length changes. With no correction, the Euclidean
distance is obviously biased to the shortest length. The length-normalized Eu-
clidean distance looks “flatter” and suggests itself as the proper correction.
However, its variation over the sequence length change is not visible due to
the small scale. In Figure 3(right), we show all of the measures after dividing
them by their largest value. Now we can see that the length-normalized Eu-
clidean distance has a strong bias toward the longest pattern. In contrast to
the other two approaches, the sqrt(1/length) correction factor provides a near
perfect invariant distance over the entire range of values.

4 Proposed Approach for Motif Discovery

Our algorithm, VALMOD (Variable Length Motif Discovery), starts by com-
puting the matrix profile on the smallest subsequence length, namely `min,
within a specified range [`min, `max]. The key idea of our approach is to min-
imize the work that needs to be done for subsequent subsequence lengths
(`min + 1, `min + 2, . . ., `max). In Figure 4, it can be observed that the mo-
tif of length 8 (T33,8 − T97,8) has the same offsets as the motif of length 9
(T33,9 − T97,9). Can we exploit this property to accelerate our computation?

Title Suppressed Due to Excessive Length 9

0 50 100 150 200 250

Original Length

Downsampled 1 In 2

Downsampled 1 In 3

Downsampled 1 In 4

Downsampled 1 In 5

Downsampled 1 In 6

0 100 200

0

12
Euclidean Distance

Euclidean Distance * Sqrt(1/l)

Euclidean Distance / l 0

0.5

1

max normalized
Euclidean Distance

max normalized
Euclidean Dist. / l

max normalized
Euclidean Distance * Sqrt(1/l)

0 100 200
Sequence length Sequence length Sequence length

D
a

ta
 V

al
ue

D
is

ta
nc

e

D
is

ta
nc

e

Fig. 3 (left) Two series from the TRACE dataset, as proxies for time series signatures
at various speeds. (center) The classic Euclidean distance is clearly not length invariant.
(right) After divide-by-max normalizing, it is clear that the length-normalized Euclidean
distance has a strong bias toward the longest pattern.

0 128

()

…
…

()

…
…

64

Fig. 4 (top) The top motifs of length 9 in an example data series have the same offsets as
the top motifs of length 8. (bottom) The sorted distance profiles of T33,8 and T33,9.

It seems that if the nearest neighbor of Ti,`min is Tj,`min , then probably
the nearest neighbor of Ti,`min+1 is Tj,`min+1. For example, as shown in Fig-
ure 4(bottom), if we sort the distance profiles of T33,8 and T33,9 in ascending
order, we can find that the nearest neighbor of T33,8 is T97,8, and the nearest
neighbor of T33,9 is T97,9.

One can imagine that if the location of the nearest neighbor of Ti,` (i =
1, 2, ..., n−m+1) remains the same as we increase `, then we could obtain the
matrix profile of length `+ k in O(n) time (k = 1, 2, . . .). However, this is not
always true. The location of the nearest neighbor of Ti,` may not change as we
slightly increase `, if there is a substantial margin between the first and second
entries of Dranked(Ti,`). But, as ` gets larger, the nearest neighbor of Ti,` is
likely to change. For example, as shown in Figure 5, when the subsequence
length grows to 19, the nearest neighbor of T33,19 is no longer T97,19, but
T1,19. We observe that the ranking of the distance profile values may change,
even when the data is relatively smooth. When the data is noisy and skewed,
this ranking can change even more often. Is there any other rank-preserving
measure that we can exploit to accelerate the computation?

The answer is yes. Instead of sorting the entries of the distance profile,
we create and sort a new vector, called the lower bound distance profile. Fig-
ure 5(bottom) previews the rank-preserving property of the lower bound dis-

10 Michele Linardi et al.

0 128

𝟑𝟑,𝟖 𝟗𝟕,𝟖

𝟗𝟕,𝟗

64

𝟑𝟑,𝟗

𝟑𝟑,𝟏𝟗
.
.
.

.

.

.

𝟗𝟕,𝟏𝟗

. . .

𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟖)

𝟑𝟑,𝟖 𝟗𝟕,𝟖

…
…

𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟗)

𝟑𝟑,𝟗 𝟗𝟕,𝟗

…
…

𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟏𝟗)𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟖)

𝑑𝑖𝑠𝑡 𝟑𝟑,𝟖 𝟗𝟕,𝟖

…
…

𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟗)

𝑑𝑖𝑠𝑡 𝟑𝟑,𝟗 𝟗𝟕,𝟗

…
…

𝒓𝒂𝒏𝒌𝒆𝒅(𝟑𝟑,𝟏𝟗)

𝟑𝟑,𝟏𝟗 𝟏,𝟏𝟗

…
…

. . .

𝒓𝒂𝒏𝒌 based on
Lower Bounds
of Euclidean

Distance

𝒓𝒂𝒏𝒌 based
on Euclidean
Distance (ED)

𝟏,𝟏𝟗

𝑑𝑖𝑠𝑡 𝟑𝟑,𝟏𝟗 𝟗𝟕,𝟏𝟗

…
…

Fig. 5 (top distance profiles) Ranking by true distances leads to changes in the order of
the pairs. (bottom distance profiles) Ranking by lower bound distances maintains the same
order of pairs over increasing lengths.

tance profile. As we will describe later, once we know the distance between Ti,`
and Tj,`, we can evaluate a lower bound distance between Ti,`+k and Tj,`+k,
∀k ∈ [1,2,3,. . .]. The rank-preserving property of the lower bound distance
profile can help us prune a large number of unnecessary computations as we
increase the subsequence length.

4.1 The Lower Bound Distance Profile

Before introducing the lower bound distance profile, let us first investigate its
basic element: the lower bound Euclidean distance.

Assume that we already know the z-normalized Euclidean distance d`i,j
between two subsequences of length `: Ti,` and Tj,`, and we are now estimating
the distance between two longer subsequences of length `+k: Ti,`+k and Tj,`+k.
Our problem can be stated as follows: given Ti,`, Tj,` and Tj,`+k (but not
the last k values of Ti,`+k), is it possible to provide a lower bound function
LB(d`+ki,j), such that LB(d`+ki,j) ≤ d`+ki,j ? This problem is visualized in Figure
6 .

One may assume that we can simply set LB(d`+ki,j) = d`i,j by assuming
that the last k values of Ti,`+k are the same as the last k values of Tj,`+k.
However, this is not an answer to our problem, as we need to evaluate z-
normalized Euclidean distances, which are not simple Euclidean distances.
The mean and standard deviation of a subsequence can change as we increase
its length, so we need to re-normalize both Ti,`+k and Tj,`+k. Assume that
the mean and standard deviation of Tx,y are µx,y and σx,y, respectively (i.e.
Tj,`+k corresponds to µj,`+k and σj,`+k). Since we do not know the last k

Title Suppressed Due to Excessive Length 11

Arbitrary data can be
added here

Fig. 6 Increasing the subsequence length from ` to ` + k.

values of Ti,`+k, both µi,`+k and σi,`+k are unknown and can thus be regarded
as variables. We recall that ti denotes the ith point of a generic sequence T
(or a subsequence Ta,b), we thus we have the following:

d`+ki,j ≥
min

µi,`+k,σi,`+k

√√√√∑̀
p=1

(
ti+p−1 − µi,`+k

σi,`+k
− tj+p−1 − µj,`+k

σj,`+k
)2

= min
µi,`+k,σi,`+k

σj,`
σj,`+k

√√√√∑̀
p=1

(
ti+p−1 − µi,`+k

σi,`+kσj,`

σj,`+k

− tj+p−1 − µj,`+k
σj,`

)2

Here, we substitute the variables µi,`+k and σi,`+k, respectively with µ′

and σ′. Hence, we obtain:

= min
µ′,σ′

σj,`
σj,`+k

√√√√∑̀
p=1

(
ti+p−1 − µ′

σ′
− tj+p−1 − µj,`

σj,`
)2 (1)

Clearly, the minimum value shown in Eq. (1) can be set as LB(d`+ki,j). We

can obtain LB(d`+ki,j) by solving
∂LB(d`+k

i,j)

∂µ′ = 0 and
∂LB(d`+k

i,j)

∂σ′ = 0:

LB(d`+ki,j) =

√
`
σj,`

σj,`+k
if qi,j ≤ 0√

`(1− q2i,j)
σj,`

σj,`+k
otherwise

(2)

where qi,j =
∑`

p=1

(tj+p−1ti+p−1)

` −µi,`µj,`

σi,`σj,`
.

LB(d`+ki,j) yields the minimum possible z-normalized Euclidean distance
between Ti,`+k and Tj,`+k, given Ti,`, Tj,` and Tj,`+k (but not the last k values
of Ti,`+k). Now that we have obtained the lower bound Euclidean distance
between two subsequences, we are able to introduce the lower bound distance
profile.

12 Michele Linardi et al.

Using Eq. (2), we can evaluate the lower bound Euclidean distance between
Tj,`+k and every subsequence of length `+ k in T . By putting the results in a
vector, we obtain the lower bound distance profile LB(D`+k

j) corresponding to

subsequence Tj,`+k: LB(D`+k
j) = LB(d`+k1,j), LB(d`+k2,j), ...,LB(d`+kn−`−k+1,j). If

we sort the components of LB(D`+k
j) in an ascending order, we can obtain the

ranked lower bound distance profile: LBranked(D
`+k
j) = LB(d`+kr1,j

), LB(d`+kr2,j
),

..., LB(d`+krn−`−k+1,j
), where LB(d`+kr1,j

) ≤ LB(d`+kr2,j
) ≤ ...

≤ LB(d`+krn−`−k+1,j
).

We would like to use this ranked lower bound distance profile to accelerate
our computation. Assume that we have a best-so-far pair of motifs with a
distance distBSF . If we examine the pth element in the ranked lower bound
distance profile and find that LB(d`+krp,j

) > distBSF , then we do not need to

calculate the exact distance for d`+krp,j
, d`+krp+1,j

, ..., d`+krn−`−k+1,j
anymore, as they

cannot be smaller than distBSF . Based on this observation, our strategy is as
follows. We set a small, fixed value for p. Then, for every j, we evaluate whether
LB(d`+krp,j

) > distBSF is true: if it is, we only calculate d`+kr1,j
, d`+kr2,j

, ..., d`+krp−1,j
. If

it is not, we compute all the elements of D`+k
j . We update distBSF whenever

a smaller distance value is observed. In the best case, we just need to calculate
O(np) exact distance values to obtain the motif of length l + k. Note that
the order of the ranked lower bound distance profile is preserved for every k.
That is to say, if LB(d`+ka,j) ≤ LB(d`+kb,j), then LB(d`+k+1

a,j) ≤ LB(d`+k+1
b,j).

This is because the only component in Eq. (2) related to k is σj,`+k. When
we increase k by 1, we are just performing a linear transformation for the
lower bound distance: LB(d`+k+1

i,j) = LB(d`+ki,j)σj,`+k/σj,`+k+1. Therefore, we

have LB(d`+k+1
rp,j

) = LB(d`+krp,j
)σj,`+k/σj,`+k+1 , and the ranking is preserved

for every k.

4.2 The VALMOD Algorithm

We are now able to formally describe the VALMOD algorithm. The
pseudocode for VALMOD is shown in Algorithm 1. With the call of
ComputeMatrixProfile() in line 5, we build the matrix profile corresponding
to `min, and in the meantime store the smallest p values of each distance
profile in the memory. Note that the matrix profile is stored in the vector
MP , which is coupled with the matrix profile index, IP , which is a structure
containing the offsets of the nearest neighbor subsequences. We can easily
find the motif corresponding to `min as the minimum value of MP . Then,
in lines 7-16, we iteratively look for the motif of every length within `min+1
and `max. The ComputeSubMP function in line 9 attempts to find the motif
of length i only by evaluating a subset of the matrix profile corresponding
to subsequence length i. Note that this strategy, which is based on the lower
bounding technique introduced in Section 4.1, might not be able to capture the
global minimum value within the matrix profile. In case that happens (which

Title Suppressed Due to Excessive Length 13

Algorithm 1: V ALMOD
Input: DataSeries T , int `min int `max, int p
Output: V ALMP

1 int nDP ← |T | − `min + 1 ;
2 V ALMP ← new V ALMP (nDP);
3 V ALMP.MP = {⊥,...,⊥};
4 MaxHeap[] listDP , double [] MP , int [] IP ;
5 listDP , MP , IP ← ComputeMatrixProfile(T , `min, p); // listDP contains p

entries of each distance profile
6 V ALMP ← updateV ALMP (V ALMP ,MP ,IP ,nDP) ;
7 for i ← `min + 1 to `max do
8 nDP ← |T | − i+ 1 ;

// compute SubMP and update listDP for the length i
9 bool bBestM, double [] SubMP , IP ← ComputeSubMP (T ,nDP ,listDP ,i,p);

10 if bBestM then
// SubMP surely contains the motif, update VALMP with it

11 updateV ALMP (V ALMP ,SubMP ,IP ,nDP);

12 else
13 listDP ,MP ,IP ← ComputeMatrixProfile(T ,i,p);

// SubMP might not contain the motif, update VALMP computing MP
14 updateV ALMP (V ALMP ,MP ,IP ,nDP);

15 end

16 end

Algorithm 2: updateV ALMP
Input: V ALMP , double [] MPnew, int [] IP , nDP , `
Output: V ALMP

1 for i ← 1 to nDP do
// length normalize the Euclidean distance

2 double lNormDist ← MPnew[i] ∗
√

1/`;
// if the distance at offset i of VALMP, surely computed with previous lengths,

is larger than the actual, update it
3 if (V ALMP.distances[i] > lNormDist or V ALMP.MP [i] == ⊥) then
4 V ALMP.distances[i] ← MPnew[i];
5 V ALMP.normDistances[i] ← lNormDist;
6 V ALMP.lengths[i] ← `;
7 V ALMP.indices[i] ← IP [i];

8 end

9 end

is rare), the Boolean flag bBestM is set to false, and we compute the whole
matrix profile with the computeMatrixProfile procedure in line 13.

The final output of V ALMOD is a vector, which is called V ALMP (vari-
able length matrix profile) in the pseudo-code. If we were interested in only
one fixed subsequence length, VALMP would be the matrix profile normalized
by the square root of the subsequence length. If we are processing various
subsequence lengths, then as we increase the subsequence length, we update
VALMP when a smaller length-normalized Euclidean distance is observed.

