
Data-Centric Engineering (2022), xx:xx 1–25

research Article

dCNN/dCAM: Anomaly Precursors Discovery in Multivari-
ate Time Series with Deep Convolutional Neural Networks
Paul Boniol*1 , MohammedMeftah2 , Emmanuel Remy2 , Bruno Didier3 and Themis Palpanas1

1LIPADE, Université Paris Cité, Paris, 75006, Ile-de-France, France E-mail: boniol.paul@gmail.com.
2PRISME, EDF R&D, Chatou, 78400, Ile-de-France, France.
3DPN, EDF UNIE, Saint-Denis, 93200, Ile-de-France, France.

Keywords: Time Series, Anomaly Detection, Deep Learning, Precursors Identification

Abstract
Detection of defects and identification of symptoms in monitoring industrial systems is a widely studied problem
with applications in awide range of domains.Most of themonitored information extracted from systems corresponds
to data series (or time series), where the evolution of values through one or multiple dimensions directly illustrates
its health state. Thus, an automatic anomaly detection method in data series becomes crucial. In this paper, we
propose a novel method based on a convolutional neural network to detect precursors of anomalies in multivariate
data series. Our contribution is two-fold:We first describe a new convolutional architecture dedicated tomultivariate
data series classification; We then propose a novel method that returns dCAM, a dimension-wise Class Activation
Map specifically designed for multivariate time series that can be used to identify precursors when used for
classifying normal and abnormal data series. Experiments with several synthetic datasets demonstrate that dCAM
is more accurate than previous classification approaches and a viable solution for discriminant feature discovery
and classification explanation in multivariate time series. We then experimentally evaluate our approach on a real
and challenging use case dedicated to identifying vibration precursors on pumps in nuclear power plants.

Impact Statement

Detection of defects and identification of symptoms in monitoring industrial systems is a widely
studied problem with applications in a large range of domains. In this paper, we propose a novel
method, dCAM, based on a convolutional neural network, dCNN, to detect precursors of anomalies in
multivariate data series. Experiments with several synthetic datasets demonstrate that dCAM is more
accurate than previous classification approaches and a viable solution for discriminant feature discovery
and classification explanation in multivariate time series. We then experimentally evaluate our approach
on a real and challenging use case dedicated to identifying vibration precursors on pumps in nuclear
power plants.

Contents

1 Introduction 2
1.1 Anomaly Detection Primer . 3
1.2 Supervised Detection of Anomaly Precursors . 3
1.3 Limitations of Previous Approaches . 4
1.4 Contributions . 5

2 Background and Related Work 5
2.1 Convolutional-based Neural Network . 7

https://orcid.org/0000-0001-8516-0123
https://orcid.org/0000-0001-7636-1572
https://orcid.org/0000-0003-3423-5919
https://orcid.org/0000-0002-8031-0265

2 Paul Boniol et al.

2.2 Class Activation Map (CAM) . 7
2.3 CAM Limitations for Multivariate Series . 8

3 Proposed Approach 9
3.1 Dimension-wise Architecture . 9
3.2 A first Architecture: dCNN . 9
3.3 Variant Architectures: dResNet and dInceptionTime 10
3.4 Dimension-wise Class Activation Map . 10

3.4.1 Random Permutation Computations . 10
3.4.2 Merging Permutations . 12
3.4.3 dCAM Extraction . 12

3.5 Time Complexity Analysis . 13
3.5.1 Training step . 13
3.5.2 dCAM step . 14

3.6 Further Observations . 14
3.6.1 Permutations Success as a Proxy . 14
3.6.2 From Local to Global Explanations . 14
3.6.3 Limitations: The Dimension Order Problem 14
3.6.4 Limitations: Large Number of Dimensions 14
3.6.5 Limitations: CAM-related constraints . 15

4 Classification Experimental Evaluation 15
4.1 Experimental Setup . 15

4.1.1 Datasets . 15
4.1.2 Evaluation Measures . 16
4.1.3 Architectures and Training . 16

4.2 Accuracy Evaluation . 16
5 Use Case: Precursors of Anomalous Vibration Detection in Nuclear Power Plants 18
5.1 Dataset and Use Case Description . 19
5.2 Experimental Analysis . 20

5.2.1 Accuracy Evaluation . 20
5.2.2 Quantitative Evaluation . 20
5.2.3 Qualitative Evaluation . 22

6 Conclusions and Future Work 22

1. Introduction

Massive collections of data series (or time series) are becoming a reality in virtually every scientific and
social domain, and there is an increasingly pressing need for relevant applications to develop techniques
that can efficiently analyze them [1, 2, 3, 4]. Data series anomaly detection is a crucial problem with
applications in a wide range of fields [1, 5, 6, 7], that all share the same well studied goal [8, 9, 10]:
detecting anomalies as fast as possible to avoid any critical event. Such applications can be found in
biology, astronomy, and engineering areas. Some of these sectors are well-studied and theoretically well-
explored. The knowledge acquired by the expert can be used to build an algorithm that efficiently detects
any kind of behavior derived from a potential well-defined normality. However, such algorithms can be
difficult to concretize and might have difficulty adapting to unknown or unclear changes over time. On
the other side, if the data available are representative enough to correctly illustrate the system’s health
state, a data-driven method could provide more flexibility. For instance, in the case of fraud detection, a
knowledge-based model looks for known frauds, while a data-driven model might be helpful in finding
new patterns, which is crucial since frauds can change frequently and dynamically. The same statement
can be made in the general case of anomaly or outlier detection.

Data-Centric Engineering 3

1.1. Anomaly Detection Primer

First, one should note that no single, universal definition of outliers or anomalies exists. In general,
an anomaly is an observation that appears to deviate markedly from other members of the sample in
which it occurs. This fact may raise suspicions that the specific observation was generated by a different
mechanism than the remainder of the data. This mechanism may be an erroneous data measurement and
collection procedure or an inherent variability in the domain of the data under inspection. Nevertheless,
such observations are interesting in both cases, and the analyst would like to know about them. The latter
can be tackled by either looking at single values or a sequence of points. In the specific context of points,
we are interested in finding points that are far from the normal distribution of values that correspond
to healthy states. In the specific context of sequences, we are interested in identifying anomalous
subsequences that are, unlike an outlier, not a single abnormal value but rather an abnormal evolution
of values. This work will study the specific case of subsequence anomaly detection in data series.
As usually addressed in the literature [11, 12, 10, 13, 14, 15], one can decide to adopt a fully

unsupervised method. These approaches benefit from working without needing any collection of known
and tagged anomalies and can automatically detect unknown abnormal behaviors. Several approaches
have been proposed. For example, general methods for multi-dimensional points outlier detection have
been proposed [12, 11, 16]. Nevertheless, algorithms such as Isolation forest [12] seem to perform well
for the specific case of subsequence anomaly detection [17]. Moreover, recently proposed approaches,
such as NormA [18] (that aims to build a weighted set of centroids summarizing the different recurrent
subsequences in the data series) and Series2Graph [17] (that aims to build a directed graph in which
a trajectory corresponds to a subsequence in the time series), model the normal behaviors of the data
series and have shown to outperform the previous state-of-the-art approaches.

1.2. Supervised Detection of Anomaly Precursors

In the previous section, anomalies were considered unknown. However, one can assume that experts
know precisely which event they want to detect and have a data series collection corresponding to these
anomalies. In that case, we have a database of anomalies at our disposal. As a consequence, one can
decide to adopt supervised methods. A question that naturally arises is the following: is it possible
to detect subsequences that happened before the known anomaly that might lead to an explanation of
the anomaly (and potentially predict it)? Such subsequences can be called precursors or symptoms of
anomalies. Usually used in medical domains, we can infer the medical definition and adapt it to the
task of anomaly detection in large data series. We will use the generic term precursors in the remainder
of the paper. Detecting such subsequences might be significantly helpful for knowledge experts to
prevent future anomalies from occurring or understand why an anomaly occurred (or facilitate its
understanding). In several engineering applications, it is required to analyze measurements from many
sensors (across many different locations) to detect potential failures. Being able to detect failures is
not enough, and identifying which sensors (and which timestamps) are related to the failure provides
essential information on the origin of the failure. For instance, in the monitoring of nuclear power
plants, it is as important to detect the vibration of a given pump as to identify precursors and unusual
measurements of sensors within the plant that could explain or prevent future vibrations. Thus, the
task is to detect (in a supervised manner) known anomalies and retrieve potential precursors. We now
propose a formal definition of the problem mentioned above.

Problem 1 (Precursors Identification Problem Definition). Given a monitored systemM, a set of data
series 𝑇NM that represents the healthy state ofM (healthy state labeled N), a set of data series 𝑇

A
M that

represents the state ofM before an anomalous state (anomalous state labeled A), we first have to find
a function 𝑓 that takes as input 𝑇AM and 𝑇

N
M , and returns 𝑠 ∈ {N ,A}. We then have to find a function

𝑔 that takes as input 𝑇AM and 𝑓 , and returns 𝑆 ⊂ 𝑇AM (𝑆 being the set of subsequences in 𝑇
A
M precursors

4 Paul Boniol et al.

of the upcoming anomalies). Formally, 𝑓 and 𝑔 can be written as follows: 𝑓 : 𝑇NM , 𝑇AM → {N ,A} and
𝑔 : 𝑇AM , 𝑓 → 𝑆.

As Problem 1 is defined as a supervised task, one can decide to use time series classification
approaches. The latter can be performed using either (i) pre-extracted features or (ii) raw values of the
time series.
For the first category (i), the main idea is to use the dataset of time series (or subsequences of time

series) to create a dataset whose samples are described by features common to all time series. For the spe-
cific case of time series, the feature extraction step can be performed using TSFresh Python library [19]
(Time Series Feature extraction based on scalable hypothesis tests). The latter is used for automated time
series feature extraction and selection based on the FRESH algorithm [20]. More specifically, it auto-
matically selects relevant features for a specific task. This is achieved using statistical tests, time series
heuristics, and machine learning algorithms. Then, using the feature-based dataset, standard machine
learning classifiers can be employed to classify each time series. Examples of traditional machine learn-
ing classifiers are Support Vector Classifier (SVC) [21] (i.e., classifiers that map instances in space in
order to maximize the width of the gap between the classes), naive Bayes classifier [22] (i.e., classifiers
based on Bayes’ theorem to predict the class of a new instance based on prior probabilities and class-
conditional probabilities), Multi-Layer Perceptron (MLP) [23] (i.e., fully connected neural networks),
AdaBoost [24] (i.e., boosting ensemble machine learning algorithms), or Random Forest Classifier [25]
(ensemble machine learning algorithm that combines multiple decision trees, where each tree is built
using a random subset of the features and a random sample of the data). On top of the aforementioned
classifiers, explainability frameworks, such as LIME [26] and SHAP [27] can be used in order to identify
which features have the most important effect on the classification prediction. However, feature-based
classification and explanation methods can be limited when applied to time series. Whereas features are
efficient for summarizing time series datasets (e.g., setting a constant number of features for variable
length time series), it might miss important information in the shape of consecutive values, which may
be crucial for anomaly detection and precursor identification. Moreover, the choice of features heavily
impacts the classification accuracy and is not desirable in tasks related to precursors identification with
unknown properties. Therefore, using methods that do not need any feature selection step is preferable
when working on agnostic scenarios.
For methods based on raw values of the time series (ii), standard data series classification meth-

ods are based on distances to the instances’ nearest neighbors, with k-NN classification (using the
Euclidean or Dynamic Time Warping (DTW) distances) being a popular baseline method [28]. Never-
theless, recent works have shown that ensemble methods using more advanced classifiers achieve better
performance [29, 30]. Following recent breakthroughs in the computer vision community, new studies
successfully propose deep learning methods for data series classification [31, 32, 33, 34, 35, 36, 37],
such as Convolutional Neural Network (CNN) and Residual Neural Network (ResNet) [38]. For some
CNN-based models, the Class Activation Map (CAM) [39] can be used as an explanation for the clas-
sification result. CAM has been used for highlighting the parts of an image that contribute the most to
a given class prediction and has also been adapted to data series [31, 38]. Thus, CAM can be used to
identify subsequences that contribute the most to the anomaly prediction and, consequently, to solve
Problem 1. This paper considers Convolutional Neural Network joined with the Class Activation Map
as a strong baseline.

1.3. Limitations of Previous Approaches

As regards existing methods that can solve Problem 1, CNN/CAM for data series suffers from one
important limitation. CAM is a weighted mapping technique that returns a univariate series (of the
same length as the input instances) with high values aligned with the subsequences of the input that
contribute the most to a given class identification. Thus, in the case of multivariate data series as input,

Data-Centric Engineering 5

no information can be retrieved from CAM on which dimension is contributing. Therefore, precursors
within specific dimensions cannot be retrieved using existing methods.

1.4. Contributions

In this paper, we will focus on solving Problem 1. First, we explore the possibility of using a super-
vised time series classification algorithm to solve precursor discovery tasks. We then propose a novel
method, dCNN/dCAM, that overcomes the limitations of previous supervised algorithms. Moreover,
dCNN/dCAM permits the identification of specific patterns (without any prior knowledge) and alerts
the expert on the imminent occurrence of the anomaly. Finally, we demonstrate this latter claim in a real
industrial use case. The paper is structured as follows:
•Section 2:We first describe the notations and the concepts related to time series and neural networks.
We then describe the usual Class Activation Map and explain its limitations regarding multivariate data
series in detail.
•Section 3: We describe a new convolutional architecture, dCNN, that enables the comparison of
dimensions by changing the structure of the network input and using two-dimensional convolutional
layers.We then introduce dCAM, a novelmethod that takes advantage of dCNNand returns amultivariate
CAM that identifies the important parts of the input series for each dimension.
•Section 4: We then experimentally evaluate the classification accuracy of dCNN/dCAM over
CNN/CAM on a synthetic benchmark and demonstrate the benefit of our proposed approach.
•Section 5:We experimentally evaluate our proposed approach over a real industrial use case.

