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ABSTRACT
A powerful tool for reducing energy consumption is energy dis-
aggregation (also called NILM Non-Intrusive Load Monitoring),
where the goal is to disaggregate the smart meter readings of a
household’s total electricity consumption to the consumption of
that household’s individual appliances. State-of-the-art machine
learning methods are widely used to solve the NILM problem, but in
order to generalize well they require a large amount of data, which
are not readily available. We thus need labeled electricity consump-
tion readings from individual appliance activations. Though, manu-
ally annotating the start and end of single-appliance activations is
extremely laborious and time consuming. Therefore, automated ac-
tivation extraction methods are needed. Earlier approaches to solve
this problem suffer from limitations, such as incomplete signatures,
double signatures, and outliers. In this work, we introduce three
scalable methods based on techniques that use time series similar-
ity search. The first method is Cartesio that (improves on earlier
work that relies on known features of the appliance) and separately
detects the start and end times of an appliance activation. The
second method is ValmA, a method for identifying previously un-
known candidate signatures of variable length, which is essentially
parameter-free. The third method is SimBA, a similarity search
based method for efficient detection of known signatures in large
datasets. These signatures can be computed from the activations ex-
tracted using the previous methods. Our experimental results with
real 6 and 10 seconds-sampling data demonstrate that, compared to
a state-of-the-art solution, our methods improve the accuracy and
robustness of appliance activation extraction in very large time se-
ries collections. To compare these methods, we also describe a new
accuracy measure that takes into account the special characteristics
of subsequences, leading to more precise performance evaluation
results.
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1 INTRODUCTION
Energy management is the center of attention in current environ-
mental and economical debates. Energy efficiency, one of the key
of a successful ecological transition, requires precise and robust
information about energy consumption. Davis and all [4] advocates
that aggregate energy feedback can reduce energy consumption
by about 3%. Non-Intrusive Load Monitoring (NILM) or energy dis-
aggregation is one way to give this feedback. NILM is the process
of estimating information (consumption, time of use...) on each
individual appliance (e.g., heating, water heating, washing machine,
refrigerator) from the global consumption of a household.

The NILM problem was formalized in the mid-1980s by George
Hart [11]. More recently deep learning for NILM was introduced
by Jack Kelly [12] with major progress on state of the art models, it
made a major breakthrough against old methodology.

In this paper, we focus on automated activation extraction from
single appliance load curve methods. This is an intermediate step
in order to work on NILM techniques. It can be useful in two cases:

(1) To tag start and end of single-appliance activations in or-
der to train NILM algorithms which aims at detecting the
operating time of an appliance.

(2) To create a signature collection. Indeed, lack of supervised
data (with both the sub-meter and aggregated load curves)
in the NILM field is one of the main problems stalling the
improvement of disaggregation algorithms, especially deep
learning ones. One way to overcome this limitation is to
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perform data augmentation. It consists in combining oper-
ating period of different appliances according to a certain
scenario of usage to create a synthetic aggregated curve as in
[23]. These scenarios are generated from realistic schedule
of appliance usage and need in input examples of appliance
signatures.

Though, manually annotating the start and end of single-appliance
activations is extremely laborious and time consuming. Therefore,
automated activation extraction methods are needed.
[Contributions] In this work, we develop three new methods, i.e.,
Cartesio, ValmA and SimBA, for automated activation extraction
from single appliance load curves. Cartesio is inspired by previ-
ous work [12] and identifies activations based on thresholds on
their values and durations. Though, it separates the detection of the
start and end parts of the activations, which in some cases (e.g., for
washing machines that have complex activation signatures) leads
to superior performance. On the other hand, ValmA and SimBA
are novel techniques based on time series methods. They operate
directly on the time series signal, and exploit similarities in the
shapes of subsequences in order to detect the activation signatures.
SimBA is able to detect activations given an example set of sig-
natures as input, while ValmA is able to detect activations with
no prior input, or domain knowledge, which makes it suitable for
identifying new, previously unknown activations. In this paper, we
also describe new measures suitable for evaluating the different
aspects of the performance behavior of the different methods. Fi-
nally, we contribute to the evaluation of the algorithms with new,
manually-annotated seconds-sampling datasets that we use in our
experimental comparison.
[Outline] The rest of this paper is structured as follows. In Sec-
tion 2, we present existing related works on the subject. Then, we
introduce in Section 3 similarity search and matrix profile meth-
ods, on which ValmA and SimBA are based. Section 4 describes
our proposed approaches. In Section 5 we show the experimental
evaluation. We finally conclude in Section 6 and promising research
directions for future work.