Algorithm 2 shows the routine to update the V ALMP structure. The final
V ALMP consists of four parts. The ith entry of the normDistances vector
stores the smallest length-normalized Euclidean distance values between the
ith subsequence and its nearest neighbor, while the ith place of vector distances
stores their straight Euclidean distance. The location of each subsequence’s

14 Michele Linardi et al.

Algorithm 3: ComputeMatrixProfile
Input: DataSeries T , int `, int p
Output: MP , listDP

1 int nDP ← |T |-`+1;
2 double [] MP ← double [nDP];
3 int [] IP ← int [nDP];
4 MaxHeap[] listDP= new MaxHeap(p)[nDP];

// compute the dot product vector QT for the first distance profile
5 double [] QT ← SlidingDotProduct(T1,`, T);

// compute sum and squared sum of the first subsequence of length `
6 s ← sum(T1,`); ss ← squaredSum(T1,`);

// compute the first distance profile with distance formula (Eq.(3)) and store the
minimum distance in MP and the offset of the nearest neighbor in IP

7 D(Ti,`) ← CalcDistProfile(QT ,Ti,`, T , s, ss);
8 MP [1], IP [1] ← min(D(Ti,`));

// iterate over the subsequences of T
9 for i ← 2 to nDP do

// update the dot product vector QT for the ith subsequence
10 for j ← nDP down to 2 do
11 QT [j]←QT [j − 1]− T [j − 1]× T [i− 1] + T [j + `− 1]× T [i+ `− 1] ;
12 end

// update sum and squared sum of the ith subsequence
13 s ← s− T [i− 1] + T [`+ i− 2];

14 ss ← ss− T [i− 1]2 + T [`+ i− 2]2;
15 D(Ti,`) ← CalcDistProfile(QT ,Ti,`, T , s, ss);
16 MP [i], IP [i] ← min(D(Ti,`));

// Store in listDP[i] the p entries e with smallest lower bounding distance
17 int c ← 0;
18 for each entry e in D(Ti,`) do

// Compute the lower bound for the length `+ 1
19 e.LB ← compLB(`, `+ 1, QT [c], e.s1, e.s2, e.ss1, e.ss2);

// save the entry only if is smaller than the max lb so far or if listDP[i]
contains fewer than p elements

20 if e.LB < max(listDP [i]) or |listDP [i]| < p then
21 insert(listDP [i], e);
22 end
23 c← c+ 1;

24 end

25 end

nearest neighbor is stored in the vector indices. The structure lengths contains
the length of the ith subsequences pair.

In the next two subsections, we detail the two sub-routines,
computeMatrixProfile and the ComputeSubMP .

4.3 Computing The Matrix Profile

The routine ComputeMatrixProfile (Algorithm 3) computes a matrix pro-
file for a given subsequence length, `. It essentially follows the STOMP algo-
rithm [82], except that we also calculate the lower bound distance profiles in
line 18. In line 5, the dot product between the sequence T1,` and the others
in T is computed in frequency domain in O(nlogn) time, where n = |T |. The
dot product is computed in constant time in line 11 by using the result of the
previous overlapping subsequences.

Title Suppressed Due to Excessive Length 15

In line 7 we measure each z-normalized Euclidean distance, between Ti,`
and the other subsequence of length ` in T , avoiding trivial matches. The
distance measure formula used is the following [47,80,82]:

dist(Ti,`, Tj,`) =

√
2`(1− QTi,j − `µiµj

`σiσj
) (3)

In Eq. (3) QTi,j represents the dot product of the two sub-series with
offset i and j respectively. It is important to note that, we may compute µ
and σ in constant time by using the running plain and squared sum, namely
s and ss (initialized in line 6). It follows that µ = s/` and σ =

√
(ss/`)− µ2.

In lines 8 and 16, we update both the matrix profile and the matrix profile
index, which holds the offset of the closest match for each Ti,l.

Algorithm 3 ends with the loop in line 18, which evaluates the lower
bound distance profile and stores the p smallest lower bound distance val-
ues in listDP . In line 19, the procedure compLB evaluates the lower bound
distance profile introduced in Section 4.1 using Eq. (2). The structure listDP
is a Max Heap with a maximum capacity of p. Each entry e of the distance
profile in line 18 is a tuple containing the Euclidean distance between a sub-
sequence Tj,` and its nearest neighbor, the location of that nearest neighbor,
the lower bound Euclidean distance of the pair, the dot product of them, and
the plain and squared sum of Tj,`. In Figure 7(b), we show an example of the
distance profile in line 18. The distance profile is sorted according to the lower
bound Euclidean distance values (shown as LB in the figure). The entries cor-
responding to the p smallest LB values are stored in memory to be reused for
longer motif lengths.

We note that this routine is called at least once, for the first subsequence
length of the range, namely ` = `min. In the worst case, it is executed for each
length in the range.
Complexity Analysis. In line 15 of Algorithm 3, the time cost to compute
a single distance profile is O(n), where n is the number of subsequences of
length `. Therefore computing the n distance profiles takes O(n2) time. In
line 18, computing the lower bounds of the smallest p entries of each dis-
tance profile takes O(n log(p)) additional time. The overall time complexity of
the ComputeMatrixProfile routine is thus O(n2 log(p)).

4.4 Matrix Profile for Subsequent Lengths

We are now ready to describe our ComputeSubMP algorithm, which allows us
to find the motifs for subsequence lengths greater than ` in linear time.

The input of ComputeSubMP, whose pseudo-code is shown in Algorithm 4,
is the vector listDp that we built in the previous step. In line 5, we start to
iterate over the p × n elements of listDp in order to find the motif pair of
length newL, using a procedure that is faster than Algorithm 1, leading to
a complexity that is now linear in the best case. Since listDP potentially

16 Michele Linardi et al.

Algorithm 4: ComputeSubMP
Input: DataSeries T , int nDp, MaxHeap[] listDP , int newL, int p
Output: bBestM, SubMP , IP

1 double[] SubMP ← double[nDp];
2 int[] IP ← int[nDp];
3 double minDistAbs ← inf, double minLbAbs ← inf;
4 List 〈 int,double 〉 nonV alidDP ;

// iterate over the partial distance profiles in listDP
5 for i ← 1 to nDp do
6 double minDist ← inf;
7 int ind ← 0;
8 double maxLB ← popMax(listDP [i]);

// update the partial distance profile for the length newL (true Euclidean and
lower bounding distance)

9 for each entry e in listDP [i] do
10 e.dist, e.LB ← updateDistAndLB(e, newL);
11 minDist ← min(minDist,e.dist);
12 if minDist == e.dist then
13 ind = e.offset;
14 end

15 end
// check if the min (minDist) of this partial distance profile is the min of

the complete distance profile
16 if minDist < maxLB then

// minDist is the real min; valid distance profile
17 minDistABS ← min(minDistAbs,minDist);
18 SubMP [i] = minDist;
19 IP [i] =ind;

20 else
// minDist is not the real min; non-valid distance profile

21 minLbAbs ← min(minLbAbs, maxLB));
22 SubMP [i] = ⊥;
23 nonV alidDP.add(〈i,maxLB〉)
24 end

25 end
26 bool bBestM ← (minDistABS < minLbAbs) ;

// if SubMP does not contain the motif distance (bBestM = false), compute the whole
non-valid distance profiles, if it is faster then computeMatrixProfile (nDp / 2
= true)

27 if !bBestM and nonV alidDP.size() < (
n log(p)
log(n)

) then

28 for each pair < ind, lbMax > in nonV alidDP do
29 if lbMax < minDistABS then
30 QT ← SlidingDotProduct(Tind,`, T);
31 double s ← sum(Tind,`); double ss ← squaredSum(Tind,`);
32 D(Tind,`)← CalcDistProf(QT ,Tind,`, T , s, ss);
33 SubMP [ind], IP [ind] = min(D(Tind,`));
34 insert(listDP [ind], D(Tind,`));

35 end

36 end
37 bBestM ← 1;

38 end

contains enough elements to compute the whole matrix profile, it can provide
more information than just the motif pair.

In the loop of line 9, we update all the entries of listDP [i] by computing
the Euclidean and lower bound distance for the length newL. This operation
is valid, since the ranking of each listDP [i] is maintained as the lower bound
gets updated. Moreover, this latter computation is done in constant time (line
10), since the entries contain the statistics (i.e. sum, squared sum, dot product)

Title Suppressed Due to Excessive Length 17

for the length newL−1. Also note that the routine updateDistAndLB avoids
the trivial matches, which may result from the length increment.

Subsequently, the algorithm checks in line 16 if minDist is smaller than or
equal to maxLB, the largest lower bound distance value in listDP [i]. If this
is true, minDist is the smallest value in the whole distance profile. In lines 17
and 18, we update the best-so-far distance value and the matrix profile. On the
other hand, we update the smallest max lower bounding distance in line 21,
recording also that we do not have the true min for the distance profile with
offset i (line 23). Here, we may also note that even though the local true min
is larger than the max lower bound (i.e., the condition of line 16 is not true),
minDist may still represent an approximation of the true matrix profile point.

When the iteration of the partial distance profiles ends (end of for loop
in line 5), the algorithm has enough elements to know if the matrix profile
computed contains the real motif pair. In line 26, we verify if the smallest Eu-
clidean distance we computed (minDistABS) is less than minLbAbs, which is
the minimum lower bound of the non-valid distance profiles. We call non-valid
all the partial distance profiles, for which the maximum lower bound distance
(i.e., the p-th largest lower bound of the distance profile) is smaller than the
minimum true distance (line 20); otherwise, we call them valid (line 16).

As a result of the ranking preservation of the lower bounding function, if
the above criterion holds, we know that each true Euclidean distance in the
non-valid distance profiles must be greater than minDistABS. In line 27, the
algorithm has its last opportunity to exploit the lower bound in the distance
profiles, in order to avoid computing the whole matrix profile. If bBestM is
false (the motif has not been found), we start to iterate through the non-
valid distances profiles. We perform this iteration, when their number is not

larger than n log(p)
log(n) . This condition guarantees that Algorithm 4 is faster than

Algorithm 3.
We present here two examples that explain the main procedures of

V ALMOD.

Example 1 In Figure 7, we show a snapshot of a VALMOD run. In Figure 7(a),
VALMOD receives as input a data series of length 1800. In Figure 7(b), the
matrix profile for subsequence length ` = 600 is computed (Algorithm 3). On
the left, we depict the distance profile regarding T160,600, and rank it according
to the lower bound (LB) distance values. Although we are computing the entire
distance profile, we store only the first p = 5 entries in memory.

Example 2 Figure 8 shows the execution of ComputeSubMP (Algorithm 4),
taking place after the step illustrated in Figure 7(b). In this picture, we show
the distance profile of a subsequence belonging to the motif pair, for subse-
quence length ` = 601. This time it is built by computing p = 5 distances (left
side of the picture). We can now make the following observations:
(a) In the distance profile of the subsequence T160,601 (left array): minDist =
2.34 < maxLB = 3.18 ⇐⇒ the value 2.34 is both a local and a global mini-
mum (among all the distance profiles).

18 Michele Linardi et al.

T

(a) 1

1800

0
-1
-2
-3
-4
-5

0 600 1200

1

1800

0
-1
-2
-3
-4
-5

0 600 1200

T160,600

T

rank dist offset LB
1 2.34 1136 2.34
2 2.58 1135 2.57
3 2.79 1134 2.79
4 3.00 1133 2.99
5 3.18 1132 3.18

..
738 37.33 1071 24.50
739 37.33 1073 24.50
740 37.34 1072 24.50

T1136,600

(b)

i=1 … 160 … nDP
2.34 distance profiles vectors

(Matrix Profile)
computed in O(n2) time

Offset of subsequence (i) global minimum distance
motif pair: [T160,600 T1136,600]

600 600

Entries stored in memory

Fig. 7 (a) Input time series, (b) Compute matrix profile snapshot: (on the left) distance
profile of the subsequence T160,600 which is part of the motif.

Pruned
calculations

1

1800

0
-1
-2
-3
-4
-5

0

T

T160,601

dist
match
offset LB

1 2.34 1136 2.34
2 2.58 1135 2.57
3 2.79 1134 2.79
4 3.00 1133 2.99
5 3.19 1132 3.18
…
…
…

739 … … …

T1136,601601 601

maxLBminDist

T620,601
dist LB
1 24.07 20.68
2 24.07 20.69
3 24.07 20.69
4 24.08 20.69
5 24.09 20.69
..

739 … …

maxLB and minLbAbs

minDist

Fig. 8 Compute Sub Matrix profile: the partial distance profile of T160,601 contains the
motif’s subsequences distance.

(b) Considering the partial distance profile of subsequence T620,601 (right ar-
ray), we do not know if its minDist is its real global minimum, since 20.69
(maxLB) < 24.07 (minDist).
(c) We know, that 20.69 (maxLB of the distance profile of subsequence
T620,601) is the minLbAbs, or in other words, the smallest maxLB distance
among all the partial distance profiles in which maxLB < minDist holds.
(d) We know that there are no true Euclidean distances (among those com-
puted) smaller than 2.34. Since minDist = 2.34 < minLbAbs = 20.69 ⇐⇒
2.34 is the distance of the motif {T160,601;T1136,601}.

Complexity Analysis. In the best case, ComputeSubMP can find the motif
pair inO(np) time, where n is the total number of distance profiles. This means
that no distance profile computation takes place, since the condition in line 26
of Algorithm 5 is satisfied. Otherwise, if we need to iterate over the non-valid
distance profiles for finding the answer, the time complexity reaches its worst
case, O(nC log(n)), with C denoting the number of non-valid distance profiles

Title Suppressed Due to Excessive Length 19

that are recomputed. When C < n log(p)
log(n) , the algorithm is asymptotically faster

than re-executing ComputeMatrixProfile, which takes O(n2 log(p)) time.

Note that, each non-valid distance profile (starting in line 30) is com-
puted by using the primitives introduced in the ComputeMatrixProfile al-
gorithm, only if its maximum lower bound is less than the smallest true
distance minDistABS. This indicates that the distance profile for length
newL may contain not yet computed distances smaller than minDistABS,
which is our best-so-far. Therefore, the overall complexity of VALMOD is
O(n2 log(p) + (`max − `min)np) in the best case, whereas the worst case time
complexity is O((`max − `min)n2 log(p)). Clearly, the n2 log(p) factor domi-
nates, since (`max − `min) acts as a constant.

