
Twin Subsequence Search in Time Series
Georgios Chatzigeorgakidis

IMSI, Athena R.C.

gchatzi@athenarc.gr

Dimitrios Skoutas

IMSI, Athena R.C.

dskoutas@athenarc.gr

Kostas Patroumpas

IMSI, Athena R.C.

kpatro@athenarc.gr

Themis Palpanas

LIPADE, Université de Paris &

French University Institute (IUF)

themis@mi.parisdescartes.fr

Spiros Athanasiou

IMSI, Athena R.C.

spathan@athenarc.gr

Spiros Skiadopoulos

DIT, University of Peloponnese

spiros@uop.gr

ABSTRACT
We address the problem of subsequence search in time series us-

ing Chebyshev distance, to which we refer as twin subsequence

search. We first show how existing time series indices can be ex-

tended to perform twin subsequence search. Then, we introduce

TS-Index, a novel index tailored to this problem. Our experi-

mental evaluation compares these approaches against real time

series datasets, and demonstrates that TS-Index can retrieve twin

subsequences much faster under various query conditions.

1 INTRODUCTION
Given a time series 𝑇 and a query sequence 𝑄 (|𝑄 | ≪ |𝑇 |), sub-
sequence search finds subsequences in 𝑇 that are similar to 𝑄 .

Although most works rely on Euclidean distance or Dynamic

Time Warping (DTW) (e.g., [17, 19]), different L𝑝 norms or other

similarity measures are also useful for capturing different pat-

terns of similarity or achieving higher classification accuracy

in certain datasets [6, 22]. In this work, we use the Chebyshev
distance (i.e., L∞ norm) between two subsequences, which is

the maximum difference of their values across their entire dura-

tion. We call two subsequences twins with respect to a distance

threshold 𝜖 , if their Chebyshev distance is not greater than 𝜖 . This

kind of similarity search can be useful is various applications:

finding doublet earthquakes in seismology, identifying similar

traffic patterns in road networks, or detecting irregular patterns

in medical applications like Electroencephalography (EEG) or

Electrocardiography (ECG) sequences, etc.

The following indicative experiment on an EEG time series [12]

with length of 1,801,999 timestamps provides some insight on the

different results obtained using Chebyshev distance as opposed

to Euclidean. Considering a query sequence 𝑄 and a Chebyshev

distance threshold 𝜖 , we identify all twin subsequences, obtaining

1,034 results in total. We then attempt to retrieve the same results

by subsequence search using Euclidean distance. To avoid any

false negatives, as will be shown later in Section 3.1, we need

to set the Euclidean distance threshold to 𝜖 ′ = 𝜖 ×
√
|𝑄 |. The

latter produces 127,887 results. Figure 1 exemplifies the intuition

behind matches obtained with Chebyshev distance compared to

those with Euclidean, for two different queries. Assume a query

sequence 𝑄 and two matches, 𝑇 and 𝑇 ′, obtained under Cheby-

shev and Euclidean distance, respectively. As shown, 𝑇 closely

matches the query in all timestamps. Instead, 𝑇 ′ either lacks a
spike that is present in the query (Fig. 1a) or exhibits one that is

not present in the query (Fig. 1b).

© 2021 Copyright held by the owner/author(s). Published in Proceedings of the

24th International Conference on Extending Database Technology (EDBT), March

23-26, 2021, ISBN 978-3-89318-084-4 on OpenProceedings.org.

Distribution of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

(a) Absence of desired spike (b) Presence of undesired spike

Figure 1: Examples of false positives obtained with Eu-
clidean distance compared to results with Chebyshev dis-
tance on subsequences of the EEG dataset.

Given a query sequence𝑄 and a time series𝑇 , a naïve process

for finding twin subsequences of 𝑄 across 𝑇 is by performing a

sweepline scan. This scans 𝑇 using a sliding window of length

|𝑄 |, comparing at each timestamp the query with the current

subsequence extracted from 𝑇 , and adding it to the results if it

satisfies the given threshold 𝜖 on Chebyshev distance. However,

this is clearly inefficient for long time series.

In this work, we investigate index-based methods for twin

subsequence search. First, we show how two state-of-the-art

time series indices, namely KV-Index [19] and 𝑖SAX [18] can be

adapted for this task. Then, we introduce a novel index, called

TS-Index, which is tailored to this problem. TS-Index is a tree

structure that summarizes the subsequences contained within

each node using Minimum Bounding Time Series (MBTS) [4],

consisting of an upper and lower bounding sequence. Our experi-

mental evaluation shows that executing twin subsequence search

using TS-Index is significantly faster compared to adapting the

query execution over other indices.

Specifically, our main contributions are as follows:

• We introduce the problem of twin subsequence search and

propose a filter-verification algorithm that can be applied

on state-of-the-art time series indices.

• We then introduce TS-Index, a tree-based index tailored

to twin subsequence search, which utilizes appropriate

bounds in its nodes to prune the search space.

• We experimentally evaluate our proposed methods using

real-world datasets in terms of query execution, memory

footprint and index construction time.