2. Background and Related Work

[Data Series] A multivariate, or D-dimensional data series 𝑇 ∈ R(𝐷,𝑛) is a set of 𝐷 univariate data
series of length 𝑛. We note 𝑇 = [𝑇 (0) , ..., 𝑇 (𝐷−1)] and for 𝑗 ∈ [0, 𝐷 − 1], we note the univariate data
series 𝑇 (𝑗) = [𝑇 (𝑗)0 , 𝑇

(𝑗)
1 , ..., 𝑇

(𝑗)
𝑛−1]. A subsequence 𝑇

(𝑗)
𝑖,ℓ
∈ Rℓ of the dimension 𝑇 (𝑗) of the multivariate

data series 𝑇 is a subset of contiguous values from 𝑇 (𝑗) of length ℓ (usually ℓ ≪ 𝑛) starting at position
𝑖; formally, 𝑇 (𝑗)

𝑖,ℓ
= [𝑇 (𝑗)

𝑖
, 𝑇
(𝑗)
𝑖+1 , ..., 𝑇

(𝑗)
𝑖+ℓ−1].

[Neural Network Notations] We are interested in classifying data series using a neural network
architecture model. We define the neural network input as 𝑋 ∈ R𝑛 for univariate data series (with 𝑥𝑖
the 𝑖𝑡ℎ value and 𝑋𝑖,ℓ the sequence of ℓ values following the 𝑖𝑡ℎ value), and X ∈ R(𝐷,𝑛) for multivariate
data series (with 𝑥 𝑗 ,𝑖 the 𝑖𝑡ℎ value on the 𝑗 𝑡ℎ dimension and X 𝑗 ,𝑖,ℓ the sequence of ℓ values following
the 𝑖𝑡ℎ value on the 𝑗 𝑡ℎ dimension).
Dense Layer: The basic layer of neural networks is a fully connected layer (also called 𝑑𝑒𝑛𝑠𝑒 𝑙𝑎𝑦𝑒𝑟) in
which every input neuron is weighted and summed before passing through an activation function. For
univariate data series, given an input data series 𝑋 ∈ R𝑛, given a vector of weights𝑊 ∈ R𝑛 and a vector
𝐵 ∈ R𝑛, we have:

ℎ = 𝑓𝑎

(∑︁
𝑥𝑖 ,𝑤𝑖 ,𝑏𝑖 ∈(𝑋,𝑊,𝐵)

𝑤𝑖 ∗ 𝑥𝑖 + 𝑏𝑖
)

(2.1)

𝑓𝑎 is called the activation function and is a non-linear function. The commonly used activation function
𝑓𝑎 is the rectified linear unit (ReLU) [40] that prevents the saturation of the gradient (other functions that
have been proposed are Tanh and Leaky ReLU [41]). For the specific case of multivariate data series, all
dimensions are concatenated to give input 𝑋,𝑊 ∈ R𝐷∗𝑛. Finally, one can decide to have several output
neurons. In this case, each neuron is associated with a different𝑊 and 𝐵, and Equation 2.1 is executed
independently.
Convolutional Layer: This layer has played a significant role in image classification [42, 43, 38], and
recently for data series classification [31]. Formally, for multivariate data series, given an input vector
X ∈ R(𝐷,𝑛) , and given matrices weightsW,B ∈ R(𝐷,ℓ) , the output ℎ ∈ R𝑛 of a convolutional layer can

6 Paul Boniol et al.

𝐶𝑜𝑛𝑣(𝑛!", ℓ) 𝐶𝑜𝑛𝑣(𝑛!#, ℓ)𝐶𝑜𝑛𝑣(𝑛!$, ℓ)

…

GAP

dense layer

…

𝐶𝐴𝑀𝒞& = %
'

𝑤'
𝒞&𝐴',)

𝒞*
𝒞"

𝒞+

…

ℓ

ℓ

𝐴,!"

𝐴'

𝐴"

(c.2) Given class 𝒞- :

𝑇(/0$)

𝑇(*)

𝑇(/0")

(d.2) Emphasize
discriminant features

(a.2) Given an
instance 𝑇 (b.2) Compute 𝐴, the output of the last

convolutional layer of the 𝑚+, kernel

𝐶𝑜𝑛𝑣(𝑛!", ℓ) 𝐶𝑜𝑛𝑣(𝑛!#, ℓ)𝐶𝑜𝑛𝑣(𝑛!$, ℓ)

…

…

time series
length

(c.1) Given class 𝒞- :

𝑖
(d.1) Emphasize

discriminant features

(a.1) Given an
instance 𝑇

(b.1) Compute 𝐴, the output of the last
convolutional layer of the 𝑚+, kernel

𝐶𝐴𝑀𝒞&,) = %
'

𝑤'
𝒞&𝐴',)

𝑇(/0$) 𝑇(*)𝑇(/0")

…ℓ

ℓℓ

𝐴,!" 𝐴' 𝐴"

GAP

𝒞*
𝒞"

𝒞+

dense layer

𝑎
𝐶𝑁

𝑁
𝑎𝑟
𝑐ℎ
𝑖𝑡
𝑒𝑐
𝑡𝑢
𝑟𝑒

𝑏
𝑐𝐶
𝑁
𝑁
𝑎𝑟
𝑐ℎ
𝑖𝑡
𝑒𝑐
𝑡𝑢
𝑟𝑒

Figure 1. Illustration of Class Activation Map for (a) CNN architecture and (b) cCNN architecture with
three convolutional layers (𝑛 𝑓 1, 𝑛 𝑓 2, and 𝑛 𝑓 3 different kernels respectively of size all equal to ℓ).

be seen as a univariate data series. The tuple (𝑊, 𝐵) is also called a kernel, with (𝐷, ℓ) the size of the
kernel. Formally, for ℎ = [ℎ0, ..., ℎ𝑛], we have:

ℎ𝑖 = 𝑓𝑎

(∑︁
𝑋 (𝑗) ,𝑊 (𝑗) ,𝐵(𝑗) ∈
(X,W,B)

∑︁
𝑥𝑘 ,𝑤𝑘 ,𝑏𝑘 ∈

(𝑋 (𝑗)
𝑖−⌊ ℓ2 ⌋ ,𝑖+⌊ ℓ2 ⌋

,𝑊 (𝑗) ,𝐵(𝑗))

𝑤𝑘 ∗ 𝑥𝑘 + 𝑏𝑘
)

(2.2)

In practice, we have several kernels of size (𝐷, ℓ). The result is a multivariate series with dimensions
equal to the number of kernels, 𝑛 𝑓 . For a given inputX ∈ R(𝐷,𝑛) , we define 𝐴 ∈ R(𝑛 𝑓 ,𝑛) to be the output
of a convolutional layer 𝑐𝑜𝑛𝑣(𝑛 𝑓 , ℓ). 𝐴𝑚 is thus a univariate series corresponding to the output of the
𝑚𝑡ℎ kernel. We denote with 𝐴𝑚 (𝑇) the univariate series corresponding to the output of the 𝑚𝑡ℎ kernel
when 𝑇 is used as input.
Global Average Pooling Layer: Another type of layer frequently used is pooling. Pooling layers compute
average/max/min operations, aggregating values of previous layers into a smaller number of values for
the next layer. A specific type of pooling layer is Global Average Pooling (GAP). This operation averages
an entire output of a convolutional layer 𝐴𝑚 (𝑇) into one value, thus providing invariance to the position
of the discriminative features.
Learning Phase: The learning phase uses a loss function L that measures the accuracy of the model and
optimizes the various weights. For the sake of simplicity, we note Ω the set containing all weights (e.g.,
matricesW andB defined in the previous sections). Given a set of instancesX, we define the average loss
as: 𝐽 (Ω) = 1

|X |
∑

X∈X L(X). Then for a given learning rate 𝛼, the average loss is back-propagated to all

Data-Centric Engineering 7

weights in the different layers. Formally, back-propagation is defined as follows:∀𝜔 ∈ Ω, 𝜔← 𝜔−𝛼 𝜕𝐽
𝜕𝜔
.

In this paper, we use the stochastic gradient descent using the ADAM optimizer [44] and cross-entropy
loss function.

2.1. Convolutional-based Neural Network

We now describe the standard architectures used in the literature. The first is Convolutional Neural
Networks (CNNs) [31, 38]. CNN is a concatenation of convolutional layers (joined with ReLU activation
functions and batch normalization). The last convolutional layer is connected to aGlobalAverage Pooling
layer and a dense layer. In theory, instances of multiple lengths can be used with the same network.
A second architecture is the Residual Neural Network (ResNet) [31, 38]. This architecture is based on
the classical CNN, to which we add residual connections between successive blocks of convolutional
layers to prevent the gradients from exploding or vanishing. Other methods have been proposed in the
literature [45, 31, 32, 46], though CNN and ResNet have been shown to perform the best for multivariate
time series classification [31]. InceptionTime [46] has not been evaluated on multivariate data series
but demonstrated state-of-the-art performance on univariate data series.

2.2. Class Activation Map (CAM)
Once the model is trained, we need to find the discriminative features that led the model to decide
which class to attribute to each instance. Class Activation Map [39] (CAM) has been proposed to
highlight the parts of an image that contributes the most to a given class identification. The latter
has been experimented on data series [31, 38] (univariate and multivariate). This method explains the
classification of a certain deep learning model by emphasizing the subsequences that contribute the
most to a certain classification. Note that the CAM method can only be used if (i) a Global Average
Pooling layer has been used before the softmax classifier, and (ii) the model accuracy is high enough.
Thus, only the standard architectures CNN and ResNet proposed in the literature can benefit from CAM.
We now define the CAM method [31, 38]. For an input data series 𝑇 , let 𝐴(𝑇) be the result of the last
convolutional layer 𝑐𝑜𝑛𝑣(𝑛 𝑓 , ℓ), which is a multivariate data series with 𝑛 𝑓 dimensions and of length 𝑛.
𝐴𝑚 (𝑇) is the univariate time series for the dimension 𝑚 ∈ [1, 𝑛 𝑓] corresponding to the 𝑚𝑡ℎ kernel. Let
𝑤
C𝑗
𝑚 be the weight between the𝑚𝑡ℎ kernel and the output neuron of class C𝑗 ∈ C. Since a Global Average
Pooling layer is used, the input to the neuron of class C𝑗 can be expressed by the following equation:

𝑧C𝑗 (𝑇) =
∑︁
𝑚

𝑤
C𝑗
𝑚

∑︁
𝐴𝑚,𝑖 (𝑇) ∈𝐴𝑚 (𝑇)

𝐴𝑚,𝑖 (𝑇). (2.3)

The second sum represents the averaged time series over the whole time dimension. Note that weight
𝑤
C𝑗
𝑚 is independent of index 𝑖. Thus, 𝑧C𝑗 can also be written by the following equation:

𝑧C𝑗 (𝑇) =
∑︁

𝐴𝑚,𝑖 (𝑇) ∈𝐴𝑚 (𝑇)

∑︁
𝑚

𝑤
C𝑗
𝑚 𝐴𝑚,𝑖 (𝑇). (2.4)

Finally, 𝐶𝐴𝑀C𝑗 (𝑇) = [𝐶𝐴𝑀C𝑗 ,0 (𝑇), ..., 𝐶𝐴𝑀C𝑗 ,𝑛−1 (𝑇)] that underlines the discriminative features of
class C𝑗 is defined as follows:

∀𝑖 ∈ [0, 𝑛 − 1], 𝐶𝐴𝑀C𝑗 ,𝑖 (𝑇) =
∑︁
𝑚

𝑤
C𝑗
𝑚 𝐴𝑚,𝑖 (𝑇). (2.5)

As a consequence, 𝐶𝐴𝑀C𝑗 (𝑇) is a weighted mapping technique that returns a univariate data series
where each element at index 𝑖 indicates the significance of the index 𝑖 (regardless of the dimensions)
for the classification as class C𝑗 . Figure 1(a) depicts the process of computing CAM and finding the
discriminant subsequences in the initial series.

8 Paul Boniol et al.

𝐶𝑜𝑛𝑣(𝑛!", ℓ) 𝐶𝑜𝑛𝑣(𝑛!#, ℓ)𝐶𝑜𝑛𝑣(𝑛!$, ℓ)

…

GAP

dense layer

…

…
…

…

𝐶𝐴𝑀𝒞! 𝐶 𝑇 = -
&
𝑤&
𝒞!𝐴& 𝐶 𝑇

𝒞'
𝒞"

𝒞(

…

𝐶 𝑇 =
𝑇(*+")

⋮
𝑇(")
𝑇(')

𝑇(') ⋯ 𝑇(*+#)
⋮

𝑇($)
⋱
⋱

⋮
𝑇(*+")

𝑇(") ⋯ 𝑇(*+$)

𝑇(*+$)
⋮

𝑇(')
𝑇(*+")

=

For a given multivariate time series
𝑇 = {𝑇(') , … , 𝑇(*+")}:

ℓ

ℓ

𝐴-"#

𝐴&

𝐴"

Given class 𝒞.:

Figure 2. dCNN architecture and application of the CAM.