5 Finding Motif Sets

We finally extend our technique in order to find the variable-length motif sets.
In that regard, we start to consider the top-k motif pairs, namely the pairs
having the k smallest length-normalized distances. The idea is to extend each
motif pair to a motif set considering the subsequence’s proximity as a quality
measure, thus favoring the motif sets, which contain the closest subsequence
pairs. Moreover, for each top-K motif pair (Ta,`,Tb,`), we use a radius r =
D ∗ dist(Ta,`, Tb,`), when we extend it to a motif set. We call the real variable
D radius factor. This choice permits us to tune the radius r by the user defined
radius factor, considering also the characteristics of the data. Setting a unique
and non data dependent radius for all motif sets, would penalize the results
of exploratory analysis.

First, we introduce Algorithm 5, a slightly modified version of
the updateV almp routine (Algorithm 2). The new algorithm is called
updateV ALMPForMotifSets, and its main goal is to keep track of the best
k subsequence pairs (motif pairs) according to the V ALMP ranking, and the
corresponding partial distance profiles. The idea is to later exploit the lower
bounding distances for pruning computations, while computing the motif sets.

In lines 4 to 7, we build a structure named pair, which carries the informa-
tion of the subsequences pairs that appear in the V ALMP structure. During
this iteration, we leave the fields partDP1 and partDP2 empty, since they
will be later initialized with the partial distance profiles, if their pair is in the
top k of V ALMP . In order to enumerate the best k pairs, we use the global
maximum heap heapBestKPairs in line 8. Then, we assign (or update) the
corresponding partial distance profiles (line 15) to each pair.

We are now ready to present the variable length motif sets discovery al-
gorithm (refer to Algorithm 6). Starting at line 1, the algorithm iterates over
the best pairs. For each one of those, we need to check if the search range
is smaller than the maximum lower bound distances of both partial distance
profiles. If this is true, we are guaranteed to have already computed all the sub-
sequences in the range. Therefore, in lines 7 and 14 we filter the subsequences

20 Michele Linardi et al.

Algorithm 5: updateV ALMPForMotifSets
Input: V ALMP , double [] MPnew, int [] IP , nDP , `, MaxHeap[] listDP ,
Output: V ALMP

1 for i ← 1 to nDP do
// length normalize the Euclidean distance

2 double lNormDist ← MPnew[i] ∗
√

1/`;
// if the distance at offset i of VALMP, surely computed with previous lengths,

is larger than the actual, update it
3 if (V ALMP.distances[i] > lNormDist or V ALMP.MP [i] == ⊥) then
4 entry pair;
5 pair.off1 ← i, pair.off2 ← IP [i] ;
6 pair.distance ← MPnew[i], pair.` ← `;
7 pair.partDP1 ← ⊥, pair.partDP2 ← ⊥ ;
8 insert(heapBestKPairs, pair);
9 V ALMP.distances[i] ← MPnew[i];

10 V ALMP.normDistances[i] ← lNormDist;
11 V ALMP.lengths[i] ← `;
12 V ALMP.indices[i] ← IP [i];

13 end

14 end
15 for each pair in heapBestKPairs do
16 if (pair.partDP1== ⊥) then
17 pair.partDP1 ← listDP [pair.off1];
18 pair.partDP2 ← listDP [pair.off2];

19 end

20 end

in the range, sorting the partial distance profile according to the offsets. This
operation will permit us to find the trivial matches in linear time.

On the other hand, if the search range is larger than the maximum lower
bound distances of both partial distance profiles, we have to re-compute the
entire distance profile (lines 11 and 18), to find all the subsequences in the
range. Once we have the distance profile pairs, we need to merge them and
remove the trivial matches (line 20). Each time we add a subsequence in a motif
set, we remove it from the search space: this guarantees the empty intersection
among the sets in S∗.

Complexity Analysis. The complexity of the
updateV ALMPForMotifSets algorithm is O(n log(k)), where n is the
length of the V ALMP structure, which is linearly scanned and updated.
O(log(k)) time is needed to retain the k best pairs of V ALMP , using the
heap structure in line 8. The final algorithm computeV arLengthMotifSets
takes O(k×p× log(p)) time, in the best case. This occurs when, after iterating
the k pairs in heapBestKPairs, each partial distance profile of length p,
contains all the elements in the range r. In this case, we just need an extra
O(p log(p)) time to sort its elements (line 7 and 14). On the other hand, the
worst case time is bounded by O(k× n× log(n)), where n is the length of the
input data series T . In this case, the algorithm needs to recompute k times
the entire distance profile (line 11 and 18), at a unit cost of O(n log(n)) time.

Title Suppressed Due to Excessive Length 21

Algorithm 6: computeV arLengthMotifSets
Input: DataSeries T , MaxHeap heapBestKPairs, double D
Output: Set S∗

1 for each pair in heapBestKPairs do
2 double r ← pair.distance * D ;
3 double maxLB1 ← popMax(pair.partDP1);
4 double maxLB2 ← popMax(pair.partDP2);
5 D(Tpair.off1,pair.`) ← ∅, D(Tpair.off2,pair.`) ← ∅ ;
6 if maxLB1 > r then

// sort according the offset, the partial distance profile contains all the
elements in the range

7 D(Tpair.off1,pair.`) ← sortAndFilterRange(r,pair.partDP1.toVector());

8 else
// re-compute the mat

9 double s ← sum(Tind,`);
10 double ss ← squaredSum(Tind,`);
11 D(Tpair.off1,pair.`)← CalcDistProfInRange(r,QT ,Tpair.off1,pair.`, T , s,

ss);

12 end
13 if maxLB2 > r then
14 D(Tpair.off2,`) ← sortAndFilterRange(r,pair.partDP2.toVector());

15 else
16 double s ← sum(Tind,`);
17 double ss ← squaredSum(Tind,`);
18 D(Tpair.off2,pair.`)← CalcDistProfInRange(r,QT ,Tpair.off1,pair.`, T , s,

ss);

19 end

20 Set Spair.`
r ← mergeRemoveTM(D(Tpair.off1,`), D(Tpair.off2,`));

21 S∗.add(Spair.`
r);

22 end

6 Discord Discovery

We now describe our approach to solving the Variable-Length Top-k mth Dis-
cord Discovery problem. First, we explain some useful notions, and we then
present our discord discovery algorithm.

6.1 Comparing Discords of Different Lengths

Before introducing the algorithm that identifies discords (from the Top-1 1st to
the Top-k mth one), we define the data structure that allows us to accommodate
them. We can represent this structure as a k ×m matrix, which contains the
best match distance and the offset of each discord.

More formally, given a data series T , and a subsequence length ` we define:

dkm` =

〈d, o〉1,1 .. 〈d, o〉1,m..
〈d, o〉k,1 .. 〈d, o〉k,m

, where a generic pair 〈d, o〉i,j contains the offset

o and the corresponding distance d of the Top-i jth discord of length ` (1 ≤ i ≤
k and 1 ≤ j ≤ m). In dkm`, rows rank the discords according to their positions
(mth discords), and the columns according to their best match distance (Top-
k). For each pair 〈d, o〉a,b, 〈d′, o′〉a′,b′ ∈ dkm`, we require that To,` and To′,`
are not trivial matches.

22 Michele Linardi et al.

Since we want to compute dkm` for each length in the range [`min, `max],
we also need to rank discords of different lengths. In that regard, we want to
obtain a unique matrix that we denote by dkm`min,`max

. Therefore, we can
represent a discord by the triple 〈d∗, o∗, `∗〉i,j ∈ dkm`min,`max

, where d∗ is the
ith greatest length normalized jth best match distance. More formally:

d∗ = max{ d√
`min

: d ∈ dkm`min [i][j]), ...,
d√
`max

: d ∈ dkm`max [i][j]}

Each triple is also composed by the offset o∗ and the length `∗ of the discord,
where `min ≤ `∗ ≤ `max.

As in the case of motifs discovery, we length-normalize the discord dis-
tances, while constructing the dkm`min,`max

ranking. Thus, we multiply each

distance by the 1/
√
` factor. In this case, the length normalization aims to

favor the selection of shorter discords. Therefore, if we compare two Top-k mth

discord subsequences of different lengths, but equal best match distances, the
shorter subsequence is the one with the highest point-to-point dissimilarity
to its best match. This is guaranteed by dividing each distance by the dis-
cord length. Consequently, we promote the shorter subsequence as the more
anomalous one.

6.2 Discord Discovery Algorithm

We now describe our algorithm for the Top-k mth discords discovery problem.
We note that we can still use the lower bound distance measure, as in the
motif discovery case. This allows us to efficiently build dkm`, for each ` in
the [`min, `max] range, incrementally reusing the distances computation per-
formed. The final outcome of this procedure is the dkm`min,`max matrix, which
contains the variable length discord ranking. In this part, we introduce and
explain the algorithms, which permit us to efficiently obtain dkm` for each
length. We report the whole procedure in Algorithm 7.
Smallest Length Discords. We start to find discords of length `min, namely
the smallest subsequence length in the range. We can thus run Algorithm 3 in
line 1, which computes the list of partial distance profiles of each subsequence
of length `min (listDP), in the input data series T . Each partial distance
profile contains the p smallest nearest neighbor distances of each subsequence.
To that extent, we set p ≥ m in Algorithm 3 (ComputeMatrixProfile).

We then iterate the subsequences of T in line 6, using the index i. For each
subsequence Ti,`min that has no trivial matches in dkm`min

, we invoke the
routine UpdateF ixedLengthDiscords (line 8), which checks if Ti,`min can be
placed in dkm`min

as a discord. When dkm`min
is built, we update the variable

length discords ranking (dkm`min,`max matrix in line 10), using the procedure
UpdateV ariableLengthDiscords.

In the loop of line 11, we iterate the discord lengths greater than `min.
Since we want to prune the search space, we consider the list of distance
profiles in listDP , which also contains the lower bound distances of the p

Title Suppressed Due to Excessive Length 23

Algorithm 7: Topkm DiscordDiscovery (Compute Top-k mth Dis-
cords of variable lengths)

Input: DataSeries T , int `min, int `max, int k, int m , int p
Output: Matrix dkm`min,`max

1 MaxHeap[] listDP=ComputeMatrixProfile(T, `min, p);
2 int nDp = (|T | − `min) + 1;
3 Matrix dkm`min,`max = {{〈−∞,−∞,−∞〉, ..., 〈−∞,−∞,−∞〉}, ..., {...}};
4 Matrix dkm`min

= {{〈−∞,−∞〉, ..., 〈−∞,−∞〉}, ..., {...}};
5 if p >= m then

// iterate the partial distance profiles in listDP

// and compute dkm`min

6 for i ← 1 to nDp do
7 if Ti,`min

has no Trivial matches in dkm`min
then

8 UpdateF ixedLengthDiscords(dkm`min
, listDP [i],i,k,m);

9 end
10 UpdateV ariableLengthDiscords(dkm`min

, dkm`min,`max ,k,m);
// compute dkm`nextL

for each length, pruning distance computations

11 for nextL ← `min + 1 to `max do
12 Matrix dkmnextL = {{〈−∞,−∞〉, ..., 〈−∞,−∞〉}, ..., {...}};
13 nDp = (|T | − nextL) + 1;
14 dkm`nextL

=Topkm nextLength(T ,nDp,listDP ,nextL,k,m);
15 UpdateV ariableLengthDiscords(dkm`nextL

, dkm`min,`max ,k,m);

16 end

17 end

(p > m) nearest neighbors of each subsequence. In that regard, we invoke
the routine Topkm nextLength (line 14). Before we introduce the details, we
describe the two routines we introduced, which allow to rank the discords.

Ranking Fixed Length Discords. In algorithm 8, we report the pseudo-
code of the routine UpdateF ixedLengthDiscords. This algorithm accepts as
input the matrix dkm` to update, and a partial distance profile of the subse-
quence with offset off . It starts iterating the rows of dkm`min in reverse order
(line 1). This is equivalent to considering the discords from the mth one to the
1st. Hence, at each iteration we get the jth nearest neighbor of Toff,`min

from
its partial distance profile in line 2. Subsequently, the loop in line 3 checks if
the jthdist is among the k largest ones in the jth column of dkm`min

. If it is
true, the smallest elements in the column are shifted (line 6) and Toff,`min is
inserted as the Top-i jth discord (line 7).

Ranking Variable Length Discords. Once we dispose of the matrix dkm`,
we can invoke the procedure UpdateV ariableLengthDiscords for each length
` ∈ {`min, ..., `max} (Algorithm 9), in order to incrementally produce the final
variable length discord ranking we store in dkm`min,`max

. This algorithm ac-
cepts as input and iterates over the matrix dkm`min,`max

. A position (discord)
is updated if the length normalized best match distance of the discord in the
same position of dkm` is larger (line 6).

Greater Length Discords. In Algorithm 10, we show the pseudo-code of
the routine Topkm nextLength. It starts performing the same loop of line 9 in
Algorithm 1, iterating over the partial distance profiles (line 3), and updating

24 Michele Linardi et al.

Algorithm 8: UpdateF ixedLengthDiscords (Update dkm`)

Input: Matrix dkm`, MaxHeap minMDist, int off , int k, int m
1 for j ← m down to 1 do
2 double jthdist ← minMDist.getMax(j);
3 for i ← 1 to k do
4 < d, o >i,j= dkmnewL[i][j];

5 if jthdist > d then
6 shiftRankingTopK(dkmnewL[i][j]);

// update the ranking with the new Top-i jth discord Toff,`

7 dkm`[i][j] ← 〈jthdist, off〉;
8 return;

9 end

10 end

Algorithm 9: UpdateV ariableLengthDiscords (Update
dkm`min,`max

)

Input: Matrix dkm`min,`max , Matrix dkm`, int k, int m
1 for i ← 1 to k do
2 for j ← 1 to m do
3 < d, o >i,j= dkmnewL[i][j];
4 < d∗, o∗, l∗ >i,j= dkm`min,`max [i][j];

// if length normalized distance is greater or equal for length

`, update the rank.

5 if ((d/
√
`) >= d∗) then

6 dkm`min,`max [i][j] = 〈(d/
√
`), o, `〉

7 end

8 end

the true Euclidean distances for the new length (newL) and the lower bounds
(line 9) for the subsequent length (newL + 1). Since we need to know the
distances from each subsequence to their m nearest neighbors, for each subse-
quence Ti,newL that does not have trivial matches in dkmnewL, we check if the
mth smallest distance is smaller than the maximum lower bound in the partial
distance profile (line 14). If this is true, we have the guarantee that the partial
distance profile minMDist contains the exact m nearest neighbor Euclidean
distances. Hence, in line 15, we can update the matrix dkmnewL. On the other
hand, if the distances are not verified to be correct, we keep minMDist in
memory, which becomes a non-valid partial distance profile, along with the
offset of the corresponding subsequence (line 17). Once we have considered all
the partial distance profiles, we need to iterate the non-valid partial distance
profiles (line 20).

