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Abstract—In several concept attainment systems, ranging
from recommendation systems to information filtering, a sliding
window of learning instances has been used in the learning
process to allow the learner to follow concepts that change
over time. However, no analytic study has been performed on
the relation between the size of the sliding window and the
performance of a learning system. In this work, we present
such an analytic model that describes the effect of the sliding
window size on the prediction performance of a learning
system based on iterative feedback. Using a signal-to-noise
approach to model the learning ability of the underlying
machine learning algorithms, we can provide good estimates
of the average performance of a modeling system indepen-
dently of the supervised machine learning algorithm employed.
We experimentally validate the effectiveness of the proposed
methodology with detailed experiments using synthetic and
real datasets, and a variety of learning algorithms, including
Support Vector Machines, Naive Bayes, Nearest Neighbor and
Decision Trees. The results validate the analysis and indicate
very good estimation performance in different settings.
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I. INTRODUCTION

In the literature it has been argued [1] that machine
learning methods are not sufficient to perform such tasks
as user-modeling. This statement expresses the inability of
several classifiers to detect changing context (e.g., a user’s
preferences), that causes changes in the interest-indicative
concept that needs to be targeted by a classification algo-
rithm. It is exactly this implied change of context, its effects
on classification, and the evolution of learning methods in
order to tackle the change that have been studied in the
machine learning community as the problem of “concept
drift”, which takes into account any concept that changes
over time. Drifting concepts appear in a variety of settings
in the real world, e.g., the state of a free market or the
traits of the most viewed movie. Even though there have
been a number of methodologies to either track or react
to concept drift, there has been little analytic work on
the connection between the performance of learning and
the learning window, i.e., the number of recent instances
a learner should remember to keep track of the drifting
concept. Most existing works rely on experimental results
and heuristic rules to determine the window parameter and
optimize the learners’ performance.

In contrast, we propose a systematic approach that allows
us to estimate the average performance of learning algo-
rithms for a range of learning window sizes and concept
drift frequencies, within a learning task in the presence of
concept drift. This approach implies a way to optimize the
window size for incremental learning tasks and provides the
basis for further analytic study of the connection between
average performance of an incremental learning system and
the noise in the training set. The questions we answer with
this study are the following.

« How can we model the expected performance of learn-
ing algorithms based on knowledge of the characteris-
tics of the abrupt concept drift (also termed “concept
shift”), such as the period of occurrence of these drifts?

o« How can we estimate the performance of a learner
for different window sizes and concept change periods,
regardless of the underlying learning algorithm?

To answer these questions, we focus on the functional rela-
tion between the window size and the average performance
of a learning system. We formulate the problem under the
label “the problem of the demanding lord”, emphasizing
on its user modeling aspect. Then, we propose a generic
methodology that allows to a-priori estimate a function of
the window size that computes average performance of a
learning system in the presence of periodic concept shifts.
In the experimental section (Section V) we also provide
promising results for non-periodic shift in real-world data.

To realize this methodology we show that one can ap-
proximately express the average performance of a system as
a function of signal-to-noise ratio, referring to the training
instances in the memory window. Then, for a given period
of abrupt concept drift, we analytically express the signal-
to-noise ratio at each moment in time as a function of the
selected learning window size.

In summary, we make the following contributions. We
offer a formulation and analytic solution of the problem
of estimating the average performance in learning systems
in the presence of abrupt concept drift (concept shift). We
describe a methodology to approximately estimate — and
consequently easily optimize — the performance of a learn-
ing algorithm as a function of signal-to-noise in the training



set, regardless of the learning algorithm idiosyncrasies. To
the best of our knowledge, this is the first systematic
approach for estimating the average performance of learning
algorithms in this setting.

In the following sections, we present the related work
(Section II) on concept drift and we formulate the problem
we face within this work (Section III). We then describe the
proposed analytic methodology that describes the average
performance of a learning algorithm as a function of its
memory window size. Then, we experimentally validate the
analysis (Section V) and we conclude with a discussion on
our findings (Section VI).

II. RELATED WORK

There have been several studies with different assump-
tions on the speed or type of drift. The drift can be gradual
(termed drift”), or instantaneous (termed “abrupt drift” or
”shift”). It can also be caused by a real change of context
(real drift) or by the change on the distribution of arriving
instances of the — otherwise fixed distribution — target
class (virtual drift). The systems and learning algorithms
then react in different ways to the drift, sometimes using
fixed window sizes, adaptive window sizes or simply no
window. The no window case means that either the algorithm
uses all the available information (full-memory) or only
the last given information (no-memory). In the following
paragraphs we elaborate on the literature, taking into account
these aforementioned distinctions, where applicable.