The remainder of the paper is organized as follows. Section 2

reviews related work. Section 3 formally defines the problem. Sec-

tion 4 presents how it can be addressed based on existing indices.

Section 5 presents the proposed TS-Index. Section 6 reports our

experimental results. Finally, Section 7 concludes the paper.

2 RELATEDWORK
Subsequence search can be performed with a sweepline approach

that scans the time series using a sliding window. Various opti-

mizations can be found in UCR suite [17] and Matrix Profile [21].

However, these optimizations are specific to Euclidean distance

and thus cannot be applied to twin subsequences. Also, the lack

of an index poses efficiency and scalability limitations.

A survey of time series indices for similarity search can be

found in [7]. Several methods use Discrete Wavelet Transform

to reduce dimensionality and then generate an index based on

the transformed sequences (e.g., [3, 16]). More recent approaches

are based on the Symbolic Aggregate Approximation (SAX) repre-

sentation of time series [10]. A SAX word is a multi-resolution

summary of a time series quantized on the value domain. It is

derived from the Piecewise Aggregate Approximation (PAA) [8],

which segments a time series on the time axis and approximates it

by retaining only the mean value per segment. This has led to the

𝑖SAX index [18], a tree-based structure built over the SAX words

of a set of time series. Each node in 𝑖SAX contains a SAX word

that guarantees a lower bound in terms of Euclidean distance

for all the time series indexed by it. To answer similarity search

queries, the index is traversed in a top-down fashion, comparing

at each step the SAX representation of the query against the ones

contained in each visited node. Several extensions to 𝑖SAX have

been proposed [13]. 𝑖SAX 2.0 [1] and 𝑖SAX2+ [2] enable bulk load-

ing, while ADS+ [23] builds the index adaptively, based on the

query workload. DP𝑖SAX [20] is a distributed index. ParIS [14]

and MESSI [15] take advantage of modern multi-core architec-

tures. Coconut [9] introduces sortable SAX representations and

builds an index in a bottom-up fashion. Finally, ULISSE [11] an-

swers queries of varying length.

Another recentmethod for subsequence search is KV-Index [19].

After extracting all subsequences of a given length from a time

series and deriving their corresponding mean values, it generates

an index containing key-value pairs. Each key represents a range

of mean values for a group of subsequences, pointing to starting

positions of these subsequences along the original time series.

As we show in Section 4, it is possible to execute twin subse-

quence search queries using 𝑖SAX or KV-Index. However, since

these indices are tailored to similarity search using Euclidean

distance, this approach is suboptimal, as indicated also in our

experiments in Section 6.

An index for arbitraryL𝑝 norms is described in [22]. It divides

each sequence into a fixed number of equi-sized segments, and

takes the mean of each segment to form a feature vector. Such

a generic approach favors flexibility; instead, our focus in this

paper is on optimizing performance specifically for queries using

Chebyshev distance.

Finally, in a previous work [5], we have studied the problem

of discovering pairs and bundles of similar time-aligned subse-

quences within a collection of time series, based on Chebyshev

distance, using a sweepline approach. In this paper, we focus

on searching for twin subsequences in an input time series 𝑇

that are similar to a query subsequence 𝑄 , which is a different

problem, and we propose an index-based approach. Furthermore,

in another previous work [4], we have developed a hybrid index,

called BTSR-Tree, which also employs the concept of Minimum

Bounding Time Series (MBTS) to prune the search space. How-

ever, this is a spatial-first index specifically tailored to queries

over geo-located time series, and it is based on Euclidean distance

instead of Chebyshev.

3 PROBLEM DEFINITION
Next, we formally introduce the problem of twin subsequence

search and describe a generic filter-verification approach.

3.1 Problem Statement
A time series is a time-ordered sequence 𝑇 = {𝑇1,𝑇2,...,𝑇𝑛}, where
𝑇𝑖 is the value at the 𝑖-th timestamp and 𝑛 = |𝑇 | is the length of

the series (i.e., number of timestamps). We use 𝑇𝑝,𝑙 to denote the

subsequence {𝑇𝑝 , ...,𝑇𝑝+𝑙−1} starting at timestamp 𝑝 and having

length 𝑙 , where 1 ≤ 𝑝 ≤ 𝑝 + 𝑙 − 1 ≤ 𝑛. For brevity, we also use 𝑆

to generally refer to a (sub)sequence.

Given two sequences 𝑆 and 𝑆 ′ of equal length 𝑙 , we call them
twins if their Chebyshev distance is not greater than a given

threshold 𝜖 . The Chebyshev distance of two vectors is their maxi-

mum difference along any dimension. Hence, if 𝑆 and 𝑆 ′ are twin
sequences with respect to 𝜖 , their values at any timestamp should

not differ by more than 𝜖 . Formally:

Definition 1 (Twin Seqences). Two sequences 𝑆 and 𝑆 ′ of
equal length 𝑙 are called twins with respect to a given threshold 𝜖 ,
denoted as 𝑆1 ∼𝜖 𝑆2, if their Chebyshev distance 𝑑 is not greater

than 𝜖 , i.e., 𝑑 (𝑆, 𝑆 ′) := 𝑙−1
max

𝑖=0
(|𝑆𝑖 − 𝑆 ′𝑖 |) ≤ 𝜖 .