We therefore recompute those that contain at least one true Euclidean
distance greater than the distances in the last row of dkmnewL. The correctness
of this choice is guaranteed by the fact that the distances of a non-valid partial
distance profile can be only larger than the non-computed ones. Hence, if the
condition of line 24 is not verified, no updates in dkmnewL can take place.
Otherwise, we recompute the non-valid distance profile starting at line 25 from

Title Suppressed Due to Excessive Length 25

Algorithm 10: Topkm nextLength (Compute Top-k mth Discords
of greater lengths)

Input: DataSeries T , int nDp, MaxHeap[] listDP , int newL, int k, int m, int p
Output: Matrix dkmnewL

1 Matrix dkmnewL = {{〈−∞,−∞〉, ..., 〈−∞,−∞〉}, ..., {...}};
2 List 〈MaxHeap,int〉 nonV alidMindistList;

// iterate over the partial distance profiles in listDP
3 for i ← 1 to nDp do
4 MaxHeap minMDist ← new MaxHeap(p);
5 double minDist ← inf;
6 int ind ← 0;
7 double maxLB ← popMax(listDP [i]);

/* update the partial distance profile for the length newL (true Euclidean and
lower bounding distance) */

8 for each entry e in listDP [i] do
9 e.dist, e.LB ← updateDistAndLB(e, newL);

// the m shortest neighbor distances are stored in minMDist
10 minMDist.push(e.dist);

11 end

// check if the mth shortest distance of this partial distance profile is the

true mth shorthest.
12 mDist = minMDist.getMax(m);
13 if Ti,newL has no Trivial matches in dkmnewL then
14 if mDist < maxLB then

/* the discord ranking can be updated, without computing the whole
distance profile */

15 UpdateFixedLengthDiscords(dkmnewL,minMDist,i,k,m);

16 else
/* minMDist might not be exact, store the partial distance profile in

memory. */
17 nonV alidMindistList.add(< minMDist,i >);

18 end

19 end
20 for each < minMDist, i > in nonV alidMindistList do
21 if Ti,` has no Trivial matches in dkm` then
22 for j ← m down to 1 do
23 mDist = minMDist.getMax(j);
24 if mDist > dkmnewL[k][j].d then
25 QT ← SlidingDotProduct(Ti,newL, T);
26 double s ← sum(Tind,`); double ss ← squaredSum(Ti,newL);
27 D(Tind,`)← CalcDistProfAndLB(QT ,Ti,newL, T , s, ss);
28 UpdatePartialDistanceProfile(listDP [i], D(Tind,`)) ;
29 UpdateFixedLengthDiscords(dkmnewL, listDP [i],i,k,m);
30 break;

31 end

32 end

scratch. Note that when we re-compute a distance profile, we globally update
the corresponding position of the partial distance profiles listDP (line 28) and
dkmnewL in the vector as well (line 29).
Complexity Analysis. The time complexity of Algorithm 7
(Topkm DiscordDiscovery) mainly depends on the use of
ComputeMatrixProfile algorithm, which always takes O(n2 log(p)) to
compute the partial distance profiles for the n subsequences of length `min in
T .

In order to compute the exact Top-k mth discord ranking in dkm`, the
routine UpdateF ixedLengthDiscords takes O(km) time in the worst case.
Recall that this latter algorithm is called only for subsequences that do not

26 Michele Linardi et al.

have trivial matches in dkm`. Checking if two subsequences are trivial matches
takes constant time, if for each dkm` update, we store the ` trivial match
positions. Given a series T , and the discord (subsequence) length `, we can

represent by S = |T |
l/2 , the number of subsequences that are not trivial matches

with one another. Therefore, updating the discord rank of each length has a
worst case time complexity of O((`max−`min)×S×`×k×m× log(m)), where
the log(m) factor represents the time to get the mth largest distance in the
partial distance profile (line 2 of Algorithm 8). Similarly, the construction of
the variable length discord ranking in dkm`min,`max takes: O((`max − `min)×
k ×m).

Observe also that the time performance of the Topkm nextLength algo-
rithm depends on the Euclidean distance computations pruning. If all the
partial distance profiles contain the correct nearest neighbor’s distances, com-
puting the discords of each length greater than `min takes O(n× p× log(m))
time, with n equal to the number of subsequences in T . The worst case takes
place when for each subsequence that can update dkm` (i.e., S), the com-
plete distance profile is re-computed (Algorithm 10, line 25); in this case the
algorithm takes O(n2 × log(n)× p× log(m)).

7 Experimental Evaluation

7.1 Setup

We implemented our algorithms in C (compiled with gcc 4.8.4), and we ran
them in a machine with the following hardware: Intel Xeon E3-1241v3 (4
cores - 8MB cache - 3.50GHz - 32GB of memory)3. All of the experiments in
this paper are reproducible. In that regard, the interested reader can find the
analyzed datasets and source code on the paper web page [33].
Datasets And Benchmarking Details. To benchmark our algorithm, we
use five datasets:

– GAP, which contains the recording of the global active electric power in
France for the period 2006-2008. This dataset is provided by EDF (main
electricity supplier in France) [12];

– CAP, the Cyclic Alternating Pattern dataset, which contains the EEG
activity occurring during NREM sleep phase [70];

– ECG and EMG signals from stress recognition in automobile drivers [23];
– ASTRO, which contains a data series representing celestial objects [68].

Table 1 summarizes the characteristics of the datasets we used in our ex-
perimental evaluation. For each dataset, we report the minimum and maxi-
mum values, the overall mean and standard deviation, and the total number
of points.

3 In order to validate the time performance results, we repeated our experiments on a
second machine with different characteristics (Intel Xeon E5-2650 v4, 24 cores - 30MB
cache - 2.20GHz, 250GB of memory), where we observed the same trends.

Title Suppressed Due to Excessive Length 27

MIN MAX MEAN STD-DEV
number of

points

ECG -2.182 1.543 0.006 0.24 2M

GAP 0.08 10.67 1.10 1.15 2M

ASTRO -0.00867 0.00447 0.00003 0.00031 2M

EMG -0.694 0.773 -0.005 0.041 2M

EEG -966 920 3.34 41.36 0.5M

Table 1 Characteristics of the datasets used in the experimental evaluation.

Motif length
(`min)

Motif range
(`max − `min)

Data series size
(points)

p (elements of
distance profiles

stored)
256 100 0.1 M 5
512 150 0.2 M 10
1024 200 0.5 M 15
2048 400 0.8 M 20
4096 600 1 M 50 , 100 , 150

Table 2 Parameters of VALMOD benchmarking (default values shown in bold).

The (CAP),(ECG) and (EMG) datasets are available in [21]. We use several
prefix snippets of these datasets, ranging from 0.1M to 1M of points.

In order to measure the scalability of our motif discovery approach, we
test its performance along four dimensions, which are depicted in Table 2.
Each experiment is conducted by varying the parameter of a single column,
while for the others, the default value (in bold) is selected. In our benchmark,
we have two types of algorithms to compare to VALMOD. The first are two
state-of-the-art motif discovery algorithms, which receive a single subsequence
length as input: QUICKMOTIF [32] and STOMP [80]. In our experiments,
they have been run iteratively to find all the motifs for a given subsequence
length range. The other approach in the comparative analysis is MOEN [46],
which accepts a range of lengths as input, producing the best motif pair for
each length.

For VALMOD, we report the total time, including the time to build the
matrix profile (Algorithm 3). The runtime we recorded for all the considered
approaches is the average of five runs. Prior to each run we cleared the system
cache.

7.2 Motif Discovery Results

Scalability Over Motif Length. In Figure 9, we depict the performance re-
sults of the four motif discovery approaches, when varying the motif length. We
note that the performance of VALMOD remains stable over the five datasets.

28 Michele Linardi et al.

ECG EMG

GAP EEG

ASTRO

Time out after 24h

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

Fig. 9 Scalability for various motif length ranges.

On the other hand, we observe that a pruning strategy based on a summarized
version of the data is sensitive to subsequence length variation. This is the case
for QUICK MOTIF, which operates on PAA (Piecewise Aggregate Approx-
imation) discretized data. Figure 9 shows that the performance of QUICK
MOTIF varies significantly as a function of the motif length range, growing
rapidly as the range increases, and failing to finish within a reasonable amount
of time in several cases.

Moreover, we argue that our proposed lower bounding measure enables
our method to improve upon MOEN, which clearly does not scale well in this
experiment (see Figure 9). The main reason for this behavior is that the effec-
tiveness of the lower bound of MOEN decreases very quickly as we increase the
subsequence length `. When we increase the subsequence length by 1, MOEN
multiplies the lower bound by a value smaller than 1 ([46], Section IV.B), thus
making it less tight. In contrast, the lower bound of VALMOD does not al-
ways decrease (refer to Eq. (2)):

σj,l

σj,l+k
may be larger than 1. Consequently, the

lower bound of VALMOD can remain effective (i.e., tight) even after several
steps of increasing the subsequence length.

Concerning the VALMOD performance, we note a sole exception that ap-
pears for the noisy EMG data (Figure 9), for a relatively high motif length
range (4096-4196). The explanation for this behavior is that the lower bound-
ing distance used by VALMOD is coarse, or in other words, it is not a good
approximation of the true distance. Figure 10 shows the difference between

Title Suppressed Due to Excessive Length 29

the greater lower bounding distance (maxLB) and the smaller true Euclidean
distance for each distance profile. We use the subsequence lengths 356 and
4196, which are respectively the range’s smallest and largest extremes in this
experiment. In this last plot, each value greater than 0 corresponds to a valid
condition in line 16 of the ComputeSubMP algorithm. This indicates that
we found the smallest value of a distance profile, while pruning computations
over the entire subsequence length range. As the subsequence length increases,
VALMOD’s pruning becomes less effective for the EMG (observe that there
are no, or very few values above zero in the distances profiles for subsequence
length 4196). On the other hand, we observe the presence of values above zero
in the other datasets. This confirms that motifs in those cases are found, while
pruning the search space.

In order to further evaluate the pruning capability of VALMOD, we re-
port the measurements for the Tightness of the Lower Bound (TLB) [66,85]
performed during the previous experiment (Figure 9). The TLB is a mea-
sure of the lower bounding quality; given two data series t1 and t2, the TLB is
computed as follows: LBdist(t1, t2)/EuclideanDistance(t1, t2). Note that TLB
takes values between 0 and 1. A TLB value of 1 means that the lower bound
distance is the same as the Euclidean distance; this corresponds to the optimal
case.

In Figure 11, we show the average TLB for each (partial) distance profile.
In the EMG dataset, when using the larger subsequence length, we observe a
sharp decrease of the lower bounding quality (small TLB values), explaining
the behavior observed for the EMG dataset (refer to Figure 10(bottom-left)).
We also note similar results for the ASTRO dataset. As we have noted for
this last case, the performance is not negatively affected, since we dispose of
several partial distance profiles that provide the correct minimum distances,
and thus permit us to find the motifs, without recomputing all the distance
profiles. In contrast, in the other datasets, we note a smaller negative impact
on TLB for the case of subsequence length 4196.

In Figure 12, we also show the distance distribution of the pairwise subse-
quences, using the same datasets and subsequences lengths. Here, we plot the
distances without length normalization, since the algorithm uses it to rank the
motifs in the trailing part. For the EMG and ASTRO datasets, in the case of
length 4196, the distance distribution includes many small and large values,
which does not suggest the presence of motifs, but affects VALMOD negatively.
Observe that in the other datasets, the values are more uniformly distributed
over all the subsequence lengths. This denotes the presence of subsequence
pairs that are substantially closer than the rest, which typically identifies the
occurrence of motifs. In this case, VALMOD is able to prune more distance
profile computations, leading to better performance.

Scalability Over Motif Range. In Figure 13, we depict the performance
results as the motif range increases. VALMOD gracefully scales on this dimen-
sion, whereas the other approaches can seldom complete the task. Not only
does our technique address the intrinsic problem of STOMP and QUICK MO-

30 Michele Linardi et al.

-20

30

Offset Distance Profile0 0.5M

0

EMG (maxLB– minDist)

ECG (maxLB– minDist)

ASTRO (maxLB– minDist)

GAP (maxLB– minDist) EEG (maxLB – minDist)

Motif length: 356 points

-20

30

Offset Distance Profile0 0.5M

0

Motif length: 4196 points

-20

30

Offset Distance Profile0 0.5M

0

Motif length: 356 points

-20

30

Offset Distance Profile0 0.5M

0

Motif length: 4196 points

-20

30

Offset Distance Profile0 0.5M

0

Motif length: 356 points

-20

30

Offset Distance Profile0 0.5M

0

Motif length: 4196 points

-20

30

Offset Distance Profile0 0.5M

0

Motif length: 356 points

-20

30

Offset Distance Profile0 0.5M

0

Motif length: 4196 points

-20

30

Offset Distance Profile0 0.5M

0

Motif length: 356 points

-20

30

Offset Distance Profile0 0.5M

0

Motif length: 4196 points

Motif length

356 4196

Mean St. dev. Min Max Mean St. dev. Min Max

GAP -2.46 3.86 -23.87 5.98 -6.81 2.82 -26.3 11.03

EEG -3.59 5.75 -27.11 11.5 -3.47 7.68 -42.8 14.59

ECG 0.74 1 -19.71 11.1 7.98 8.21 -11.8 33.97

EMG 0.31 1.7 -6.21 10.2 -11.69 5.13 -20.5 -1.74

ASTRO -4 2.23 -15.38 3.97 -17.32 2.05 -20.8 0.58

Fig. 10 The difference between the max lower bounding distance (maxLB) and the min
Euclidean distance of partial distance profiles for all the datasets. Subsequence lengths:
356/4196. (We report the results for the EMG dataset in red, which corresponds to
VALMOD’s worst case for lengths 4096-4196, as shown in Figure 9.)

TIF, which independently process each subsequence length, but it also exhibits
a substantial improvement over MOEN, the existing state-of-the-art approach
for the discovery of variable length motifs.