2 RELATEDWORK
The subject of single load activation extraction has not been dis-
cussed a lot in the NILM community since the question of data
augmentation is relatively new to the field. A method for activation
extraction has been proposed by Kelly and Knottenbelt [12] (refer
to Section 3.2 in their study). Their method, named get_activations,
is a solution based on thresholds for the various appliances. Figure 1
shows an illustration of the get_activations method implemented
in NILMTK package [2].

The get_activations method uses several parameters. The defini-
tion of these parameters are the same for all appliances, but each
type of appliance has its own values. These parameters were tuned
specifically on UK-DALE dataset [13]. This method is easily un-
derstandable but encounters four main limitations. First, it can cut
the beginning or the end of an activation. Secondly, it sometimes
struggles to separate one activation following another, as for in-
stance in a washing machine load curve. Thirdly, it fails to exclude
outliers or other appliance (if two appliances are mixed on the same

Figure 1: Illustration of Kelly get_activations method.
We keep activations whose power are more than
on_power_threshold and less than max_power. Activa-
tion also needs to last more than min_on_duration and
with interwindow duration shorter than min_off_duration.

sub-meter) that have similar power and activation duration. Finally,
it can generalize badly on another dataset.

3 BACKGROUND
3.1 Similarity Search
Time series similarity search is a key operation relevant to several
time series analysis tasks, such as classification, anomaly detection,
and frequent pattern identification. Similarity search can also be
used for searching and detecting appliance activation signatures.
However, executing the similarity search operation on very large
time series collections is notoriously challenging, due to the high di-
mensionality of the time series (here we use the term dimensionality
to refer to the length, or number of points in a time series).

In response to the need for fast and scalable similarity search [5,
7, 19, 21], several indexing approaches have been developed [6, 8–
10, 20]. The goal of these indexes is to group similar subsequences
together, and when a query arrives, to guide the search to a subset
of the dataset (i.e., groups of subsequences) that will contain the
answer. Therefore, by pruning the rest of the search space, these
approaches lead to fast execution times for similarity search queries.

However, almost all proposed indexing techniques share a com-
mon restriction: they only support similarity search with queries of
a fixed length (i.e., dimensionality). The length of the query has to
be the same as the length of the subsequences in the index, and its
value is determined at index construction time. We note that this
requirement leads to limitations during the analysis phase, since it
restricts all the results to be of that length. In our case, this means
that we can only identify appliance signatures of the exact same
length, even though in practice signatures have slight variations
in their duration (such as the time duration of a washing machine
cycle).

In order to overcome this problem, we use ULISSE (ULtra com-
pact Index for variable-length Similarity SEarch in data series) [14,
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Figure 2: Matrix Profile (MP) example [1] ©Eamonn Keogh

15], which is the first single-index solution that supports fast an-
swering of variable-length similarity search queries for both non
Z-normalized and Z-normalized time series collections.

ULISSE produces exact results, and is based on the following
key idea: a data structure that indexes subsequences of a given
length extracted from a long time series using a sliding window
already contains all the information necessary for reasoning about
subsequences of any length of the original time series. Therefore,
the problem of enabling a time series index to answer queries of
variable-length becomes a problem of how to reorganize the in-
formation that already exists in the index. To this effect, ULISSE
proposes a new summarization technique that is able to represent
contiguous and overlapping subsequences, leading to succinct sum-
maries. It combines the representation of several subsequences
within a single summary, and enables fast similarity search for
variable-length queries. For a detailed description of the ULISSE
approach, we refer the reader to the original study [14, 15].

3.2 Motif Discovery
The problem of efficiently extracting unknown signatures from
smart meter data is very relevant to the motif discovery problem. In
the time series literature, a motif is an unknown pattern that repeats
(approximately the same) unusually often in the data. Over the last
decade, motif discovery has emerged as an important primitive
operation for time series analysis, and has been studied a lot, leading
to substantial progress on its scalability. The Matrix Profile (MP) [1]
is a data structure that annotates a time series, and efficiently solves
the motif discovery problem.