We can now formally define the problem:

Problem 1 (Twin Subseqence Search). Given a query se-
quence𝑄 of length 𝑙 , a time series𝑇 of length 𝑛 ≫ 𝑙 , and a distance
threshold 𝜖 , find all subsequences 𝑆 in𝑇 (|𝑆 | = 𝑙) such that 𝑄 ∼𝜖 𝑆 .

We note two important observations below. Given two twin se-

quences 𝑆 ∼𝜖 𝑆 ′ of length 𝑙 , their Euclidean distance is 𝐸𝐷 (𝑆, 𝑆 ′)
=

√∑
𝑖 (𝑆𝑖 − 𝑆 ′𝑖)2 ≤

√∑
𝑖 𝜖

2
= 𝜖 ×

√
𝑙 . This establishes a relation

between a given Chebyshev distance threshold and a correspond-

ing Euclidean distance threshold. Moreover, from Definition 1, it

follows that any pair of time-aligned subsequences across two

twin sequences are also twins, i.e., if 𝑇 ∼𝜖 𝑇 ′, then 𝑇𝑝,𝑙 ∼𝜖 𝑇 ′𝑝,𝑙
for any 𝑙 ∈ [1, |𝑇 |] and 𝑝 ∈ [1, |𝑇 | − 𝑙].

Often, 𝑧-normalization is applied when comparing time se-

ries. Throughout the paper, we consider various possibilities: (a)

working with the raw values, (b) 𝑧-normalizing the entire time

series, (c) 𝑧-normalizing each individual subsequence. We discuss

the implications of each case where relevant.

3.2 Filter-Verification Approach
We can detect twin subsequences following a filter-verification

framework: the first step (filtering) generates candidate subse-
quences, which are then evaluated in the second step (verification)
to identify those satisfying the Chebyshev distance threshold. A

straightforward approach for generating candidates is to scan

the entire time series 𝑇 with a sweepline and consider each sub-

sequence 𝑇𝑝,𝑙 for 𝑝 ∈ [1, |𝑇 | − 𝑙] as a candidate.
Verification is done by checking all pairwise value differences

between 𝑄 and 𝑇𝑝,𝑙 . If the difference found at a timestamp ex-

ceeds 𝜖 , then candidate 𝑇𝑝,𝑙 is rejected, otherwise it is accepted.

Verification can be accelerated by detecting false positives as

early as possible. If the values are 𝑧-normalized, we can prioritize

those points in 𝑄 having the highest absolute value, since these

are less likely to have a match with the respective points in 𝑇𝑝,𝑙 .

This optimization is also used in UCR Suite [17], and is known as

reordering early abandoning.
The drawback of this sweepline approach is that it generates

an excessive number of candidates (specifically, |𝑇 | − 𝑙), thus

incurring a prohibitive cost when dealing with long series. To

filter candidates more effectively, in the following sections we

present methods based on indexing the subsequences of 𝑇 . First,

we address the problem using state-of-the-art indices; then, we

introduce a novel index tailored to twin subsequence search.

4 TWIN SUBSEQUENCE SEARCHWITH
EXISTING INDICES

Next, we focus on two representative state-of-the-art indices for

time series similarity search, namely KV-Index [19] and 𝑖SAX [2],

showing how they can be used for twin subsequence search

without altering their structure.

4.1 KV-Index
Given a time series 𝑇 , KV-Index [19] is built by considering all

its subsequences of a pre-defined length 𝑙 . Each subsequence 𝑆 is

represented by a pair (𝑝, 𝜇), where 𝑝 is its starting position (i.e.,

timestamp) in𝑇 and 𝜇 is its mean value over the next 𝑙 timestamps.

KV-Index is an inverted index constructed over these pairs. Each

key is a range of mean values, whereas each inverted list entry

contains intervals of positions.

Twin subsequence search can be performed with KV-Index

based on the following observation. If two subsequences 𝑆 and

𝑆 ′ of length 𝑙 are twins with respect to 𝜖 , i.e., 𝑆 ∼𝜖 𝑆 ′, then
their mean values 𝜇 and 𝜇 ′ cannot differ by more than 𝜖 , i.e.,

|𝜇−𝜇 ′ | ≤ 𝜖 . Based on this, we can use a KV-Index built over a time

series 𝑇 to generate candidates for detecting twin subsequences.

Specifically, assume a query sequence𝑄 with mean value 𝜇𝑞 . The

candidate subsequences in 𝑇 are those included in the inverted

lists with keys [𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥], such that 𝜇𝑚𝑖𝑛 −𝜖 ≤ 𝜇𝑞 ≤ 𝜇𝑚𝑎𝑥 +𝜖 .
Then, the obtained candidates must be verified to derive the final

results. Notice that this property is not effective if each individual

subsequence has been 𝑧-normalized, because then all mean values

are zero. Hence, KV-Index is applicable when working with raw

values or if the entire sequence is 𝑧-normalized.