Scalability Over Data Series Length. In Figure 14, we experiment with
different data series sizes. For the EEG dataset we only report three measure-
ments, since this collection contains no more than 0.5M points. We observe
that QUICK MOTIF exhibits high sensitivity, not only to the various data
sizes, but also to the different datasets (as in the previous case, where we var-
ied the subsequence length). It is also interesting to note that QUICK MOTIF
is slightly faster than VALMOD on the ECG dataset, which contains regular
and similar heartbeat patterns, and is a relatively easy dataset for motif dis-
covery. Nevertheless, QUICK MOTIF, as well STOMP and MOEN, fail to
terminate within a reasonable amount of time for the majority of our exper-
iments. On the other hand, VALMOD does not exhibit any abrupt changes
in its performance, scaling gracefully with the size of the dataset, across all
datasets and sizes.

Large Datasets and Length ranges. Here we report two further experi-
ments that we have conducted on larger snippets of the datasets - namely, 2
million points - and over a larger range of motif lengths. To that extent, we
want to test the scalability of our approach, considering two extreme cases. We
compare VALMOD to QUICKMOTIF, since the latter is the sole approach
that can scale to data series lengths beyond half a million points, and to motif
length ranges larger than 100.

Title Suppressed Due to Excessive Length 31

EMG (TLB)

ECG (TLB)

ASTRO (TLB)

GAP (TLB) EEG (TLB)

Motif length: 356 points

Motif length: 4196 points

Motif length: 356 points

Motif length: 4196 points

Motif length: 356 points

Motif length: 4196 points

Motif length: 356 points

Motif length: 4196 points

Motif length: 356 points

Motif length: 4196 points

0

1

Offset Distance Profile0 0.5M

0

1

Offset Distance Profile0 0.5M

0

1

Offset Distance Profile0 0.5M

0

1

Offset Distance Profile0 0.5M

0

1

Offset Distance Profile0 0.5M

0

1

Offset Distance Profile0 0.5M

0

1

Offset Distance Profile0 0.5M

0

1

Offset Distance Profile0 0.5M

0

1

Offset Distance Profile0 0.5M

0

1

Offset Distance Profile0 0.5M

Motif length

356 4196

Mean St. dev. Min Max Mean St. dev. Min Max

GAP 0.4 0.23 0.003 0.95 0.72 0.04 0.32 0.83

EEG 0.41 0.25 0.0002 0.94 0.68 0.07 0.19 0.84

ECG 0.93 0.05 0.002 0.97 0.85 0.04 0.66 0.95

EMG 0.76 0.06 0.28 0.93 0.64 0.05 0.55 0.74

ASTRO 0.39 0.12 0.05 0.87 0.57 0.014 0.52 0.66

Fig. 11 Average of the tightness of the lower bound (TLB) for every Distance profile for all
datasets. Subsequence lengths: 356/4196. (We report the results for the EMG dataset in red,
which corresponds to VALMOD’s worst case for lengths 4096-4196, as shown in Figure 9.)

0

1010

Euclidean distance0 10

0

1010

Euclidean distance0 10

0

1010

Euclidean distance0 10

0

1010

Euclidean distance0 10
0

1010

Euclidean distance0 10

EMG

ECG

ASTRO

GAP EEG

4196 points356 points

4196 points356 points

4196 points356 points

4196 points356 points

4196 points356 points

Fig. 12 Distribution of Euclidean distance of pairwise subsequences in all the datasets.
Subsequence lengths: 356/4196. (We report the results for the EMG dataset in red, which
corresponds to VALMOD’s worst case for lengths 4096-4196, as shown in Figure 9.)

In Figure 15.(a), we report the motif discovery time on four datasets that
contain 2 million points. We pick the default length boundaries, namely `min =
1024 and `max = 1124, discovering motifs of each length in between them.
The results show that VALMOD gracefully scales, and is always one order of
magnitude faster than QUICKMOTIF, which does not reach the timeout only
in the case of the ECG datasets.

32 Michele Linardi et al.

100 150 200 400 600

100 150 200 400 600

100 150 200 400 600

100 150 200 400 600

100 150 200 400 600

ECG EMG

GAP EEG

ASTRO

Time out after 24h

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

tim
e

(h
ou

rs
)

12

18

6

0

24

Fig. 13 Scalability with increasing motif range.

The same observations hold for the results of the experiments that vary
the motif length range. Figure 15.(b), shows the results for length ranges 2000
and 4000, on all five datasets in our study (at their default sizes). Once again,
QUICKMOTIF reaches the timeout state in all datasets, except for ECG,
where for the larger length ranges is two times slower than VALMOD. On
the other hand, VALMOD scales well and remains the method of choice (with
the exception of the largest length ranges for the EMG and ASTRO datasets,
where it reaches the timeout).

The above results demonstrate the superiority of VALMOD, but also show
its limits, which open possibilities for future work.

Overall Pruning Power. In order to show the global effect of VALMOD’s
pruning power, we conduct an experiment recording the number of distance
profile computations performed by procedure ComputeSubMP, which extracts
motifs of length greater than `min, pruning the unpromising calculations. We
recall that this algorithm computes for each subsequence Ti,` with ` > `min
a subset of distances (Euclidean and lower bounding), called partial distance
profiles. If the smallest Euclidean distance computed is also smaller than the
larger lower bounding distance, we know it is the true distance of the nearest
neighbor of Ti,`. In this case, we call the partial distance profile valid. Oth-
erwise, we do not know the true nearest neighbor distance, and we call the
partial distance profile non-valid. In order to identify the correct motifs, the

Title Suppressed Due to Excessive Length 33

0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M
0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M

0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M

GAP

ECG EMG

ASTRO

tim
e

(h
ou

rs
)

tim
e

(h
ou

rs
)

tim
e

(h
ou

rs
)

tim
e

(h
ou

rs
)

0

10

20

30

0.1M 0.2M 0.5M 0.8M 1M

tim
e

(h
ou

rs
)

Time out after 24h

0

10

20

30

0.1M 0.2M 0.5M

EEG

Fig. 14 Scalability with increasing data series size.

0
50

100
150
200
250
300
350
400

VALMOD QUICK MOTIF

M
ot

if
di

sc
ov

er
y

(h
ou

rs
)

GAP (2M) ASTRO (2M)
EMG (2M) ECG (2M)

0
20
40
60
80

100
120

M
ot

if
di

sc
ov

er
y

tim
e

(h
ou

rs
)

Length range lmin/lmax

VALMOD QUICK MOTIF

ECG GAP EEG EMG ASTRO
(a) (b)

Fig. 15 Scalability of VALMOD and QUICKMOTIF using large datasets (2M of points)
and large length ranges.

algorithm only needs to recompute the entire non-valid distance profiles that
might contain distances shorter than those already found in the valid distance
profiles.

In Figure 16, we depict the difference between the minimum Euclidean
distance and the maximum lower bounding distance of each distance profile

34 Michele Linardi et al.

M
in

(E
D

) –
M

ax
(L

ow
er

bo
un

di
ng

)

Distance profile
GAP

M
in

(E
D)

 –
M

ax
(L

ow
er

bo
un

di
ng

)

Distance profile
EEG0 100,000 200,000 300,000 400,000 500,000

-3
0

-2
0

-1
0

0
10

0 100,000 200,000 300,000 400,000 500,000

-3
0

-2
0

-1
0

0
10

-4
0

M
in

(E
D

) –
M

ax
(L

ow
er

bo
un

di
ng

)

Distance profile
ECG 0 100,000 200,000 300,000 400,000 500,000

-4
0

-2
0

0

0
-5

M
in

(E
D

) –
M

ax
(L

ow
er

bo
un

di
ng

)

Distance profileEMG 0 100,000 200,000 300,000 400,000 500,000

-2
0

-1
0

5
-1

5
-3

0
-2

5

M
in

(E
D)

 –
M

ax
(L

ow
er

bo
un

di
ng

)

Distance profile

ASTRO
0 100,000 200,000 300,000 400,000 500,000

-2
0

-1
0

0
-3

0

ASTRO

motif length
range:

l_min 1024,
l_max: 1124

Valid
Distance
profiles
(green)

Distance
profiles

recomputed
(red)

Non-valid
Distance
profiles
(black)

GAP 14% 0% 86%
EEG 21% 0% 79%
ECG 36% 0% 64%
EMG 3.54% 0.03% 96.43%
ASTRO 0.91% 0.17% 98.92%

Valid Distance profile Non-valid Distance profile Distance profile recomputed

Fig. 16 Partial distance profile repartition (valid, non-valid, recomputed), in the motif dis-
covery task on the five considered datasets. Default parameters are used in this experiment.

computed in the subsequence length range (1025/1124). In the plots, the
values above zero refer to the valid ones (green points), whereas values under
zero are either non-valid (black points) or recomputed (red/triangular points).
We observe that in the first three datasets, namely EEG, ECG and GAP,
there are no distance profiles that are recomputed, meaning that the motifs
are always found in the valid (partial) distance profiles in the shortest time
possible (best case). Concerning the EMG and ASTRO datasets, several re-
computations take place (red/triangle points). As we can see from the table in
the bottom part of Figure 16 though, the computed distance profiles are not
more than the 0.20% of the total. This means that the algorithm successfully

Title Suppressed Due to Excessive Length 35

0
500

1000
1500
2000
2500
3000

N
um

be
ro

f p
ar

ita
ld

is
ta

nc
e

pr
of

ile
s r

ec
om

pu
te

d

Subsequence length

ASTRO EMG

(a) (b)
0

100000

200000

300000

400000

500000

600000

1s
t s

ub
se

qu
ne

ce
of

To
p-

1
m

ot
if

of
fs

et

Subsequence length

ASTRO EMG ECG
EEG GAP

Fig. 17 (a) Distribution of recomputed distance profiles for each subsequence length consid-
ered in the EMG and ASTRO datasets. (b) Offset of the first subsequence in the discovered
motif for all the length in the EMG And ASTRO datasets.

prunes a high percentage of the computations, thanks also to the effectiveness
of the proposed lower bounding measure.

At this point, we can further analyze the reasons behind the pruning ca-
pability of our approach. To that extent, in Figure 17.(a) we plot the number
of distance profiles that VALMOD recomputes at each subsequence length for
the EMG and ASTRO datasets. These two datasets both contain noisy data,
which influence re-computations. However, they differ according to the length
for which these re-computations take place.

Figure 17.(b) shows the position of the Top − 1 motif along the subse-
quence length. Note that the Top− 1 motif is always placed around the same
offset region in the ASTRO dataset, suggesting the presence of a few similar
data segments, which is also verified by the high number of non-valid distance
profiles we observe in Figure 16(ASTRO). On the other hand, in the EMG
dataset, the motif location changes several times, denoting the presence of
different segments, which contain motifs of different lengths. This is also con-
firmed by the more prevalent presence of valid distance profile in the EMG
dataset. In this last case, the re-computation number drops to zero as soon as
the motif positions start to change, i.e., at length 1058, maintaining the same
trend until the end.
Effect of Changing Parameter p. In Figure 18, we study the effect of
parameter p on VALMOD’s performance. The p value determines how many
distance profile entries we compute and keep in the memory. Increasing p leads
to increased memory consumption, but could also translate to an overall speed-
up, since having more distances may guarantee a larger margin between the
greater lower bounding distance and the minimum true Euclidean distance in
a distance profile. As we can see on the left side of the plot, increasing p does
not provide any significant advantage in terms of time complexity. Moreover,
the plots on the right-hand side of the figure demonstrate that the size of the
Matrix profile subset (subMP), computed by the computeSubMP procedure,
decreases in the same manner at each iteration (i.e., as we increase the length
of the subsequences that the algorithm considers), regardless of the value of p.

It is important to note that irrespective of its size, subMP always contains
the smallest distances of the matrix profile, namely the distances of the motif

36 Michele Linardi et al.

0

50

100

150

200

5 10 15 20 50 100 150

GAP

ECG

EEG

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

0

50

100

150

200

5 10 15 20 50 100 150

0

50

100

150

200

5 10 15 20 50 100 150

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

0
20,000
40,000
60,000
80,000

100,000
120,000
140,000

1025 1124

|s
ub

M
P|

motifs length

5 10 15 20

50 100 150

0

10,000

20,000

30,000

40,000

50,000

60,000

70,000

1025 1124

|s
ub

M
P|

motifs length

5 10 15 20

50 100 150

0

2,000

4,000

6,000

8,000

10,000

12,000

1025 1124

|s
ub

M
P|

motifs length

5 10 15 20

50 100 150

0

50

100

150

200

5 10 15 20 50 100150

0

50

100

150

200

5 10 15 20 50 100150

EMG

ASTRO

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

Ti
m

e
(m

in
ut

es
)

p (entries of dp in memory)

0

50,000

100,000

150,000

200,000

250,000

300,000

350,000

1025 1124

|s
ub

M
P|

motifs length

5 10 15 20
50 100 150

0
500

1,000
1,500
2,000
2,500
3,000
3,500
4,000
4,500
5,000

1025 1124

|s
ub

M
P|

motifs length

5 10 15 20

50 100 150

Fig. 18 Scalability with increasing parameter p.

pair. Having a larger subMP does not represent an advantage w.r.t. motif
discovery, but rather an opportunity to view and analyze the subsequence
pairs, whose distances are close to the motif.

Title Suppressed Due to Excessive Length 37

K
Top K sets
(seconds)

Top K sets
(seconds)

Top K sets
(seconds)

Top K sets
(seconds)

Top K sets
(seconds)

10 1.74 0.09 0.001 1.64 1.60

20 3.37 0.09 0.001 3.27 3.23

40 6.66 0.09 0.001 6.53 6.37

60 10 0.09 0.001 9.81 9.44

80 13.33 0.09 0.001 13.08 12.59

D
Top K sets
(seconds)

Top K sets
(seconds)

Top K sets
(seconds)

Top K sets
(seconds)

Top K sets
(seconds)

2 0.0015 0.001 0.001 6.52 4.45

3 0.0016 0.001 0.001 6.50 5.79

4 6.67 0.22 0.001 6.88 6.12

5 6.67 0.35 0.001 7.47 6.45

6 6.67 0.88 0.001 6.86 6.56

a)

b)

GAP EEG ECG EMG ASTRO

VALMP
time

9601
seconds

VALMP
time

9608
seconds

VALMP
time

9653
seconds

VALMP
time

10294
seconds

VALMP
time

9100
seconds

Fig. 19 Time performance of variable length motif sets discovery. (a) Varying K (default
D=4). (b) Varying radius factor D (default K=40).

