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Questions This Tutorial Answers

• how important are data series nowadays?

• what does data series analysis involve?

• how can we speed up such an analysis?

• what are the different kinds of similarity search?

• what are the state-of-the-art data series indexes for similarity search?

• how can these indexes parallelize/distribute their operations?

• can these indexes be used for general high-d vector similarity search?

• what data series management systems exist?

• what is special about them?

• what are the open research problems in this area?

• what are the connections to deep learning?
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Data series
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• Sequence of points ordered along some dimension
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Scientific Monitoring

• meteorology, oceanography, astronomy, 

finance, sociology, …
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Historical stock quotes
http://money.cnn.com/2012/04/23/markets/walmart_stock/index.htm

Wind speed
From ocean observing node project
http://bml.ucdavis.edu/boon/wind.html

Time



Home Networks
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• temporal usage behavior analysis of home networks

▫ Portugal Telecom

clustering based on user activity patterns
(previously unknown) frequent behavior pattern

Time
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Neuroscience

• functional Resonance Magnetic Imaging (fMRI) data

▫ primary experimental tool of neuroscientists

▫ reveal how different parts of brain respond to stimuli

9

Time
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Schinnerer et al.
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GTCAATGGCCAGGATATTAGAACAGTACTCTGTGAACCCTATTTATGGTGGCACCCCTTAGACTAA
GATAACACAGGGAGCAAGAGGTTGACAGGAAAGCCAGGGGAGCAGGGAAGCCTCCTGTAAAGAG
AGAAGTGCTAAGTCTCCTTTCTAAGGCACATGATGGATTCAAGGGAAAGCCACATTTGACTAAAGC
CCAAGGGATTGTTGCTTCTAATCCGATTTCTTGGCAGAAGATATTACAAACTAAGAGTCAGATTAA
TATGTGGGTGCCAAAATAAATAAACAAATAATTGAATAATCCCTGGAGGTTTAAGTGAGGAGAAA
CTCCTCCACAGCTTGCTACCGAGGCAGAACCGGTTGAAACTGAAATGCATCCGCCGCCAGAGGATC
TGTAAAAGAGAGGTTGTTACGAAACTGGCAACTGCCAACCAAAGTCCACCAATGGACAAGCAAAA
AAGAGCACTCATCTCATGCTCCCAAGGATCAACCTTCCCAGAGTTTTCACTTAAGTGGCCACCAAG
CCAGTTGTCAATCCAGGGCTTTGGACTGAAATCTAGGGCTTCATCCGCTACCTCAGAGTGTCTTCT
ATTTCTTCCAGCCAGTGACAAATACAACAAACATCTGAGATGTTTTAGCTATAAATCCTTTACAATT
GTTATTTATGTCTTAACTTTTGTTATACCTGGAAAAGTAGGGGAAACAATAAGAACATACTGTCTT
GGCCAAGCATCCAAGGTTAAATGAGTTATGGAAATTCATTTGGGAGCCAAGACATTGCACGTGGT
TATTTATTAGTCACCCAAGCATGTATTTTGCATGTCCATCAGTTGTTCTTGGCCAAAAGAGCAGAAT
CAATGAGCCGCTGCAGATGCAGACATAGCAGCCCCTTGCAGGGACAAGTCTGCAAGATGAGCATT
GAAGAGGATGCACAAGCCCGGTAGCCCGGGAAATGGCAGGCACTTACAAGAGCCCAGGTTGTTGC
CATGTTTGTTTTTGCAACTTGTCTATTTAAAGAGATTTGGGCAATGGCCAGGATATTAGAACAGTA
CTCTGTGAACCCTATTTATGGTAGCACCCCTTAGACTAAGATAACACAGGGAGCAAGAGGTTGACA
GGAAAGCCAGGGGAGCAGGGAAGCCTCCTGTAAAGAGAGAAGTGCTAAGTCTCCTTTCTAAGGCA
CATGATGGATCAAGGGAAAGTCACATTTGACTAAAGCCCAAGGGATTGTTGCTTCTAATCCGATTC
TTGGCAGAAGATATTGCAAACTAAGAGTCAGATTAATATGTGGGTGCCAAAATAAATAAACAAATA
ATTGAATAATCCCTGGAGGTTTAAGTGAGGAGAAACTCCTCCACACTTGCTACCGAGGCAGAACCG
GTTGAAACTGAAATGCACCCGCTGCCAGATTTATTAGTCACCCAAGCATGTATTTTGCATGTCCAT
CAGTTGTTCTTGGCCAAAAGAACAGAATCAATGAGCCGCTGCAGATGCAGACATAGCAGCCCCTTG
CAGGAACAAGTCTGCAAGATGAGCATTGAAGAGGATGCACAAGCCCGGTAGCCCGGGAAATGGCA
GGCACTTACAAGAGCCCAGGTTGTTGCCATGTTTGTTTTTGCAACTTGTCTTTTAAACAGATTTGA
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Medicine

FrequencyMass
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IoT: Production Control Systems
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IoT: Monitoring Vehicle Operation
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◼ the sensors era
◼ ubiquitous, small, inexpensive sensors
◼ applications that bridge physical world to information technology

◼ sensors unveil previously unobservable phenomena

IoT: Monitoring the Environment
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Data as a Set

Data as a Sequence

• streaming data

▫ window of interest

 landmark window

 sliding window (shifting window)

• may treat streaming data as a set, or as a sequence

▫ depends on whether sequence is important

17
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Data Series Anomalies Problem

• develop anomaly detection techniques based 
on sequences (data series), not on individual 
values
 individual values can be normal, but their 

sequence can be abnormal!

18
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Data Series Anomalies Problem

• develop anomaly detection techniques based 
on sequences (data series), not on individual 
values

19

sequences are abnormal

Sequence S
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Data Series Anomalies Problem

• develop anomaly detection techniques based 
on sequences (data series), not on individual 
values
 individual values can be normal, but their 

sequence can be abnormal!

20

sequences are abnormal

values are not outside critical thresholds 

individual values are normal

150 points in a sequence S

Minimal critical value                      Maximal critical value

Echihabi, Zoumpatianos, Palpanas - EDBT 2021



Data Series (Signal) Processing

Data Series Management

• lots of literature on data series processing
▫ periodicity detection

▫ data series modeling and forecasting

 ARMA, ARIMA

▫ point outlier detection

 focuses on next value

• instead, we will focus on 
▫ sequences as first class citizens

▫ very large collections of data series

▫ fast and scalable similarity search

21
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Objectives

• get introduced to the data series data type

▫ characteristics, properties, peculiarities

• learn about 

▫ data series representations

▫ data series similarity matching

▫ data series indexing

▫ systems for data series management

▫ challenges and open problems

22
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Introduction

• lots of work on data series representations

▫ techniques for representing/storing data series

• main goal

▫ summarize data series

▫ render subsequent processing more efficient

24

Echihabi, Zoumpatianos, Palpanas - EDBT 2021



Outline

• terminology and definitions

• motivation

• pre-processing tasks

• data series representation techniques

25
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Data series

26

• Sequence of points ordered along some dimension

• terminology: we will use interchangeably
▫ data series, time series, data sequence, sequence

v1
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sequence dimension
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e
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Data series
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• Sequence of points ordered along some dimension

• number of data series values, n 

▫ length, or dimensionality

v1

v2

…

sequence dimension
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Data series

28

• Sequence of points ordered along some dimension

• subsequence
▫ subset of contiguous values

v1

v2

…

sequence dimension
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Data series
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• Sequence of points ordered along some dimension

• subsequence
▫ subset of contiguous values

▫ eg, subsequence of length (dimensionality) 4

v1

v2

…

sequence dimension

x1

x2

…
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Data series

Distance

30

v1
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Data series

Distance

31

• Euclidean distance

▫ pair-wise point distance

▫ 𝐷 𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒 = σ𝑖=1
𝑛 (𝑟𝑒𝑑𝑖 − 𝑏𝑙𝑢𝑒𝑖 )

2

v1

v2

sequence dimension
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Data series

Reconstruction Error

32

• Euclidean distance

▫ pair-wise point distance

▫ 𝐷 𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒 = σ𝑖=1
𝑛 (𝑟𝑒𝑑𝑖 − 𝑏𝑙𝑢𝑒𝑖 )