4.2 𝑖SAX Index
𝑖SAX is a tree index structure for time series similarity search [2].

Time series are 𝑧-normalized and indexed using their Symbolic
Aggregate approXimation (SAX) [18]. The SAX representation

of a series is derived in two steps. The first applies Piecewise
Aggregate Approximation (PAA) [8], which splits the series in a

specified number𝑚 of segments and approximates each one with

the mean value over the corresponding time interval. The second

step applies quantization to assign each mean value to a discrete

SAX symbol. Hence, each SAX symbol𝑋 corresponds to a range of

mean values [𝜇𝑋𝑚𝑖𝑛
, 𝜇𝑋𝑚𝑎𝑥

). The SAX representation of a series

is a sequence of𝑚 SAX symbols (one symbol per segment), and is

called SAX word. Notice that, by default, SAX words are derived

using precomputed breakpoints that are selected assuming 𝑧-

normalized values; nevertheless, non-normalized values can also

be handled by adjusting the breakpoints accordingly.

Twin subsequence search can be enabled over 𝑖SAX by rea-

soning as follows. Assume two subsequences 𝑆 and 𝑆 ′ of length 𝑙 ,
and their SAX representations 𝑆𝐴𝑋 (𝑆) = {𝑋1, 𝑋2, ..., 𝑋𝑚} and
𝑆𝐴𝑋 (𝑆 ′) = {𝑋 ′

1
, 𝑋 ′

2
, ..., 𝑋 ′𝑚}. As we have observed earlier, (a) if

two sequences are twins with respect to a threshold 𝜖 , then the

difference between their mean values is also bounded by 𝜖 , and

(b) any pair of time-aligned segments across two twin sequences

are also twins. Combining these two properties, we can see that

if 𝑆 ∼𝜖 𝑆 ′, then for each pair of symbols 𝑋𝑖 and 𝑋 ′
𝑖
in the re-

spective SAX representations, the mean values denoted by these

symbols must not differ by more than 𝜖 . Hence, if 𝑆 ∼𝜖 𝑆 ′, then
𝜇𝑋𝑖𝑚𝑎𝑥

≥ 𝜇𝑋 ′
𝑖𝑚𝑖𝑛
− 𝜖 and 𝜇𝑋𝑖𝑚𝑖𝑛

≤ 𝜇𝑋 ′
𝑖𝑚𝑎𝑥

+ 𝜖 for any 𝑖 ∈ [1,𝑚].
Consequently, we can perform twin subsequence search using

𝑖SAX as follows. Given a time series 𝑇 , we construct an 𝑖SAX

index over all its 𝑙-length subsequences. Then, for a query se-

quence 𝑄 , we traverse the 𝑖SAX index starting from its root. At

each node, we check the SAX word of𝑄 against the SAX word of

that node, applying the property mentioned above. If the check

fails, the node and its subtree can be safely pruned; otherwise,

the search continues at the node’s children. Once a leaf node is

reached, and qualifies according to this check, all subsequences

indexed therein are retrieved as candidates for verification.

5 THE TS-INDEX
As discussed in Section 4, it is possible to use KV-Index or 𝑖SAX

to identify candidates for twin subsequence queries. However,

since these indices are not tailored to the matching criterion, they

tend to generate a large number of false positives, incurring a sig-

nificant verification cost, as confirmed in our experiments. In the

following, we introduce TS-Index, which is specifically designed

for twin subsequence search. First, we provide an overview of

its structure and explain how it is constructed. Then, we present

an algorithm to evaluate twin subsequence queries specifying a

distance threshold.

5.1 Index Structure
The core concept in TS-Index is that of Minimum Bounding Time
Series (MBTS) [4]. An MBTS is a pair of sequences that fully

encloses a set of time series T by indicating the maximum and

minimum values at each timestamp. Figure 2a depicts an example

of an MBTS enclosing a set of four time series. Formally:

Definition 2 (MBTS). Given a set T of time series with equal
length 𝑙 , its MBTS 𝐵 = (𝐵⊓, 𝐵⊔) consists of an upper bounding

time series 𝐵⊓ and a lower bounding time series 𝐵⊔, constructed
by respectively selecting the maximum and minimum values at
each timestamp 𝑖 ∈ {1, . . . , 𝑙} among all time series in T as follows:

𝐵⊓ = {max

𝑇 ∈T
𝑇1, . . . ,max

𝑇 ∈T
𝑇𝑙 }

𝐵⊔ = {min

𝑇 ∈T
𝑇1, . . . ,min

𝑇 ∈T
𝑇𝑙 }

(1)

The TS-Index has a tree structure. Each internal node points

to a set of children nodes, whereas each leaf node points to a

set of subsequences (more specifically, to the starting positions

of its indexed subsequences along the input time series 𝑇). All

leaf nodes are at the same level. Each node is associated with an

MBTS, which encloses all the sequences indexed therein. Clearly,

MBTS get tighter when descending from the root to the leaf

level. Figure 3a illustrates an example of TS-Index for nine input

sequences. The MBTS of each node is depicted as a grey band.