7.3 Motif Sets

We now conduct an experiment to show the time performance of identifying
the variable length motif sets. We use the default values of Table 2, varying K
and the radius factor D for each dataset. In Figure 19 we report the results;
we also show the time to compute V ALMP (the output of VALMOD). We
note that once we build the pairs ranking of V ALMP (heapBestKPairs in
Algorithm 5), we can run the procedure that computes the motif sets (Al-
gorithm 6). The results show that this operation is 3-6 orders of magnitude
faster than the computation of V ALMP . The advantage in time performance
is pronounced for the ECG and EEG datasets, thanks to the pruning we
perform with the partial distance profiles.

The fast performance of the proposed approach also allows for a fast ex-
ploratory analysis over the radius factor, which would otherwise (i.e., with
previous approaches) be extremely time-consuming to set for each dataset.

7.4 Discord Discovery

In this last part, we conduct the experimental evaluation concerning discord
discovery. In the following experiments, we use the same datasets as before.

We identify two state-of-the-art competitors to compare to our approach,
the Motif And Discord (MAD) framework. The first one, DAD (Disk Aware
Discord Discovery) [77], implements an algorithm suitable for enumerating
the fixed-length mth discords of a data series collection stored on a disk. We
adapted this algorithm, as suggested by the authors, in order to extract dis-
cords from data series loaded in main memory. The second approach, Gram-
marViz [65], is the most recent technique, which discovers Top-k 1st discords.

38 Michele Linardi et al.

EMG ASTRO
m th discords

Dataset

0

10

20

30

40

50

60

ECG GAP EEG

H
ou

rs

m th discords
Dataset

DAD (1 length) MAD (100 lengths)

1 3 5 7 10 1 3 5 7 10

Time out

0,00%

0,02%

0,04%

0,06%

0,08%

0,10%

1 3 5 7 10Pe
rc

en
ta

ge
 o

f r
ec

om
pu

te
d

di
st

an
ce

 p
ro

fil
es

m th discords

ECG GAP EEG EMG ASTRO

(a) (b)

(c)

1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10

0.10%

0.08%

0.06%

0.04%

0.02%

0.00%

Fig. 20 (a),(b) DAD (one length) and MAD (100 lengths) Top-k mth discords discovery
time. (c) Percentage (on the total distance profiles) of non-valid partial distance profiles
recomputed by Algorithm 10

It operates by means of grammar rules compression, which further operate on
a summarized data series representation, in order to find the rare segments of
the data (discords) in a reduced search space. To the best of our knowledge,
there exist no techniques capable of finding the Top-k mth ranked variable-
length discords as MAD, using a single execution of an algorithm.

Mth Discord Discovery. In Figures 20(a)-(b), we present the performance
comparison between MAD and DAD for finding the mth discords, when we
vary m, for all datasets. (All other parameters are set to their default values,
as listed in Table 2.)

Since DAD discovers fixed-length mth discords, we report its execution
time only for the first length in the range, namely `min. We observe that MAD,
which enumerates the mth discords of 100 lengths (`min = 1024, `max = 1124)
is still one order of magnitude faster than these DAD performance numbers,
for all datasets, when m is larger or equal to 5. Moreover, the performance
trend of MAD remains stable over all datasets, whereas DAD has different
execution times. We observe that the computational time of DAD depends
on the subsequence length, since it computes Euclidean distances in their en-
tirety (only applying early abandoning based on the best so far distance). How
effective this early abandoning mechanism is, depends on the characteristics
of the data. On the other hand, our algorithm computes all distances for the
first subsequence length in constant time, and then prunes entire distance
computations for the larger lengths.

Title Suppressed Due to Excessive Length 39

Number of lengths for which discords are found

DATASETS
Top-1

1st
Top-3

1st
Top-5

1st
Top-7

1st
Top-10

1st

MAD

ECG 101 101 101 101 101
GAP 101 101 101 101 101
EEG 101 101 101 101 101
EMG 101 101 101 101 101

ASTRO 101 101 101 101 101

GrammarViz

ECG 1 2 2 2 2
GAP 1 1 1 1 1
EEG 1 1 1 1 1
EMG 1 2 3 0 0

ASTRO 0 0 0 0 0

0,00%
0,01%
0,02%
0,03%
0,04%
0,05%
0,06%

1 3 5 7 10Pe
rc

en
ta

ge
 o

f r
ec

om
pu

te
d

di
st

an
ce

 p
ro

fil
es

Top-k 1st discords

EEG ASTRO ECG

EMG GAP

0
1
2
3
4
5
6
7

ECG GAP EEG

H
ou

rs
GrammarViz MAD

1 3 5 710

Time out

(a)

(b)

(c)
1 3 5 7 10 1 3 5 710 1 3 5 7 10 1 3 5 710 1 3 5 7 10

0
10
20
30
40
50
60

EMG ASTRO

H
ou

rs

Top-k 1st discords
Dataset

1 3 5 7 10 1 3 5 7 10 1 3 5 7 10 1 3 5 7 10

(d)

0.06%

0.05%
0.04%

0.03%
0.02%

0.01%
0.00%

Fig. 21 (a),(b) GrammarViz and MAD (100 lengths) Top-k 1st discords discovery time. (c)
Percentage (on the total distance profiles) of non-valid partial distance profiles recomputed
by Algorithm 10.

In Figure 20(c), we report the percentage of non-valid distance profiles that
are recomputed, over the total number of distance profiles considered during
the entire task of variable-length discord discovery. We note that the number
of re-computations is limited to no more than 0.10%, in the worst case. This
demonstrates the high computation pruning rate achieved by our algorithm,
justifying the considerable speed-up achieved.
Top-k 1st Discord Discovery. In Figure 21, we depict the performance
comparison between GrammarViz and MAD. We do not report results for
DAD, since it always reaches the imposed time-out, even for the variable length
Top-k 1st discord discovery task. Therefore, we consider Top-k 1st discords
discovery, as previously introduced. (We maintain the same parameter settings
in this experiment.)

First, we note that GrammarViz outperforms MAD in the first three
datasets, for k smaller or equal to 5, as depicted in Figure 21(a). Nevertheless,
the experiment shows that MAD scales better over the number of discovered
Top-k 1st discords, as its execution time increases only by a small constant
factor. A different trend is observed for GrammarViz, whose performance sig-
nificantly deteriorates as k increases from 1 to 6.

Moreover, this technique is highly sensitive to the dataset characteristics,
as we observe in Figure 21(b), where the two noisy datasets, i.e., EMG and
ASTRO, are considered. This is a direct consequence of the data summariza-
tion sensitivity to the data characteristics, which then influences the ability to
prune distance computations.

In Figure 21(c), we report the percentage of non-valid distance profiles that
MAD needed to recompute. In this case, too, this percentage is very low.

40 Michele Linardi et al.

0
1
2
3
4
5
6

ECG GAP EEG EMG ASTRO

H
ou

rs

Top-k mth discords
Dataset

0,00%

0,05%

0,10%

0,15%

2-2 3-3 4-4 5-5 6-6

Pe
rc

en
ta

ge
 o

f
re

co
m

pu
te

d
di

st
an

ce
 p

ro
fil

es

Top-k mth discords

EEG ASTRO ECG

EMG GAP

(a) (b)

0.10%

0.05%

0.00%

0.15%

Fig. 22 (a) MAD (100 lengths)Top-k mth discords discovery time on the five datasets. (b)
Percentage (on the total distance profiles) of non-valid partial distance profiles recomputed
by Algorithm 10

To conclude, since GrammarViz is a variable length approach that selects
the most promising discord lengths according to the distribution of the data
summarization (by picking the lengths of the series, whose discrete versions
represent a rare occurrence), we report in Figure 21(d) the number of lengths,
for which discords are found. We observe that our framework always enumer-
ates and ranks discords of all lengths in the specified input range, based on
the exact Euclidean distances of the subsequences. On the other hand, Gram-
marViz selects the most promising length based on the discrete version of
the data, and only identifies the exact Top-k 1st discords for 3 (out of 100)
different lengths in the best case.

Top-k mth Discord Discovery. Figure 22 depicts the execution time for
the Top-k mth discord discovery task, and the percentage of recomputed dis-
tance profiles for MAD, when varying k and m. We observe that the pruning
power remains high: the percentage of distance profile re-computations aver-
ages around 0.05%.

Utility of Variable-Length Discord Discovery. We applied MAD on a
real use case, a data series containing the average number of taxi passengers
for each half hour over 75 days at the end of 2014 in New York City [62],
depicted in Figure 23(a). We know that this dataset contains an anomaly that
occurred during the daylight savings time end, which took place the 2nd of
November 2014 at 2am. At that time, the clock was set back at 1am. Since the
recording was not adjusted, two samples (corresponding to a 1 hour recording)
are summed up with the two subsequent ones.

We ran the variable-length discord discovery task using the length range
`min = 20 and `max = 48, in order to cover subsequences that correspond to
recordings between 10 − and24 hours. Our algorithm correctly identifies the
anomaly for subsequence length 32, shown in Figure 23(b). Changing the win-
dow size does not allow the detection of the anomaly. For example, enlarging
the window by just 1 point, the Top-k 1st discord corresponds to a pattern
before the abnormality (refer to Figure 23(c)).

These results showcase the importance of efficient variable-length discord
discovery. It permits us to discover rare, or abnormal events with different
durations, which can be easily missed in the fixed length discord discovery

Title Suppressed Due to Excessive Length 41

1 hour with anomalous number of passengers
(due to daylight
saving time)

33 points

Top-1-1st discord = dkm20,40[1,1]
16.5 hours

Top-1-1st discord (1st in)
16 hours

32 points

(a)

(b)

(c)

0 1000 2000 3000

Fig. 23 (a) Data series reporting the number of taxi passengers over 75 days at the end of
2014 in New York City. (b) Top− 1 1st discord of length 32, which contains the abnormal
peak generated by the double recording problem of daylight savings time. (c) Top − 1 1st

discord of length 33, which represents an anomalous trend for the number of taxi passengers
due to the daylight savings time.

setting, where the analyst is constrained to examine a single length (or time
permitting, a few fixed lengths).

7.5 Exploratory Analysis: Motif and Discord Length Selection

In this part, we present the results of an experiment we conducted to test
the capability of MAD to suggest the most promising length/s for motifs and
discords.

Given a data series, the user may have no clear idea about the motif/discord
length. Therefore, we present use cases that examine the ability of MAD to
perform a wide length-range search, providing the most promising results at
the correct length.

We used MAD for finding motifs and discords in the length range: `min =
256 and `max = 4096. We conducted this experiment in the first 500K points
of the datasets listed in Table 1. The considered motif/discord length range
covers the user studies that have been presented so far in the literature (where
knowledge of the exact length was always assumed).
Scalability. The MAD framework completed the motif/discord discovery task
within 2 days (on average), enumerating the motifs and the Top−1 discords of
each length in the given range. Concerning the competitors, we estimated that
STOMP, which is the state-of-the-art solution for fixed length motif/discord
discovery would take 320 days for the same experiment (a little bit more than
two hours for each of the lengths we tested). QUICK MOTIF, which has data
dependent time performance, takes up to more than 6 days (projection) for all
datasets but ECG (which completes in 38 hours). We note that the variable-
length motif discovery competitor (MOEN) never terminates before 24 hours
when searching motifs of 600 different lengths, while in this experiment, the
length range is composed of 3841 different lengths. Considering discord dis-
covery, we observed that GrammarViz does not enumerate all the discords in
the given length-range, since it selects the length according to the data sum-

42 Michele Linardi et al.

0

0.5

1

1.5

256 456 656

Eu
cl

id
ea

n
 d

is
ta

n
ce

Subsequence length

First 1000 Top-k-motifs
(Euclidean distance ranking)

0

0.02

0.04

0.06

0.08

0.1

256 456 656

Le
n

gt
h

n
o

rm
al

iz
ed

d
is

ta
n

ce

Subsequence length

First 1000 Top-k-motifs
(length normalized ranking)

-8
-6

-4
-2

0

0 50 100 150 200 250
-8

-6
-4

-2
0

0 50 100 150 200 250

0 100,000 200,000 500,000300,000 400,000

pos: 341,870 pos: 378,641

A: Top-1-motif (length 256)

A A

Fig. 24 Top-1 motif (of length 256) in the EEG data set. The subsequences pairs composing
this motif have the smallest distance in both the Euclidean distance and length normalized
ranking.

marizations. Thus, we are obliged to run this technique independently for each
length, which would take at least 320 hours in the best case (projection based
on results of Figure 21).

Select the most promising length in Motif Discovery. Once the search
is completed, the MAD framework enumerates the motifs and discords rank-
ing them in a second step, according to the proposed distance normalization
strategy. In Figure 24, we show the results of motif discovery for the EEG
dataset.

The objective of this experiment is to evaluate the proposed length-
normalized correction strategy. In this regard, we compare the motifs sorted
by using length-normalization, and by Euclidean distances.

On the top part of Figure 24, we report the distance/length values of the
Top−1000 motifs ranked by the length-normalized measure (left), which com-
prise a subset of the results we store in the VALMP structure (Algorithm 1).
In the right part of the figure, we report the Top − 1000 motifs ordered by
their Euclidean distances.

We observe that the Top-1 motif, i.e., the subsequence pair with the small-
est distance (marked by the letter A) is the same in both rankings. We report
this motif in the bottom part of Figure 24, which is composed of two quasi-
identical patterns in the EEG data series.

We now evaluate motifs of larger lengths in the same dataset, which may
reveal other interesting and similar patterns at different resolutions (lengths).

Title Suppressed Due to Excessive Length 43

0

0.02

0.04

0.06

0.08

0.1

256 456 656

Le
n

gt
h

n
o

rm
al

iz
ed

d
is

ta
n

ce

Subsequence length

First 1000 Top-k-motifs
(length normalized ranking)

B C

C: Motif of length 655

pos : 478,063

0

0.5

1

1.5

256 456 656Eu
cl

id
ea

n
 d

is
ta

n
ce

Subsequence length

First 1000 Top-k-motifs
(Euclidean distance ranking)

pos: 478,160

pos: 242,918

(b)

0 100,000 200,000 500,000

EEG dataset

B: Motif length 536

(a)

300,000

pos : 486,836

-1
0

1
2

3
4

5
6

0 100 200 300 400 500 600

-1
0

1
2

3
4

5
6

0 100 200 300 400 500 600

-1
0

1
2

3
4

5
6

0 100 200 300 400 500 600

-1
0

1
2

3
4

5
6

0 100 200 300 400 500 600

400,000

B

Fig. 25 (a) Top-1000 motifs according the length normalized distance (top), and the Eu-
clidean Distance (bottom). (b) Motif pair of the largest length (656) in the length normalized
ranking (top) and motif pair of the largest length (536) in the Euclidean distance ranking
(red/bottom).