2.3. CAM Limitations for Multivariate Series

As mentioned earlier, a CAM that highlights the discriminative subsequences of class C𝑗 , 𝐶𝐴𝑀C𝑗 (𝑇),
is a weighted mapping technique that returns a univariate data series. The information provided by
𝐶𝐴𝑀C𝑗 (𝑇) is sufficient for the case of univariate series classification, but not for multivariate series
classification. Even though the significant temporal index may be correctly highlighted, no information
can be retrieved on which dimension is significant or not. Solving this serious limitation is a significant
challenge in several domains. For that purpose, one can propose rearranging the input structure of the
network so that the CAM becomes a multivariate data series. A new solution would be to decide to use a
2D convolutional neural network with kernel size (ℓ, 1), such that each kernel slides on each dimension
separately. Thus, for an input data series 𝑇 , A𝑚 (𝑇) would become a multivariate data series for the
variable 𝑚 ∈ [1, 𝑛 𝑓], and 𝐴(𝑑)𝑚 (𝑇) ∈ A𝑚 (𝑇) would be a univariate time series that would correspond to
the dimension 𝑑 of the initial data series. We call this solution cCNN, and we use cCAM to refer to the
corresponding Class Activation Map. Figure 1(b) illustrates cCNN architecture and cCAM. Note that if
a GAP layer is used, then architectures other than CNN can be used, such as ResNet and InceptionTime.
We denote these baselines as cResNet and cInceptionTime.
Nevertheless, new limitations arise from this solution. First, the dimensions are not compared

together: Each kernel of the input layer will take as input only one of the dimensions at a time. Thus,
features depending on more than one dimension will not be detected.
Recent works study the specific case of multivariate data series classification explanation. A bench-

mark study analyzing the saliency/explanation methods for multivariate time series concluded that the
explainable methods work better when the multivariate data series is handled as an image [47], such as in
the CNN architecture. This confirms the need to propose a method specifically designed for multivariate
data series. Finally, some recently proposed approaches [48, 49] address the problems of identifying the
discriminant features and discriminant temporal windows independently from one another. For instance,
MTEX-CNN [49] is an architecture composed of two blocks. The first block is similar to cCNN. The
second block consists of merging the results of the first block into a 1D convolutional layer, which
enables comparing dimensions. A variant of CAM [50] is applied to the last convolutional layer of the
1st block in order to find discriminant features for each dimension. The discriminant temporal windows
are detected with the CAM applied to the last convolutional layer of the second block. In practice, how-
ever, this architecture does not manage to overcome the limitations of cCNN: discriminant features that
depend on several dimensions are not correctly identified by MTEX-CNN, which has similar accuracy
to cCNN (we elaborate on this in Section 4.2).
In our experimental evaluation, we compare our approach to the MTEX-CNN, cCNN, cResNet, and

cInceptionTime, and further demonstrate their limitations when addressing the problem at hand.

Data-Centric Engineering 9

3. Proposed Approach

In this section, we describe our proposed approach, dCAM (dimension-wise Class Activation Map).
Based on a new architecture that we call dCNN, (as well as variant architectures such as dResNet and
dInceptionTime), dCAMaims to provide amultivariate CAMpointing to the discriminant featureswithin
each dimension. Contrary to the previously described baseline (cCNN, cResNet, and cInceptionTime),
one kernel on the first convolutional layer will take as input all the dimensions together with different
permutations. Thus, similarly to the standard CNN architecture, features depending on more than one
dimension will be detectable while still having a multivariate CAM. Nevertheless, the latter has to be
processed such that the significant subsequences are detected.
We first describe the proposed architecture dCNN that we need in order to provide a dimension-wise

ClassActivationMap (dCAM)while still being able to extractmultivariate features.We then demonstrate
that the transformation needed to change CNN to dCNN can also be applied to other, more sophisticated
architectures, such as ResNet and InceptionTime, which we denote as dResNet and dInceptionTime. We
demonstrate that using permutations of the input dimensions makes the classification more robust when
important features are localized into small subsequences within some specific dimensions.
We then present in detail how we compute dCAM (based on a dCNN). Our solution benefits from

the permutations injected into the dCNN to identify the most discriminant subsequences used for the
classification decision.

3.1. Dimension-wise Architecture

Asmentioned earlier, the classical CNN architecturemixes all dimensions in the first convolutional layer.
Thus, the CAM is a univariate data series and does not provide any information on which dimension
is the discriminant one for the classification. To address this issue, we can use a two-dimensional
CNN architecture by re-organizing the input (i.e., the cCNN solution we described earlier). In this
architecture, one kernel (of size (1, ℓ, 1)) slides on each dimension independently. Thus, for a given
data series (𝑇 (0) , ..., 𝑇 (𝐷−1)) of length 𝑛, the convolutional layers return an array of three dimensions
(𝑛 𝑓 , 𝐷, 𝑛), each row 𝑚 ∈ [0, 𝐷] corresponding to the extracted features on dimension 𝑚. Nevertheless,
the kernels (1, ℓ, 1) get as input each dimension independently. Evidently, such an architecture cannot
learn features that depend on multiple dimensions.

3.2. A first Architecture: dCNN

In order to have the best of both cases, we propose the dCNN architecture, where we transform the input
into a cube, in which each row contains a given combination of all dimensions. One kernel (of size
(𝐷, ℓ, 1)) slides on all dimensions 𝐷 times. This allows the architecture to learn features on multiple
dimensions simultaneously. Moreover, the resulting CAM is a multivariate data series. In this case, one
row of the CAM corresponds to a given combination of the dimensions. However, we still need to be
able to retrieve information for each dimension separately, as well. To do that, we ensure that each row
contains a different permutation of the dimensions. As the weights of the kernels are at fixed positions
(for specific dimensions), a permutation of the dimensions will result in a different CAM. Formally, for
a given data series 𝑇 , we note 𝐶 (𝑇) ∈ R(𝐷,𝐷,𝑛) the input data structure of dCNN, defined as follows:

𝐶 (𝑇) =
©«
𝑇 (𝐷−1) 𝑇 (0) ... 𝑇 (𝐷−3) 𝑇 (𝐷−2)

: : ... : :
𝑇 (1) 𝑇 (2) ... 𝑇 (𝐷−1) 𝑇 (0)

𝑇 (0) 𝑇 (1) ... 𝑇 (𝐷−2) 𝑇 (𝐷−1)

ª®®®¬ (3.1)

Note that each row and column of 𝐶 (𝑇) contains all dimensions. Thus, a given dimension 𝑇 (𝑖) is
never at the same position in 𝐶 (𝑇) rows. The latter is a crucial property for the computation of dCAM.

10 Paul Boniol et al.

In practice, we guarantee the latter property by shifting the order of the dimensions by one position. For
instance, in Equation 3.1, the dimension order of the first row is [𝑇 (0) , 𝑇 (1) , ..., 𝑇 (𝐷−2) , 𝑇 (𝐷−1)] (i.e., the
first dimension of 𝑇 is at the first position in the row and the last dimension of T is at the last position
in the row), and the dimension order of the second row is [𝑇 (1) , 𝑇 (2) , ..., 𝑇 (𝐷−1) , 𝑇 (0)] (i.e., the first
dimension of 𝑇 is now at the last position in the row, and the second dimension of T is now at the first
position in the row). Thus 𝑇 (0) in the first row is aligned with 𝑇 (1) in the second row. A different order
of 𝑇 dimensions will thus generate a different matrix 𝐶 (𝑇).
Figure 2 depicts the dCNN architecture. The input𝐶 (𝑇) is forwarded into a classical two-dimensional

CNN. The rest of the architecture is independent of the input data structure. Similarly, the training
procedure can be freely chosen by the user. For the rest of the paper, we will use the cross-entropy loss
function and the ADAM optimizer.
Observe that multiple permutations of the original multivariate series (provided only by the different

rows of𝐶 (𝑇)) will be processed by several convolutional filters, enabling the kernel to examine multiple
different combinations of dimensions and subsequences. Note that the kernels of the dCNN will be
sparse, which has a significant impact on overfitting.

3.3. Variant Architectures: dResNet and dInceptionTime

As mentioned earlier, any architecture using a GAP layer after the last convolutional layer can benefit
from dCAM. Thus, different (and more sophisticated) architectures can be used with our approach. To
that effect, we propose two new architectures dResNet and dInceptionTime, based on the state-of-the-
art architectures ResNet [38] and InceptionTime [46]. The transformations that lead to dResNet and
dInceptionTime are very similar to that from CNN to dCNN, using 𝐶 (𝑇) as input to the transformed
networks. The convolutional layers are transformed from1D (as proposed in the original architecture [38,
46]) to 2D. Similarly to dCNN, the kernel sizes are (𝐷, ℓ, 1) and convolute over each row of 𝐶 (𝑇)
independently.
We demonstrate in the experimental section that these architectures do not affect the usage of

our proposed approach dCAM, and we evaluate the choice of architecture on both classification and
discriminant feature identification. In the following sections, we describe our methods assuming the
dCNN architecture. Nevertheless, it works exactly the same for the other two architectures.

3.4. Dimension-wise Class Activation Map

At this point, we have our network trained to classify instances among classes C0, C1, ..., C𝑝 . We now
describe in detail how to compute dCAM that will identify discriminant features within dimensions.
We assume that the network has to be accurate enough in order to provide a meaningful dCAM. At
first glance, one can compute the regular Class Activation Map 𝐶𝐴𝑀C𝑗 (𝐶 (𝑇)) =

∑
𝑚 𝑤

C𝑗
𝑚 𝐴𝑚 (𝐶 (𝑇)).

However, a high value on the 𝑖𝑡ℎ row at position 𝑡 on𝐶𝐴𝑀C𝑗 (𝐶 (𝑇)) does not mean that the subsequence
at position 𝑡 on the 𝑖𝑡ℎ dimension is important for the classification. It insteadmeans that the combination
of dimensions at the 𝑖𝑡ℎ row of 𝐶 (𝑇) is important.

3.4.1. Random Permutation Computations
Given those different combinations of dimensions (i.e., one row of𝐶 (𝑇)) produce different outputs (i.e.,
the same row in 𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))), the positions of the dimensions within the 𝐶 (𝑇) rows have an impact
on the Class Activation Map. Consequently, for a given combination of dimensions, we can assume that
at least one dimension at a given position is responsible for the high value in the Class Activation Map
row. For the remainder of this paper, we use Σ𝑇 as the set of all possible permutations of 𝑇 dimensions,
and 𝑆𝑖

𝑇
∈ Σ𝑇 for a single permutation of 𝑇 . E.g., for a given data series 𝑇 = {𝑇 (0) , 𝑇 (1) , 𝑇 (2) }, one

possible permutation is 𝑆𝑖
𝑇
= {𝑇 (1) , 𝑇 (0) , 𝑇 (2) }.

Data-Centric Engineering 11

33

𝐶(𝑆!")=
𝑇($)
⋮

𝑇(")
𝑇(&)

𝑇(") ⋯
⋮

𝑇(&)
⋱
⋱

𝑇(') ⋯

𝑇(()
⋮

𝑇($)
𝑇(")

𝑇("), 𝑇(&), 𝑇('), 𝑇()), 𝑇((), 𝑇($)

𝐶(𝑆!&) =
𝑇(&)
⋮

𝑇(')
𝑇($)

𝑇($) ⋯
⋮

𝑇(&)
⋱
⋱

𝑇(() ⋯

𝑇())
⋮

𝑇($)
𝑇(&)

𝑇('), 𝑇(&), 𝑇("), 𝑇()), 𝑇 (, 𝑇($)

𝐶(𝑆!') =
𝑇(')
⋮

𝑇(()
𝑇($)

𝑇(() ⋯
⋮

𝑇($)
⋱
⋱

𝑇()) ⋯

𝑇(&)
⋮

𝑇(")
𝑇(')

𝑇((), 𝑇($), 𝑇('), 𝑇(&), 𝑇()), 𝑇(")

Position 2 𝐶𝐴𝑀
(𝐶(𝑆! "))

𝐶𝐴𝑀
(𝐶(𝑆! &))

𝐶𝐴𝑀
(𝐶(𝑆! '))

Figure 3. Example of Class Activation Map results for different permutations.

Figure 3 depicts an example of Class Activation Maps for different permutations. In this Figure, for
three given permutations of 𝑇 (i.e., 𝑆0

𝑇
, 𝑆1

𝑇
and 𝑆2

𝑇
), we notice that when 𝑇 (2) is in position two of

the second row of 𝐶 (𝑆𝑖
𝑇
), the Class Activation Map 𝐶𝐴𝑀 (𝐶 (𝑆𝑖

𝑇
)) is greater than when 𝑇 (2) is not in

position two. We infer that the second dimension of 𝑇 in position two is responsible for the high value.
Thus, we may examine different dimension combinations by keeping track of which dimension at which
position is activating the Class Activation Map the most. In the remainder of this section, we describe
the steps necessary to retrieve this information.

Definition 1. For a given data series 𝑇 = {𝑇 (0) , 𝑇 (1) , ..., 𝑇 (𝐷−1) } of length 𝑛 and its input data structure
𝐶 (𝑇), we define function 𝑖𝑑𝑥, such that 𝑖𝑑𝑥(𝑇 (𝑖) , 𝑝 𝑗) returns the row indices in 𝐶 (𝑇) that contain the
dimension 𝑇 (𝑖) at position 𝑝 𝑗 .

We can now define the following transformationM.
Definition 2. For a given data series 𝑇 = {𝑇 (0) , 𝑇 (1) , ..., 𝑇 (𝐷−1) } of length 𝑛, a given class C𝑗 and
Class Activation Map, we defineM(𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))) ∈ R(𝐷,𝐷,𝑛) (with 𝐶𝐴𝑀C𝑗 (𝐶 (𝑇)) ∈ R(𝐷,𝑛) and
𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))𝑖 its 𝑖𝑡ℎ row) as follows:

M(𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))) =

©«
𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))𝑖𝑑𝑥 (𝑇 (0) ,0) ... 𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))𝑖𝑑𝑥 (𝑇 (0) ,𝐷−1)
𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))𝑖𝑑𝑥 (𝑇 (1) ,0) ... 𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))𝑖𝑑𝑥 (𝑇 (1) ,𝐷−1)

: ... :
𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))𝑖𝑑𝑥 (𝑇 (𝐷−1) ,0) ... 𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))𝑖𝑑𝑥 (𝑇 (𝐷−1) ,𝐷−1)

ª®®®®¬
(3.2)

Figure 4 depicts theM transformation. As explained in Definition 2, theM transformation enriches
the Class Activation Map by adding the dimension position information. Note that if we change the
dimension order of 𝑇 , theirM(𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))) changes as well. Indeed, for a given dimension 𝑇 (𝑖) and
position 𝑝 𝑗 , 𝑖𝑑𝑥(𝑇 (𝑖) , 𝑝 𝑗) will not have the same value for two different dimension orders of 𝑇 . Thus,
computing M(𝐶𝐴𝑀C𝑗 (𝐶 (𝑇))) for different dimension orders of 𝑇 will provide distinct information
regarding the importance of a given position (subsequence) in a given dimension. We expect that
subsequences (of a specific dimension) that discriminate one class from another will also be associated
(most of the time) with a high value in the Class Activation Map.