In an early work, the problem of “concept attainment”
in the presence of noise was indicated and studied in the
STAGGER system [2]. The system approximated a (boolean
expression) concept based on examples through weighted
symbolic characterizations. The reaction to concept drift
was a backtracking methodology that allows changing the
current description of the target concept to account for
the drift. From that time on a multitude of systems have
appeared facing the problem of change in a target learned
concept, many of them in the incremental learning domain,
which has been studied since the late 80’s [3]. In [4] a
full-memory incremental-learning speed-efficient system is
presented, aiming to find concept descriptions that are both
characteristic (wide coverage) and discriminative (high pre-
cision). This work, does not aim to provide a new algorithm
for concept attainment, but supports concept attainment
processes, allowing optimization of the learning window size
regardless of underlying learning algorithm.

A focused study of the mistake rate of a learning algo-
rithm that updates its estimate based on the most recent
examples [5] identifies bounds for this rate, based on the
number of recent examples. In this work, the adaptation to
concept drift over time is termed “incremental tracking”.
In [6], another heavily theoretic study, the authors study the
problem of tracking a subset of a domain (called the target)
which changes gradually over time, under the assumption

that the drift occurs slowly. The work connects the VC-
dimension (d) of the class of possible targets to the diffi-
culty of attaining the target concept, finally indicating the
sampling rate that makes a concept drift trackable. Drift has
also appeared as a function of time [7], where a parameter
indicates the speed of the drift. Our work is the first to study
the learning process in the presence of concept drift from
the aspect of signal-to-noise in the training set analytically.

In later works, we find approaches where either hard-
coded thresholds are used [8] based on trial-and-error, or
the window is adjusted whenever a shift is detected [9].
In [7], in order to deal with the drift the authors describe
a heuristic algorithm (Window Adjustment Heuristic) that
adjusts window size, but they state that the algorithm re-
quires optimization, as its performance affects the entire
system strongly. A heuristic approach to deal with concept
drift is also described in [10], where we can also find a
study of fixed and adaptive windows. Gradual forgetting [11]
has also been used, by weighting observations based on the
distance of their iteration (time) of appearence to the current
system iteration. Another approach uses small sequences
(batches) of statistically significant size to estimate, using
a statistical test, the performance of the classifier over
running data [12]. On a drift detection event, a window-
size optimization procedure using the Golden Section algo-
rithm [13] is performed. An alternative window-size opti-
mization approach based on the “optimal switch point of
two Gaussian classes” [14] uses the analytics expression of
classifier error-rate, to calculate the optimal window size
based on a “maximum likelihood”-estimated critical point
of drift occurence in the case of frequent abrupt change.

Recently, researchers have also used “local windows”
in sub-parts of models, as in [15] where an incremental
decision tree uses local sub-concept adaptive window sizes.
The local window size is adjusted based on a local per-
formance measure, based on instantaneous performance of
the sub-concept classifier. Another approach uses multiple
competing windows of different sizes [16], that try to tackle
the problem of differentiating noise from virtual drift from
actual concept drift.

Other approaches use a window differently or not at
all. In [17] we find a distinction between short- and long-
term changes in user interests for information filtering, in
a feedback-based system. However, no window is used;
instead, for short-term updating, interest weights are updated
on every iteration, which means that prompt shifts are
actually not tackled. The long-term interests are calculated
as the average of all interest feedback given by the user
per topic. In [18], the proposed system learns based on
extreme examples and batch learning. Ensemble based ap-
proaches exist, such as the case of boosting [19] which
uses only last batches of instances to determine dynamically
the training instances per iteration. The base classifiers
are also continuously reweighted and updated. In [20] a



Concept Drift Committee (CDC) of decision trees vote for
the current classification of instances and each decision
tree classifier remains used until its voting record efficiency
is reduced below a given threshold. Another approach for
high-speed learning in data streams, namely the CVFDT
algorithm [21], builds upon the VFDT decision tree learner,
updating statistics of subtrees and the set of used subtrees
based on a recent window of examples. The window size
is static, but the authors indicate that it would be important
to dynamically adjust the size. In [22] two classifiers are
used, one with full memory and one with partial memory
(fixed memory w), in a paired learning approach. The full-
memory learner is used to learn the current concept, while a
reactive learner is used to define key time-points, where the
full-memory learner is to be reset and start learning again. In
[23], an EM algorithm is used to assign weights to ensemble
classifiers, which are created and disposed with the passing
of time, in order to adapt to concept drift.

In this work, we provide an analytic framework that
allows the a-priori estimation of an optimal window size
for the case of periodic concept shifts, overcoming the
heuristic or algorithm-specific approaches of the literature.
This simplified methodology means to provide the basis for
efficient optimization of window sizes in online learning. A
major contribution, other than the analysis itself, is based
on the proposal of a signal-to-noise function (see Section
IV-A) describing the connection between noisy input and
the performance of a learning algorithm. The estimation of
this function allows one to optimize the window size without
explicit knowledge of the learning algorithm, based on an
estimation step that captures the behavior of any learning
algorithm in the presence of noise.