The concept of MP is illustrated in Figure 2. This example shows
a long time series (top/red), with a subsequence pattern (sinus wave)
that repeats approximately the same three times. The MP is itself a
sequence (middle/blue), where at every point it records the distance
of the subsequence of the original time series starting at that point
to its nearest neighbor in the same series. Therefore, the valleys
(lowest points) in the MP correspond to subsequences that are very
similar to one another. The matrix profile index (bottom) records
the position of these nearest neighbors, and allows us to access
them in constant time.

Nevertheless, almost all existing solutions require the user to
choose as a parameter the desired length of the motifs. Once again,
this is a limitation for the subsequent analysis steps, which would
benefit from the discovery of motifs of different lengths. The only

Table 1: Parameters used in get_activations

Appliances WM DW FR FZ FR-FZ MW KE

Max power
(watts) 2700 2600 3000 1500 1600 1500 3000

On power
threshold
(watts)

20 30 20 20 20 10 10

Min. on
duration
(secs)

1600 1400 600 550 350 60 60

Min. off
duration
(secs)

800 1600 100 100 50 40 50

border
(points) 1 1 1 1 1 1 1

available solution in this case would be to run the algorithm over
all lengths in the desired range and, rank the various motifs discov-
ered, picking eventually the subsequences that contain the desired
pattern. Clearly, this solution is not optimal for at least two rea-
sons: scalability, since finding motifs is an expensive operation, and
effectiveness, since it does not provide a way to compare motifs of
different lengths.

In our study, we use VALMOD (Variable Length Matrix Pro-
file) [16, 18], which is the first approach for discovering motifs of
variable length. VALMOD is up to orders of magnitude faster than
the baseline solution. This efficiency derives from the use of a lower
bounding technique that enables the algorithm to quickly estimate
distances of neighboring subsequences without spending time to
perform the corresponding exact calculations. Therefore, VALMOD
prunes a considerable part of the search space, while still providing
the correct final results. We refer the reader to the original studies
for a detailed description of the VALMOD algorithm [16, 18] and
corresponding system [17].

4 PROPOSED APPROACH
In the following sections, we use the following abbreviations, WM
for Washing Machine, DW for Dishwasher, FR for Fridge, FZ for
freezer, FR-FZ for Fridge-Freezer, MW for Microwave and KE for
Kettle .

4.1 Threshold Method
In order to compare with the state-of-the art method, we compute
get_activations method. We tune the parameters for REFIT dataset
[3]. The new value of the parameters are listed in Table 1. The
former parameters tuned for UK-DALE [13] are listed in Table 2

4.2 Cartesio
Threshold method (get_activations from the NILMTK [2]) meets
the needs of most scenarios, but the Figure 3 reports some critical
cases such as incomplete signatures, double signatures and outliers.

A washing machine whole process follows these sequential steps:
• a pre-washing phase (usual but not systematic)
• a water heating phase with a very high power and long
duration,



e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Pauline Laviron, Xueqi Dai, Bérénice Huquet, and Themis Palpanas

Table 2: Parameters used in get_activations by Kelly

Appliances WM DW FR FZ FR-FZ MW KE

Max power
(watts) 2500 2500 300 300 300 3000 3100

On power
threshold
(watts)

1800 1800 12 12 12

Min. on
duration
(secs)

1800 1800 60 55 35 60 12

Min. off
duration
(secs)

160 1800 12 12 12 30 0

border
(points) 1 1 1 1 1 1 1

Figure 3: Example of activations extraction for the
get_activations method and Cartesio. At the top the
original data. In the middle results from get_activations:
a&b) omission of the beginning of the activation sequence;
c) omission of the end of the activation sequence; d)
get_activations considers two neighboring activations as
a single activation. At the bottom, results of Cartesio:
Cartesio correctly identifies all activations.

• a first washing phase,
• an optional heating phase between the two washing phases
• a second washing phase,
• a rinsing phase (spin cycles)
• a drain and drying phase (1000 rotations/minute) which
power will be a little higher than the rinsing phase.

Therefore, we proposed a new activation extraction method,
called Cartesio which identities the start phase and end phase. It’s
suitable for appliances which have an obvious start and end char-
acteristic like washing machine, or the cases where the activations
tend to be close to each other (when a washing machine ends, an-
other one starts). It also can be applied on appliances which work
continuously (as television) by setting the end-phase related param-
eters to zero.