12 Paul Boniol et al.

𝑇 ("), 𝑇 ($), … , 𝑇 (%&$)

𝑇 (%&$), 𝑇 ("), … , 𝑇 (%&')

𝑇 ((&$), 𝑇 ((), … , 𝑇 (%&(&$)

⋮

⋮

𝑎 𝐶𝐴𝑀𝒞$ 𝐶 𝑆"#

𝑡𝑖𝑚𝑒
𝑇(")
𝑇($)

𝑇(%&$)

𝑇(%&')

𝑇(()

𝑡𝑖𝑚𝑒
𝑝𝑜𝑠"

𝑝𝑜𝑠$

𝑝𝑜𝑠%&$

𝑇 ((), 𝑇 (()$), … , 𝑇 (%&()

𝐷
𝑖𝑚
𝑒𝑛
𝑠𝑖
𝑜𝑛
𝑠

𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑠

⋮

⋮

⋮

𝑏 ℳ 𝐶𝐴𝑀𝒞$ 𝐶 𝑆"#

⋮

𝑇(()𝑖𝑛 𝑝𝑜𝑠" ,
𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡"

𝑇(()𝑖𝑛 𝑝𝑜𝑠$,
𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡"

𝑡"

𝑡"

𝐶 𝑆*+

Figure 4. TransformationM for a given data series 𝑇 .

3.4.2. Merging Permutations
We computeM(𝐶𝐴𝑀C𝑗 (𝐶 (𝑆𝑇))) for different 𝑆𝑇 ∈ Σ𝑇 . Note that the total number of permutations for
high-dimensional data series |Σ𝑇 | is enormous. In practice, we only computeM for a randomly selected
subset of Σ𝑇 . We thus merge 𝑘 = |Σ𝑇 | permutations 𝑆𝑘𝑇 , by computing the averaged matrix M̄C𝑗 (𝑇) of
all theM transformations of the permutations. Formally, M̄C𝑗 (𝑇) is defined as follows:

M̄C𝑗 (𝑇) =
1
|Σ𝑇 |

∑︁
𝑆𝑘
𝑇
∈Σ𝑇

M(𝐶𝐴𝑀C𝑗 (𝐶 (𝑆
𝑘
𝑇)))

Figure 5 illustrates the process of computing M̄C𝑗 (𝑇) from the set of permutations of 𝑇 , Σ𝑇 . M̄C𝑗 (𝑇)
can be seen as a summarization of the importance of each dimension at each position in 𝐶 (𝑇), for all
the computed permutations. Figure 5(b’) (at the top of the figure) depicts M̄C𝑗 (𝑇)𝑑 , which corresponds
to the 𝑑𝑡ℎ row (i.e., the dotted box in Figure 5(b)) of M̄C𝑗 (𝑇). Each row of M̄C𝑗 (𝑇)𝑑 corresponds to the
average activation of dimension 𝑑 (for each timestamp) when dimension 𝑑 is in a given position in𝐶 (𝑇).
Note that all permutations of 𝑇 are forwarded into the dCNN network without training it again. Thus,

even though the permutations of 𝑇 generate radically different inputs to the network, the network can
still classify most of the instances correctly. For 𝑘 permutations, we use 𝑛𝑔 to denote the number of
permutations the model has correctly classified.

3.4.3. dCAM Extraction
Wecan nowuse the previously computedM̄C𝑗 to extract explanatory information onwhich subsequences
are considered important by the network. First, we note that each row of 𝐶 (𝑇) corresponds to the
input format of the standard CNN architecture. Thus, we expect that the result of a row of M̄C𝑗
(one of the ten lines in Figure 5(b)) is similar to the standard CAM. Hence, we can assume that
`(M̄C𝑗 (𝑇)) =

∑
𝑑∈[0,𝐷−1]

∑
𝑝∈[0,𝐷−1] M̄

𝑑,𝑝

C𝑗 (𝑇)/(2 ∗ 𝐷) is equivalent to standard Class Activation
Map 𝐶𝐴𝑀C𝑗 (𝑇) (this approximation is depicted in Figure 5(d)). Moreover, we can extract temporal
information per dimension in addition to the global temporal information. We know that for a given
position 𝑝 and a given dimension 𝑑, M̄𝑑,𝑝

C𝑗 (𝑇) represents the averaged activation for a given set of
permutations. If the activation M̄𝑑,𝑝

C𝑗 (𝑇) for a given dimension is constant (regardless of its value
or the position 𝑝), then the position of dimension 𝑑 is not important, and no subsequence in that
dimension 𝑑 is discriminant. On the other hand, a high or low value at a specific position 𝑝 means that

Data-Centric Engineering 13

𝜇 ℳ𝒞!(𝑇) ∗ 𝜎" ℳ𝒞!
#(𝑇)

(d) 𝑑𝐶𝐴𝑀𝒞$(𝑇)

𝑡%

…

…

(a) For a given multivariate time
series 𝑇 = {𝑇()), … , 𝑇(*+,)},

and 𝑆-. ∈ Σ- with Σ- the set of
permutations of the dimensions

of 𝑇:

𝐶𝐴𝑀
𝒞$ 𝐶

𝑆
& '

𝐶𝐴𝑀
𝒞$ 𝐶

𝑆
& (

𝐶𝐴𝑀
𝒞$ 𝐶 𝑆

&)

𝐶𝐴𝑀
𝒞$ 𝐶

𝑆
& "

𝐶𝐴𝑀
𝒞$ 𝐶 𝑆

& *

ℳ

(b) ℳ𝒞$(𝑇) =
*

|,-|
∑
.-
/∈ ,-

ℳ 𝐶𝐴𝑀𝒞$ 𝐶 𝑆&'

𝜇 ℳ𝒞$(𝑇)

𝑡%

(e) 𝑇𝑖𝑚𝑒 𝑠𝑒𝑟𝑖𝑒𝑠 𝑇

…

(c) 𝐶𝐴𝑀𝒞$(𝑇)

𝐷−1

𝐷−2

0

1

…

𝑆&
' =

𝑇 (#7*)
⋮

𝑇 (*)

𝑇 (%)

𝑇 (%) ⋯
⋮

𝑇 (")
⋱
⋱

𝑇 (*) ⋯

𝑇 (#7")
⋮

𝑇 (%)

𝑇 (#7*)

Standard 𝐶𝐴𝑀𝒞$ for 𝑘 random permutations of the dimensions

𝐴
𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛

𝑠𝑐𝑜𝑟𝑒

𝑇𝑖𝑚𝑒 𝑖𝑛𝑑𝑒𝑥

𝑃𝑜𝑠 0𝑃𝑜𝑠 1
𝑃𝑜𝑠 2
𝑃𝑜𝑠 3𝑃𝑜𝑠 4
𝑃𝑜𝑠 5
𝑃𝑜𝑠 6𝑃𝑜𝑠 7
𝑃𝑜𝑠 8
𝑃𝑜𝑠 9

(b’) Averaged Class Activation Map when Dimension 𝑑 is in position 3:
1
|Σ&|

O
."#∈,"

𝐶𝐴𝑀𝒞! 𝐶 𝑆&' 9:; & $,=>?)

𝑑

Figure 5. dCAM computation framework.

the subsequence at this specific position is discriminant. While it is intuitive to interpret a high value,
interpreting a low value is counterintuitive. Usually, a subsequence at position 𝑝 with a low value should
be regarded as non-discriminant. Nevertheless, if the activation is low for 𝑝 and high for other positions,
then the subsequence at position 𝑝 is the consequence of the low value and is thus discriminant. We
experimentally observe this situation, where a non-discriminant dimension has a constant activation per
position (e.g., see dotted red rectangle in Figure 5(b): this pattern corresponds to a non-discriminant
subsequence of the dataset). On the contrary, for discriminant dimensions, we observe a strong variance
for the activation per position: either high values or low values (e.g., see solid red rectangles in
Figure 5(b): these patterns correspond to the (injected) discriminant subsequences highlighted in red in
Figure 5(e)). We thus can extract the significant subsequences per dimension by computing the variance
of all positions of a given dimension. We can filter out the irrelevant temporal windows using the
averaged `(M̄C𝑗 (𝑇)) for all dimensions, and use the variance to identify the important dimensions in
the relevant temporal windows. Formally, we define 𝑑𝐶𝐴𝑀C𝑗 (𝑇) as follows.
Definition 3. For a given data series 𝑇 and a given class C𝑖 , 𝑑𝐶𝐴𝑀C𝑗 (𝑇) is defined as:

𝑑𝐶𝐴𝑀C𝑗 (𝑇) =

©«
𝜎2 (M̄0

C𝑗 (𝑇)𝑡0) ∗ `(M̄C𝑗 (𝑇)𝑡0) ... 𝜎2 (M̄0
C𝑗 (𝑇)𝑡𝑛) ∗ `(M̄C𝑗 (𝑇)𝑡𝑛)

: ... :
𝜎2 (M̄𝐷−2

C𝑗 (𝑇)𝑡0) ∗ `(M̄C𝑗 (𝑇)𝑡0) ... 𝜎
2 (M̄𝐷−2

C𝑗 (𝑇)𝑡𝑛) ∗ `(M̄C𝑗 (𝑇)𝑡𝑛)
𝜎2 (M̄𝐷−1

C𝑗 (𝑇)𝑡0) ∗ `(M̄C𝑗 (𝑇)𝑡0) ... 𝜎
2 (M̄𝐷−1

C𝑗 (𝑇)𝑡𝑛) ∗ `(M̄C𝑗 (𝑇)𝑡𝑛)

ª®®®®®¬
(3.3)

3.5. Time Complexity Analysis

3.5.1. Training step
CNN/ResNet/InceptionTime require 𝑂 (ℓ ∗ |𝑇 | ∗ 𝐷) computations per kernel, while
dCNN/dResNet/dInceptionTime require 𝑂 (ℓ ∗ |𝑇 | ∗ 𝐷2) computations per kernel. Thus, the training
time per epoch is higher for dCNN than CNN. However, given that the size of the input of dCNN
is larger (containing 𝐷 permutations of a single series) than CNN, the number of epochs to reach

14 Paul Boniol et al.

convergence is lower for dCNN when compared to CNN. Intuitively, dCNN trains on more data during
a single epoch. This leads to similar overall training times.

3.5.2. dCAM step
The CAM computation complexity is 𝑂 (|𝑇 | ∗ 𝐷 ∗ 𝑛 𝑓), where 𝑛 𝑓 is the number of filters in the last
convolutional layer. Let 𝑁 𝑓 = [𝑛 𝑓1 , ...𝑛 𝑓𝑛] be the number of filters of the 𝑛 convolutional layers. Then,
a forward pass has time complexity 𝑂 (ℓ ∗ |𝑇 | ∗ 𝐷2 ∗ ∑𝑛 𝑓𝑖

∈𝑁 𝑓
𝑛 𝑓𝑖). In dCAM, we evaluate 𝑘 different

permutations. Thus, the overall dCAM complexity is 𝑂 (𝑘 ∗ ℓ ∗ |𝑇 | ∗ 𝐷2 ∗ ∑𝑛 𝑓𝑖
∈𝑁 𝑓

𝑛 𝑓𝑖). Observe that
since the 𝑘 permutations can be computed in parallel, the most important parameter for the execution
time is 𝐷.

3.6. Further Observations

3.6.1. Permutations Success as a Proxy
As previously explained, we assume that dCAM is meaningful if and only if the deep neural network
classification is accurate. We also assume that classification accuracy impacts the number of correctly
classified permutations. As in real use cases, labels may not be available, and both classification and
discriminant feature identification accuracy may not be computed. Therefore, the number of correctly
classified permutations (called 𝑛𝑔) could be used as a proxy to assess the quality of the explanation.More
precisely, a low value of 𝑛𝑔 indicates that the model is not efficient in classifying a time series regardless
of the permutation. On the contrary, a high value of 𝑛𝑔 indicates that, whatever the permutations of the
time series dimensions, the model is able to classify correctly the time series. Therefore, as dCAM uses
different permutations to find back which dimensions correspond to discriminant features, a low value
of 𝑛𝑔 indicates that the discriminant features identified by dCAM might not be meaningful.

3.6.2. From Local to Global Explanations
We have so far assumed that dCAM is applied to a single multivariate data series and provides corre-
sponding explanations. In the case where we need to analyze a set of series though, we can use dCAM
on each one independently and then aggregate the dCAM results in order to identify global discriminant
features. (The problem of local and global explanations has been discussed in other studies as well [51]).
Section 5 provides an example of how to get a global explanation of a specific use case. In future work,
we will study other possibilities to merge dCAMs of instances of the same class.