The methodology presented in the next paragraphs holds
for classification tasks. The learning algorithms supported
include the supervised learning algorithms, e.g., Naive
Bayes, SVMs, Decision Trees, or Nearest Neighbor (see the
experimental section, Section V for the related experiments),
because no restrictive assumptions are made for the details
of the learners.

III. PROBLEM FORMULATION

We call the problem we analyze the “problem of the
demanding lord”. The idea is that there is a demanding lord
that requires a meal every day from his good servant. The
servant tries to estimate a classification of the meals his lord
likes, based on his reactions to previous meals. Each day the
servant offers a set of meals and gets the full set of reactions
from the lord as feedback. The lord, however, changes his
preferences randomly. We want to determine how many of
the lord’s latest answers the servant needs to remember, in
order to offer the lord the most satisfactory meals on average
over time. It is important to note that we allow the servant to
have his own way of learning based on his lord’s answers.

The analogy to the actual user modeling problem is the
following. The user W is the demanding lord. The user
modeling system H is the servant. A day identified by
its number d,d € N*, counted from the beginning of the
servant’s arrival, is a system iteration. The meal G is the
information that has to be evaluated by the user model. The
preference A of the lord to a meal is the feedback to the
system, concerning a given meal. We consider this to be
a value taken from a set A. The way the servant learns,
or training policy P, is the machine learning algorithm or
methodology used by the user modeling system. The number
r of the lord’s reactions, which the servant remembers when
training, which we call memory window size. Since the
servant remembers the last r reactions, this memory window
is sliding over time. The period of shift T is the time of
days (iterations) that (are expected to) pass between two
consequtive interest shifts. In the case of random shifts, 7
can be approximated by the expected value of days between
two consecutive interest shifts.

We can differentiate servants from their policy of learning
P and by the number of reactions r they take into account.
The finite-memory servant remembers the last r reactions
only. The all-remembering servant remembers all his lord’s
reactions. The all-remembering servant is a special case of
the finite-memory servant one with » — oo. Therefore, a
servant can be described as the pair H =< P, r >. The lord
can be described based on the probability distribution p(d)
of an occuring shift, over the days elapsed from the last
shift: W =< p(d) >.

We make some assumptions that facilitate the representa-
tion of the problem:

o The lord W periodically changes his interests through
what we call an interest shift, or simply shift. This
implies that:

p(d) =1, if d = kT, k € N* else p(d) = 0.

o A shift is radical, so that no information is valid
concerning reactions on the previous sets of meals. This
makes sure that we know which part of the information
we have is useful, based on the knowledge of the last
interest shift that has occurred.

For a given day d and a set of offered meals Gy =
{G1,G2,Gs,...,G,},n > 0 the set of the lord’s reactions
on that day is Ay = {41, Aa, ..., A, } containing the reac-
tions mapped to each one of the n meals.

In the following elaboration we refer to Figure 2 to
visualize the described states. In Figure 1 we provide
the explanation-legend of the corresponding symbols. Each
given day d., the servant H uses the r last feedback sets
(see Figure 2) Ag. _,,Aq,_r41,...,Ag.—1 to learn, using
his training policy P, to estimate meals. We call this set
of feedback sets the training set T of the servant. In a
given point it time d. the servant is trained using only valid
information (the white circles in Figure 2), if within the last
r days, no shift has occurred. Otherwise, if a shift occurred
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Figure 2. The validity of training data over time. When the current day is
after an interest shift, all data before the interest shift become invalid (i.e.,
noise).

on day d,, before the current day d., d. — ds < r, then
the servant has some no longer valid feedback set N C T
(noise, shown as black circles in Figure 2) and some valid
S C T (signal), and T = SUN. The period of the shift will
be noted as T, i.e., every shift happens exactly T, days
after the previous one. The first interest shift happens on
day d = T,. We start with this assumption of periodicity,
to facilitate the formulation of the problem. Later, we verify
whether the results of our analysis are also valid for random
shift frequency.

If || is the operator of the size of a training (sub)set, then
we let S = |S| and N = |N]| represent the signal magnitude
and the noise magnitude of a training set T. We also allow
S=0=SS=0N=T= N = r, when all the training
set is not valid any longer because a shift has just occurred.
Correspondingly, N=(0 = N =0,S=T = S = r, when
no change has occurred within the last r days (fore more
intuition on why this is the case see Figure 2).

Given the above definitions, we define the signal to noise
ratio Z of a given moment in time, as:

7 = log% ~log'S — log’ N (1

where log’x = log(1 + z) returns for a given x the natural
logarithm of x + 1, to return a value also for x = 0.

Let us consider that the servant training set size r is a
ratio p of the shift period T:

r=pT; @

We call this ratio p, i.e., the memory window-to-shift
period ratio, characteristic ratio of a given servant H. For

a given servant, H and a given lord W we support that
the servant’s average performance on predicting the prefer-
ences of the lord is a function f(W,H, p) or, equivalently,
f(p(d),P, p). This means that we consider the performance
to be a function of the shift probability distribution, the
learning algorithm and the characteristic ratio.