5.2 Index Construction
Assume an input time series 𝑇 and a subsequence length 𝑙 . The

TS-Index over𝑇 is constructed in a top-down fashion, by sequen-

tially inserting all 𝑙-length subsequences of 𝑇 . When inserting

a sequence 𝑆 , we traverse the index from the root, selecting at

each level the node whose MBTS has the smallest distance from

𝑆 , until a leaf node is reached. The distance between a sequence

𝑆 and an MBTS 𝐵 is calculated using the following formula:

(a) (b) (c)

Figure 2: (a) MBTS enclosing a set of 4 time series. Distance between (b) a sequence 𝑆 and an MBTS 𝐵, (c) MBTS 𝐵1 and 𝐵2.

(a) (b)

Figure 3: (a) TS-Index for 9 input sequences. (b) Inserting 𝑝10 causes a split at leaf 𝐴3 and splits propagate upwards.

𝑑 (𝑆, 𝐵) = max

𝑖

𝑆𝑖 − 𝐵⊓𝑖 if 𝑆𝑖 > 𝐵⊓

𝑖

𝐵⊔
𝑖
− 𝑆𝑖 if 𝑆𝑖 < 𝐵⊔

𝑖

0 otherwise

(2)

where𝐵⊓
𝑖
and𝐵⊔

𝑖
are the 𝑖𝑡ℎ values of the upper and lower bounds

of the MBTS 𝐵, respectively.

Each node has aminimum capacity 𝜇𝑐 and amaximum capacity
𝑀𝑐 , specifying the minimum and maximum number of children it

can point to. Once a node exceeds𝑀𝑐 , it is split in two nodes. This

may cause the parent node to also exceed the maximum capacity

𝑀𝑐 , in which case it is split too. Hence, this process recursively

propagates upwards until no further splits occur. This procedure

ensures that all leaves are placed on the same level of the tree.

During node splitting, the goal is to make the MBTS of each

new sibling node as tight as possible. If this is a leaf node, we

identify the two subsequences within the original node having

the highest Chebyshev distance and use them as seeds for the

two sibling nodes. Each remaining subsequence is assigned to the

node where it causes the smallest expansion of its MBTS, which

gets updated accordingly. For an internal node, the process is

similar. Yet, adjusting its MBTS in this case involves the MBTS of

children nodes instead of individual sequences. To accommodate

this, the distance between two MBTS 𝐵1 and 𝐵2 is defined as:

𝑑 (𝐵1, 𝐵2) = max

𝑖

𝐵⊔
1,𝑖
− 𝐵⊓

2,𝑖
if 𝐵⊔

1,𝑖
> 𝐵⊓

2,𝑖

𝐵⊔
2,𝑖
− 𝐵⊓

1,𝑖
if 𝐵⊓

1,𝑖
< 𝐵⊔

2,𝑖

0 otherwise

(3)

where 𝐵⊔
1,𝑖
, 𝐵⊓

1,𝑖
and 𝐵⊔

2,𝑖
, 𝐵⊓

2,𝑖
are the 𝑖𝑡ℎ values of the upper and

lower bounds of the MBTS 𝐵1 and 𝐵2, respectively. Figures 2b

and 2c exemplify the calculation of the distance of a sequence

𝑆 to an MBTS 𝐵 and the calculation of the distance between

two MBTS (𝐵1, 𝐵2) respectively; in both cases, the distance is the

length of the dashed red line.

Figure 3b depicts an example where inserting subsequence 𝑝10
into leaf node 𝐴3 of the TS-Index in Figure 3a, causes it to split

into two new nodes, 𝐴′
3
and 𝐴4 (we assume 𝜇𝑐 = 2 and 𝑀𝑐=3).

This process is then propagated upwards, splitting the root into

𝐵1 and 𝐵2. To keep the MBTS tight –according to Equation 3–,

nodes 𝐴1, 𝐴4 have become children of 𝐵1 and 𝐴2, 𝐴
′
3
are now

children of 𝐵2. Finally, a new root is added, increasing the index

height by one.

5.3 Query Execution
Twin subsequence search can be performed with TS-Index based

on the following lemma.

Lemma 1. Assume a query sequence 𝑄 and a node 𝑁 of the
TS-Index with MBTS 𝐵. If there exists a sequence 𝑆 indexed at 𝑁
such that 𝑄 ∼𝜖 𝑆 , then 𝑑 (𝑄, 𝐵) ≤ 𝜖 .