3.6.3. Limitations: The Dimension Order Problem
Even though this method is able to detect important subsequences within a multivariate data series,
the use of dimension permutations can be problematic for specific time series. Such architecture is
based on the use of dimension permutations as a fundamental principle. Thus, if the discriminant factor
between two classes remains on the positions of the dimensions (e.g., having the same multivariate
data series but with dimensions at different positions between two instances of two classes), one cannot
use our proposed approach. Such a scenario is plausible for multivariate time series measured from a
graph of sensors where the position of each sensor with regards to the other matters. In such cases, the
differences between two events (i.e., two classes) might be explained by the geographical position of a
specific pattern, resulting in discriminant features based on the order of the dimensions.

3.6.4. Limitations: Large Number of Dimensions
Our proposed approach uses a new data structure 𝐶 (𝑇). However, 𝐶 (𝑇) has a memory complexity of
𝑂 (𝐷2). Such memory complexity can be problematic for specific time series with many dimensions.
Such large time series would imply reducing the batch size during the training phase such that an entire
batch fits the memory of a CPU or GPU. As many data points in 𝐶 (𝑇) are redundant, an interesting
research direction is to optimize the memory complexity to 𝑂 (𝐷).

Data-Centric Engineering 15

6

𝑎. 2 𝐶𝑙𝑎𝑠𝑠 2
(2 injected patterns, different timestamps)

𝑎. 1 𝐶𝑙𝑎𝑠𝑠 1
(no injected patterns)

𝑏. 1 𝐶𝑙𝑎𝑠𝑠 1
(2 injected patterns, different timestamps)

𝑏. 2 𝐶𝑙𝑎𝑠𝑠 2
(2 injected patterns, same timestamp)

𝑎 𝑻𝒚𝒑𝒆 𝟏 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: subsequences of interest
(in red) occurs in a subset of dimensions at different timestamps.

𝑏 𝑻𝒚𝒑𝒆 𝟐 𝑑𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑛𝑡 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠: subsequences of interest
(in red) occur in a subset of dimensions at the same timestamp.

𝑖! 𝑖" 𝑖#$" 𝑖#… 𝑖! 𝑖" 𝑖#$" 𝑖#… 𝑖! 𝑖" 𝑖#$" 𝑖#… 𝑖! 𝑖" 𝑖#$" 𝑖#…

𝑑"
𝑑%
𝑑&
𝑑'

𝑑(

𝑑"
𝑑%
𝑑&
𝑑'

𝑑(

Figure 6. Synthetic datasets: (a) Type 1, in which the discriminant subsequence is two injected patterns
from class 2 StarLightCurves dataset in random dimensions at random positions, (b) Type 2, in which
the discriminant factor is the fact that the two injected patterns are injected at the same position.

3.6.5. Limitations: CAM-related constraints
As mentioned in Section 2.2, the Class Activation Map can only be used if (i) a Global Average
Pooling layer has been used before the softmax classifier and (ii) the model accuracy is high enough.
Consequently, only the standard architectures CNN and ResNet proposed in the literature, combined
with a global average pooling layer, can benefit from CAM. Therefore, other layers or combinations of
the convolutional layers outputs (such as flattening operations) limit the application and the usage of
CAM. As dCAM is based on CAM, the above constraints also hold for dCAM.

4. Classification Experimental Evaluation

We now present the results of the experimental evaluation with several real datasets from different
domains. Our code and datasets are available online [52].

4.1. Experimental Setup

We implemented our algorithms in Python 3.5 using PyTorch [53]. The evaluation was conducted on a
server with Intel Core i7-8750HCPU 2.20GHz x 12, with 31.3GBRAM, and Quadro P1000/PCle/SSE2
GPU with 4.2GB RAM.

4.1.1. Datasets
We conduct our experimental evaluation using real datasets injected with known discriminant patterns.
We use the StarLightCurves (classes 2 and 3 only) and ShapesAll (classes 1 and 2 only) datasets from the
UCR archive [28], in which we inject subsequences that will generate discriminant features. We build
two types of datasets to study the ability of the algorithms to identify the discriminant patterns guiding
the classification decision, (1) when these patterns occur in a subset of the dimensions at different
timestamps, and (2) when these patterns occur in a subset of the dimensions at the same timestamp.
(1) For Type 1 datasets, we build each dimension of Class 1 by concatenating random instances from
one class of one of our two UCR seed datasets. We build Class 2 by injecting in the series of the other
class of our two UCR datasets a pattern in 2 random dimensions at a random position in the series.
(2) For Type 2 datasets, we build each dimension of Class 1 by concatenating random instances from
one of the classes of our two UCR datasets and injecting patterns from the other class in 𝑥 random
dimensions and at different positions. We build Class 2 by injecting patterns at the same positions of 2
random dimensions.
Examples of Type 1 and Type 2 5-dimensional datasets based on StarLightCurves are depicted in

Figures 6(a), and 6(b), respectively. In our experiments, we generate 1000 time series for the Type 1
synthetic dataset and 1000 time series for the Type 2 synthetic dataset.

16 Paul Boniol et al.

4.1.2. Evaluation Measures
We first evaluate the classification accuracy, 𝐶-𝑎𝑐𝑐. This measure corresponds to the ratio of correctly
classified instances among all instances in the test dataset. We then evaluate the discriminant features
accuracy, 𝐷𝑟-𝑎𝑐𝑐, for Class 1 (see Figure 6). We define 𝐷𝑟-𝑎𝑐𝑐 as the PR-AUC for CAM/cCAM/dCAM
obtained from the models and the ground-truth. The ground-truth is a series that has 1 at the positions of
discriminant features (see Figure 6(a.2): ground-truth contains 1 at the positions of the injected patterns,
marked with the red rectangles, and 0 otherwise). We motivate the choice of PR-AUC (instead of ROC-
AUC) because we are more interested in measuring the accuracy of identifying the injected patterns
(representing at max 0.02 percent of the dataset) than measuring the accuracy of not detecting the
non-injected patterns. In this very unbalanced case, PR-AUC is more appropriate than ROC AUC [54].
Note that even though we annotate each point of the injected subsequences as discriminant, only some
subparts of these sequences may be discriminant, thus leading to 𝐷𝑟-𝑎𝑐𝑐 less than 1. Finally, for
CNN/ResNet/InceptionTime we compute the 𝐷𝑟-𝑎𝑐𝑐 scores by assuming that their (univariate) CAM
values are the same for all dimensions. We mark their 𝐷𝑟-𝑎𝑐𝑐 scores with a star in Table 1.

4.1.3. Architectures and Training
We compare our model, dCNN/dResNet/dInceptionTime, to the classical ResNet model [55, 31, 38, 46],
and the cResNet baseline we introduced in Section 2. We only consider ResNet and cResNet
architectures as we empirically observed that the latter are more accurate than CNN/cCNN and Incep-
tionTime/cInceptionTime architectures.We are using the same architecture setup for all models.We then
use CAM for ResNet, cCAM for cResNet, and dCAM for dCNN, dResNet, and dInceptionTime to iden-
tify discriminant features. For dCNN, we are using 5 convolutional layers with (64, 128, 256, 256, 256)
filters, respectively. We are using a kernel size of 3 and a padding of 2. For ResNet, cResNet and dRes-
Net we use three blocks with three convolutional layers of 64 filters (for the first two blocks) and 128
layers (for the last block). We are using kernel sizes equal to 8, 5, and 3 for each block for the three
layers of the block. For dInceptionTime, we use the same architecture as originally defined [46].
We also includeMTEX-CNN [49](MTEX) as a baseline, representative of other kinds of architectures

that can provide a multivariate CAM. The explanation is computed separately for discriminant features
and timestamps using grad-CAM [50] (MTEX-grad). The latter is a variant of the usual CAM.
We split our dataset into training and validation sets with 80 and 20 percents of the total dataset,

respectively (equally balanced between the two classes). The training dataset is used to train the model,
and the validation dataset is used as a validation dataset during the training phase. We generate a fully
new test dataset of 1000 time series (generated in the same manner as the initial 1000 time series used
for the train and validation set) and evaluate𝐶-𝑎𝑐𝑐 and 𝐷𝑟-𝑎𝑐𝑐. We train all models with a learning rate
𝛼 = 0.00001, a maximum batch size of 16 instances (less if GPU memory cannot fit 16 instances), and
a maximal number of epochs equal to 1000 (we use early stopping and stop before 1000 epochs if the
model starts overfitting the test dataset). For dCAM, we use 𝑘 = 100 (number of random permutations),
a value that we empirically verified (due to lack of space, a detailed analysis of the effect of 𝑘 is in the
full version of the paper).

4.2. Accuracy Evaluation

We now evaluate the classification accuracy (𝐶-𝑎𝑐𝑐) and the discriminant feature identification accuracy
(𝐷𝑟-𝑎𝑐𝑐) on synthetically built datasets. Table 1 depicts both𝐶-𝑎𝑐𝑐 and𝐷𝑟-𝑎𝑐𝑐 on Type 1 and 2 datasets
when varying the number of dimensions from 10 to 100.
Overall, we observe that all methods have better performance (both 𝐶-𝑎𝑐𝑐 and 𝐷𝑟-𝑎𝑐𝑐) on Type

1 datasets than on Type 2 datasets. This was expected since discriminant features located in single
dimensions are easier to find than discriminant features that depend on several dimensions.
We then notice that for low dimensional (𝐷 = 10) datasets, ResNet, dResNet, dCNN and dIncep-

tionTime are performing nearly perfect C-acc. Moreover, ResNet and MTEX-CNN are performing well
for low-dimensional data series but start to fail for a more significant number of dimensions. While

Data-Centric Engineering 17

Datasets 𝐶-𝑎𝑐𝑐 (averaged on 10 runs)
Dataset Type Dim. MTEX ResNet cResNet dCNN dResNet dIncept.

StarLightCurves

Type 1

10 0.99 (±0.00) 0.95 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00)
20 0.99 (±0.01) 0.71 (±0.03) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 0.98 (±0.01)
40 0.98 (±0.05) 0.60 (±0.03) 1.00 (±0.00) 0.99 (±0.00) 1.00 (±0.00) 0.93 (±0.01)
60 0.61 (±0.06) 0.57 (±0.01) 1.00 (±0.00) 0.98 (±0.00) 0.99 (±0.00) 0.91 (±0.01)
100 0.55 (±0.04) 0.64 (±0.02) 1.00 (±0.00) 0.96 (±0.01) 0.97 (±0.00) 0.79 (±0.02)

Type 2

10 0.58 (±0.04) 0.71 (±0.03) 0.53 (±0.02) 1.00 (±0.00) 1.00 (±0.00) 0.93 (±0.01)
20 0.55 (±0.03) 0.61 (±0.02) 0.55 (±0.01) 0.98 (±0.00) 1.00 (±0.00) 0.70 (±0.03)
40 0.56 (±0.03) 0.58 (±0.02) 0.51 (±0.01) 0.88 (±0.05) 0.58 (±0.02) 0.56 (±0.01)
60 0.53 (±0.02) 0.55 (±0.04) 0.53 (±0.01) 0.64 (±0.08) 0.59 (±0.01) 0.55 (±0.02)
100 0.52 (±0.01) 0.59 (±0.03) 0.50 (±0.01) 0.59 (±0.01) 0.56 (±0.01) 0.60 (±0.01)

ShapesAll

Type 1

10 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00)
20 1.00 (±0.00) 0.86 (±0.02) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 0.99 (±0.00)
40 0.85 (±0.00) 0.65 (±0.01) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00)
60 0.83 (±0.16) 0.65 (±0.01) 1.00 (±0.00) 1.00 (±0.00) 1.00 (±0.00) 0.96 (±0.00)
100 0.70 (±0.02) 0.57 (±0.04) 1.00 (±0.00) 0.98 (±0.00) 1.00 (±0.00) 0.85 (±0.01)

Type 2

10 0.60 (±0.01) 0.82 (±0.03) 0.54 (±0.01) 1.00 (±0.00) 1.00 (±0.00) 0.93 (±0.01)
20 0.54 (±0.02) 0.57 (±0.02) 0.52 (±0.02) 1.00 (±0.00) 1.00 (±0.00) 0.89 (±0.03)
40 0.59 (±0.05) 0.60 (±0.03) 0.52 (±0.00) 0.90 (±0.03) 0.72 (±0.08) 0.73 (±0.10)
60 0.57 (±0.03) 0.59 (±0.01) 0.51 (±0.00) 0.65 (±0.04) 0.61 (±0.01) 0.72 (±0.05)
100 0.52 (±0.03) 0.59 (±0.02) 0.50 (±0.01) 0.55 (±0.01) 0.58 (±0.01) 0.55 (±0.02)

Rank 3.95 3.9 3 1.65 1.6 2.85
Datasets 𝐷𝑟-𝑎𝑐𝑐 (averaged on 50 instances)

Dataset Type Dim. MTEX ResNet cResNet dCNN dResNet dIncept.
MTEX-grad CAM cCAM dCAM

StarLightCurves

Type 1

10 0.40 (±0.09) 0.07 (±0.02)* 0.92 (±0.09) 0.46 (±0.08) 0.38 (±0.12) 0.21 (±0.24)
20 0.38 (±0.00) 0.02 (±0.01)* 0.92 (±0.05) 0.38 (±0.03) 0.45 (±0.10) 0.36 (±0.19)
40 0.24 (±0.03) 0.008 (±0.00)* 0.94 (±0.03) 0.28 (±0.05) 0.42 (±0.08) 0.39 (±0.14)
60 0.05 (±0.09) 0.004 (±0.00)* 0.92 (±0.07) 0.23 (±0.05) 0.24 (±0.07) 0.13 (±0.06)
100 0.01 (±0.08) 0.003 (±0.00)* 0.92 (±0.04) 0.20 (±0.06) 0.26 (±0.10) 0.10 (±0.03)