IV. ANALYSIS OF WINDOW SIZE EFFECT ON
PERFORMANCE IN A CONCEPT DRIFT SETTING

We perform an analysis of the effect of the memory
(window) size of a learner on its performance, in the
presence of concept drift. The analysis is based on the
estimation of a function connecting signal-to-noise in the
training set to the expected performance of a given learner.
The estimation process is described in Section IV-A. Then,
given the estimated function, an analysis of the mathematic
relation between the window size of a learner and the signal-
to-noise ratio for every iteration of a modeling system with
periodic concept shifts allows the estimation of the average
performance of the learning system over time.

The described analysis can be used, in conjunction with
concept shift detection methods (e.g., [24]) or various related
shift indicators (see [10] for an overview of indicators) to
optimize the p parameter, for a given user and learning
algorithm.

A. The Characteristic Transfer Function of a Learning
Algorithm

To describe the P component of the predictive function
f(p(d),P, p), we consider that each learning algorithm is
described by a function which indicates the impact of signal-
to-noise ratio in the training set to the performance of
the algorithm. Given that an algorithm has a minimum
performance of m and a maximum performance of M for a
given domain, then we argue that the function that describes
the average performance f as a function of the signal-to-
noise ratio Z, is of the form:

- B 1
f(Z):m+(M*M)1+bxemp(—C><Z)

3)

where exp(r) = e and the constants b € R,¢c € R are
parameters of the sigmoid function. We call the f function
the characteristic transfer function (CTF) of the learning
algorithm. In the case where m = 0, M = 1, Equation 3
takes the form

Tx(2) !

- 14+ b x exp(—c x Z)

“4)

which we call the normal characteristic transfer function
(NCTF) and it represents a normalized version of the CTF.

The intuition behind the sigmoid is based on the fact that
a (non-trivial) learning algorithm starts to perform well after
a certain ratio of good to bad examples has been observed.
From that moment on, the performance of the algorithm



constantly improves as the ratio is improved, until the point
where the best performance is reached. Then, no matter how
much the ratio of good to bad examples increases, there is
little change, because the algorithm cannot do much better,
due to its generalization property. We consider the CTF to
be characteristic of an algorithm for a given dataset. We
expect that the sigmoid can be estimated from training sets
of varying Z and, then, it can be used as a known function
for the given algorithm. We illustrate this property of the
function in the experimental section (Section V).

In existing literature there have been works that estimate
aspects of a learning algorithms’ performance, e.g., based on
the interaction between design (training) and test instance
sets [25], or based on the relation between number of
training samples and features to performance [26]. Other
works measure the generalization ability, e.g., of Support
Vector Machines [27] or neural network classifiers [28].
However, these approaches do not deal directly with the
presence of noise in the original data and they do not offer
a straight-forward way for estimating the performance as a
function of the signal-to-noise ratio.

We emphasize that we do not make any specific assump-
tion for the underlying distribution of training instances in
the concept space. The performance estimation methodology
we use exploits experimental results to approximate per-
formance, in the place of using robust analytic estimation
of error and of noise effect. If, however, a functional
representation of the relation between signal-to-noise and
performance can be obtained by analytic means, then our es-
timated function can be simply replaced with the analytically
obtained one, without any further consequence to the overall
methodology of average performance estimation, described
in the following sections, as long as the monotonicity
assumption remains in force.

B. Average Performance as a Function of Memory Window
to Shift Period Ratio

Given the estimation of the CTF, which describes the
P component of the servant, we need to find the relation
between p and f(Z). We examine the case of the short-
memory servant, where p < 1. In this study, we focus on
the case where window is smaller than the shift period, i.e.,
the lord is not expected to have an interest shift too often,
and we omit the discussion of p > 1 due to space limitations.

1) The Short-memory Servant (p < 1): For the case
where p < 1, we can calculate the signal to noise ratio,
studying different key iteration intervals as follows:

e In the beginning d =0, S =0, N =0.

e In the interval 0 < d < T, S = min(d,r), N = 0.

This happens because the maximum number of training
instances are r i.e.,

S+N=r=N=r-3S5 (&)

co el ojdle 00

coceee000

Oooboogpo

d ds

Figure 3. Three consequtive days of a short-memory servant. p = 1,Ts =
3.

Since everything we know so far is suddenly useless,
i.e., noise, if [a], is the integer part of the division ¢

b
(the modulo operator), it stands that:
de{d’|[d’]T8:0}:>S:0,N:r (6)

e The sum of training instances are 7 at most; also,
everything that is not signal, is necessarily noise. Thus,
while d € {d'|d" > T,0 < [d']; < Ts} it stands that

S =min([d]y ,r),N=r—-S (7)

The function min() is the minimum function.
In Figure 3 we illustrate the case where the partial memory
ratio p =1, and T = 3.