Proof. Assume that 𝑄 ∼𝜖 𝑆 for a sequence 𝑆 indexed by

node 𝑁 . From Definition 2, it follows that 𝑆𝑖 ∈ [𝐵⊔𝑖 , 𝐵
⊓
𝑖
] for

each timestamp 𝑖 . Moreover, from Definition 1, it follows that

|𝑄𝑖 −𝑆𝑖 | ≤ 𝜖 . Hence, from Equation 2, we derive 𝑑 (𝑄, 𝐵) ≤ 𝜖 . □

Given a query sequence 𝑄 , we traverse the index in a top-

down fashion, starting from its root. For each visited node 𝑁 ,

we compare 𝑄 against 𝑁 ’s MBTS, applying Lemma 1 to prune

its subtree. Note that this check can be accelerated, since it is

not necessary to fully compute distance 𝑑 (𝑄, 𝐵); instead, if the
indexed values have been 𝑧-normalized, we apply early aban-

doning (see Section 3.2) to prune the node as soon as the value

difference exceeds 𝜖 in at least one timestamp. Multiple paths

starting from the root may need to be explored, depending on

the query and the tightness of the bounds in the visited nodes.

Algorithm 1 describes the search process. The input includes

the query sequence 𝑄 , the constructed TS-Index 𝐼 , the given

time series 𝑇 and the threshold 𝜖 . We start by initializing a list 𝐿

with the root’s children (Line 2). Then, we traverse the index by

iterating over this list (Lines 3-12). For each node 𝑁 currently in

the list, we obtain its MBTS (Lines 4-5). Then, we check whether

the distance between this MBTS and the query is higher than

the specified threshold 𝜖 (Line 6). If so, the subtree under the

current node 𝑁 is pruned; otherwise, it is examined as explained

next. If 𝑁 is not a leaf node, we insert its children in list 𝐿 for

probing (Lines 7-8). Once a leaf node is reached, we iterate over

all the subsequence positions it contains and check whether each

corresponding subsequence is a twin of 𝑄 with respect to 𝜖 . If

so, we add this subsequence to the final results (Lines 9-12). The

results are returned once all candidate nodes in list 𝐿 have been

either probed or pruned (Line 13).

Algorithm 1: TwinSubsequenceSearch
Input :Time series𝑇 , TS-Index 𝐼 , query𝑄 , threshold 𝜖

Output :List 𝑅 of twin subsequences to𝑄

1 𝑅 ← ∅
2 𝐿 ← 𝐼 .𝑟𝑜𝑜𝑡 .getChildren()
3 while 𝐿 ≠ ∅ do
4 𝑁 ← 𝐿.getNext()
5 𝐵 ← 𝑁 .𝑀𝐵𝑇𝑆

6 if d((𝑄, 𝐵) ≤ 𝜖 then
7 if 𝑁 is not leaf then
8 𝐿 ← 𝐿 ∪ {𝑁 .getChildren() }
9 else
10 foreach 𝑝 ∈ 𝑁 .getPositions() do
11 if d((𝑄,𝑇𝑝,𝑙) ≤ 𝜖 then
12 𝑅 ← 𝑅 ∪𝑇𝑝,𝑙

13 return R

Table 1: Datasets and distance thresholds.
Dataset 𝒏 𝝐 (norm) 𝝐 (non-norm)
Insect 64,436 0.5,0.75,1,1.25,1.5 50, 100,150,200,250
EEG 1,801,999 0.1,0.2,0.3,0.4,0.5 20, 40,60,80,100

Table 2: Other parameters.
Parameter Value
Number𝑚 of segments 5, 10, 20, 25, 50
Sequence length 𝑙 50, 100, 150, 200, 250

6 EXPERIMENTAL EVALUATION
Next, we present an experimental evaluation of our methods

against two real-world datasets.

6.1 Experimental Setup
We performed experiments against two real-world time series

(see Table 1), which contain diverse patterns and differ in their

total duration. In particular, the Insect Movement [12] series

contains 64,436 insect telemetry readings spanning around 30

minutes (36 readings/sec), whereas the Electroencephalography
(EEG) [12] series comprises 1,801,999 EEG readings at 500Hz last-

ing one hour. Unless stated otherwise, we 𝑧-normalize the time

series to facilitate selection of distance thresholds.

Table 1 indicates the different values for the distance threshold

𝜖 used in the experiments against each dataset, for 𝑧-normalized

(norm) or original values (non-norm). Table 2 contains the values

for subsequence length 𝑙 and number of segments𝑚, which are

common in the experiments on both datasets. In both tables,

default values are in bold. These values have been selected after

running several preliminary tests, which also guided selection

of other parameters. Specifically, for 𝑖SAX, the maximum node

capacity is set to 10,000 to enable index construction in reasonable

time even for larger datasets. The default values for minimum

and maximum node capacity in TS-Index are set to 𝜇𝑐 = 10 and

𝑀𝑐 = 30, respectively.

For each dataset, we randomly picked 100 subsequences, each

of length 𝑙 = 100 points, and used them as the query workload in

all tests against that dataset. We report average response time per

query (in milliseconds). We implemented all methods, including

KV-Index, 𝑖SAX, and TS-Index, in Java. In all implementations,

the structure of the index is kept in memory, while the original

input dataset is stored on disk. Leaf nodes in the index contain

the starting positions of the subsequences in the input time series.