Cartesio’s main steps are the following:

Figure 4: Flowchart of Cartesio approach

(1) Detect a sharp rise greater than (min_rise_change): each
of sharp rise has the potential to be a start phase,

(2) Check if this potential peak reaches a minimal duration
(min_high_duration) and minimal power
(min_high_power),

(3) If it does, subtract preheat from this time point to obtain
a start point and wait for the next step. If it does not, this
point is not a true start and we skip it,

(4) Slide a small window of length of min_off_duration sec-
onds between this start and the next sharp rise point. Check
if any of these windows meets an "end of activation" require-
ment: power between [min_end_power,max_end_power].
If it does, then keep this end of this window as an end. If no
small windows contains an end and in order to ensure there
is always an end to a start, we set the next high rise (minus
border) as an end.

(5) Finally, when the start and the end of an activation are set,
check the whole activation integrity regarding the mini-
mum of duration (min_on_duration) and the max power
(max_power).

The flowchart of the method is summarised in Figure 4. The
values of the threshold parameters tuned for Cartesio are listed in
Table 3, and those introduced in Cartesio are listed in Table 4.

4.3 ValmA
Activation extraction procedure using ValmA is as follows:

(1) Preprocessing (very important step): Add some white noises
to the baseline. Indeed, single-appliance load curve have
sometimes some long segments of low constant power. The
Euclidean distance between these flat areas is 0, consequently
ValmA may classify all these segments as motifs while miss-
ing the correct activations. We then add Noise Gain to the
points below the percentile and we also add a small noise to
all the data series.

(2) Set the minimal and maximal lengths Length range, then
run the VALMOD algorithm. VALMOD returns several result
files including matrix profile index (VALMAP) and length
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Table 3: Old parameters used in Cartesio

Appliances WM DW FR FZ FR-FZ MW KE

Max
power
(watts)

2700 2700 1500 1500 3000 1500 4000

On power
threshold
(watts)

20 20 5 5 5 2 2

Min. on
duration
(secs)

800 1600 600 600 600 60 60

Min. off
duration
(secs)

600 1600 100 100 50 40 50

border
(points) 0 10 10 10 10 0 0

Table 4: New parameters used in Cartesio

Appliances WM DW FR FZ FR-FZ MW KE

Min rise
change
(watts)

700 900 50 50 50 500 500

Min high
power
(watts)

1500 2000 80 50 50 1000 1000

Min. high
duration
(secs)

180 600 800 800 800 40 40

Preheat
(secs) 300 10 10 10 10 10 10

Min end
power size

(secs)
150 2000 0 0 0 0 0

Max end
power
(watts)

600 2600 0 0 0 0 0

profile which records the length of the best match among
[𝑚𝑖𝑛_𝑙𝑒𝑛𝑔𝑡ℎ,𝑚𝑎𝑥_𝑙𝑒𝑛𝑔𝑡ℎ].

(3) Post processing: Detect peaks in VALMAP time series to get
the start time of the activations. Then, find the corresponding
length in length profile and add it to the start time to obtain
the complete activation. We perform peaks detection on
the opposite signal cleared form baseline, this procedure
requires two parameters: the value of the peak that should be
greater than 30% of the maximum and the minimal interval
between peak inferior to 1000 seconds. We also suppress
redundant activations and zeros at the beginning and end of
each signature.

The diagram of ValmA process is given Figure 5.
Figure 6 shows the result of ValmA for washing machine. Above,

we draw the original time serie with several washingmachine (WM)
activations. In the middle, we see that the VALMAP matrix profile

Figure 5: Flowchart of ValmA approach

Figure 6: ValmA: How to extract activations from the orig-
inal results. The yellow line delimits the signature length.
The green crosses indicate the beginning of a new activation.

Table 5: Parameters used in ValmA

Appliance Noise Gain Length Range

WM 2000 200-500
DW 800 200-900
FR 100 150-250
FZ 100 150-250
FR-FZ 100 150-350
MW 400 30-200
KE 50 100-200

presents peaks (drawn in green) at the beginning of the activations.
Below, the length profile indicates the activation duration.

Table 5 lists the ValmA parameters we used in this study for
each appliance.

Figure 7 shows that even though VALMOD examines several
subsequence lengths at once, it exhibits very good scalability be-
havior. This is because VALMOD uses an effective pruning strategy,
which allows the algorithm to prune a large percentage of the
computations.

4.4 SimBA
In this section, we assume that a signature library has been built
from a dataset (from the Cartesio method for example). The idea is
to define a template for each type of signatures of each appliance
through clustering and barycenter computation. Indeed, a same
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Figure 7: ValmA: Relationship between running time and
data/query length

appliance can have several templates (for example, a washing ma-
chine can have one corresponding to short cycle and an other to
long cycle). These templates are then used to search for similar
signatures in new single appliances load curves.