Type 2

10 0.15 (±0.09) 0.0256 (±0.02)* 0.025 (±0.01) 0.26 (±0.07) 0.43 (±0.09) 0.10 (±0.07)
20 0.04 (±0.04) 0.016 (±0.01)* 0.01 (±0.05) 0.28 (±0.06) 0.43 (±0.09) 0.05 (±0.02)
40 0.07 (±0.08) 0.0068 (±0.00)* 0.006 (±0.01) 0.20 (±0.07) 0.05 (±0.05) 0.03 (±0.01)
60 0.008 (±0.06) 0.0058 (±0.00)* 0.005 (±0.00) 0.01 (±0.00) 0.003 (±0.00) 0.009 (±0.01)
100 0.01 (±0.10) 0.0024 (±0.00)* 0.002 (±0.02) 0.003 (±0.00) 0.004 (±0.01) 0.02 (±0.02)

ShapesAll

Type 1

10 0.60 (±0.30) 0.09 (±0.01)* 0.79 (±0.12) 0.66 (±0.05) 0.70 (±0.10) 0.55 (±0.17)
20 0.31 (±0.01) 0.03 (±0.01)* 0.74 (±0.10) 0.56 (±0.06) 0.66 (±0.08) 0.51 (±0.20)
40 0.20 (±0.23) 0.008 (±0.01)* 0.88 (±0.12) 0.45 (±0.06) 0.74 (±0.02) 0.76 (±0.19)
60 0.50 (±0.02) 0.005 (±0.00)* 0.65 (±0.08) 0.44 (±0.05) 0.72 (±0.04) 0.79 (±0.20)
100 0.002 (±0.02) 0.003 (±0.00)* 0.83 (±0.06) 0.31 (±0.09) 0.49 (±0.02) 0.48 (±0.23)

Type 2

10 0.02 (±0.03) 0.0467 (±0.03)* 0.04 (±0.15) 0.63 (±0.10) 0.50 (±0.12) 0.32 (±0.21)
20 0.04 (±0.02) 0.0132 (±0.02)* 0.013 (±0.15) 0.50 (±0.09) 0.73 (±0.08) 0.40 (±0.21)
40 0.02 (±0.00) 0.005 (±0.00)* 0.005 (±0.00) 0.40 (±0.13) 0.20 (±0.14) 0.36 (±0.20)
60 0.06 (±0.02) 0.0037 (±0.00)* 0.003 (±0.00) 0.22 (±0.13) 0.34 (±0.12) 0.46 (±0.17)
100 0.04 (±0.02) 0.0027 (±0.00)* 0.002 (±0.00) 0.005 (±0.11) 0.02 (±0.05) 0.05 (±0.00)

Rank 3.85 4.45 3 2.6 2.15 2.75
Table 1. 𝐶-𝑎𝑐𝑐 and 𝐷𝑟-𝑎𝑐𝑐 averaged accuracy for 10 runs for MTEX-CNN, ResNet, cResNet, dCNN,
dResNet and dInceptionTime over synthetic datasets..

the drop is already significant for the Type 1 dataset built from the StarLightCurve dataset, it is even
stronger for Type 2 datasets, for which ResNet fails to classify instances with a number of dimensions
𝐷 ≥ 20. On the contrary, dCNN, dResNet and dInceptionTime, which use the random permutations
in the input, are not sensitive to the number of dimensions and have an almost perfect 𝐶-𝑎𝑐𝑐 for most
of Type 1 datasets. We observe a 𝐶-𝑎𝑐𝑐 drop for dCNN, dResNet and dInceptionTime as dimensions
increase for Type 2 datasets. However, this drop is significantly less pronounced than that of ResNet.
Overall, dCNN, dResNet and dInceptionTime, which have on average the three highest ranks, are the
most accurate methods.
Regarding cResNet, although it achieves a nearly perfect C-acc for Type 1 datasets, we observe

that it fails to classify correctly instances of Type 2 datasets. As explained in Section 2, the input
data structure is not rich enough to allow comparisons among dimensions, which is the main way to

18 Paul Boniol et al.

0 .50 .7
0 .9

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 00

Ac
cu

ra
cy

Number of dimensions

ResNet cResNet dCNN dResNet dInception MTEX

0 .50 .7
0 .9

1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 00

Number of dimensions

ResNet cResNet dCNN dResNet dInception MTEX

𝑎
𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑

𝑪-𝒂𝒄𝒄
𝑜𝑛

𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐
𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠

𝑏
𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑

𝑫
𝒓-𝒂𝒄𝒄

𝑜𝑛
𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐

𝑑𝑎𝑡𝑎𝑠𝑒𝑡𝑠
3 𝑻𝒚𝒑𝒆 𝟏 𝑎𝑛𝑑 𝑻𝒚𝒑𝒆 𝟐

𝑎.
1
𝐶-
𝑎𝑐
𝑐(
𝑇𝑦
𝑝𝑒
1)

𝑎.
2
𝐶-
𝑎𝑐
𝑐(
𝑇𝑦
𝑝𝑒
2)

𝑏.
3
𝐹(
𝑇𝑦
𝑝𝑒
1,
𝑇𝑦
𝑝𝑒
2)

𝑏.
1
𝐷𝑟
-𝑎
𝑐𝑐
(𝑇
𝑦𝑝
𝑒
1)

𝑏.
2
𝐷𝑟
-𝑎
𝑐𝑐
(𝑇
𝑦𝑝
𝑒
2)

𝑏.
3
𝐹(
𝑇𝑦
𝑝𝑒
1,
𝑇𝑦
𝑝𝑒
2)

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90
Number of dimensions

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90
Number of dimensions

0.5

0.6

0.7

0.8

0.9

1

10 30 50 70 90
Number of dimensions

0

0.2

0.4

0.6

0.8

1

10 30 50 70 90
Number of dimensions

0
0.1
0.2
0.3
0.4
0.5
0.6

10 30 50 70 90
Number of dimensions

0
0.1
0.2
0.3
0.4
0.5
0.6

10 30 50 70 90
Number of dimensions

2 𝑻𝒚𝒑𝒆 𝟐1 𝑻𝒚𝒑𝒆 𝟏

Figure 7. Evaluation of the influence of the number of dimensions on our approaches and the baselines
𝐶-𝑎𝑐𝑐 and 𝐷𝑟-𝑎𝑐𝑐.

find discriminant features between the two classes of Type 2 datasets. We also observe that MTEX-
CNN fails to classify instances of Type 2 datasets. Thus, this architecture is not correctly detecting the
discriminant features across different dimensions. Overall, Figure 7(a) shows that dCNN, dResNet and
dInceptionTime are equivalent to cResNet for Type 1 (Figure 7(a.1)), outperforming all the baselines
for Type 2 (Figure 7(a.2)), and in general are better than the baselines (ResNet and cResNet) for both
types (Figure 7(a.3) with 𝐹 (𝑇𝑦𝑝𝑒 1, 𝑇 𝑦𝑝𝑒 2) = 2∗𝐶-𝑎𝑐𝑐 (𝑇𝑦𝑝𝑒 1)∗𝐶-𝑎𝑐𝑐 (𝑇𝑦𝑝𝑒 2)

𝐶-𝑎𝑐𝑐 (𝑇𝑦𝑝𝑒 1)+𝐶-𝑎𝑐𝑐 (𝑇𝑦𝑝𝑒 2)).
We now compare the different methods using the 𝐷𝑟-𝑎𝑐𝑐 measure. We observe that the baseline

cCAM (computed with cCNN) is outperforming CAM (computed with ResNet) and dCAM (with all
of dCNN, dResNet and dInceptionTime) for Type 1 datasets. This is explained by the fact that these
classes can be discriminated by treating dimensions independently. Thus, cCAM (with no comparisons
between dimensions) is naturally the best solution. Nevertheless, as Type 2 datasets require comparisons
among dimensions to discriminate the classes, cCAM fails on them, with a 𝐷𝑟-𝑎𝑐𝑐 very similar to the
one of a random classifier. This confirms that such a baseline cannot be considered as a general solution
for multivariate data series classification. We also observe that 𝐷𝑟-𝑎𝑐𝑐 of the explanation method of
MTEX-CNN (MTEX-grad) is lower than dCAM for Type 1 and close to 𝐷𝑟-𝑎𝑐𝑐 of cCAM for Type 2,
meaning that it cannot identify discriminant features of Type 2 datasets.
We then compare CAM and dCAM (used with dCNN, dResNet and dInceptionTime). We note that

dCAM significantly outperforms CAM. As depicted in Figure 7(b), we also observe that 𝐷𝑟-𝑎𝑐𝑐 reduces
for all models as the number of dimensions increases. Nevertheless, 𝐷𝑟-𝑎𝑐𝑐 of dCAM remains relatively
high for both Type 1 (Figure 7(b.1)) and Type 2 (Figure 7(b.2)) datasets (for a number of dimensions
under 60).
This result demonstrates the superiority of dCAM over state-of-the-art methods. The superiority

of dCAM is also confirmed by looking at the average ranks in Table 1, which indicates that dCAM
computed from dResNet has the highest rank of 2.15.

5. Use Case: Precursors of Anomalous Vibration Detection in Nuclear Power Plants

We now illustrate the applicability and interest of our method in a real-world application. This use case
is about discovering possible precursors of unwanted vibration happening in turbine-driven feed-water
pump systems inside French nuclear power plants. These pumps (two different pumps noted, TPA1
and TPA2) aim to increase the water pressure (from 1 to 80 bar) before passing the water through the
steam generator (with a pressure of 80 bar). However, these vibrations are problematic when the pump’s
position varies by a few microns, and a boolean sensor is activated when it happens. Thus, knowledge
experts are interested in finding if there exist possible precursors of these unwanted vibrations in other

Data-Centric Engineering 19

ARE

VVP

ASG
ADG

AHP

GSS

Condensor

GCT

Steam
generator

Turbine

Secondary circuitPrimary circuit

Cold
waterFeed-water Pumps

(TPA)
APP,AGR

GRE

KKO

AGR: feed-water pump turbine lubrication and
control fluid system
32 sensors (temperature)
APP: turbine-driven feedwater pump system
9 sensors (flow, pressure, temperature, speed)

AHP: high pressure feed-
water heater system

14 sensors (temperature)

ASG: auxiliary feed-
water system
1 sensor (temperature)

GCT: turbine bypass system
2 sensors (pressure)

GSS: moisture separator-reheater system
2 sensors (pressure and temperature)

VVP: main steam system
28 sensors

(flow, pressure, temperature)

CEX

CEX: condensate extraction system
2 sensors (pressure and temperature)

GRE: turbine governing system
2 sensors (pressure)

ADG: feed-water tank and gas
stripper system
2 sensors (water level)

KKO: energy metering system
1 sensor (power)

ARE: feed-water flow control system
30 sensors (flow, temperature, water level)

Steam

Low pressure water

High
pressure
water

𝑏 𝑴𝒖𝒍𝒕𝒊𝒗𝒂𝒓𝒊𝒂𝒕𝒆 𝒅𝒂𝒕𝒂 𝒔𝒆𝒓𝒊𝒆𝒔 (120 𝑠𝑒𝑛𝑠𝑜𝑟𝑠) 𝑐 𝒅𝑪𝑨𝑴

… … …

Vibration VibrationVib-20minVib-40minVib-60min Vib-20minVib-40minVib-60min

Possible precursors found
in two AGR sensors

𝑎 𝑺𝒆𝒄𝒐𝒏𝒅𝒂𝒓𝒚 𝒄𝒊𝒓𝒄𝒖𝒊𝒕 𝒔𝒖𝒃𝒔𝒚𝒔𝒕𝒆𝒎𝒔 𝒐𝒇 𝑭𝒓𝒆𝒏𝒄𝒉𝒏𝒖𝒄𝒍𝒆𝒂𝒓 𝒑𝒐𝒘𝒆𝒓 𝒑𝒍𝒂𝒏𝒕𝒔

Figure 8. Simplified scheme of the secondary circuit of 1300MW nuclear power plant. We collect in
total 120 sensors from 8 subsystems (solid black boxes) surrounding the feed-water pumps (TPA). Blue
arrows: water flow. Red arrows: steam flows.

sensors surrounding the pump and discovering unusual patterns that could explain why the pump is
vibrating or at least alert the imminent occurrence of vibrations.

5.1. Dataset and Use Case Description

At this point, we need to create our datasets of abnormal data series (i.e., vibrations) and anomaly-free
data series. Following the suggestion of expert knowledge, we selected 120 sensors inside 12 sub-
systems of the nuclear power plants. Figure 8(a) summarizes the sub-systems analyzed and the number
of sensors collected. We collected every unwanted vibration that happened in every French 1300MW
nuclear plant. In total, we have 444 vibrations. We then create our multivariate data series by selecting
every sensor’s measurement between 75 minutes before the vibrations and 5 minutes after. We set the
acquisition rate to 1 point every 6 seconds. Each multivariate data series contains 96,000 points. Next,
we note the set of data series containing a vibration 𝑇 𝐴

M . We then select 444 intervals of 80 minutes
for which no vibration has been recorded at least one day before and after. Finally, we note the set of
data series without any vibration 𝑇𝑁

M . We also selected the non-vibration periods to be under the same

20 Paul Boniol et al.

AGR616MT
AGR615MT
AGR606MT
AGR605MT

APP062MD
APP061MD

APP011MP
APP012MP

APP202MC

Figure 9. Aggregated activation score for dCAM per sensor for every timestamp. In red: are the names
of the sensors that are overall highly activated and possibly contain one or several precursors.

operating conditions as the vibration periods. Namely, when the nuclear facility ramps up or down
between 15% and 67% of maximum power. This area, where the second feed-water pump is coupled,
is conducive to vibrations. This is a critical step that must be conducted thoroughly. Otherwise, the
precursors that would be highlighted would be the already-known difference in operational conditions
and solicitations. In this specific case, we used the sensors related to the power regime: its distribution
is the same across both classes. We also took the same distribution of years for both classes to minimize
the influence of degradation due to aging. What we want to highlight are unexpected solicitations that
would lead to vibrations later. This will trigger immediate and cost-effective corrective actions. We thus
have in total 888 multivariate data series (for which 444 of them correspond to unwanted vibrations) of
𝐷 = 120 dimensions. In total, the dataset contains 85,248,000 points. Formally, we define the dataset
as 𝑇M = 𝑇𝑁

M ∪ 𝑇
𝐴
M , with 𝑇

𝑁
M , 𝑇 𝐴

M ∈ R
(444,120,800) .