Since we are interested on the overall average perfor-
mance, we will only take into account equations 6, 7. From
the above we deduce that S, N are actually S(d), N(d)
functions of the current day. Every day d the Z is: Z(d) =
log'(5(d))—log' (r—S(d)) = log'(S(d))—log' (¢T,  S(d)).
The expected value Z of Z is:

Z=E(2) =} Zu(Z) ®)

where ¢(Z;) is the probability of occurence of Z; and
Z;,0 <i < r = pTs,i € Nx indicates the possible values
of Z.

The possible values of Z, that appear after the first shift,
are exactly » = pTs in number, since S is an pT bounded
function of d(modTy) (see Eq. 7). Their values are:

Z; =log' (i) — log' (pTs —1),0 < i < pTy

In the first shift, the values ZZ.1 are also exactly r = pTs with
Z} = log'(i) — log'(0),0 < i < pTs because no noise is
present. Over the time of several days (i.e., many iterations),
the probability ¢(Z}) of the Z} values tends to zero, because
there is only one occurrence of the value, regardless of the
current day. So for day d, the probability ¢(Z}) = é, )
when d — o0 = q(Z}) — 0. In the following analysis, we
therefore ignore th Z} values of Z.

A day d can be modeled related to the last shift that oc-

cured. So, if d is k; days after the last shift, which occurred



on day ko7, then we can express d as d = koTs+k;. Then,
for a chosen, arbitrarily big kg >> 0, kg ~ ko + 1

d=koTs+ ki,kg >>0,0 <k < pTs

i.e., after many shifts, all the values Z;,i # pTs — 1 have a
probability of approximately

— kO
a(Z;) T
1
q(Z;) ~ i 9)

since they appear kg, or kg + 1 times (depending on k;) in
koTs days. For the value Z,1, 1 = Zpmaa = log'(pTs) —
log’0 (which is a constant) — i.e., the maximum value of
Z — the probability of occurence of Z,,,, is what is left
from the probability mass, if one subtracts the probabilities
of other values:

pTs—2

1
Zma.t =1- Zv = Zm,{m? =1- — (10
q( ) Z; a(Z;) = q( ) P (10)
Therefore, Equation 8, gives
o 1 pTs—2 1
Z=— Zz - —-1 Zma:n
T ; (=7 -1
pTs—1 pTs—2
Setting Ryp; = Z Z; = Z Zi~+ Zmaz We get:
i=0 i=0
_ R o
Z ="+ (1= p)Zmas (11

Using the same methodology, we calculate the perfor-
mance of the system, using Equation 3. Given the fact that
performance f is a strictly monotonic function of Z, the
unique values of f are exactly the same in number, as the Z
possible values. In addition, each value f(Z;) holds the same
probability of appearence as Z;. This means that, similarly
to Equation 8, the expected value of the performance of the
system 1is:

pTs—1
F=E((2) =" fualf) (12)
i=0

where f; is the i-th possible distinct value of f(Z), with
q(fi) = Z; and, given Equation 3: f; = m + (M —
m)m. Thus, for f we have the following
equation.

pTs—1

=2

=0

((m+ (M —m) ex;(fc X Zi)> q<fi)>

Performing associativele multiplication, and taking into ac-
count the fact that 775  q(fi) =1 = m Y57 q(fi) =
m, and using Equations 9, 10 and 4, gives:

pTs—2
f=m+(M-m) (711 22:0 fn(Zi)+ (1 =p+ Tls)fN(Zmam)>
13)

Corollary 4.1: Maximization of the average performance
f of a user-modeling system with a specific training policy
(learning algorithm), given a user with periodic interest
shifts, can be achieved by merely changing the parameter
p O <p<l).

2) Optimization of the Performance: We have argued
that the optimization of a system, consists of the following
process steps: estimation of the CTF, detection of the interest
shift period and optimization of the p parameter.

For the optimization process there are two important
considerations. The first is that estimated CTF must be as
collinear as possible to the true function of performance
(an example of estimated and real CTF is illustrated in the
following section, in Figure 5). If the collinearity is strong,
then the optimization process will give near-optimal results.
The second is that, if there is a requirement for a maximally
exact estimation of the average performance, we need not
only a collinear CTF but a CTF with minimum error, as error
can be defined by e.g., the absolute difference between the
estimated and actual value of performance for all possible
Z values.

If the above process stands, then all problems that can be
expressed through the problem of the demanding lord can
have an a-priori estimation of performance for any given
algorithm, with the effort of estimating the characteristic
transfer function of the learning algorithm and the calcula-
tion of the expected shift period of the user, which of course
are non-trivial tasks.