2

v1

v2

sequence dimension
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Outline

• terminology and definitions

• motivation

• pre-processing tasks

• data series representation techniques

33

Echihabi, Zoumpatianos, Palpanas - EDBT 2021



Simple Query Answering

34

Simlarity
Search

select some 
data series

select values 
in time 
interval

select values 
in some 

range

combinations 
of those
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Analysis Tasks
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Similarity 
Search

Classification

Clustering
Outlier 

Detection

Frequent 
Pattern 
Mining
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Analysis Tasks

• analyze evolution of values across x-dimension

• identify trends

• treat data series as a first class citizen

▫ analyze each data series as a single object

▫ process all n-dimensions  at once

36
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Analysis Tasks

Subsequences

• often times the data series are very long

▫ n >> 1

▫ streaming data series

• we then chop the long sequence in subsequences

▫ e.g., using sliding window, or shifting window

▫ pick carefully length of subsequence 

 should contain patterns of interest

• and process each subsequence separately

37
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Complex Analytics

38

Similarity 
Search

Classification

Clustering
Outlier 

Detection

Frequent 
Pattern 
Mining

Echihabi, Zoumpatianos, Palpanas - EDBT 2021



Complex Analytics

39

Similarity 
Search

Classification

Clustering
Outlier 

Detection

Frequent 
Pattern 
Mining

HARD, because of very high dimensionality:
each data series has 100s-1000s of points!

even HARDER, because of very large size:
millions to billions of data series (multi-TBs)!
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Outline

• terminology and definitions

• motivation

• pre-processing tasks

• data series representation techniques

40
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Pre-Processing

z-Normalization

• data series encode trends

• usually interested in identifying similar trends

41
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Pre-Processing

z-Normalization

• data series encode trends

• usually interested in identifying similar trends

• but absolute values may mask this similarity

42
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Pre-Processing

z-Normalization

• two data series with similar trends

• but large distance…

43

v1

v2
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence

44

v1

v2
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence

45
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

▫ compute the standard deviation of the sequence

▫ divide every value of the sequence by the stddev

48
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

▫ compute the standard deviation of the sequence

▫ divide every value of the sequence by the stddev

49
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

▫ compute the standard deviation of the sequence

▫ divide every value of the sequence by the stddev

50
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

51
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Pre-Processing

z-Normalization

• when to z-normalize

▫ interested in trends

• when not to z-normalize

▫ interested in absolute values

52
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Outline

• terminology and definitions

• motivation

• pre-processing tasks

• data series representation techniques

53
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Publications

Keogh -
KDD‘04

for a complete 
and detailed 
presentation, 
see tutorial:



Comparison of Representations

55
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• which representation is the best?

• depends on data characteristics
▫ periodic, smooth, spiky, …

• overall (averaged over many diverse datasets, using same 
memory budget), when measuring reconstruction error (RMSE)
▫ no big differences among methods

▫ DFT, PAA, DWT (Haar), iSAX slightly better

• should also take into account other factors
▫ visualization, indexable, ...

Publications

Palpanas et al.
ICDE’04

Palpanas et al.
TKDE’08

Shieh et al.
KDD’08
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Problem Variations

Series
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Univariate

each point represents one   
value (e.g., temperature)

Multivariate

each point represents many   
values (e.g., temperature, 

humidity, pressure, wind, etc.)

8 6

8
6
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Problem Variations

Series
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Univariate

each point represents one   
value (e.g., temperature)

Multivariate

each point represents many   
values (e.g., temperature, 

humidity, pressure, wind, etc.)
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Problem Variations

61

• similarity search is based on measuring distance between 
sequences

• dozens of distance measures have been proposed
▫ lock-step 

 Minkowski, Manhattan, Euclidean, Maximum, DISSIM, …

▫ sliding
 Normalized Cross-Correlation, SBD, …

▫ elastic
 DTW, LCSS, MSM, EDR, ERP, Swale, …

▫ kernel-based
 KDTW, GAK, SINK, …

▫ embedding 
 GRAIL, RWS, SPIRAL, …

Echihabi, Zoumpatianos, Palpanas - EDBT 2021

Distance Measures

Publications

Ding-
PVLDB‘08

Paparrizos-
SIGMOD’20



Problem Variations
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• similarity search is based on measuring distance between 
sequences

• dozens of distance measures have been proposed
▫ lock-step 

 Minkowski, Manhattan, Euclidean, Maximum, DISSIM, …

▫ sliding
 Normalized Cross-Correlation, SBD, …

▫ elastic
 DTW, LCSS, MSM, EDR, ERP, Swale, …

▫ kernel-based
 KDTW, GAK, SINK, …

▫ embedding 
 GRAIL, RWS, SPIRAL, …
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Distance Measures

Publications

Ding-
PVLDB‘08

Paparrizos-
SIGMOD’20



Euclidean Distance
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• Euclidean distance

▫ pair-wise point distance

v1

v2
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Correlation

• measures the degree of relationship between data series
▫ indicates the degree and direction of relationship

• direction of change
▫ positive correlation

 values of two data series change in same direction

▫ negative correlation
 values of two data series change in opposite directions

• linear correlation
▫ amount of change in one data series bears constant ratio of 

change in the other data series

• useful in several applications

64
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Pearson’s Correlation Coefficient

65
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Pearson’s Correlation Coefficient

• used to see linear dependency between values of data series of 
equal length, n

• takes values in [-1,1]
▫ 0 – no correlation
▫ -1, 1 – inverse/direct correlation

• there is a statistical test connected to PC, where null hypothesis 
is the no correlation case (correlation coefficient = 0)
▫ test is used to ensure that the correlation similarity is not caused by 

a random process 

66
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PC and ED

• Euclidean distance: 

• In case of Z-normalized data series (mean = 0, stddev = 1):

and

so the following formula is true:  

• direct connection between ED and PC for Z-normalized data 
series
▫ if ED is calculated for normalized data series, it can be directly 

used to calculate the p-value for statistical test of Pearson’s 
correlation instead of actual PC value.

67

𝐸𝐷2 = 2𝑛 𝑛 − 1 − 2෍
𝑖=1

𝑛

𝑥𝑖𝑦𝑖
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Distance Measures:

LCSS against Euclidean, DTW

• Euclidean
▫ rigid

• Dynamic Time Warping (DTW)
▫ allows local scaling

• Longest Common SubSequence (LCSS)
▫ allows local scaling

▫ ignores outliers

68
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Problem Variations

Queries

Echihabi, Zoumpatianos, Palpanas - EDBT 2021

69

Whole matching

Entire query

Entire candidate

Subsequence matching

Entire query

A subsequence of a candidate



Problem Variations

Queries
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Subsequence matching

Entire query

A subsequence of a candidate

Whole matching

Entire query

Entire candidate



Problem Variations
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Queries

Nearest Neighbor (1NN)

k-Nearest Neighbor (kNN)

Farthest Neighbor

epsilon-Range

and more…



Similarity Matching

• given a data series collection D and a query data series q,  
return the data series from D that are the most similar to q

▫ there exist different flavors of this basic operation

• basis for most data series analysis tasks

72
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Similarity Matching

Nearest Neighbor (NN) Search

• given a data series collection D and a query data series q,  
return the data series from D that has the smallest distance to q

• result set contains one data series

73
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Similarity Matching

Nearest Neighbor (NN) Search

• serial scan

▫ compute the distance between q and every di ∈ D

▫ return di with the smallest distance to q

74
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Similarity Matching

Nearest Neighbor (NN) Search

• serial scan

▫ bsf = Inf // best so far distance

▫ for every di ∈ D

 compute distance, dist, between di and q

 if this dist less than bsf then bsf=dist

▫ return di corresponding to bsf

75
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Similarity Matching

k-Nearest Neighbors (kNN) Search

• given a data series collection D and a query data series q,  
return the k data series from D that have the k smallest 
distances to q

• result set contains k data series

76

Echihabi, Zoumpatianos, Palpanas - EDBT 2021



Similarity Matching

k-Nearest Neighbors (kNN) Search

• serial scan

▫ compute the distance between q and every di ∈ D

▫ return the k di with the k smallest distances to q

77
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Similarity Matching

k-Nearest Neighbors (kNN) Search

• serial scan

▫ kbsf = Null // best so far max-heap of k elements

▫ for every di ∈ D

 compute distance, dist, between di and q

 if this dist less than max of kbsf then insert dist in kbsf

▫ return k di corresponding to k elements in kbsf

78
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Similarity Matching

𝜀-Range Search

• given a data series collection D and a query data series q,  
return all data series from D that are within distance 𝜀 from q