5.2. Experimental Analysis

Overall, the task is to detect the vibration correctly and discover subsequences in one or several sensors
that happened before the vibration and could potentially explain it. We tackle this task as defined in
Problem 1 with dCNN/dCAM. Thus, we perform the following experiments. We first train dCNN to
classify 𝑇 𝐴

M and 𝑇
𝑁
M . Formally, dCNN is defined as a function 𝑓 : 𝑇NM , 𝑇AM → {N ,A}. We then use

dCAM as a function 𝑔 : 𝑇AM , 𝑓 → 𝑆 that returns the set 𝑆 of subsequences that explain the classification
as the vibration class (as the red subsequences and rectangle depicted in Figure 8(b,c)). In practice,
dCAM returns a multivariate data series score for each instance in 𝑇AM (as depicted in Figure 8(b,c)).
In Section 4.2, we have shown that dResNet is slightly more accurate than dCNN and dInceptionTime.
However, for simplicity, we used the most usual architecture dCNN as our baseline for this use case.

5.2.1. Accuracy Evaluation
We train the dCNN (we are using 5 convolutional layers with (64, 128, 256, 256, 256) filters respectively;
we are using a kernel size of 3 and a padding of 2) model on 70% of each class (𝑇𝑁

M and 𝑇
𝐴
M) and we use

the 30% left as a validation set. We set the batch size to 8 instances. We adopt an Early-stopping strategy
to avoid overfitting. More precisely, we stop the training phase when the loss on the validation set is
not reducing for the last 100 epochs. In total, we limit the training phase to 1000 epochs. It is important
to note that the model and training parameters have been set empirically and based on the technical
characteristics of our servers. More optimization with regards to the parameter selection could improve
further the accuracy. However, the parameters listed above correspond to an adequate first baseline.
Overall, over 10 random splits between training and validation sets, dCNN achieved at best 0.91

accuracy on the training set and 0.89 accuracy on the validation set. As the dCNN accuracy is high, we
can now use dCAM to identify the discriminant subsequences (i.e., possible vibration precursors).

5.2.2. Quantitative Evaluation
We then evaluate the relevance of the subsequences identified by our proposed approach dCAM. We
first start by measuring the consistency of the detection (or activation) as regards the (i) temporality (i.e.,

Data-Centric Engineering 21

𝑎 𝒅𝑪𝑨𝑴 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 𝑓𝑜𝑟 𝑇ℳ" 𝑑𝑎𝑡𝑎 𝑠𝑒𝑟𝑖𝑒𝑠
(𝑑𝑜𝑡𝑡𝑒𝑑 𝑙𝑖𝑛𝑒𝑠: 20%−𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒𝑠 𝑓𝑜𝑟 𝑒𝑎𝑐ℎ 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝𝑠)

𝑏 𝒅𝑪𝑨𝑴 𝑎𝑣𝑒𝑟𝑎𝑔𝑒𝑑 𝑠𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝑠𝑒𝑛𝑠𝑜𝑟𝑠 𝑓𝑜𝑟 𝑇ℳ" 𝑑𝑎𝑡𝑎 𝑠𝑒𝑟𝑖𝑒𝑠

Figure 10. Aggregated dCAM activation score for all sensors (a) and some specific sensors (b). Red
shades correspond to quantile intervals (0.05-0.95,0.10-0.90,0.15-0.85, etc for (a) and only 0.3-0.7,
0.4-0.6 for (b)). The solid red line is the median value for each timestamp.

are the subsequences detected close in time to the vibration?), (ii) structural information (i.e., are the
sensors closely related to the vibrating system?). As the experts are interested in discriminant features
across the entire dataset, we perform the analysis listed above on the entire 𝑇AM (i.e., for time series
included in the training and the validation set). As dCAM uses random permutations of the time series
dimensions (resulting in inputs not used in the training set), the risks related to overfitting are limited
and allow us to merge the training and validation set for this discriminant feature evaluation.
[Structural consistency]We then measure the average activation score per sensor for every timestamp.
Figure 9 depicts the activation score box plot for each sensor using dCAM.We observe that the activation
scores returned by dCAM vary significantly between different sensors. We can easily distinguish nine
sensors out of 120 sensors. These sensors correspond to temperaturemeasurements inside the feed-water
pumps (sealing temperatures noted AGR605MT, AGR615MT for TPA1, and AGR606MT, AGR616MT
for TPA2) and the outlet pump flow and pressures (noted APP011MD, APP061MP for TPA1, and
APP012MD, APP062MP for TPA2). As highlighted in Figure 8(a), AGR and APP are sub-systems
directly connected to the vibrating pump. Moreover, pressure and flow can directly influence the pump
efficiency, with low-efficiency areas conducive to vibration events. Thus, the sensors highlighted by
our proposed approach dCAM are very consistent with the knowledge from experts and the functional
structure of the plant.
[Temporal consistency]We first measure the evolution of the average activation score (for all sensors)
in time obtained by dCAM (Figure 10(a)). Figure 10 depicts the quantile values for each timestamp.
The solid red line is the median, while every dotted grey line corresponds to the 20%-quantiles. We
first observe that the average activation score is higher when the vibration occurs (red vertical line in
Figure 10). As it is unlikely to find precursors one hour before the vibration, we can thus confirm that
dCAM results are consistent regarding temporality. We then observe the average anomaly score for

22 Paul Boniol et al.

some specific sensors (highlighted in red in Figure 9) that are the most activated across all vibration
instances. We observe that, on average, all these sensors see their activation increases approximately 10
minutes before the vibrations. We thus explore in the following section the activated subsequences for
these nine sensors.

5.2.3. Qualitative Evaluation
We now analyze in detail the results returned by dCAM and discuss the information that the knowledge
experts can gain from it. We mainly focus our analysis on the nine most activated sensors (i.e., sensors
depicted in Figure 10(2)(b)). We cluster (computed with the usual k-mean using Euclidean distance) the
15 minutes long subsequences with the highest activation score for a vibration instance. The centroids
of these clusters thus represent the different shape categories within each sensor detected by dCAM.
Therefore we can limit our analysis to this reduced (but relevant) set of centroids. Figure 11(2) depicts
the 15 minutes long subsequences clusters in the nine sensors mentioned above. For each cluster, the
time distribution histogram is displayed below. We first notice that the majority of the subsequences
(for all clusters) happened while the vibration is detected (such as, for instance, the cluster depicted in
Figure 11(2)(b.2)). As understood by the experts, these subsequences correspond to a specific action
(such as an increase or decrease of the water flow through the feed-water pump to either increase or
decrease the power generated by the plant) that could lead to vibrations but that are not avoidable. Thus
dCAM first permits the expert to confirm and visualize which subsequences are directly correlated
to the vibration. Then, several subsequences detected by dCAM are anterior to the vibration (such as
Figure 11(2)(a.2),(a.3),(b.1),(c.1),(c.2),(e.1),(g.3)). These subsequences could correspond to precursors
of the vibration and would require to be carefully inspected by the experts. For instance, knowledge
experts conclude that clusters such as in Figure 11(2)(e.1.1) correspond to unusual variations of the
sealing temperature of the pump and lead them to investigate specific examples in detail. Overall, our
proposed approach dCAM permits the experts to build a dictionary of patterns that can be related to a
targeted anomaly. Thus the investigation by the expert could be significantly reduced.
Finally, the patterns depicted in Figure 11(2) can be connected based on their co-occurrence in

time. As a result, Figure 11(1) displays a graph in which nodes and edges are defined as follows:
nodes correspond to activated subsequences clusters (with part of them illustrated in Figure 11(2)),
edges weights (proportional to the line width) correspond to the number of times a subsequence of
one cluster happened at the same time as a subsequence in another cluster. Thus, in Figure 11(1), we
observe two distinct communities of sensors. The right community corresponds mainly to sensors from
the ARE and VVP sub-systems. On the other hand, the most significant community (i.e., on the left
side of Figure 11(1)) are subsequences from the AGR and APP sub-systems. These subsequences are
mainly those illustrated in Figure 11(2). For instance, we learn from this graph that the patterns in
Figure 11(2)(a.1.1), (d.1.1), (i.2.1), and (b.2.1) co-occurred very often before or during a vibration.
Thus, such a graph can highlight more complex relationships between potential precursors.

6. Conclusions and Future Work

Even though data series classification using deep learning has attracted a lot of attention, existing
techniques for explaining classification decisions fail in the case of multivariate data series. In this
work, we describe a novel approach, dCAM, based on convolutional neural networks, which enables
us to detect the discriminant subsequences within individual dimensions of a multivariate data series.
The experimental evaluation with synthetic and real datasets demonstrates the benefits and superiority
of our approach in discriminant feature discovery and classification explanation in multivariate time
series. Our real use case applied to the nuclear power plants domain verifies the applicability and the
interest of our solution. In future work, we plan to study in detail the effect that using permutations in
the input has on the overall approach.

Funding Statement. Work supported by EDF R&D and ANRT French program.

Data-Centric Engineering 23

𝑎 𝑨𝑮𝑹𝟔𝟏𝟔𝑴𝑻:𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝

𝑎. 1.1

𝑎. 1.2

𝑎. 2.1

𝑎. 2.2

𝑎. 3.1

𝑎. 3.2

𝑏 𝑨𝑷𝑷𝟎𝟔𝟐𝑴𝑷:𝑊𝑎𝑡𝑒𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑒𝑥𝑖𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝

𝑏. 1.1

𝑏. 1.2

𝑏. 2.1

𝑏. 2.2

𝑏. 3.1

𝑏. 3.2

𝑐 𝑨𝑷𝑷𝟎𝟏𝟏𝑴𝑫:𝑊𝑎𝑡𝑒𝑟 𝑓𝑙𝑜𝑤 𝑒𝑥𝑖𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝

𝑐. 1.1

𝑐. 1.2

𝑐. 2.1

𝑐. 2.2

𝑐. 3.1

𝑐. 3.2

𝑑 𝑨𝑷𝑷𝟐𝟎𝟐𝑴𝑪:𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝 𝑒 𝑨𝑮𝑹𝟔𝟎𝟓𝑴𝑻:𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝 𝑓 𝑨𝑮𝑹𝟔𝟎𝟔𝑴𝑻:𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝

𝑔 𝑨𝑮𝑹𝟔𝟏𝟓𝑴𝑻:𝑇𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 𝑖𝑛𝑠𝑖𝑑𝑒 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝 ℎ 𝑨𝑷𝑷𝟎𝟔𝟏𝑴𝑷:𝑊𝑎𝑡𝑒𝑟 𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑒𝑥𝑖𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝 𝑖 𝑨𝑷𝑷𝟎𝟏𝟐𝑴𝑫:𝑊𝑎𝑡𝑒𝑟 𝑓𝑙𝑜𝑤 𝑒𝑥𝑖𝑡𝑖𝑛𝑔 𝑡ℎ𝑒 𝑝𝑢𝑚𝑝

𝑑. 1.1

𝑑. 1.2

𝑑. 2.1

𝑑. 2.2

𝑑. 3.1

𝑑. 3.2

𝑔. 1.1

𝑔. 1.2

𝑔. 2.1

𝑔. 2.2

𝑔. 3.1

𝑔. 3.2

𝑒. 1.1

𝑒. 1.2

𝑒. 2.1

𝑒. 2.2

𝑒. 3.1

𝑒. 3.2

ℎ. 1.1

ℎ. 1.2

ℎ. 2.1

ℎ. 2.2

ℎ. 3.1

ℎ. 3.2

𝑓. 1.1

𝑓. 1.2

𝑓. 2.1

𝑓. 2.2

𝑓. 3.1

𝑓. 3.2

𝑖. 1.1

𝑖. 1.2

𝑖. 2.1

𝑖. 2.2

𝑖. 3.1

𝑖. 3.2

𝑎. 1.1

𝑑. 1.1𝑖. 2.1

𝑏. 2.1

ℎ. 1.1

𝑒. 2.1

𝑓. 2.1

1
𝑪𝒐
-𝒐
𝒄𝒄
𝒖𝒓
𝒆𝒏
𝒄𝒆
𝑮
𝒓𝒂
𝒑𝒉
:

𝐺𝑟
𝑎𝑝
ℎ
𝑖𝑛
𝑤
ℎ𝑖
𝑐ℎ
𝑛𝑜
𝑑𝑒
𝑠
𝑐𝑜
𝑟𝑟
𝑒𝑠
𝑝𝑜
𝑛𝑑

𝑡𝑜
𝑎𝑐
𝑡𝑖𝑣
𝑎𝑡
𝑒𝑑
𝑠𝑢
𝑏𝑠
𝑒𝑞
𝑢𝑒
𝑛𝑐
𝑒𝑠
𝑐𝑙
𝑢𝑠
𝑡𝑒
𝑟𝑠
𝑎𝑛
𝑑
𝑒𝑑
𝑔𝑒
𝑠
𝑤
𝑒𝑖
𝑔ℎ
𝑡𝑒
𝑞𝑢
𝑎𝑙
𝑡𝑜

𝑡ℎ
𝑒
𝑛𝑢
𝑚
𝑏𝑒
𝑟𝑜
𝑓
𝑡𝑖𝑚

𝑒𝑠
𝑡𝑤
𝑜
𝑠𝑢
𝑏𝑠
𝑒𝑞
𝑢𝑒
𝑛𝑐
𝑒𝑠
ℎ𝑎
𝑝𝑝
𝑒𝑛
𝑒𝑑
𝑎𝑡
𝑡ℎ
𝑒
𝑠𝑎
𝑚
𝑒
𝑡𝑖𝑚

𝑒

(2
)
𝑨𝒄
𝒕𝒊
𝒗𝒂
𝒕𝒆
𝒅
𝒔𝒖
𝒃𝒔
𝒆𝒒
𝒖𝒆
𝒏𝒄
𝒆𝒔
𝒄𝒍
𝒖𝒔
𝒕𝒆
𝒓𝒔
𝒑𝒆
𝒓
𝒔𝒆
𝒏𝒔
𝒐𝒓

𝑓𝑜
𝑟𝑡
ℎ𝑒
𝑛𝑖
𝑛𝑒
𝑚
𝑜𝑠
𝑡𝑎
𝑐𝑡
𝑖𝑣
𝑎𝑡
𝑒𝑑
𝑠𝑒
𝑛𝑠
𝑜𝑟
𝑠

Figure 11. (1) Co-occurrence graph connecting the activated subsequences clusters based on their co-
occurrence in time. Subsequences clusters (*.*.1) (and their time distribution compared to the vibration
timestamps (*.*.2)) detected as precursors of vibration by dCAM for the nine most activated sensors.