V. EXPERIMENTAL EVALUATION

In order to validate the effectiveness of the proposed
approach, we perform a set of experiments on different tasks.
The purpose of the experiments is twofold:

o First, we want to check whether estimation of the
characteristic transfer function (CTF) of an algorithm
can be achieved. To do this, for each dataset we perform
a 5-fold cross-validation over 10 folds of the experiment
on the dataset: the training set is used to estimate the
CTF, which is in turn validated on the test set. To
validate the model we use correlation tests, where a
high correlation value with statistical significance will
indicate a useful estimator.

o Second, we want to determine whether the analytic
estimator of signal-to-noise converges to the actual
average signal-to-noise of the system in the random
shifts case. If this is true, then the analytic estimator



Figure 4. Mean Performance (vertical axis) per signal-to-noise ratio
(horizontal axis): Means plot with confidence bars (left) and LOWESS
regression plot (right).

can be used for online optimization of p, recalculated
after every detected shift.

In every case, we describe the evaluation methodology
for the learning algorithm, we perform the modeling of the
CTF for two algorithms and we validate the CTF estimator
concerning the mean performance estimation. Then, we
provide the correlation between the estimation and the real
average performance of the system.

Before we proceed with the evaluation, we give an ex-
ample of a Signal-to-Noise to Mean Performance graph
— drawn from a single test case) — in Figure 4. The
left graph indicates the average performance per signal to
noise, including also confidence interval bars within 95%
confidence level. Due to the fact that a signal-to-noise value
may appear more or less times, there are estimations of
average performance that are quite uncertain. Thus, to view
the overall tendency of average performance we also use
LOWESS regression [29] (with a span parameter of 0.03)
to indicate a better estimate of average performance per
signal-to-noise value (right graph of Figure 4). The figure
illustrates that a sigmoid underlying function possibly relates
Z to performance f. In our experiments, we will try to
search for a good-enoigh sigmoid that describes the average
performance based on signal-to-noise. For the LOWESS
regression calculation we only use Z values that have
enough support, i.e., have appeared enough times to have
a standard error below 0.05 for the estimation of their mean
performance.

A. Description of Datasets

The datasets we report in this study are the following (we
experimented with other datasets that yielded similar results,
which we omit for brevity).

1) Boolean Concept Dataset: The first dataset we use
is based on the STAGGER method evaluation dataset [2],
which is traditionally used in the concept drift domain.
The experiment is performed as follows. The problem is a
problem of classifying 100 randomly generated instances per
iteration as either belonging to the current iteration’s target

Situation Negative | Situation Positive
Expectations Positive Upswing Boom
Expectations Negative Recession Downswing
Table I

THE STATE OF THE MARKET AS RELATED TO BUSINESS SITUATION AND
BUSINESS EXPECTATIONS BALANCE SIGNS.

concept or not. The instances are objects described based on
three dimensions: size, which can be small, medium or large;
color, which is either red, green, or blue; shape, which is
either square, circular, or rectangular. In the beginning of the
task, the set of training instances is generated randomly from
the possible variations of objects. Each instance is labeled
according to the following rules:

« Initerations 1-40 only small, red objects are considered
to belong to the target concept.

o In iterations 41-80 objects that are either green or
circular are considered to belong to the target concept.

o In iterations 81-120 objects that are either medium or
large are considered to belong to the target concept.

After the first 120 iterations the labelling is repeated circu-
larly.

In every iteration ¢ the training algorithm has access to the
first ¢ training instances. On that same iteration, the testing
is performed on 100 randomly generated instances, which
are labeled according to the current target concept. That is,
for the test data, on every iteration the labeling is coherent
with the current target concept.

2) Real World Dataset: The German Market Dataset:
The real world dataset we use is based on the Ifo Business
Survey [30], which describes some aspects of the business
climate in Germany. The dataset contains one record per
month from January, 1991 to February, 2010 (230 records).
Each record contains six questionnaire-derived measure-
ments representing the balance values and the index values
of the business situation, the business outlook and the
business climate. The balance value of the current business
situation is the difference in percentage of the responses
“good” and “poor” in the questionnaires; the balance value
of the business outlook (expectations) is the difference in
percentage shares of the responses “more favorable” and
“more unfavorable”. The business climate is a transformed
(i.e., geometric) mean of the balances of the business situ-
ation and the business expectations. The data also includes
corresponding index values, normalizing the balances to the
average of the year 2000 (which is mapped to the index
value 100). Based on the signs of the balances the study
classifies the state of the market as “boom”, “downswing”,

“recession”, “upswing” (also see Table I).

B. Experimental Results

We now provide the experimental results for two tasks:
sigmoid estimation and performance estimation over time.



1) Searching for a Good Sigmoid: Given an equation
of sigmoid type (see Equation 3), we need to identify the
parameters that best describe a set of observed data points.
In our case, the data points are measured performance values
for given signal-to-noise ratios.

The search in the parameter space is performed by a ge-
netic algorithm [31], searching for an approximate good set
of parameters. In our case the fitness function is based on the
Kolmogorov-Smirnov goodness-of-fit D statistic [32]. The
Kolmogorov-Smirnov test statistic D) is expected to have a
low value if two sets of samples from distributions are more
likely to originate from the same underlying distribution.
In our case the two compared distributions are the actual
and estimated values of performance, corresponding to the
possible Z values.