• result set contains [?] data series

79
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Similarity Matching

𝜀-Range Search

• serial scan

▫ compute the distance between q and every di ∈ D

▫ return all di with distance less than 𝜀 to q

80
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Similarity Matching

𝜀-Range Search

• serial scan

▫ res = {} // empty result set

▫ for every di ∈ D

 compute distance, dist, between di and q

 if this dist less than 𝜀 then insert dist in res

▫ return all di corresponding to elements in res

81
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Problem Variations
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Queries

Nearest Neighbor (1NN)

k-Nearest Neighbor (kNN)

Farthest Neighbor

epsilon-Range

And more…
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dε

Ox

Oδε

OQ

δ-ε-approximate
neighbor

dδεOng

Oε

Prob(dε <= dx (1+ε)) >= δ

result within (1+ ε) of exact NN 

with probability at least δ

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

dng

exact 
NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1

result is exact NN

Publications

Echihabi et al.
PVLDB‘19
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Query answering process

data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

Data Series 
Database/
Indexing

DataRaw data

Queries

85

these times are big!
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Query answering process

data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

we need solutions 
for both problems!

Data Series 
Database/
Indexing

DataRaw data

Queries
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Similarity Matching

Fast Euclidean Distance

• similarity matching requires many distance computations

▫ can significantly slow down processing

 because of large number of data series in the collection

 because of high dimensionality of each data series

• in case of Euclidean Distance, we can speedup processing by

▫ smart implementation of distance function

▫ early abandoning

• result in considerable performance improvement

87
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Similarity Matching

Fast Euclidean Distance

• smart implementation of distance function

88

𝐸𝐷 𝑋, 𝑌 = ෍
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Similarity Matching

Fast Euclidean Distance

• smart implementation of distance function

▫ do not compute the square root (of the Euclidean Distance)

• does not alter the results

• saves precious CPU cycles
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Similarity Matching

Fast Euclidean Distance

• early abandoning

▫ stop the distance computation as soon as it exceeds the value of bsf

• does not alter the results

• avoids useless computations
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GEMINI Framework
• Raw data: original full-dimensional space 

• Summarization: reduced dimensionality space

• Searching in original space costly

• Searching in reduced space faster:

– Less data, indexing techniques available, lower bounding

• Lower bounding enables us to

– prune search space: throw away data series based on 
reduced dimensionality representation

– guarantee correctness of answer

• no false negatives

• false positives filtered out based on raw data
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GEMINI Framework

GEMINI Solution: Quick filter-and-refine:

• extract m features (numbers, e.g., average)

• map to point in m-dimensional feature space

• organize points

• retrieve the answer using a NN query

• discard false positives
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Generic Search using Lower Bounding

query

simplified

query

Simplified DB Original DBAnswer

Superset

Verify 

against 

original 

DB

Final 

Answer 

set

No false 
negatives!!

Remove false 
positives!!
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GEMINI: contractiveness

• GEMINI works when:

Dfeature(F(x), F(y)) <= D(x, y)

• Note that, the closer the feature distance to the
actual one, the better
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Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Answering a similarity search query using different access paths

(a) Serial scan
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Similarity Matching
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Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Answering a similarity search query using different access paths

(a) Serial scan

bsf = +ꝏ
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Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, C1)
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Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, C1)
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Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, Cx)
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The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, Cx)
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Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan
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Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan
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Memory

Disk
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Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans
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Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Indexes vs. Scans

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan
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Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Indexes vs. Scans

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

bsf     = +ꝏ

lbcur = +ꝏ

lower-bounding (lb) property:   
dlb(Q’, Ci’)  <= d(Q, Ci)
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The summary of Q (Q’) is compared to 

the summary of each candidate

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans
bsf     = +ꝏ

lbcur = dlb(Q’,C1’)
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Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = +ꝏ

lbcur = dlb(Q’,C1’) < bsf  
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = +ꝏ

lbcur = dlb(Q’,C1’) < bsf  
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C1’) < bsf
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) 
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsf
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsf
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsfd(Q,C2) >= 
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsf d(Q,C2) >= 

prune C2
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,Cx’) 
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,Cx’) < bsf  
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,Cx)

lbcur = dlb(Q’,Cx’) < bsf  
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,Cx)

lbcur = dlb(Q’,Cn’) < bsf  
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Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = +ꝏ
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,C3)
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,C3)
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,C3)

lbcur =  dlb(Q’, )1   QueueQueue
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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lbcur =  dlb(Q’, ) < bsfQueueQueue
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsfQueueQueue
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

2   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, )Queue

3  

129

Echihabi, Zoumpatianos, Palpanas - EDBT 2021



Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsfQueue
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsf

4  3  2

Queue

134

Echihabi, Zoumpatianos, Palpanas - EDBT 2021



Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

bsf     = d(Q,Cx)

lbcur =  dlb(Q’, ) > bsf

3  

Queue 4  

prune

LB Property   

4  

140

Echihabi, Zoumpatianos, Palpanas - EDBT 2021



Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans
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Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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δ-ε-Approximate* ng-Approximate

Probabilistic ε-Approximate

Exact

Similarity Search 
Methods

δ,ε guarantees No guarantees

δ < 1, ε guarantee δ = 1, ε guarantee

δ = 1, ε = 0 guarantee

* result is within distance
(1+ ε) of the exact answer 
with probability δ

extensions

Methods
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ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

VA+file[ ]

ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

QALSH

SRS

VA+file[ ]

0 ⩽ δ ⩽ 1, ε ⩾ 0

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

ADS+           IMI

CK-Means iSAX2+[ ]

DSTree [ ]     NSG

Flann SFA 

HD-index VA+file[ ]

HNSW

Echihabi-
PVLDB‘19

Techniques for data Series
Techniques for High-D vectors

Publications

Echihabi-
PVLDB‘18
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DSTree

Summarization
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Intertwined with indexing

The APCA and EAPCA representations

Publications

Wang-
PVLDB‘13



DSTree

Indexing
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Each node contains
❑ # vectors
❑ segmentation SG
❑ synopsis Z

Each Leaf node also :
❑ stores its raw 
vectors in a separate
disk file

Publications

Wang-
PVLDB‘13



Symbolic Fourier Approximation (SFA)

Summarization
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The SFA representation*
*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx

Publications

Schafer-
EDBT‘12



SFA

Indexing

Echihabi, Zoumpatianos, Palpanas - EDBT 2021

148

The SFA Trie*
*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx

Publications

Schafer-
EDBT‘12



iSAX Family

iSAX Summarization
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• based on iSAX representation, which offers a bit-aware, 
quantized, multi-resolution representation with variable 
granularity

=    { 6, 6, 3, 0}  =    {110 ,110 ,0111 ,000}

=    { 3, 3, 1, 0}    =    {11  ,11  ,011 ,00 }

=    { 1, 1, 0, 0}    =    {1 ,1 ,0 ,0  }

Publications

Shieh-
KDD‘08
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ROOT

. . .
0  0  0  0 1  1  1 0 1  1  1  1

1  1  1  0 1  1  1  0

1  1  1  0

1  1  1  11  1  1  10 1

0 1

0
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iSAX-Indexing Publications

Shieh-
KDD‘08
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FBL

LBL

R

L1 I1

L4

main memory

disk

I2

L6L5

a

a

x

y

b
c

z

I3

L8L7

b
c

iSAX2+-Indexing
Publications

Camerra-
KAIS‘14



ADS+

• novel paradigm for building a data series index

▫ does not build entire index and then answer queries

▫ starts answering queries by building the part of the index needed 
by those queries

• still guarantees correct answers

• intuition for proposed solution

▫ builds index using only iSAX summaries; uses large leaf size

▫ postpones leaf materialization to query time

▫ only materialize (at query time) leaves needed by queries

▫ parts that are queried more are refined more

▫ use smaller leaf sizes (reduced leaf materialization and query 
answering costs)
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Publications