In Figure 25(a), we report again the distance/length values of the Top −
1000 motifs ranked by their Euclidean distance, which reveal that the longest
motif, marked as B, has length 536. We observe that this subsequence pair
substantially differs from the Top− 1 motif of Figure 24.

Subsequently, in Figure 25(b), we report the longest motif (marked as C)
of length 655 that we found in the Top−1000 motif ranking, based on length-
normalized distances. We note that 6% of the length-normalized motifs are
longer than those in the Top− 1000 of the Euclidean ranking. The example of
motif C, which is a longer version of B, shows that this pattern appears much
earlier in the sequence than B. If we considered just the Top − 1000 motifs
ranked by their Euclidean distance, we would have missed this insight (motif
C appears in the Euclidean distance ranking only in the Top− 4000 motifs).

Unfolding Top-k motifs. When considering the Top− k motif ranking, we
could manually inspect all the subsequence pairs. However, this is a cumber-
some (and unnecessary) task for a user that would like to focus directly on the
most interesting motifs. In the previous experiment on EEG data, we exam-
ined the number of motifs we need to consider. We now examine the value of
k that allows us to find interesting patterns within the Top− k motif ranking.

In Figure 26(a) we report the average distance for the Top − k motif
rankings that we built considering Euclidean and length-normalized distances,
varying k. We note that the average distance exhibits a steep increase in the
Euclidean distance rankings, starting from k = 500. This is due to the pres-
ence of motifs of larger lengths, as depicted in Figure 26(b), since these pairs
of longer subsequences have also a larger distance. In this specific case, the

44 Michele Linardi et al.

0
100
200
300
400
500
600

N

on
 tr

iv
ia

l
m

at
ch

es
 m

ot
ifs

Motifs ranking

ED Ranking

Length Norm Ranking

0

100

200

300

of

 d
iff

er
en

t m
ot

if
le

ng
th

s

Motifs ranking

ED Ranking

Length Norm Ranking

0

0.5

1

1.5

2

Av
er

ag
e

di
st

an
ce

Motifs ranking

Euclidean

Length normalized

(a) (b)

(c) (d)

0
0.2
0.4
0.6
0.8

1

M
ot

if
Ra

nk
in

gs

(E
D

 -
Le

ng
th

 N
or

m
)

Ja
cc

ar
d

Si
m

ila
rit

y

Motifs ranking

Fig. 26 Euclidean and lenght-normalized Top− k motifs properties. (a) Average distance
(b) Number of motif lengths. (c) Number of non trivial match motifs. (d) Jaccard similarity
of the ranking using the Euclidean and lenth-normalized Euclidean distances.

user may choose to discard motifs beyond the Top − 500, thus, disregarding
several motifs of different lengths. In contrast, we note that length-normalized
distance is not heavily affected by longer motifs (Figure 26(a)).This will urge
users to continue the exploration beyond the Top − 500, and consider motifs
of several different lengths that (as discussed earlier) represent different kinds
of insights.

Another important factor to account in Top − k motif analysis is the re-
dundancy in the reported motifs. In that respect, we can eliminate the motifs
composed by subsequences that are trivial matches of motif subsequences that
appear earlier in the ranking. In Figure 26(c), we plot the motifs that we retain
(i.e., the motifs that are not trivial matches) from the Euclidean and length-
normalized Top − k rankings. We notice that as k increases these retained
motifs represent only a small subset of the motifs in the original rankings (up
to 4%), which renders their examination easier. Furthermore, we observe that
the Llngth-normalized Top − k rankings contain up to 130 more non trivial
match motifs than the Euclidean rankings, which translates to more useful
results.

To conclude, we depict in Figure 26(d) the Jaccard similarity between the
two ranking types (i.e., length-normalized and Euclidean) as we vary k. While
computing the intersection and the union of the two rankings, we discard the
motifs that are trivial matches. As k increases, and consequently the motif
length increases as well (refer to Figure 26(b)), we observe that set similarity

Title Suppressed Due to Excessive Length 45

MAD Top-2 1st-Discord (length: 294)
Discord: 11th of November 2007 (05:20 am – 11:54 am)

Best match (NN): 8th/9th of February 2007 (09:01 pm – 01:55am)

GAP dataset

MAD Top-1 1st Discord (length: 274)
(∈ dkmlmin,lmax)

Discord: 3rd of November 2007 (4:43 am – 09:17 am)

Best match (NN): 4th of January 2007 (6:57 pm - 11:31 pm)

500,0000 100,000 200,000 300,000 400,000

Top-1 1st Discord of length 305
Discord: 2nd of November 2007 (5:13 am – 10:18 pm)

Best match (NN): 26th of November 2007 (4:56 am - 10:01 am)

Top-1 1st Discord of length 280
Discord: 14th of November 2007 (7:54 am – 12:34 pm)

Best match (NN): 20th of November 2007 (7:11 am - 11:51 am)

(c)

a
b

c
da

d cb

(d)

(a) (b)

Fig. 27 Four discords of different length in the GAP dataset. Each discord (red subse-
quence) is coupled with its nearest neighbor (green subsequence). (a) The discord, with
the highest length-normalized distance to its nearest neighbor has length 274. (b) Discord
with the second highest length-normalized distance. (c),(d) discords with a smaller length-
normalized distance to their nearest neighbor.

decreases. This means that the new motifs of different lengths are not trivial
matches of motifs found in higher ranking positions, but they represent new,
useful results.

Select the most promising length in Discord Discovery. In this part,
we show the results of discord discovery performed in the GAP dataset. We
recall that in this case, the discord ranking performed according to their length
normalized distances aims to favor smaller discords, which have a high point
to point distance.

In Figure 27, we report some of the discords we found in the length range
`min = 256 and `max = 4096. The discord with the highest length-normalized
distance, best Top-1 1st discord, is the one depicted in the top-left part of
the figure, and has length 274. We plot it in red (dark), whereas its near-
est neighbor appears in green (light). We note that this discord drastically
differs from its nearest neighbor: it represents a fluctuating cycle of global
power activity, while its nearest neighbor exhibits the expected behavior of
two major peaks, in the morning and around noon. In Figure 27(b) we report
the Top-2 1st discord in the length range 256-4096 identified by MAD, which
corresponds to the subsequence in that length range with the second highest

46 Michele Linardi et al.

length-normalized distance to its nearest neighbor. Once again, we observe a
high degree of dissimilarity between the pattern of this discord and its nearest
neighbor. On the contrary, Figures 27(c) and (d) report the Top-1 1st dis-
cords for two specific lengths (i.e., 280 and 305, respectively). These discords
correspond to patterns that are not significantly different from their nearest
neighbors. Therefore, they represent discords that are less interesting than the
ones reported by MAD in Figures 27(a) and (b), which examines a large range
of lengths.

This experiment demonstrates that MAD and the proposed discord ranking
allows us to prioritize and select the correct discord length.

8 Related Work

While research on data series similarity measures and data series query-by-
content date back to the early 1990s [52], data series motifs and data series dis-
cords were both introduced just fifteen and twelve years ago, respectively [10,
15]. Following their definition, there was an explosion of interest in their use
for diverse applications. Analogies between data series motifs and sequence
motifs exist (in DNA), and have been exploited. For example, discriminative
motifs in bioinformatics [67] inspired discriminative data series motifs (i.e.,
data series shapelets) [49]. Likewise, the work of Grabocka et al. [22] on gener-
ating idealized motifs is similar to the idea of consensus sequence (or canonical
sequence) in molecular biology. The literature on the general data series motif
search is vast; we refer the reader to recent studies [82,80] and their references.

The QUICK MOTIF [32] and STOMP [82] algorithms represent the state
of the art for fixed-length motif pair discovery. QUICK MOTIF first builds a
summarized representation of the data using Piecewise Aggregate Approxima-
tion (PAA), and arranges these summaries in Minimum Bounding Rectangles
(MBRs) in a Hilbert R-Tree index. The algorithm then prunes the search
space based on the MBRs. On the other hand, STOMP is based on the com-
putation of the matrix profile, in order to discover the best matches for each
subsequence. The smallest of these matches is the motif pair. We observe that
both of the above approaches solve a restricted version of our problem: they
discover motif sets of cardinality two (i.e., motif pairs) of a fixed, predefined
length. On the contrary, VALMOD removes these limitations and proposes a
general and efficient solution. Its main contributions are the novel algorithm
for examining candidates of various lengths and corresponding lower bounding
distance: these techniques help to reuse the computations performed so far,
and lead to effective pruning of the vast search space.

We note that there are only three studies that deal with issues of variable
length motifs, and attempt to address them [42,17,81,16]. While these studies
are pioneers in demonstrating the utility of variable length motifs, they cannot
serve as practical solutions to the task at hand for two reasons: (i) they are
all approximate, while we need to produce exact results; and (ii) they require
setting many parameters (most of which are unintuitive). Approximate algo-

Title Suppressed Due to Excessive Length 47

rithms can be very useful in many contexts, if the amount of error can be
bounded, or at least known. However, this is not the case for the algorithms
in question. Certain cases, such as when analyzing seismological data, the
threat of litigation, or even criminal proceedings [8], would make any analyst
reluctant to use an approximate algorithm.

The other work that explicitly considers variable length motifs is
MOEN [46]. Its operation is based on the distance computation of subse-
quences of increasing length, and a corresponding pruning strategy based on
upper and lower bounds of the distance computed for the smaller length subse-
quences. Unlike the algorithms discussed above, MOEN is exact and requires
few parameters. However, it has been tuned for producing only a single motif
pair for each length in the range, and as our evaluation showed, it is not com-
petitive in terms of time-performance with our approach. This is due to its
relatively loose lower bound and sub-optimal search space pruning strategy,
which force the algorithm to perform more work than necessary.

Exact discord discovery is a problem that has attracted lots of attention.
The approaches that have been proposed in the literature can be divided in the
following two different categories. First, the index-based solutions, i.e., Haar
wavelets [15,5] and SAX [29,27,65], where series are first discretized and then
inserted in an index structure that supports fast similarity search. Second,
the sequential scan solutions [80,38,15,39,77,82], which consider the direct
subsequence pairwise distance computations, and the corresponding search
space optimization.

Indexing techniques are based on the discretization of the real valued data
series, with several user defined parameters required for this operation. In
general, selecting and tuning these parameters is not trivial, and the choices
made may influence the behavior of the discord discovery algorithm, since it
is strictly dependent on the quality of the data representation. In this regard,
the most recent work in this category, GrammarViz [65], proposes a method
of Top-k 1st discord search based on grammar compression of data series rep-
resented by discrete SAX coefficients. These representations are then inserted
in a hierarchical structure, which permits us to prune unpromising candidate
subsequences. The intuition is that rare patterns are assigned to represen-
tations that have high Kolmogorov complexity. This means that a rare SAX
string is not compressible, due to the lack of repeated terms.

The state of the art for the sequential scan methods is represented by
STOMP, since computing the matrix profile permits to discover, in the same
fashion as motifs, the Top-k 1st discords. Surprisingly, just one work exists
that addresses the problem of mth discord discovery [77]. The authors of this
work, proposed the Disk Aware discords Discovery algorithm (DAD), which
is based on a smart sequential scan performed on disk resident data. This
algorithm is divided into two parts. The first is discord candidate selection,
where it identifies the sequences, whose nearest neighbor distance is less than
a predefined range. The second part, which is called refinement, is applied
in order to find the exact discords among the candidates. Despite the good
performance that this algorithm exhibits in finding the first discord, when m is

48 Michele Linardi et al.

greater than one, it becomes hard to estimate an effective range. In turn, this
leads to scalability problems, due to the explosion of the number of distances
to compute.

In summary, while there exists a large and growing body of work on
the motif and discord discovery problems, this work offers the first scalable,
parameter-light, exact variable-length algorithm in the literature for solving
both these problems.

9 Conclusions

Motif and discord discovery are important problems in data series processing
across several domains, and key operations necessary for several analysis tasks.
Even though much effort has been dedicated to these problems, no solution
had been proposed for discovering motifs and discords of different lengths.

In this work, we propose the first framework for variable-length motif and
discord discovery. We describe a new distance normalization method, as well
as a novel distance lower bounding technique, both of which are necessary
for the solution to our problem. We experimentally evaluated our algorithm
by using five real datasets from diverse domains. The results demonstrate the
efficiency and scalability of our approach (up to 20x faster than the state of
the art), as well as its usefulness.

In terms of future work, we would like to further improve the scalability of
VALMOD. We also plan to extend VALMOD in order to efficiently compute a
complete matrix profile for each length in the input range. This would enable
us to support more diverse applications, such as discovery of shapelets [79].