To determine whether the sigmoid estimation is indeed
a good estimator even given unseen values of signal-to-
noise we perform a five-fold cross-validation of our sigmoid
estimation process. In every fold we use % of the data points
as the training set and the rest as the test set. The training set
is used to determine the CTF and the test set to determine the
collinearity (through a Pearson test) between the estimation
and the real values of the performance with the given CTF.
A high collinearity value indicates that the CTF is a good
estimator and can be used for optimization, where collinear-
ity between the estimated and true values are of concern.
The fact, however, that we search for a maximally similar
function, through the use of the Kolmogorov-Smirnov test,
allows even a good approximation of the actual average
performance value.

Discussion on the CTF: Observing the data in these runs,
we identified an important aspect of the learners, illustrated
in Figure 5: sometimes the sigmoid is shifted to the left or
to the right. This may indicate that a learner is quite robust
to noise, or quite sensitive to noise, since for the same value
of Z the performance is different. In other words, the CTF
may be better expressed by the form:

(14)

— — 1

H2) =m+ (M m)l +bxexp(—cx (Z—d))
which adds a parameter d that models the horizontal position
shift. Thus, in the following experiments we have added the
d parameter, which improved the CTF estimation.

In Tables II, III we illustrate the Pearson correlation values
indicating how collinear the performance values from the
estimated sigmoid CTFs are to the actual values. In order
to elaborate on the whole set of results over all folds, we
provide the quantiles of the collinearity values, as well as the
mean value. The results on the STAGGER dataset, shown
in Table II, indicate the consistently high correlation of the
estimation to the actual data points.

The market dataset presented a problem for the evaluation,
due to the fact that 5-fold cross-validation was not possible.
This was caused by the relatively small number of samples

1.0

om0 0 SoRT—

shift "

Actual

0.4

0.2

LogSN

Figure 5. The problem of shift in the Sigmoid. Gray indicates the true
data points, black the estimated.

Naive Bayes

Setting Correlation Quantiles
Ts p Min 1st Q. | Median | Mean | 3rd Q. | Max
40 050 | 0.89 0.94 0.95 0.94 0.95 | 0.96
40 085 | 0.87 0.88 0.89 0.90 0.89 | 0.95
40 1.00 | 0.61 0.70 0.74 0.76 0.79 | 0.96

J48 Decision Tree

Setting Correlation Quantiles
Ts p Min 1st Q. | Median | Mean | 3rd Q. | Max
40 050 | 0.83 0.86 0.96 0.92 0.96 | 0.97
40 085 | 0.84 0.87 0.88 0.89 091 | 0.95
40 1.00 | 0.66 0.68 0.74 0.77 0.81 | 0.96

Table II

STAGGER DATASET: CORRELATION IN 10-FOLD CROSS-VALIDATION
BETWEEN PERFORMANCE THROUGH CTF ESTIMATION AND ACTUAL
PERFORMANCE VALUES. ALL CORRELATIONS ARE WITH A
P-VALUE BELOW 0.1.

for different values of Z, which caused some folds to lack in
testing data (remember that the weakly supported Z values
were ignored).

To avoid this pitfall the evaluation was performed as
follows. In every fold we do a random sampling over the
Z-Performance value pairs appearing in the dataset, until
we construct a training set of 50% the size of the original
dataset. We do the same to create an equally big testing
test. Then, we estimate the CTF using the training set and
measure the correlation of the estimated performance for the
Z values in the test set to the actual performance in the test
set.

Table III illustrates the very promising performance of
estimation for the CTF on the dataset. We should note,
however, that in the worst cases the correlation is not
statistically significant (p-value > 0.05), even though it
is rather strong. This indicates that there is still room for
improvement in the estimation of the CTF. This apparent
deficiency occurs mostly in cases where there is a sudden fall
in performance below a certain Z value, which “breaks” the



SVM

_ Setting Correlation Quantiles
Ts p(r) Min Ist Q. | Median | Mean | 3rd Q. | Max
846 0.59 (5) | 0.39 (0.39) 0.72 0.80 0.76 090 | 0.95
8.64 1.04(9) | 0.47 (0.20) | 0.58 (0.08) 0.84 0.77 093 | 0.97
NN
_ Setting Correlation Quantiles
Ts p(r) Min Ist Q. | Median | Mean | 3rd Q. | Max
846 059 (5) | 0.63 (0.13) 0.84 0.89 0.86 0.94 | 0.99
8.64 1.04(9) | 0.56 (0.12) 0.81 0.89 0.84 094 | 0.98
Table III

GERMAN INDUSTRY DATASET: CORRELATION (5-FOLD VALIDATION)

BETWEEN PERFORMANCE THROUGH CTF ESTIMATION AND ACTUAL

PERFORMANCE VALUES FOR DIFFERENT Z VALUES. IN PARENTHESES
THE P-VALUE, IF P-VALUE > 0.05.

sigmoid function (e.g., see in Figure 5 the three data points
with Z < 4.5 at the lower left corner of the graph). However,
in most cases the collinearity between the estimated CTF
and the real CTF is very strong, which allows its use in the
prediction of the average performance.