Zoumbatianos-
SIGMOD‘14

Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16



Raw data

PARTIAL
PARTIAL

ROOT

I1

L5L2

L1

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

TOO BIG!
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Raw data

PARTIAL

PARTIAL

ROOT

I1

L5

I3

L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

PARTIAL

L5L4

Adaptive split

Create a smaller leaf
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Raw data

PARTIAL

PARTIAL

ROOT

I1

L5

I3

L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

FULL

L5L4
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Publications

Zoumbatianos-
SIGMOD‘14

Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16



Coconut

• current solution for limited memory devices and streaming 
time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

156

Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19
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Coconut

• current solution for limited memory devices and streaming 
time series

▫ bottom-up, succinct index construction based on sortable 
summarizations
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Publications

Kondylakis-
PVLDB‘18
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SIGMOD’19



Coconut

• current solution for limited memory devices and streaming 
time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time
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Coconut

• current solution for limited memory devices and streaming 
time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time

▫ compatible with traditional single-dimensional balanced indexes

 B+-tree, LSM-tree, …
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Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19



Coconut-LSM
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Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19

Kondylakis-
VLDBJ’20
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Coconut-LSM
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Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19

Kondylakis-
VLDBJ’20



ULISSE

• ULISSE: current solution for variable-length queries

▫ single-index support for 

 queries of variable lengths

 Z-normalized + non Z-normalized data

 Euclidean + DTW distance measures

162

Publications

Linardi-
ICDE’18

Linardi-
PVLDB‘19
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ULISSE

• ULISSE: current solution for variable-length queries

▫ single-index support for 

 queries of variable lengths

 Z-normalized + non Z-normalized data

 Euclidean + DTW distance measures
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ULISSE

• ULISSE: current solution for variable-length queries

▫ single-index support for 

 queries of variable lengths

 Z-normalized + non Z-normalized data

 Euclidean + DTW distance measures

▫ orders of magnitude faster than competing approaches
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Publications

Linardi-
ICDE’18

Linardi-
PVLDB‘19

Linardi-
VLDBJ‘20



Co-Evolving Subsequences

• discover subsequences, where distance between points is always < ε
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Publications

Chatzigeorgakidis et al.
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Co-Evolving Subsequences

• discover subsequences, where distance between points is always < ε

• SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences 
of length ≥δ, within large collections of (short) data series

▫ prunes search space by discretizing values, and using checkpoints
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Co-Evolving Subsequences

• discover subsequences, where distance between points is always < ε

• SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences 
of length ≥δ, within large collections of (short) data series

▫ prunes search space by discretizing values, and using checkpoints
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Co-Evolving Subsequences

• discover subsequences, where distance between points is always < ε

• SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences 
of length ≥δ, within large collections of (short) data series

▫ prunes search space by discretizing values, and using checkpoints

• SBTSR-Tree: solution for (x-axis) aligned subsequences within 
large collections of (short) data series, which are geo-located

▫ R-Tree like index on segmented data series, with bit-vectors that mark 
continuity of same series across segments
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Co-Evolving Subsequences

• discover subsequences, where distance between points is always < ε

• SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences 
of length ≥δ, within large collections of (short) data series

▫ prunes search space by discretizing values, and using checkpoints

• SBTSR-Tree: solution for (x-axis) aligned subsequences within 
large collections of (short) data series, which are geo-located

▫ R-Tree like index on segmented data series, with bit-vectors that mark 
continuity of same series across segments
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Co-Evolving Subsequences

• discover subsequences, where distance between points is always < ε

• SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences 
of length ≥δ, within large collections of (short) data series

▫ prunes search space by discretizing values, and using checkpoints

• SBTSR-Tree: solution for (x-axis) aligned subsequences within 
large collections of (short) data series, which are geo-located

▫ R-Tree like index on segmented data series, with bit-vectors that mark 
continuity of same series across segments

• TS-Index: solution for subsequences of a long data series T that are 
similar to a (short) query sequence of length l

▫ k-ary balanced index, built on per-point min/max envelopes of all l-
length subsequences of T
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Co-Evolving Subsequences

• discover subsequences, where distance between points is always < ε

• SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences 
of length ≥δ, within large collections of (short) data series

▫ prunes search space by discretizing values, and using checkpoints

• SBTSR-Tree: solution for (x-axis) aligned subsequences within 
large collections of (short) data series, which are geo-located

▫ R-Tree like index on segmented data series, with bit-vectors that mark 
continuity of same series across segments

• TS-Index: solution for subsequences of a long data series T that are 
similar to a (short) query sequence of length l

▫ k-ary balanced index, built on per-point min/max envelopes of all l-
length subsequences of T
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ADS Index creation

174
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35%

5%

60%

Breakdown of time consumption 

Read data

Write data

CPU

~60% of time spent in CPU: potential for improvement!

60%



ParIS+
Parallel Indexing of Sequences

• solution for SIMD, multi-core, multi-socket architectures

▫ completely masks out the CPU cost during index creation

▫ answers exact queries in the order of few secs on 100GB dataset

 up to 3 orders of magnitude faster then single-core solutions

175
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ParIS+
Parallel Indexing of Sequences

• solution for SIMD, multi-core, multi-socket architectures

▫ completely masks out the CPU cost during index creation

▫ answers exact queries in the order of few secs on 100GB dataset

 up to 3 orders of magnitude faster then single-core solutions
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18x faster

k-NN Classification
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ParIS+
Parallel Indexing of Sequences

• solution for SIMD, multi-core, multi-socket architectures

▫ completely masks out the CPU cost during index creation

▫ answers exact queries in the order of few secs on 100GB dataset

 up to 3 orders of magnitude faster then single-core solutions
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18x faster

k-NN Classification

classifying 100K objects using a 100GB dataset 
goes down from several days to few hours!
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Double 

Buffer

ROOT

0 0 0 1 1 1. . .

IdxBulkLoading worker

RecBuf RecBuf

Array of iSAX

Summarizations

Raw Data Buffer

SAX

Coordinate

Worker

B1

Index creation

RAW Data Disk

Main memory

B2
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RAW Data

0 0 0 1 1 1. . .

Disk

Main memory

0 00 0 0 01 0

1 10 11 1 11 11

1 1 10 1 1 11

OutBuf OutBuf OutBufOutBuf

IdxConstr worker 1 IdxConstr worker k…

create 

thread

Coordinate

Worker

Index creation
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ParIS+ exact query answering

ROOT

0 0 0

0 01 0

0 01 01

. . . . . .

RAW File

LBC 

Worker

3. Read raw data 

for series in leaf  

4.Get BSF 

5. Calculate LB distance 

& generate candidate 

list 

LB_dist
LB_dist
LB_dist

LB_dist
LB_dist

Array of 

Candidate List
Array of iSAX

Summarizations

1. Query q

arrives

Disk

Main memory

SAX C l

2. Run

approximate

search
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ROOT

0 0 0

0 00 

0
0 01 0

0 01 

00
0 01 01

. . 

.
. . .

RAW File

LBC 

Worker

3. Read raw data 

for series in leaf  

4.Get BSF 

5. Calculate LB distance 

& generate candidate 

list 

LB_dist
LB_dist
LB_dist

LB_dist
LB_dist

Array of 

Candidate List
Array of iSAX

Summarizations

1. Query q

arrives

Disk

Main memory

SAX C l

2. Run

approximate

search

Lower-Bound Distance 

Calculation in SIMD 

Result above branch Dist_above[1] Dist_above[2] Dist_above[3] Dist_above[4] …

Mask above branch TRUE TRUE …

Result below branch Dist_below[1] Dist_below[2] Dist_below[3] Dist_below[4] …

Mask below branch TRUE …

Result in branch Dist_in[1] Dist_in[2] Dist_in[3] Dist_in[4] …

Mask in branch TRUE …

Final Result Dist_above[1] Dist_in[2] Dist_above[3] Dist_below[4] …

query series:
PAA representation

candidate series:
iSAX representation

…

query IN candidate

query ABOVE candidate query BELOW candidate
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ROOT
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Lower-Bound Distance 

Calculation in SIMD 
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ParIS+ exact query answering

ROOT

0 0 0

0 01 0

0 01 01

. . . . . .