(1) Use Cartesio or threshold method to extract activations
from single appliance load curves from appliances of several
house,

(2) Classify the activations using hierarchical clustering using
DTW-distance between standardized time series. Thanks to
a graphical user interface (GUI cf Figure 8), we can change
the black line which represents classification threshold in the
dendogram by updating the value on the left. Therefore, we
will see different clustering results and choose a satisfactory
classification result. For simplicity and easy reproduction,
we choose a cut of the dendogram at 10 for all appliances
except kettle and some microwave at 5.

(3) Draw the barycenter by calculating the DTW medoid of
each clusters (in red in Figure 9). We then select reasonable
barycenters as the input query to similarity search on the
right. At the end of this step, one or more templates represent
each appliance.

(4) Run k-nn similarity search program ’ULISSE’ [14] for each
template of the appliance you are searching for. It will return
the k most similar motifs to the template in the input single
appliance load curve. k is thus a parameter to tune: if k is
too small, we can’t recover all the activations; if k is too
big, we will increase false alarm and thereby obtain a bad
accuracy either. The optimal k depends on the numbers of
real activations in the input single appliance load curve. In
general, the higher the occurrence frequency, the bigger
the k. We can use basic prior knowledge about appliance
occurrences in time. For instance, a washing machine has
few activations per week and a fridge several per day.

(5) Post treatment: find the start time of each real activation. The
k most similar motifs were obtained with ULISSE. Several
of them can represent the same real activation. We thus use

Figure 8: GUI that allows the user to select barycenters
(washing machine example)

Figure 9: Flowchart of SimBA method

Table 6: Parameters of SimBA

WM DW FR FZ FR-FZ MW KE

next_act (s) 6000 6000 2000 2000 2000 50 50
k of k-nn 5000 5000 5000 5000 5000 5000 5000
min_high_power
(watts) 1000 1000 20 20 20 20 20

a similar technic as ValmA. We perform peaks detection
on the opposite signal cleared form baseline and fill with
zeros on the remaining points, this procedure requires two
parameters: the value of the peak that should be greater than
30% of the maximum and the minimal interval between peak
inferior to next_act seconds.

(6) Post treatment: If the highest percentile is above
min_high_power, add a new activation from the start time
(defined in the previous step) to the start time plus the length
of the template.
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Figure 10: REFIT and UK-DALE Datasets

5 EXPERIMENTAL SETUP
5.1 Setup
All the results are tested on laptop, Intel Core i5-8265U. Cartesio
was written completely in Python 3.6. ValmA uses Python 3.6 for
the preprocessing and post processing part but calls C code for the
VALMOD algorithm. SimBa was written in Python 3.6 but calls
ULISSE C code for the similarity search step.

5.2 Datasets
An energy disaggregation data set is a collection of electrical energy
measurements taken from real-world scenarios, without disrupting
the everyday routines in the monitored space. These usually contain
measurements from the aggregate consumption (taken from the
mains) and of the individual loads (i.e., ground-truth data), which
is obtained either by measuring each load at the plug-level or mea-
suring the individual circuit to which the load is connected. In a
real-world scenario, typically multiple loads are connected to the
same circuit. The currently available datasets can be categorized as
event-based or event-less datasets. The major difference between
the two is that event-less approaches do not require the identifica-
tion of individual power changes. Consequently, collecting datasets
for event-less approaches is more straightforward and less time
consuming.

[22] referenced some famous and typical public electrical load
measurements datasets. We chose in this work to focus on REFIT
and UK-DALE datasets [3, 13]. These two datasets have a rela-
tively large amount of houses over a large period of time with a
satisfactory sampling. Having two datasets also enable us to test
generalization capabilities of the methods. Furthermore, the former
method get_activations has been tuned on UK-DALE dataset.

The visualization of REFIT data set is shown Figure 11. In this
work, we resampled REFIT dataset to 10 seconds.