2) Estimation of Performance over Time: In this section
we study whether the estimated and real average perfor-
mance of a demanding lord system (DLS), converge over
time. We perform an estimation of the sigmoid as indicated
before and we keep the best performing estimation function
(in terms of collinearity to the actual performance). Using
this CTF we follow a learning system over time recalculating
on every iteration the average period of the shift, the
estimated performance and the actual performance, based
on the feedback.

Given the above information we plot graphs indicating the
relation between iteration and absolute difference between
the estimation and the actual value (absolute error). We
call this absolute difference the delta of performance. To
determine whether this delta is reduced over time, indicating
convergence, we measure the Spearman and the Pearson
correlations, indicating rank and linear correlation corre-
spondingly between iteration and delta. If their values are
negative (ideally strongly negative), this would indicate that
the absolute error reduces over time. In the case of the real
dataset, where the shift period changes over time, the system
takes into account on every iteration the average period of
the shifts.

We perform 10-fold validation, also increasing the number
of iterations during which we examine the system, for the
synthetic dataset. We present graphs for the different p
values (p < 1, p = 1) for each dataset: Boolean Concept
dataset (exhibiting periodic shifts), Figure 6 ; Business
Climate dataset (aperiodic shifts), Figure 7. The vertical axis
of the figures corresponds to the delta, while the horizontal
axis to the iteration number.

We observe (refer to Table IV) that the performance
estimation converges (negative values for correlation) well
within the statistical significance level of 99%. We note that
the Spearman correlation indicates rank-based correlation,
while Pearson correlation indicates linear correlation. Cor-

Synthetic dataset: Boolean Concept Dataset - 6000 Iterations

Setting Spearman Pearson

Bayes  40-20 -0.3022561 -0.272744

Bayes  40-40 -0.9611965 -0.482552
Real dataset: Business Climate, 212 Iterations

Setting Spearman Pearson

SVM  Random-5 | -0.1777558 -0.3815536

SVM  Random-9 | -0.3168430 -0.4193718

Table IV

CORRELATION OF ITERATION NUMBER AND DELTA (10-FOLD
VALIDATION). P-VALUE OF TESTS < 0.05.
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Figure 6. Boolean Concept Dataset: Convergence (10-fold validation) of
the average delta. Left to right: p < 1;p = 1.

respondingly, Spearman correlation is negative, if for later
iterations the delta tends to be lower and Pearson correlation
if is reduced linearly to the iteration number. It is very
interesting that the convergence also happens in the random
shift dataset (Table IV, Business Climate dataset), which
indicates that the estimator is robust. It appears that the
estimation error falls to levels below 5% rather quickly (few
hundreds of iterations), which indicates that the average
performance can be estimated quite early, allowing for the
corresponding optimization of the memory window. We
note that the difference in average performance estimation
accuracy in different cases is mainly related to how good
approximation the estimated CTF is of the actual CTF. For
example, in the case of ratio = 1 the estimated CTF is a
worse approximation of the actual CTF, than in the case of
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Figure 7. Business Climate Dataset: Convergence (10-fold validation) of
the average delta. Left to right: p < 1;p = 1.



p < 1. This causes different delta values for the two cases
(see Figure 6). Given the analysis of the connection between
the CTF and the performance, we expect the performance
estimation error to be bounded by a function of the error in
the estimation of the CTF, but we do not elaborate on this
expectation due to space limitations.

VI. CONCLUSIONS

In this study, we have shown that we can estimate a
characteristic transfer function, connecting signal-to-noise
in the training set of a learning algorithm to the average
performance of the algorithm. Given this CTF, we can use a
closed-form estimation function for the average performance
of a learning system (after a sufficiently long observation
time) in the presence of concept shifts. Even in cases where
not all the assumptions of our closed-form estimator stand,
such as the case where we know on average the period of
change, the system provides a good estimate of performance
as a function of the “memory window”-to-“shift period”
ratio, i.e., the characteristic ratio. This means that, on a
partial memory online learning system, we can estimate a
good memory window for a given series of instances. We
can also closely predict the average performance, if the CTF
estimation is relatively accurate and our memory window is
not bigger than the average concept shift period.

The analysis we have performed offers a basis for
studying learning algorithms from a signal-to-noise-response
perspective. For a given dataset, calculating a good CTF
allows for the estimation of performance, without exhaustive
experiments. Furthermore, in cases where we know, for
example, the distribution of signal-to-noise we expect to find
in a dataset, we can estimate the average performance of a
system by finding a weighted average of the CTF values.
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