RAW File

LBC 

Worker

BSF

…

RDC Worker

3. Read raw data 

for series in leaf  

4.Get BSF 

6. Read raw data 
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7. Update BSF 
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MESSI
In-Memory Data Series Index

• in-memory solution for SIMD, multi-core, multi-socket architectures

▫ index-creation algorithm

 balances workload of different workers, minimizes synchronization cost

▫ exact query answering algorithm

 optimizes tree traversal and pruning

 minimizes number of lower-bound and real distance calculations

▫ answers exact queries at interactive speeds: ~50msec on 100GB

 up to 11x faster than competing approaches
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Publications

Peng-
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MESSI Query answering – Stage 3
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MESSI Query answering – Stage 3
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search
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Raw Data

…

3. Read raw data 

for series in leaf  
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4.Get BSF 
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MESSI Query answering – Stage 3
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l node

Search worker 

7. if node dist<BSF
insert node in PQ

… …
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2. Run

approximate

search

Raw Data

…

0 00 0

0 01 00

3. Read raw data 

for series in leaf  



Raw Data

…
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ExactSearch worker 

LB_dist
LB_dist
LB_dist
LB_dist

Real_dist

Real_dist

Leaf 
node

BSF

MESSI Query answering – Stage 3

PQ[0]PQ[0]PQ[0]Priority Queues

11. Produce final 
1-NN answer

8. Pop node from 
a priority queue

shared
variable

9. Calculate lower
bound distances

10. Calculate real 
distances for 
non-pruned 
series
& update BSF



SING
Sequence Indexing Using GPUs

• in-memory solution for SIMD, multi-core, multi-socket architectures 
with GPUs (Graphical Processing Units)

▫ new exact query answering algorithm

 CPU-GPU co-processing framework

 new GPU-friendly lower bound distance calculation algorithm

▫ answers exact queries at interactive speeds: ~32msec on 100GB dataset

 up to 5x faster than competing approaches

Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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GPUs for Data Series Similarity Search
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• a natural solution

• GPUs typically part of modern hardware

• GPUs offer massive parallelization opportunities

• data series operations are massively parallelizable



GPUs for Data Series Similarity Search
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• a natural solution

• GPUs typically part of modern hardware

• GPUs offer massive parallelization opportunities

• data series operations are massively parallelizable

• challenges

• Limited GPU memory size (~12GB of RAM for modern GPUs)

• much smaller than raw data

• Slow interconnect speeds (PCI-Express 3.0 x16 delivers 10GB/sec)

• moving raw data needed by individual queries prohibitively expensive

• non-sophisticated Streaming Processors (GPU cores)

• not suited for supporting complex data structures/branching

• very limited in-core fast memory 

• trade-offs will change as GPU and interconnects technology advances
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GPU

Search

query

traverse index, insert leaf nodes in priority queue(s)

calculate LBDs only for series under a 
node inside the

intervals with all non-pruned nodes

CPU

compute LBDs for children of root, 
compute contiguous interval with all non-pruned nodes

perform approximate search, compute BSF

FMapG
sorted 

iSAX array 

LB_dist
LB_dist

LB_dist
LB_dist

-
-

-
-

-

-
-

LB_dist
LB_dist

SING Query answering
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GPU

Search

query

traverse index, insert leaf nodes in priority queue(s)

CPU

compute LBDs for children of root, 
compute contiguous interval with all non-pruned nodes

perform approximate search, compute BSF

-
-
-

LB_dist
LB_dist

ax3+bx

SING Query answering

GPU-friendly Lower Bound Distance Computations

Breakpoint=breakpoint[Sax]
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GPU

Search

query CPU

perform approximate search, compute BSF

-
-
-

ax3+bx

SING Query answering

GPU-friendly Lower Bound Distance Computations

Breakpoint=breakpoint[Sax] BreakPoly(Sax)=a*(Sax)3+b*(Sax)
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GPU

Search

query

compute LBDs for children of root, 
compute contiguous interval with all non-pruned nodes

perform approximate search, compute BSF

-
-
-

LB_dist
LB_dist

255 32-bit registers

SING Query answering

Time of Lower Bound Distance Computations

0

200

400

Seismic SALD SyntheticT
im

e 
(M

il
li

se
co

n
d

s)

Dataset

iSAX breakpoints BreakPoly breakpoints

GPU with BreakPoly() breakpoints is ~10x faster
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GPU

Search

query

traverse index, insert leaf nodes in priority queue(s)

Search

1-NN answer

check priority queue(s), process leaf nodes.

check LBD values in FmapC or calculate it,
calculate real distances

update BSF, use new BSF to prune better

calculate LBDs only for series under a 
node inside the

intervals with all non-pruned nodes

CPU

compute LBDs for children of root, 
compute contiguous interval with all non-pruned nodes

perform approximate search, compute BSF

tree 
index

Priority
Queues

raw data 
array

FMapG
sorted 

iSAX array 

LB_dist
LB_dist

LB_dist
LB_dist

-
-

-
-

-

-
-

FMapC

LB_dist
LB_dist

LB_dist
LB_dist

-
-

-
-

-

-
-

LB_dist
LB_dist

LB_dist
LB_dist

SING Query answering

check LBD values in FmapC or calculate it,
calculate real distances



DPiSAX
Distributed Partitioned iSAX

• solution for distributed processing (Spark)

▫ balances work of different worker nodes

 partitions series into uniform groups with parallel sampling (for load 
balancing)

 creates in parallel an index for each group (in a different node)

197

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Lavchenko-
KAIS’20
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DPiSAX
Distributed Partitioned iSAX

• solution for distributed processing (Spark)

▫ balances work of different worker nodes

 partitions series into uniform groups with parallel sampling (for load 
balancing)

 creates in parallel an index for each group (in a different node)
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DPiSAX
Distributed Partitioned iSAX

• solution for distributed processing (Spark)

▫ balances work of different worker nodes

 partitions series into uniform groups with parallel sampling (for load 
balancing)

 creates in parallel an index for each group (in a different node)

▫ speeds-up query answering

 exact queries are answered by all nodes (parallelize query execution)

 approximate queries answered only by a single node (parallelize 
workload execution)
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iSAX Index Family

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows 
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity 
search with deterministic and probabilistic quality guarantees.

Publications

Palpanas-
ISIP‘19

iSAX

iSAX2+ 

2008 2010 2014 2015 2017 2018 2019 2020

basic 

index

C

C#, C

C#

Java
(Spark)

C

C

C

timeline

iSAX 2.0

ADS / 
ADS+

ADSFull

DPiSAX 

ParIS ParIS+ MESSI

Coconut-Trie / 
Coconut-Tree

ULISSE

Coconut-LSM

iSAX2+*

ADS+*

+ Bulk 

Loading

+ Adaptive

+ Distributed 

+ Multi-Core, 

Multi-Socket, SIMD

+ Sortable Summarizations,

Streaming Data Series

+ Variable-Length Queries

CSING
+ Graphics Processing   

Units (GPUs)



TARDIS

• solution for distributed processing (Spark)

▫ based on iSAX-T representation and sigTree index

 iSAX Transposition: transposes matrix of iSAX words of same cardinality, 
represents as strings

 sigTree: prefix k-ary tree on iSAX-T strings

Publications

Zhang et al.
ICDE‘19

SAX iSAX-T

(T,4,2) = {1, 1, 0, 0 } = C

(T,4,4) = {11, 11, 01, 00 } = CE

(T,4,8) = {110, 110, 011, 000 } = CE2

(T,4,16) = {1100, 1101, 0110, 0001} = CE25

HexTranspose
1 1 0 0

1 1 0 1

0 1 1 0

0 0 0 1

1 1 0 0

1 1 1 0

0 0 1 0

0 1 0 1

C

E

2

5

time series SAX: [1100, 1101, 0110, 0001]
Root

0 C F. . . 
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. . . 

CF
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TARDIS

• solution for distributed processing (Spark)

▫ based on iSAX-T representation and sigTree index

 iSAX Transposition: transposes matrix of iSAX words of same cardinality, 
represents as strings

 sigTree: prefix k-ary tree on iSAX-T strings

▫ centralized global sigTree + distributed local sigTrees with raw data

 global sigTree

 constructed using statistics from local samples

 serves as partition scheme for data re-distribution

Publications

Zhang et al.
ICDE‘19



TARDIS-G
(Global Index)

Indexed Data

TARDIS-L
(Local Index)

query

accessing global index for 
best-match partition(s)

partition-level access, 
utilizing local index

master node

worker nodes

TARDIS
Publications

Zhang et al.
ICDE‘19



TARDIS

• solution for distributed processing (Spark)

▫ based on iSAX-T representation and sigTree index

 iSAX Transposition: transposes matrix of iSAX words of same cardinality, 
represents as strings

 sigTree: prefix k-ary tree on iSAX-T strings

▫ centralized global sigTree + distributed local sigTrees with raw data

 global sigTree

 constructed using statistics from local samples

 serves as partition scheme for data re-distribution

▫ query answering

 ng-approximate k-NN queries

 exact-match queries (does the query appear exactly the same in the dataset?)