24 Paul Boniol et al.

Competing Interests. Paul Boniol was employed at EDF R&D and received grants from EDF R&D, Mohammed Meftah and
Emmanuel Remy are employed at EDFR&D. BrunoDidier is employed at EDF. Themis Palpanas received grants fromEDFR&D.

Data Availability Statement. The data and code supporting this study’s findings are openly available on GitHub. The code to
reproduce the synthetic experiments can be found here: https://github.com/boniolp/dCAM. Restrictions apply to the availability
of the data related to the industrial use case described in this paper.

Ethical Standards. The research meets all ethical guidelines, including adherence to the legal requirements of the study country.

Author Contributions. Conceptualization: Paul Boniol; MohammedMeftah; Emmanuel Remy; Themis Palpanas A.B. Method-
ology: Paul Boniol; A.B. Data curation: Paul Boniol; Mohammed Meftah; Bruno Didier Data visualisation: Paul Boniol;
Mohammed Meftah Writing original draft: Paul Boniol; Mohammed Meftah; Emmanuel Remy; Themis Palpanas.

References
[1] T. Palpanas, Data series management: The road to big sequence analytics, SIGMOD Rec. 44 (2) (2015) 47–52.
[2] A. J. Bagnall, R. L. Cole, T. Palpanas, K. Zoumpatianos, Data series management (dagstuhl seminar 19282), Dagstuhl
Reports 9 (7) (2019).

[3] L. Jakovljevic, D. Kostadinov, A. Aghasaryan, T. Palpanas, Towards building a digital twin of complex system using causal
modelling, in: R. M. Benito, C. Cherifi, H. Cherifi, E. Moro, L. M. Rocha, M. Sales-Pardo (Eds.), Complex Networks &
Their Applications X, Springer International Publishing, Cham, 2022, pp. 475–486.

[4] Q. Wang, T. Palpanas, Deep Learning Embeddings for Data Series Similarity Search, in: SIGKDD, 2021.
[5] J. Paparrizos, Y. Kang, P. Boniol, R. Tsay, T. Palpanas, M. J. Franklin, TSB-UAD: an end-to-end benchmark suite for
univariate time-series anomaly detection, Proc. VLDB Endow. 15 (8) (2022) 1697–1711.

[6] P. Boniol, J. Paparrizos, Y. Kang, T. Palpanas, R. S. Tsay, A. J. Elmore, M. J. Franklin, Theseus: Navigating the labyrinth
of subsequence anomaly detection, Proc. VLDB Endow. 15 (12) (2022).

[7] J. Paparrizos, P. Boniol, T. Palpanas, R. S. Tsay, A. J. Elmore, M. J. Franklin, Volume under the surface: A new accuracy
evaluation measure for time-series anomaly detection, Proc. VLDB Endow. (2022).

[8] V. Barnet, T. Lewis, Outliers in Statistical Data, John Wiley and Sons, Inc., 1994.
[9] S. Subramaniam, T. Palpanas, D. Papadopoulos, V. Kalogeraki, D. Gunopulos, Online outlier detection in sensor data using
non-parametric models, in: Proceedings of the 32nd International Conference on Very Large Data Bases, 2006, 2006.

[10] C. M. Yeh, Y. Zhu, L. Ulanova, N. Begum, Y. Ding, H. A. Dau, D. F. Silva, A. Mueen, E. J. Keogh, Matrix profile I: all pairs
similarity joins for time series: A unifying view that includes motifs, discords and shapelets, in: ICDM, 2016, pp. 1317–1322.

[11] M. M. Breunig, H.-P. Kriegel, R. T. Ng, J. Sander, Lof: Identifying density-based local outliers, in: SIGMOD, 2000.
[12] F. T. Liu, K. M. Ting, Z.-H. Zhou, Isolation forest, in: ICDM, ICDM, 2008.
[13] P. Senin, J. Lin, X. Wang, T. Oates, S. Gandhi, A. P. Boedihardjo, C. Chen, S. Frankenstein, Time series anomaly discovery

with grammar-based compression, in: EDBT, 2015.
[14] E. Keogh, S. Lonardi, C. A. Ratanamahatana, L. Wei, S.-H. Lee, J. Handley, Compression-based data mining of sequential

data, Data Mining and Knowledge Discovery (2007).
[15] Y. Liu, X. Chen, F. Wang, Efficient Detection of Discords for Time Series Stream, Advances in Data and Web Management

(2009) 629–634.
[16] H. Ma, B. Ghojogh, M. N. Samad, D. Zheng, M. Crowley, Isolation mondrian forest for batch and online anomaly detection

(2020).
[17] P. Boniol, T. Palpanas, Series2graph: Graph-based subsequence anomaly detection for time series, Proc. VLDB Endow.

13 (11) (2020).
[18] P. Boniol, M. Linardi, F. Roncallo, T. Palpanas, M. Meftah, E. Remy, Unsupervised and scalable subsequence anomaly

detection in large data series, The VLDB Journal (2021).
[19] M. Christ, N. Braun, J. Neuffer, A. W. Kempa-Liehr, Time series feature extraction on basis of scalable hypothesis tests

(tsfresh – a python package), Neurocomputing 307 (2018) 72–77.
[20] M. Christ, A. W. Kempa-Liehr, M. Feindt, Distributed and parallel time series feature extraction for industrial big data

applications, arXiv preprint arXiv:1610.07717 (2016).
[21] B. E. Boser, I. M. Guyon, V. N. Vapnik, A training algorithm for optimal margin classifiers, in: Proceedings of the Fifth

Annual Workshop on Computational Learning Theory, COLT ’92, Association for Computing Machinery, New York, NY,
USA, 1992, p. 144–152.

[22] H. Zhang, The optimality of naive bayes, in: The Florida AI Research Society, 2004.
[23] G. E. Hinton, Connectionist learning procedures, Artif. Intell. 40 (1989) 185–234.
[24] Y. Freund, R. E. Schapire, A decision-theoretic generalization of on-line learning and an application to boosting, in:

Proceedings of the Second European Conference on Computational Learning Theory, EuroCOLT ’95, Springer-Verlag,
Berlin, Heidelberg, 1995, p. 23–37.

[25] T. K. Ho, Random decision forests, in: Proceedings of 3rd International Conference on Document Analysis and Recognition,
Vol. 1, 1995, pp. 278–282 vol.1.

https://github.com/boniolp/dCAM

Data-Centric Engineering 25

[26] M. T. Ribeiro, S. Singh, C. Guestrin, "why should i trust you?": Explaining the predictions of any classifier, in: Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’16, Association for
Computing Machinery, New York, NY, USA, 2016, p. 1135–1144.

[27] S. M. Lundberg, S.-I. Lee, A unified approach to interpreting model predictions, in: Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, Curran Associates Inc., Red Hook, NY, USA, 2017, p.
4768–4777.

[28] H. A. Dau, A. Bagnall, K. Kamgar, C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana, E. Keogh, The ucr time series
archive, IEEE/CAA J. Automatic. 6 (6) (2019).

[29] A. Bagnall, J. Lines, J. Hills, A. Bostrom, Time-series classification with cote: The collective of transformation-based
ensembles, IEEE TKDE 27 (2015).

[30] J. Lines, S. Taylor, A. Bagnall, Hive-cote: The hierarchical vote collective of transformation-based ensembles for time series
classification, in: IEEE ICDM, 2016.

[31] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.-A. Muller, Deep learning for time series classification: A review,
Data Min. Knowl. Discov. 33 (4) (2019).

[32] Z. Cui, W. Chen, Y. Chen, Multi-scale convolutional neural networks for time series classification, CoRR (2016).
[33] Y. Zheng, Q. Liu, E. Chen, Y. Ge, J. L. Zhao, Time series classification using multi-channels deep convolutional neural

networks, in: WAIM, 2014.
[34] B. Zhao, H. Lu, S. Chen, J. Liu, D. Wu, Convolutional neural networks for time series classification, J. Syst. Eng. Electron.

28 (1) (2017).
[35] A. Le Guennec, S. Malinowski, R. Tavenard, Data Augmentation for Time Series Classification using Convolutional Neural

Networks, in: ECML/PKDD on AALTD Workshop, 2016.
[36] J. Wang, Z. Wang, J. Li, J. Wu, Multilevel wavelet decomposition network for interpretable time series analysis, ACM

SIGKDD (2018).
[37] H. Chen, F. Tang, P. Tino, X. Yao, Model-based kernel for efficient time series analysis, in: ACM SIGKDD, 2013.
[38] Z. Wang, W. Yan, T. Oates, Time series classification from scratch with deep neural networks: A strong baseline, in: IJCNN,

2017.
[39] B. Zhou, A. Khosla, L. A., A. Oliva, A. Torralba, Learning Deep Features for Discriminative Localization., CVPR (2016).
[40] V. Nair, G. E. Hinton, Rectified linear units improve restricted boltzmann machines, in: ICML, 2010.
[41] B. Xu, N. Wang, T. Chen, M. Li, Empirical evaluation of rectified activations in convolutional network, Deep Learning

Workshop, ICML (2015).
[42] A. Krizhevsky, I. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural networks, Communications

of the ACM 60 (2012).
[43] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature 521 (2015).
[44] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, in: ICLR, 2015.
[45] J. Serrà, S. Pascual, A. Karatzoglou, Towards a universal neural network encoder for time series, in: CCIA, 2018.
[46] H. Ismail Fawaz, B. Lucas, G. Forestier, C. Pelletier, D. Schmidt, J. Weber, G. Webb, L. Idoumghar, P. Muller, F. Petitjean,

Inceptiontime: finding alexnet for time series classification, Data Mining and Knowledge Discovery 34 (2020) 1936–1962.
[47] A. A. Ismail, M. K. Gunady, H. C. Bravo, S. Feizi, Benchmarking deep learning interpretability in time series predictions,

in: NeurIPS 2020, 2020.
[48] T.-Y. Hsieh, S. Wang, Y. Sun, V. Honavar, Explainable multivariate time series classification: A deep neural network which

learns to attend to important variables as well as time intervals, in: Proceedings of the 14th ACM International Conference
on Web Search and Data Mining, WSDM ’21, 2021, p. 607–615.

[49] R. Assaf, I. Giurgiu, F. Bagehorn, A. Schumann, Mtex-cnn: Multivariate time series explanations for predictions with
convolutional neural networks, in: 2019 IEEE International Conference on Data Mining (ICDM), 2019, pp. 952–957.

[50] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: Visual explanations from deep networks
via gradient-based localization, in: 2017 IEEE International Conference on Computer Vision (ICCV), 2017, pp. 618–626.

[51] V. Jacob, F. Song, A. Stiegler, B. Rad, Y. Diao, N. Tatbul, Exathlon: A benchmark for explainable anomaly detection over
time series, Proc. VLDB Endow. 14 (11) (2021) 2613–2626.

[52] dCAM source code, https://github.com/boniolp/dCAM (2022).
[53] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison,

A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, S. Chintala, Pytorch: An
imperative style, high-performance deep learning library, in: NeurIPS, Vol. 32, 2019.

[54] J. Davis, M. Goadrich, The relationship between precision-recall and roc curves, in: Proceedings of the 23rd International
Conference on Machine Learning, ICML ’06, 2006, p. 233–240.

[55] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, P.-A. Muller, Evaluating surgical skills from kinematic data using
convolutional neural networks, in: MICCAI, 2018.

https://github.com/boniolp/dCAM

	Introduction
	Anomaly Detection Primer
	Supervised Detection of Anomaly Precursors
	Limitations of Previous Approaches
	Contributions

	Background and Related Work
	Convolutional-based Neural Network
	Class Activation Map (CAM)
	CAM Limitations for Multivariate Series

	Proposed Approach
	Dimension-wise Architecture
	A first Architecture: dCNN
	Variant Architectures: dResNet and dInceptionTime
	Dimension-wise Class Activation Map
	Random Permutation Computations
	Merging Permutations
	dCAM Extraction

	Time Complexity Analysis
	Training step
	dCAM step

	Further Observations
	Permutations Success as a Proxy
	From Local to Global Explanations
	Limitations: The Dimension Order Problem
	Limitations: Large Number of Dimensions
	Limitations: CAM-related constraints

	Classification Experimental Evaluation
	Experimental Setup
	Datasets
	Evaluation Measures
	Architectures and Training

	Accuracy Evaluation

	Use Case: Precursors of Anomalous Vibration Detection in Nuclear Power Plants
	Dataset and Use Case Description
	Experimental Analysis
	Accuracy Evaluation
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusions and Future Work