Thus, when a leaf is reached at query time, its corresponding

subsequences are obtained from the input time series file using

random access. All experiments were conducted on a server with

(a) Insect Dataset (b) EEG Dataset

Figure 4: Varying distance threshold 𝜖.

(a) Insect Dataset (b) EEG Dataset

Figure 5: Varying subsequence length 𝑙 .

(a) Insect Dataset (b) EEG Dataset

Figure 6: Varying 𝜖 on 𝑧-normalized subsequences.

4 CPUs, each equipped with 8 cores clocked at 2.13GHz, and 256

GB RAM running Debian Linux.

6.2 Performance
We compare the average execution time per query for varying

values of each parameter, setting the rest to their default values.

6.2.1 Varying threshold 𝜖 . Figure 4 depicts query execution

time (in logarithmic scale) for varying threshold 𝜖 . As expected,

searching with the Sweepline approach has a fixed cost per

dataset regardless of 𝜖 , since it needs to scan all subsequences ex-

tracted from the input time series. Relaxing the threshold incurs

an overhead when an index is involved. Queries against KV-Index

perform poorly compared to other indices, since filtering based

on mean values achieves less pruning. Searching with TS-Index

outperforms the rest in every setting for both tested datasets.

Overall, TS-Index is at least an order of magnitude more effi-

cient in twin subsequence search compared to the KV-Index and

Sweepline approaches. It is also consistently better than 𝑖SAX as

it is less susceptible to fluctuations in the input sequences.

6.2.2 Varying Subsequence Length. Figure 5 plots performance

results with a varying length 𝑙 for subsequences obtained from

the input time series. Increasing 𝑙 seems to slightly negatively

affect all approaches, except for TS-Index. Since longer subse-

quences are extracted, more checks are required, both in nodes (in

case of 𝑖SAX) and raw subsequences during verification. Instead,

TS-Index is faster when longer subsequences are specified, as it

becomes less likely to findmatching twins. In particular, TS-Index

has higher pruning capability and can skip non-qualifying sub-

trees earlier at higher levels in the tree hierarchy. Thus, fewer

(a) Insect Dataset (b) EEG Dataset

Figure 7: Varying 𝜖 on non-normalized data.

(a) Memory Footprint (b) Build Time

Figure 8: Memory footprint and build time per index.

leaf nodes are accessed and need to be verified, saving much of

the verification cost for checks per timestamp.

6.2.3 Searching over 𝑧-normalized subsequences. We repeat

the experiment for varying distance threshold 𝜖 , this time apply-

ing 𝑧-normalization over each individual subsequence, before in-

serting it in the index. As mentioned in Section 4.1, KV-Index can-

not be built on such data since the mean value per subsequence

would always be zero; thus, we only compare TS-Index with

𝑖SAX. The results are depicted in Figure 6. Clearly, 𝑧-normalizing

the subsequences separately has no significant effect on the per-

formance of TS-Index; the results are similar to those in Figure 4,

with TS-Index outperforming 𝑖SAX in all cases.

6.2.4 Searching on Non-Normalized Data. Query execution

cost for identifying twin subsequences against the raw (non-

normalized) time series is depicted in Figure 7. Overall, TS-Index

copes better than all the rest even for raw data, confirming its

suitability for twin subsequence search in various settings.

6.2.5 Index Size. Figure 8a presents the memory footprint of

TS-Index, 𝑖SAX and KV-Index for each dataset. KV-Index requires

less space than TS-Index and 𝑖SAX, as it only keeps in memory

the mean value and position range per subsequence. Instead,

TS-Index and 𝑖SAX occupy more space due to their more complex

structures. Specifically, 𝑖SAX requires two to three times less

space than TS-Index. Indeed, 𝑖SAX needs to store one SAX word

per node, whereas a node in TS-Index is represented by an MBTS,

hence its increased memory footprint. Nevertheless, all indices,

including TS-Index, have sizes that easily fit in main memory.

6.2.6 Build Time. Similarly to the index size, and due to the

significantly less required calculations (i.e., only subsequence

mean values need be calculated and no node splitting is needed),

KV-Index requires significantly less time to be constructed than

𝑖SAX and TS-Index (Figure 8b). 𝑖SAX is the slowest index to

be built, since it needs to additionally convert the PAA of each

subsequence to a SAX word for each extracted subsequence.

7 CONCLUSIONS
In this paper, we have introduced the twin subsequence search

problem. Given a query sequence 𝑄 , an input time series 𝑇 and

a distance threshold 𝜖 , this task retrieves all subsequences in

𝑇 with Chebyshev distance to 𝑄 not higher than 𝜖 . To answer

this query efficiently, we have introduced the TS-Index. We have

described the index structure and proposed algorithms for effi-

cient index construction and query answering. Our experimental

evaluation assesses the TS-Index in terms of construction cost

and confirms its superiority for twin subsequence search queries

when compared to the state-of-the-art.