Publications

Zhang et al.
ICDE‘19



KV-match

• solution for distributed (HDFS) subsequence similarity search

▫ similarity search problem

 subsequence similarity search: search for a short query inside a long series

 ε-range queries

 exact answers for constrained ε-range queries (using cNSM)

▫ cNSM: constrained Normalized Subsequence Matching

 essentially, constrained similarity search

 intuitively, Z-normalization with constraints on degrees of amplitude scaling and 
offset shifting (α ≥ 1 and β ≥ 0, respectively) 

 users control extent of amplitude scaling and offset shifting 

 normalized subsequence matching is a special case of cNSM

Publications

Wu et al.
ICDE‘19



KV-match

• solution for distributed (HDFS) subsequence similarity search

▫ index creation

 slide window on input series

 produce ordered rows of key-value pairs

 key Ki : a range of mean values, Ki = [LRi , URi ) 

 value Vi : the set of sliding windows whose mean values fall within Ki

 key-value table stored in HBase

Publications

Wu et al.
ICDE‘19



KV-match

• solution for distributed (HDFS) subsequence similarity search

▫ query answering

 for query Q and corresponding subsequence S

 segment Q into aligned length-w disjoint windows (requires having several 
indexes of different lengths)

 for each window Qi and Si

 filtering condition: S is candidate answer only if all μSi fall within [LRi , URi]

 Phase 1: Index-probing

 generate set of candidate subsequences CS

 Phase 2: Post-processing

 verify subsequences in CS by computing actual distance on the raw data

Publications

Wu et al.
ICDE‘19



L-match

• solution for distributed (HDFS) subsequence similarity search

▫ L-match improves on KV-match

 instead of sliding a window to build the index, L-match slides a window on query

 index is more compact

 operations are naturally parallelizable (no data-window overlaps among nodes)

Publications

Feng et al.
IEEE Access‘20



L-match

• solution for distributed (HDFS) subsequence similarity search

▫ L-match improves on KV-match

 instead of sliding a window to build the index, L-match slides a window on query

 index is more compact

 operations are naturally parallelizable (no data-window overlaps among nodes)

▫ compared to KV-match, L-match is slightly slower, but 10x smaller

Publications

Feng et al.
IEEE Access‘20



ParSketch
⚫ solution for distributed processing (Spark)

⚫ represents data series using sketches

⚫ using a set of random vectors (Johnson-Lindenstrauss lemma)

⚫ define groups of dimensions in sketches

⚫ store the values of each group in a grid (in parallel)

⚫ each grid is kept by a node

⚫ for ng-approximate query answering (originally proposed for ε-range queries)

⚫ find in the grids time series that are close to the query

⚫ finally, check the real similarity of candidates to find the results

⚫ performs well for high-frequency series Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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node 1 node 2

Publications

Cole et al.
KDD‘05

Yagoubi et al.
DMKD‘18
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How do these methods compare?

• several methods proposed in last 3 decades

• never carefully compared to one another

• we now present results of extensive experimental comparison

Echihabi, Zoumpatianos, Palpanas - EDBT 2021

213



Experimental Framework

Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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• Hardware

▫ HDD and SSD

• Datasets

▫ Synthetic (25GB to 1TB) and 4 real (100 GB)

• Exact Query Workloads

▫ 100 – 10,000 queries 

• Performance measures

▫ Time, #disk accesses, footprint, pruning, Tightness of Lower 
Bound (TLB), etc.

• C/C++ methods (4 methods reimplemented from scratch) 

• Procedure:

▫ Step 1: Parametrization

▫ Step 2: Evaluation of individual methods

▫ Step 3: Comparison of best methods

Publications

Echihabi-
PVLDB‘18



Time for Indexing (Idx) vs. Dataset 

Size
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ADS+ fastest

DSTree slowest 
RAM=75GB



Time for 100 Exact Queries vs. 

Dataset size

Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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RAM=75GB

disk: 

DSTree fastest

In-memory:

VA+file fastest 



Time for Idx + 10K Exact Queries vs. 

Dataset size

Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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In-memory:

VA+file fastest

disk: 

DSTree fastest



Time for Idx + 10K Exact Queries vs. 

Series Length

Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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VA+file and ADS+ get faster 

with increasing length

Steady performance for 

most methods

(Size = 100GB, Dimensions = 16)



Unexpected Results

• Some methods do not scale as expected (or not at all!)

• Brought back to the spotlight two older methods VA+file
and DSTree
▫ Our reimplementations outperform by far the original ones 

• Optimal parameters for some methods are different 
from the ones reported in the original papers

• Tightness of Lower Bound (TLB) does not always 
predict performance

Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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TLB does not always predict 

performance
The TLB measures the quality of a summarization (higher is better)

Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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TLB =
𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑝𝑎𝑐𝑒

𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒
0 ≤ ≤ 1

worst best

DSTree and iSAX2+ have similar TLB

No bias, same data and same implementation framework

iSAX2+ 5x slower than 

DSTree

Publications

Echihabi-
PVLDB‘18



Insights

• Results are sensitive to:

▫ Parameter tuning

▫ Hardware setup

▫ Implementation

▫ Workload selection

• Results identify methods that would benefit from modern 
hardware

Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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Storing Time-Series

File System

RDBMS

Specialized Time-Series DBs

Array DBs

Multiple options. By popularity:

Echihabi, Zoumpatianos, Palpanas - EDBT 2021 225



Storing Time-Series: 
File-System

• FITS

• HDF5

Astronomy

• SEED

• MiniSEED

• ASCII

• GeoCSV

Seismology

• BIDS (EEG)

• WFDB (ECG)

• EDF(ECG)

• FASTA (DNA)

Biology

• CSV

Finance

• HDF5

• NetCDF

Engineering

• HDF5

• NetCDF

Physics

• CSV

• TSV

• XLS

• Parquet

• etc.

Data 
Science

Multiple different formats implemented for various applications
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Storing Time-Series: 
DBMS

Illustra (1993) → IBM Informix (Time-Series DataBlade):         

• Users need to define a time-series sub-type, which have a datetime as the 

first column in the definition

• Can encode both regular and irregular time-series (fixed of variable 

intervals)

• Can describe meta-data

• Supports: running aggregates, prev, next value reasoning, horizontal and 

vertical mathematical operations, lags, etc.

Shore → SEQ

• Custom Time-Series Data Type

• Various time-series operators (order, correlation, etc.)

Oracle:

• Introduced Time-Series functionality in Oracle8

• Now merged into the main product.

• It is in the form of time-series analytics functions (e.g., forecasting)

Commercial System

Commercial System

Academic System

Echihabi, Zoumpatianos, Palpanas - EDBT 2021 227
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Storing Time-Series: 
DBMS

Illustra (1993) → IBM Informix (Time-Series DataBlade):         

• Users need to define a time-series sub-type, which have a datetime as the 

first column in the definition

• Can encode both regular and irregular time-series (fixed of variable 

intervals)

• Can describe meta-data

• Supports: running aggregates, prev, next value reasoning, horizontal and 

vertical mathematical operations, lags, etc.

Shore → SEQ

• Custom Time-Series Data Type

• Various time-series operators (order, correlation, etc.)

Oracle:

• Introduced Time-Series functionality in Oracle8

• Now merged into the main product.

• It is in the form of time-series analytics functions (e.g., forecasting)

Commercial System

Commercial System

Academic System

Most people use DBMSs merely for storing 

and retrieving time-series.