[Dataset overview] We selected seven target appliances in all
our experiments: the washing machine (WM), dishwasher (DW),
fridge (FR), freezer (FZ), fridge-freezer (FR-FZ), Microwave (MW)
and Kettle (KE). Among all these appliances, washing machine,
dishwasher, microwave and kettle have high power up to 2-2.5 kW,
their frequency and time of occurrence are irregular. The others
have lower power around a few hundred watts, they do not have
many operative modes so most of their activation signatures are the
same, and they follow a certain occurrences frequency. For better
parameter setting later, here we analyze through a boxplot the
distribution of the length of activations for these seven appliances
in our test dataset:

Figure 11: Part of the REFIT dataset (from house 2)

Figure 12: Length distribution of each appliance in the man-
ually annotated dataset for REFIT (above) andUK-DALE (be-
low)

In Figure 12, boxplots of the length of real activations are avail-
able per appliance for REFIT and UK-DALE datasets. The 5 horizon-
tal lines for each appliance represent: the maximum, upper quartile,
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median, lower quartile and the minimum respectively. The green
triangle is the mean value. The black circles are outliers. Distri-
bution of the appliance duration are quite similar between REFIT
and UK-DALE datasets. We only select fridge-freezers for REFIT
dataset and it shows a large variability of length compare to the
others appliances.

[Dataset Partitioning]Wemanually annotated ground-truth start
and end of activations for 3-20 days (depending on the occurrence
of the appliance per day) of data from REFIT’s houses 1-5 and from
UK-DALE’s houses 1,2,4 and 5 for some appliances. They serve as
test dataset for all the following experiments.

For SimBA, the main goal is to use barycenters computed once
on a training dataset because this step is time consuming. We can
then compute the similarity search step, which is fast, on a new
load curve without recomputing the barycenter extraction step. For
REFIT, to avoid an overfitting problem for this method’s evaluation,
we thus implement a leave-one-out procedure where we train the
barycenter on some houses and test it on the remaining house and so
on. For UK-DALE, since there were not enough annotated houses
to perform a clean leave one out procedure, we use resampled
REFIT barycenter computed on all houses. It is thus a strong test
of generalization capability for SimBA.

5.3 Evaluation Measures
To attest to the algorithms performances, classical machine learning
performances measures as recall or precision are not completely
well suited for time series and even less for our specific task. Tatbul
and all [24] suggest an extension of precision and recall for time
series especially for anomaly detection. We inspired from it but
define our own performance measures that allow us to answer
our primary questions. These measures complement one another
without redundancies.

In the following section, [x1, x2] will refer to the groundtruth
interval and [y1, y2] to the one extracted by our method also called
result activation. We will denote # as the number element in a set,
grt𝑖 (resp. res𝑖 ) the ith activation in the groundtruth (resp. in the
results), grt (resp. res) all the activations in the groundtruth (resp.
in the results). We consider that two time series intersect if and
only if there is at least one time point in common:

intersect( [x1, x2], [y1, y2]) =
{

1 if (min(𝑥2, 𝑦2) −max(𝑥1, 𝑦1)) > 0
0 else.

(1)
We define the projection of an activation [y1, y2] on an other

[x1, x2] as:

projection( [y1, y2] → [x1, x2]) = max(min(x2, y2) −max(x1, y1)
x2 − x1

, 0)
(2)

The range of the projection measure is between [0,1], 0 indicates
that the two activations have no intersection and 1 indicates that
the activation ([x1, x2] belongs to the [y1, y2] activation .

Does the method recover all activations in the ground-truth?Wewant
to retrieve the most activations possible to use in the simulator,
or for the barycenter computation. Thus, we define recovery as
the ratio between the number of activations in the groundtruth

recovered by the method and the total number of activations in the
groundtruth.

Recovery =

∑
iintersect(grti, res)

#grt
(3)

If the method recovers a groundtruth activation, is the result complete?
To attest the quality of activation extraction, we define a new per-
formance measure that we called completeness. We want to attest
how much of the reference activation we recover.

Completeness(grti) = argmax
j

(projection(resj → grti)) (4)

If the groundtruth is completely recovered by one result, it’s com-
pleteness will be 1. It will be zero if there is no intersection. In order
to have a global measure of completeness, we then average over all
the groundtruth activation.

If a result activation has a corresponding groundtruth activation,
does the result exceed this groundtruth? To attest the quality of acti-
vation extraction, we define a complementary performance mea-
sure, called precision, in order to evaluate by how much the results
are exceeding the groundtruth.

Precision(resj) = argmax
i

(projection(grti → resj)) (5)

The range of precision is [0, 1]. It is defined for each result that inter-
sects with a groundtruth. If a result doesn’t exceed the groundtruth,
its precision will be 1. The more the result exceeds the groundtruth,
the more its precision will tend to zero. In order to have a global
measure of precision, we then average over all the result activations.