References

1. Agrawal, R., Faloutsos, C., Swami, A.N.: Efficient similarity search in sequence
databases. Foundations of Data Organization and Algorithms, 4th International Con-
ference, FODO’93, Chicago, Illinois, USA, October 13-15, 1993, Proceedings pp. 69–84
(1993)

2. Bagnall, A.J., Cole, R.L., Palpanas, T., Zoumpatianos, K.: Data series management
(dagstuhl seminar 19282). Dagstuhl Reports (9(7), 2019)

3. Boniol, P., Linardi, M., Roncallo, F., Palpanas, T.: Automated anomaly detection in
large sequences. ICDE (2020)

4. Boniol, P., Palpanas, T.: Series2Graph: Graph-based Subsequence Anomaly Detection
for Time Series. PVLDB (2020)

5. Bu, Y., Leung, O.T., Fu, A.W., Keogh, E.J., Pei, J., Meshkin, S.: WAT: finding top-k
discords in time series database. SIAM (2007)

6. Camerra, A., Palpanas, T., Shieh, J., Keogh, E.: iSAX 2.0: Indexing and mining one
billion time series. IEEE ICDM (2010)

7. Camerra, A., Shieh, J., Palpanas, T., Rakthanmanon, T., Keogh, E.J.: Beyond one
billion time series: indexing and mining very large time series collections with isax2+.
KAIS 39(1), 123–151 (2014)

8. Cartlidge, E.: Seven-year legal saga ends as Italian official is cleared of manslaughter in
earthquake trial. Science (Oct. 3, 2016)

9. Chakrabarti, K., Keogh, E., Mehrotra, S., Pazzani, M.: Locally adaptive dimensionality
reduction for indexing large time series databases. ACM SIGMOD (2002)

Title Suppressed Due to Excessive Length 49

10. Chiu, B.Y., Keogh, E.J., Lonardi, S.: Probabilistic discovery of time series motifs. ACM
SIGKDD pp. 493–498 (2003)

11. Dallachiesa, M., Palpanas, T., Ilyas, I.F.: Top-k nearest neighbor search in uncertain
data series. PVLDB 8(1), 13–24 (2014)

12. Dua, D., Graff, C.: UCI machine learning repository (2019). URL http://archive.

ics.uci.edu/ml
13. Echihabi, K., Zoumpatianos, K., Palpanas, T., Benbrahim, H.: The Lernaean Hydra of

data series similarity search: An experimental evaluation of the state of the art. PVLDB
12(2), 112–127 (2018)

14. Echihabi, K., Zoumpatianos, K., Palpanas, T., Benbrahim, H.: Return of the Lernaean
Hydra: experimental evaluation of data series approximate similarity search. PVLDB
(2019)

15. Fu, A.W., Leung, O.T., Keogh, E.J., Lin, J.: Finding time series discords based on Haar
transform. ADMA (2006)

16. Gao, Y., Lin, J.: Exploring variable-length time series motifs in one hundred million
length scale. Data Min. Knowl. Discov. 32(5), 1200–1228 (2018)

17. Gao, Y., Lin, J., Rangwala, H.: Iterative grammar-based framework for discovering
variable-length time series motifs. ICMLA (2016)

18. Gisler, C., Ridi, A., Zufferey, D., Khaled, O.A., Hennebert, J.: Appliance consumption
signature database and recognition test protocols. 2013 WoSSPA pp. 336–341 (2013)

19. Gogolou, A., Tsandilas, T., Echihabi, K., Palpanas, T., Bezerianos, A.: Data Series Pro-
gressive Similarity Search with Probabilistic Quality Guarantees. In: SIGMOD (2020)

20. Gogolou, A., Tsandilas, T., Palpanas, T., Bezerianos, A.: Progressive similarity search
on time series data. In: Proceedings of the Workshops of EDBT/ICDT (2019)

21. Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.C., Mark, R.G.,
Mietus, J.E., Moody, G.B., Peng, C.K., Stanley, H.E.: Physiobank, physiotoolkit, and
physionet: Components of a new research resource for complex physiologic signals. Cir-
culation 101(23) (2000). Http://circ.ahajournals.org/content/101/23/e215.full ; doi:
10.1161/01.CIR.101.23.e215”

22. Grabocka, J., Schilling, N., Schmidt-Thieme, L.: Latent time-series motifs. TKDD
11(1), 6:1–6:20 (2016)

23. Healey, J., Picard, R.: Detecting stress during real-world driving tasks using physio-
logical sensors. IEEE Transactions in Intelligent Transportation Systems 6(2):156-166
(June 2016)

24. Jagadish, H.V., Mendelzon, A.O., Milo, T.: Similarity-based queries. ACM SIGACT-
SIGMOD-SIGART Symposium (1995)

25. Jensen, S.K., Pedersen, T.B., Thomsen, C.: Time series management systems: A survey.
IEEE Trans. Knowl. Data Eng. 29(11), 2581–2600 (2017)

26. Kashyap, S., Karras, P.: Scalable knn search on vertically stored time series. ACM
SIGKDD pp. 1334–1342 (2011)

27. Keogh, E., Lonardi, S., Ratanamahatana, C.A., Wei, L., Lee, S.H., Handley, J.:
Compression-based data mining of sequential data. DAMI (2007)

28. Keogh, E.J.: Machine learning in time series databases (tutorial). AAAI (2011)
29. Keogh, E.J., Lin, J., Fu, A.W.: Hot sax: Efficiently finding the most unusual time series

subsequence. IEEE ICDM (2005)
30. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T.: Coconut: A scalable

bottom-up approach for building data series indexes. PVLDB 11(6), 677–690 (2018)
31. Kondylakis, H., Dayan, N., Zoumpatianos, K., Palpanas, T.: Coconut palm: Static and

streaming data series exploration now in your palm. In: SIGMOD (2019)
32. Li, Y., Hou, L., Yiu, M.L., Gong, Z.: Quick-motif: An efficient and scalable framework

for exact motif discovery. 31st IEEE International Conference on Data Engineering,
ICDE 2015, Seoul, South Korea, April 13-17, 2015 pp. 579–590 (2015)

33. Linardi, M.: Valmod support web page (2017). URL http://www.mi.parisdescartes.

fr/~mlinardi/VALMOD.html
34. Linardi, M., Palpanas, T.: Scalable, variable-length similarity search in data series: The

ULISSE approach. PVLDB 11(13), 2236–2248 (2018)
35. Linardi, M., Palpanas, T.: ULISSE: ultra compact index for variable-length similarity

search in data series. 34th IEEE International Conference on Data Engineering, ICDE
2018, Paris, France, April 16-19, 2018 pp. 1356–1359 (2018)

50 Michele Linardi et al.

36. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: Matrix profile X: VALMOD - scalable
discovery of variable-length motifs in data series. ACM SIGMOD (2018)

37. Linardi, M., Zhu, Y., Palpanas, T., Keogh, E.J.: VALMOD: A suite for easy and exact
detection of variable length motifs in data series. ACM SIGMOD (2018)

38. Liu, Y., Chen, X., Wang, F.: Efficient detection of discords for time series stream.
Advances in Data and Web Management pp. 629–634 (2009)

39. Luo, W., Gallagher, M., Cao, L., Srivastava, J.: Faster and parameter-free discord search
in quasi-periodic time series. Advances in Knowledge Discovery and Data Mining (2011)

40. Luo, W., Gallagher, M., Wiles, J.: Parameter-free search of time-series discord. Journal
of Computer Science and Technology (2013)

41. Marzal, A., Vidal, E.: Computation of normalized edit distance and applications. IEEE
Trans. Pattern Anal. Mach. Intell. 15(9) (1993)

42. Minnen, D., Isbell, C.L., Essa, I.A., Starner, T.: Discovering multivariate motifs using
subsequence density estimation and greedy mixture learning. AAAI Conference on
Artificial Intelligence (2007)

43. Mirylenka, K., Christophides, V., Palpanas, T., Pefkianakis, I., May, M.: Characterizing
home device usage from wireless traffic time series. EDBT pp. 551–562 (2016)

44. Mohammad, Y., Nishida, T.: Unsupervised discovery of basic human actions from ac-
tivity recording datasets. 2012 IEEE/SICE International Symposium on System Inte-
gration (SII) (2012)

45. Mohammad, Y.F.O., Nishida, T.: Exact discovery of length-range motifs. Intelligent
Information and Database Systems - 6th Asian Conference, ACIIDS (2014)

46. Mueen, A., Chavoshi, N.: Enumeration of time series motifs of all lengths. Knowl. Inf.
Syst. (2015)

47. Mueen, A., Hamooni, H., Estrada, T.: Time series join on subsequence correlation. IEEE
ICDM pp. 450–459 (2014)

48. Mueen, A., Keogh, E.J., Zhu, Q., Cash, S., Westover, M.B.: Exact discovery of time
series motifs. SDM (2009)

49. Neupane, D., Moss, C.B., van Bruggen, A.H.: Estimating citrus production loss due
to citrus huanglongbing in Florida. Annual Meeting, Southern Agricultural Economics
Association, San Antonio, TX. (2016)

50. Noskov, M.: Director, Data Science at Aspen Technology. Personal communication
(2015)

51. Palpanas, T.: Data series management: The road to big sequence analytics. SIGMOD
Record 44(2), 47–52 (2015)

52. Palpanas, T.: Big sequence management: A glimpse of the past, the present, and the
future. SOFSEM (2016)

53. Palpanas, T.: The parallel and distributed future of data series mining. High Perfor-
mance Computing & Simulation (HPCS) (2017)

54. Palpanas, T.: Evolution of a Data Series Index. CCIS (2020)
55. Palpanas, T., Beckmann, V.: Report on the first and second interdisciplinary time series

analysis workshop (ITISA). SIGMOD Rec. 48(3) (2019)
56. Papadimitriou, S., Yu, P.S.: Optimal multi-scale patterns in time series streams. ACM

SIGMOD (2006)
57. Peng, B., Fatourou, P., Palpanas, T.: MESSI: In-memory data series indexing. ICDE

(2020)
58. Peng, B., Palpanas, T., Fatourou, P.: Paris: The next destination for fast data series

indexing and query answering. IEEE BigData (2018)
59. Peng, B., Palpanas, T., Fatourou, P.: Paris+: Data series indexing on multi-core archi-

tectures. TKDE (2020)
60. Rafiei, D., Mendelzon, A.: Efficient retrieval of similar time sequences using dft. ICDE

(1998)
61. Raza, U., Camerra, A., Murphy, A.L., Palpanas, T., Picco, G.P.: Practical data predic-

tion for real-world wireless sensor networks. IEEE Trans. Knowl. Data Eng. (2015)
62. Rong, K., Bailis, P.: ASAP: prioritizing attention via time series smoothing. PVLDB

10(11), 1358–1369 (2017)
63. Roverso, D.: Multivariate temporal classification by windowed wavelet decomposition

and recurrent networks. ANS International Topical Meeting on Nuclear Plant Instru-
mentation, Control and Human-Machine Interface (2000)

Title Suppressed Due to Excessive Length 51

64. Saria, S., Duchi, A., Koller, D.: Discovering deformable motifs in continuous time series
data. IJCAI (2011)

65. Senin, P., Lin, J., Wang, X., Oates, T., Gandhi, S., Boedihardjo, A.P., Chen, C.,
Frankenstein, S.: Time series anomaly discovery with grammar-based compression.
EDBT (2015)

66. Shieh, J., Keogh, E.J.: iSAX: indexing and mining terabyte sized time series. ACM
SIGKDD pp. 623–631 (2008)

67. Sinha, S.: Discriminative motifs. Proceedings of the Sixth Annual International Con-
ference on Computational Biology, RECOMB 2002 pp. 291–298 (2002)

68. Soldi, S., Beckmann, V., W.H.Baumgartner, G.Ponti, C.R.Shrader, Lubinski, P.,
H.A.Krimm, Mattana, F., Tueller, J.: Long-term variability of agn at hard x-rays. As-
tronomy & Astrophysics (2014)

69. Syed, Z., Stultz, C.M., Kellis, M., Indyk, P., Guttag, J.V.: Motif discovery in physio-
logical datasets: A methodology for inferring predictive elements. TKDD 4(1), 2:1–2:23
(2010)

70. Terzano, M.G., Parrino, L., Sherieri, A., Chervin, R., Chokroverty, S., Guilleminault,
C., Hirshkowitz, M., Mahowald, M., Moldofsky, H., Rosa, A., Thomas, R., Walters, A.:
Atlas, rules, and recording techniques for the scoring of cyclic alternating pattern (cap)
in human sleep. Sleep Medicine 2(6), 537 – 553 (2001)

71. Wang, J., Balasubramanian, A., de la Vega, L.M., Green, J., Samal, A., Prabhakaran,
B.: Word recognition from continuous articulatory movement time-series data using
symbolic representations. Workshop on Speech and Language Processing for Assistive
Technologies. (SLPAT) (2013)

72. Wang, Y., Wang, P., Pei, J., Wang, W., Huang, S.: A data-adaptive and dynamic
segmentation index for whole matching on time series. Proc. VLDB Endow. 6(10),
793–804 (2013)

73. Whitney, C., Gottlieb, D., Redline, S., Norman, R., Dodge, R., Shahar, E., Surovec, S.,
Nieto, F.: Reliability of scoring respiratory disturbance indices and sleep staging. Sleep
(1998)

74. Yagoubi, D.E., Akbarinia, R., Masseglia, F., Palpanas, T.: Dpisax: Massively distributed
partitioned isax. IEEE ICDM (2017)

75. Yagoubi, D.E., Akbarinia, R., Masseglia, F., Palpanas, T.: Massively distributed time
series indexing and querying. TKDE (to appear) (2018)

76. Yankov, D., Keogh, E.J., Medina, J., Chiu, B.Y., Zordan, V.B.: Detecting time series
motifs under uniform scaling. ACM SIGKDD pp. 844–853 (2007)

77. Yankov, D., Keogh, E.J., Rebbapragada, U.: Disk aware discord discovery: Finding
unusual time series in terabyte sized datasets. IEEE ICDM (2007)

78. Yankov, D., Keogh, E.J., Rebbapragada, U.: Disk aware discord discovery: finding un-
usual time series in terabyte sized datasets. Knowl. Inf. Syst. (2008)

79. Ye, L., Keogh, E.J.: Time series shapelets: a new primitive for data mining. ACM
SIGKDD pp. 947–956 (2009)

80. Yeh, C.M., Zhu, Y., Ulanova, L., Begum, N., Ding, Y., Dau, H.A., Silva, D.F., Mueen,
A., Keogh, E.J.: Matrix profile I: all pairs similarity joins for time series: A unifying
view that includes motifs, discords and shapelets. IEEE ICDM (2016)

81. Yingchareonthawornchai, S., Sivaraks, H., Rakthanmanon, T., Ratanamahatana, C.A.:
Efficient proper length time series motif discovery. IEEE ICDM (2013)

82. Zhu, Y., Zimmerman, Z., Senobari, N.S., Yeh, C.M., Funning, G., Mueen, A., Brisk, P.,
Keogh, E.J.: Matrix profile II: exploiting a novel algorithm and gpus to break the one
hundred million barrier for time series motifs and joins. IEEE ICDM (2016)

83. Zoumpatianos, K., Idreos, S., Palpanas, T.: ADS: the adaptive data series index. VLDB
J. 25(6), 843–866 (2016)

84. Zoumpatianos, K., Lou, Y., Ileana, I., Palpanas, T., Gehrke, J.: Generating data series
query workloads. VLDB J. 27(6), 823–846 (2018). DOI 10.1007/s00778-018-0513-x.
URL https://doi.org/10.1007/s00778-018-0513-x

85. Zoumpatianos, K., Lou, Y., Palpanas, T., Gehrke, J.: Query workloads for data series
indexes. ACM SIGKDD pp. 1603–1612 (2015)

86. Zoumpatianos, K., Palpanas., T.: Data series management: Fulfilling the need for big
sequence analytics. ICDE (2018)