All analysis is performed externally.
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Storing Time-Series:
Specialized Time-Series DBs

InfluxDB

•Storage: Custom (TSM-Tree)

TimeScaleDB

•Storage: PostgreSQL

Beringei

•Storage: Compressed Arrays on Disk

Druid

•Metadata Storage: DBMS

•Data Storage: HDFS, S3, Custom format

Prometheus

•Storage: Custom (TSDB Format)

CrateDB

•Storage: Custom (Column-oriented)

IoTDB

•Storage: Custom: (TsFile – compression + 
stats)

OpenTSDB

•Storage: HBase

QuasarDB

•Storage: RocksDB

Amazon TimeStream

•Storage: Unknown
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Storing Time-Series:
ArrayDBs

TileDB Rasdaman SciDB

Custom Log-Structured 

storage

Sits on top of existing 

DBMSs

Custom storage

Echihabi, Zoumpatianos, Palpanas - EDBT 2021 230



varying starts

Start

Start

The Data-Type 

Characteristics

What are the 

properties of data 

series?

Time-Series Characteristics
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varying starts…

Start

Start

End

End …and ends

Time-Series Characteristics

Echihabi, Zoumpatianos, Palpanas - EDBT 2021 232

varying lengths

varying sample rates

within and across data series

Regular vs. irregular



SEQ 1

SEQ 2

SEQ 3

SEQ 4

SEQ 5

Position

pressure
temperature

Time-Series Characteristics

Echihabi, Zoumpatianos, Palpanas - EDBT 2021 235

seq_id:   1

sensor: Sensor 1

country:  Italy

city:     Asiago

province: Veneto

seq_id:   2

sensor: Sensor 2

country:  Italy

city:     Merate

province: Lombardy

seq_id:   3

sensor: Sensor 3

country:  USA

city:     Cambridge

province: MA

seq_id:   4

sensor: Sensor 4

country:  USA

city:     Delaware

province: OH

seq_id:   5

sensor: Sensor 5

country:  Canada

city:     Toronto

province: Ontario

Non-sequential attributesSequential attributes



sensor_id country city province temperature pressure

102 Italy Asiago Veneto

104 Italy Merate Lombardy

201 USA Cambridge MA

202 USA Delaware OH

303 Canada Toronto Ontario

236

Storage

Echihabi, Zoumpatianos, Palpanas - EDBT 2021

Two options

Collapsed Expanded



- With specialized UDFs

- Compression algos

- Stored inline or in containers

e.g. in Informix small time series

(<1500 bytes) are stored in-row

sensor_id country city province temperature pressure

102 Italy Asiago Veneto

104 Italy Merate Lombardy

201 USA Cambridge MA

202 USA Delaware OH

303 Canada Toronto Ontario

237

Storage: Collapsed Design

Echihabi, Zoumpatianos, Palpanas - EDBT 2021

Specialized Data Type

Time-series-as-a-record

Our own experimental system, 

currently under development 

at the University of Paris
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sensor_id country city province temperature pressure

102 Italy Asiago Veneto inline up to 1500 bytes

104 Italy Merate Lombardy >1500 bytes →

ref to external container 

(each time series is sorted by time)

….

sensor_id country city province temperature pressure

102 Italy Asiago Veneto 1 Shore Large Object per series

(contains 1 Sparse Array per series)

104 Italy Merate Lombardy

….



sensor_id country city province timestamp temperature pressure

102 Italy Asiago Veneto 1616264642 26 1013.5

102 Italy Asiago Veneto 1616268642 26.5 1013.1

… … … ... … … …

104 Italy Merate Lombardy 1616264682 24 1012.2

… … … ... … … …

201 USA Cambridge MA 1616274642 22 1011.6

202 USA Delaware OH 1616294642 21 1005.8

303 Canada Toronto Ontario 1616274642 18 1008.2
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Storage: Expanded Design
Time-series-point-as-a-record

• Index and partition by timestamp

• Tags are compressed (and 

sometimes bitmap indexed)

Special Table

CREATE TABLE 

buoyinfo( buoyid sid, salinity integer,   

temperature integer ) 

PRIMARY TIME INDEX 

(TIMESTAMP(1), DATE '2016-04-19’, 

HOURS(1), COLUMNS(buoyid, salinity),   

SEQUENCED);

SELECT create_hypertable('table', 'time');



sensor_id country city province timestamp temperature pressure

102

Usually also

encoded with inverted indexes

e.g. in druid, bitmaps

CountryItalyBmp = […]

CountryUSABmp = […]

CityAsiagoBmp = […]

….

1616264642 26 1013.5

102 1616268642 26.5 1013.1

… … … …

104 1616264682 24 1012.2

… … … …

201 1616274642 22 1011.6

202 1616294642 21 1005.8

303 1616274642 18 1008.2
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Storage: Expanded Design
Time-series-point-as-a-record

• Index and partition by timestamp

• Tags are compressed (and 

sometimes bitmap indexed)

Special Table

CREATE TABLE 

buoyinfo( buoyid sid, salinity integer,   

temperature integer ) 

PRIMARY TIME INDEX 

(TIMESTAMP(1), DATE '2016-04-19’, 

HOURS(1), COLUMNS(buoyid, salinity),   

SEQUENCED);

SELECT create_hypertable('table', 'time');



Many positions

(entire series)

Many series

Few series

Few positions

Position-first

Sequence-first

All series

All positions

All series

Many positions
All series

Few positions

Many series

Many positions
Many series

Few positions

Few series

Few positions

Few series

All positions

Few series

Many positions

Many series

All positions

Heavy filtering on positions & 

Accessing lots of series: 

position-first

Heavy filtering on series id & 

accessing lots of positions: 

sequence-first

Echihabi, Zoumpatianos, Palpanas - EDBT 2021 241

Expanded Design: Clustering



Heavy filtering on positions & 

Accessing lots of series: 

position-first

Heavy filtering on series id & 

accessing lots of positions: 

sequence-first

*DBMS-X
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Heavy filtering on positions & 

Accessing lots of series: 

position-first

Heavy filtering on series id & 

accessing lots of positions: 

sequence-first

*DBMS-X

Most existing systems 

sort data by series
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Query Types

Simple

Selection-Projection-Transformation

Complex

Analytical/Mining Queries

The Types of 

Queries
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Query Types

Simple

Selection-Projection-Transformation

SEQ 1

SEQ 3

SEQ 2

SEQ 4

SEQ 5
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Query Types

Simple

Selection-Projection-Transformation

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Select

some series

Project

some points

Apply a function

on them

SEQ 1

SEQ 3

SEQ 2

SEQ 4

SEQ 5

FFT(            )
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Query Types

Simple

Selection-Projection-Transformation

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Select

some series

Project

some points

Apply a function

on them
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Query Types

Simple

Selection-Projection-Transformation

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Select

some series

Project

some points

Apply a function

on them

Classic 1/n-dimensional indexes 

& layouts for point and range 

queries:

Point get: Get seq id = 1

Range: Get positions 10 - 100
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Project

some points

Query Types

Simple

Selection-Projection-Transformation

Complex

Analytical/Mining Queries

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Select

some series

Apply a function

on them
Clustering

Classification

Outlier Detection

Frequent Pattern 
Mining
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Query Types

Simple

Selection-Projection-Transformation

Complex

Analytical/Mining Queries

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Clustering

Classificat
ion

Outlier 
Detection

Frequent 
Pattern 
Mining

Clustering

Label Classification

Outlier
Outlier

Detection

Frequent Pattern

Mining
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Query Types

Simple

Selection-Projection-Transformation

Complex

Analytical/Mining Queries

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Clustering

Classification

Outlier 
Detection

Frequent Pattern 
Mining

Specialized 

Algorithms

Similarity 

Search

Echihabi, Zoumpatianos, Palpanas - EDBT 2021 251

Project

some points

Select

some series

Apply a function

on them



Query Types

Simple

Selection-Projection-Transformation

Complex

Analytical/Mining Queries

Clustering

Classification

Outlier 
Detection

Frequent Pattern 
Mining

Specialized 

Algorithms

Similarity 

Search

Bottleneck

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold
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Time-Series Management Systems

a few more details on the 
popular systems:

- InfluxDB
- TimescaleDB
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InfluxDB

• Storage Engine:
• Log Structured Merge Tree: LSM-Tree variant that expects 

data to arrive ordered by time and partitions them by distinct 
sequence. It then stores each series contiguously.

• Schema:
• Tags and fields. Tags are used to describe meta-data and 

fields are used to store quantities that change over time.

• Queries
• It supports group by (only on tags), join (on timestamps and 

fields), selections, projections, and aggregations.