ACKNOWLEDGMENTS
This work was supported by the EU H2020 project SmartData-

Lake (825041), the EU H2020 project OpertusMundi (870228) and

the NSRF 2014-2020 project HELIX (5002781).

REFERENCES
[1] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn J. Keogh. 2010.

iSAX 2.0: Indexing and Mining One Billion Time Series. In ICDM. 58–67.

[2] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon,

and Eamonn J. Keogh. 2014. Beyond one billion time series: indexing and

mining very large time series collections with i SAX2+. Knowl. Inf. Syst. 39, 1
(2014), 123–151.

[3] Kin-pong Chan and Ada Wai-Chee Fu. 1999. Efficient Time Series Matching

by Wavelets. In ICDE. 126–133.
[4] Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Spiros

Athanasiou, and Spiros Skiadopoulos. 2017. Indexing Geolocated Time Series

Data. In SIGSPATIAL. 19:1–19:10.
[5] Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Themis

Palpanas, Spiros Athanasiou, and Spiros Skiadopoulos. 2019. Local pair and

bundle discovery over co-evolving time series. In SSTD. 160–169.
[6] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn

Keogh. 2008. Querying and mining of time series data: experimental com-

parison of representations and distance measures. Proceedings of the VLDB
Endowment 1, 2 (2008), 1542–1552.

[7] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Ben-

brahim. 2018. The Lernaean Hydra of Data Series Similarity Search: An

Experimental Evaluation of the State of the Art. PVLDB 12, 2 (2018), 112–127.

[8] Eamonn J. Keogh, Kaushik Chakrabarti, Michael J. Pazzani, and Sharad Mehro-

tra. 2001. Dimensionality Reduction for Fast Similarity Search in Large Time

Series Databases. Knowl. Inf. Syst. 3, 3 (2001), 263–286.
[9] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Pal-

panas. 2018. Coconut: A scalable bottom-up approach for building data series

indexes. PVLDB 11, 6 (2018), 677–690.

[10] Jessica Lin, Eamonn J. Keogh, Li Wei, and Stefano Lonardi. 2007. Experiencing

SAX: a novel symbolic representation of time series. Data Min. Knowl. Discov.
15, 2 (2007), 107–144.

[11] Michele Linardi and Themis Palpanas. 2020. Scalable Data Series Subsequence

Matching with ULISSE. VLDBJ 11, 13 (2020), 2236–2248.
[12] Abdullah Mueen, Eamonn Keogh, Qiang Zhu, Sydney Cash, and Brandon

Westover. 2009. Exact discovery of time series motifs. In SIAM. 473–484.

[13] Themis Palpanas. 2020. Evolution of a Data Series Index. CCIS 1197 (2020).
[14] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2018. ParIS: The

Next Destination for Fast Data Series Indexing and Query Answering. In IEEE
BigData.

[15] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2020. MESSI: In-

Memory Data Series Indexing. In ICDE. 337–348.
[16] Ivan Popivanov and Renée J. Miller. 2002. Similarity Search Over Time-Series

Data Using Wavelets. In ICDE. 212–221.
[17] Thanawin Rakthanmanon, Bilson Campana, AbdullahMueen, Gustavo Batista,

BrandonWestover, Qiang Zhu, Jesin Zakaria, and EamonnKeogh. 2012. Search-

ing and mining trillions of time series subsequences under dynamic time

warping. In SIGKDD. 262–270.
[18] Jin Shieh and Eamonn J. Keogh. 2008. iSAX: indexing and mining terabyte

sized time series. In SIGKDD. 623–631.
[19] Jiaye Wu, Peng Wang, Ningting Pan, Chen Wang, Wei Wang, and Jianmin

Wang. 2019. KV-Match: A Subsequence Matching Approach Supporting

Normalization and Time Warping. In ICDE. 866–877.
[20] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Pal-

panas. 2020. Massively Distributed Time Series Indexing and Querying. IEEE
Trans. Knowl. Data Eng. 32, 1 (2020), 108–120.

[21] Chin-Chia Michael Yeh, Yan Zhu, Liudmila Ulanova, Nurjahan Begum, Yifei

Ding, Hoang Anh Dau, Diego Furtado Silva, Abdullah Mueen, and Eamonn

Keogh. 2016. Matrix profile I: all pairs similarity joins for time series: a unifying

view that includes motifs, discords and shapelets. In ICDM.

[22] Byoung-Kee Yi and Christos Faloutsos. 2000. Fast Time Sequence Indexing

for Arbitrary Lp Norms. In VLDB. 385–394.
[23] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing

for interactive exploration of big data series. In SIGMOD. 1555–1566.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Definition
	3.1 Problem Statement
	3.2 Filter-Verification Approach

	4 Twin Subsequence Search with Existing Indices
	4.1 KV-Index
	4.2 iSAX Index

	5 The TS-Index
	5.1 Index Structure
	5.2 Index Construction
	5.3 Query Execution

	6 Experimental Evaluation
	6.1 Experimental Setup
	6.2 Performance

	7 Conclusions
	References