• It also supports continuous queries 
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TimescaleDB

• Storage: Uses PostgreSQL as the backend. 
• It partitions time-series into multiple tables, forming a single 

virtual entity called a hypertable. 

• It allows for the compression of data, something that Postgres 
does not do by default.

• Schema: Tables are normal Postgres tables, where one 
has to specify a time column in order to create a hypertable.

• Queries: Full SQL support, with the addition of custom 
time-series functions. 

• Custom time-series operators: first, last, histogram, 
interpolation, time bucketing, gap filling, etc.

• It also supports continuous queries
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Challenges and Open Problems

• we are still far from having solved the problem

• several challenges remain in terms of 

▫ usability, ease of use

▫ scalability, distribution

▫ benchmarking

• these challenges derive from modern data series applications
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Massive Data Series Collections

Human Genome project

130 TB

NASA’s Solar Observatory 

1.5 TB per day

Large Synoptic Survey 
Telescope (2019)

~30 TB per night

258

data center and
services monitoring

2B data series
4M points/sec

Publications

Palpanas-
SIGREC’19
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Challenges and Open Problems

Outline

• sequence management system

• benchmarking

• interactive analytics

• parallelization and distribution

• general high-dimensional vectors

• deep learning

259
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Management System

“enable practitioners and non-expert users to easily and 
efficiently manage and analyze massive data series collections”

260

Publications

Zoumbatianos
ICDE’18

Palpanas-
HPCS’17

Palpanas-
SIGREC’15
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Management System

• Big Sequence Management System

▫ general purpose data series management system

261

data sequences
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Management System

• Big Sequence Management System

262
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Management System

• Big Sequence Management System

263
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BestNeighbor:

Choosing Indexing Method for Given Dataset

⚫ method to choose between DPiSAX and ParSketch

⚫ based on data power spectrum

⚫ iSAX less efficient than ParSketch for high-frequency data

⚫ BestNeighbor uses dataset characteristics (Fourier 

coefficients), and chooses

⚫ ParSketch: if there is substantial power at least up to the 

30th coefficient

⚫ DPiSAX: otherwise (most of energy in low order Fourier 

coefficients)

⚫ how do these results extend to 

⚫ other data characteristics?

⚫ more indexing methods?

⚫ take hardware specifications into consideration?

⚫ …
264

Publications

Lavchenko-
KAIS’20

http://imitates.gforge.inria.fr/
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Challenges and Open Problems

Outline

• sequence management system

• benchmarking

• interactive analytics

• parallelization and distribution

• general high-dimensional vectors

• deep learning

265
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Previous Studies

• chosen from the data (with/without noise)

266

evaluate performance of indexing methods using random queries
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Previous Studies

With or without noise

noise

267
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Problem with
Random Queries

No control on their characteristics

We cannot properly evaluate summarizations and indexes

268

We need queries that cover the entire range 
from easy to hard
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Previous Workloads
Most previous workloads are skewed to easy queries
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Previous Workloads
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Most previous workloads are skewed to easy queries
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Benchmark Workloads

271

If all queries are easy 
all indexes look good

If all queries are hard 
all indexes look bad

need methods for generating queries of varying hardness
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Characterizing Queries

P4

MINDIST

MINDIST

272

Approximating distances using 
Lower Bounding functions on 
summarizations.

Echihabi, Zoumpatianos, Palpanas - EDBT 2021

Publications

Zoumbatianos
KDD ‘15

Zoumbatianos
TKDE ‘18

query
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Lower Bound Distance from query



Distribute points such that:
The worse a summarization
the more data it checks

Equal number of points in every “zone”

Q
1

Densification Method:

Equi-densification

273

New points

Original points
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64 bytes 32 bytes 16 bytes 8 bytes
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Experiments 
Densification Methods

Using all datasets of size 256 (100 queries for each dens. method), we measured the:
• 1-TLB: Summarization Error (0: perfect bound, 1: worst possible bound)
• Minimum Effort for a set of summarizations using 8 – 64 bytes.

Normalized over SAX-64 
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For equi-densification 
normalized Effort is closer to the normalized Summarization Error

The worse a summarization the bigger effort it does

64 bytes 32 bytes 16 bytes 8 bytes
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Experiments 
Densification Methods
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Summary

Theoretical background
Methodology for characterizing 
NN queries for data series indexes

Nearest neighbor query workload generator
Designed to stress-test data series indexes 
at varying levels of difficulty

276

Pros:

Time complexity
Need new approach to scale to very large datasets

Cons:
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Challenges and Open Problems

Outline

• sequence management system

• benchmarking

• interactive analytics

• parallelization and distribution

• general high-dimensional vectors

• deep learning

277
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Interactive Analytics?

• data series analytics is computationally expensive

▫ very high inherent complexity

• may not always be possible to remove delays

▫ but could try to hide them!

278
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

279
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way

• several exciting research problems in intersection of visualization 
and data management

▫ frontend: HCI/visualizations for querying/results display

▫ backend: efficiently supporting these operations

281
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Challenges and Open Problems

Outline

• sequence management system

• benchmarking

• interactive analytics

• parallelization and distribution

• general high-dimensional vectors

• deep learning

282
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Need for

Parallelization/Distribution

• take advantage of all modern hardware opportunities!

▫ Single Instruction Multiple Data (SIMD) 

 natural for data series operations

▫ multi-tier CPU caches

 design data structures aligned to cache lines

▫ multi-core and multi-socket architectures

 use parallelism inside each computation server

▫ Graphics Processing Units (GPUs)

 propose massively parallel techniques for GPUs

▫ new storage solutions: NVRAMs, FPGAs

 develop algorithms that take these new characteristics/tradeoffs into 
account

▫ compute clusters

 distribute operation over many machines

283
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Need for

Parallelization/Distribution

• further scale-up and scale-out possible!

▫ techniques inherently parallelizable

 across cores, across machines

284

Publications

Palpanas-
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Need for

Parallelization/Distribution

• further scale-up and scale-out possible!

▫ techniques inherently parallelizable

 across cores, across machines

• need to 

▫ propose methods for concurrent query answering 

▫ combine multi-core and distributed methods 

▫ examine FPGA and NVM technologies

• more involved solutions required when optimizing for energy

▫ reducing execution time is relatively easy

▫ minimizing total work (energy) is more challenging

285
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Challenges and Open Problems

Outline

• sequence management system

• benchmarking

• interactive analytics

• parallelization and distribution

• general high-dimensional vectors

• deep learning

286
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Data Series vs. high-d Vectors

• two sides of the same(?) coin

▫ data series as multidimensional points

▫ for a specific ordering of the dimensions

• several techniques for similarity search in high-d vectors

▫ using LSH (SRS), space quantization (IMI), k-NN graphs (HNSW)

• how do these high-d vector techniques compare to data series 
techniques?

▫ conducted extensive experimental comparison

287
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

288
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk

289

DSTree
iSAX2+
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk

290
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HNSW: only for in-memory data, with 
no guarantees for the answers 



Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk

▫ perform the best for long vectors, in-memory and on-disk
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DSTree
iSAX2+
VA+file

DSTree
iSAX2+
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk

▫ perform the best for long vectors, in-memory and on-disk

▫ perform the best for disk-resident vectors

292

DSTree
iSAX2+

Publications

Echihabi-
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

• several new applications (and challenges) for data series similarity 
search techniques!

293
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Challenges and Open Problems

Outline

• sequence management system

• benchmarking

• interactive analytics

• parallelization and distribution

• general high-dimensional vectors

• deep learning

294
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Connections to Deep Learning

• data series indexing for deep embeddings

Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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deep embeddings
high-d vectors learned using a DNN

sequences
text

images
video

graphs
... 



Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing data series

▫ eg, autoencoders can learn efficient data series summaries

• deep learning for designing index data structures

▫ learn an index for similarity search

• deep learning for query optimization

▫ search space is vast

▫ learn optimization function
Echihabi, Zoumpatianos, Palpanas - EDBT 2021
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Overall Conclusions

• data series is a very common data type

▫ across several different domains and applications

• complex data series analytics are challenging

▫ have very high complexity

▫ efficiency comes from data series management/indexing techniques

• need for Sequence Management System

▫ optimize operations based on data/hardware characteristics

▫ transparent to user

• several exciting research opportunities
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