If the method recovers a ground truth activation, are there multiple
result activations corresponding to the same ground-truth activation?
The cardinality measure takes into account that an activation could
correspond to multiple activations in the result.

Cardinality(grti) =
∑

j
intersect(resj, grti) (6)

Cardinality is only defined for groundtruth activation retrieved in
the result, thus its range is [1,∞]. In order to have a global measure
of cardinality, we then average over all the groundtruth activation.

Does my method find activation whereas there is no activation in the
ground truth at this time? False alarm is a classical performance
measure to consider activations in the result that do not correspond
to any activation in the groundtruth.

FalseAlarm = #res −
∑

resj
intersect(resj, grt) (7)

Figure 13 depicts the main cases of time series comparison. The
case 1 is a perfect case thus all the performance measures are 1
except the false alarm at 0. The case 2 related an incompleteness
of 80%, the case 3 an exceeding activation, the case 4, 6 and 7 are
different cases of incomplete and exceeding activations. The case 5
shows an example of cardinality higher than 1. Finally, the case 8
describes a case of false alarm.
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Figure 13: Possible cases of the results: the case 1 is a perfect
case thus all the performancemeasures are 1 except the false
alarm at 0. The case 2 related an incompleteness of 80%, the
case 3 an exceeding activation, the case 4, 6 and 7 are differ-
ent cases of incomplete and exceeding activations. The case
5 shows an example of cardinality higher than 1. Finally, the
case 8 describes a case of false alarm.

5.4 Results
Figure 14 shows the performances measures (recover, completeness,
precision, false alarm and cardinality) on both datasets of:

(1) get_Kelly: threshold method proposed by Kelly with its own
parameters tuned on UK-DALE (in blue)

(2) get_our: threshold method proposed by Kelly with our own
parameters tuned on REFIT (in orange)

(3) Cartesio (in green)
(4) ValmA (in red)
(5) SimBA with the cross-validation procedure for REFIT and

REFIT trained barycenter for UK-DALE (in purple)
In general, all the methods perform quite well to recover the

activations. The threshold method has high performance when
tuned on the dataset but can exhibit flows when applied on an
other dataset. For instance, our kettle parameters are really good
for REFIT but not suited for UK-DALE on the contrary of Kelly’s
parameters. Appendix B gives more details about performances of
threshold method and an extension with outlier removal. Cartesio,
which is an extension of threshold method, has a better precision
ratio for washing machine since it avoids double activation. How-
ever, it behaves poorly regarding the dishwasher, specifically on
the completeness ratio and cardinality since it cuts the activation
in two parts. For the rest of the appliances, its behaviour is really
close to the threshold method. ValmA offers good results on most
of the appliances. As expected, ValmA has difficulties to recover
correctly the microwave and the kettle since they do not present
clear redundant patterns. SimBA is less efficient than other meth-
ods. It can be explained by the fact that some appliance have really
specific signatures and then the barycenter computed on other
houses are not really adequate. A larger training dataset would
probably improve SimBA results. Except for the washing machine
and fridge, the results on UK-DALE are not really different from

those on REFIT. One explanation could be that the two experiments
were conducted in UK so the variability across houses from the
same dataset is comparable to the one across datasets. Annexe C
gives SimBA results with barycenter directly computed on the same
house/dataset.

All methods have difficulties recovering microwave activation
due to the high variability of the activations.

Regarding results across performances measures, we see that
sometimes a tradeoff has to be chosen between them. Indeed an
improvement of one measure can lead to an other degradation.
This trade-off depends on the application. If we want to create a
signature collection, we are interested in clean signatures so we
might favour the completeness ratio and precision over recover
ratio. If we want to tag start and end activation to train NILM
algorithm, recover and false alarm are really important.

Figure 15 shows the running time comparison between the meth-
ods in log10. As expected given its simplicity, the threshold method
is the fastest one. Cartesio follows closely (1 to ten times longer) be-
hind the threshold method since both the computation complexity
are linear. For SimBA running time evaluation, we separate results
between the training step when barycenter are extracted and the
test step when the similarity search is computed. The two steps
have similar computing time and the procedure is approximately
100 time longer than threshold methods. Despite an optimized com-
putation, ValmA is by far the slowest method (104,105 longer than
threshold method). Appendix A discusses the effect of downsam-
pling to accelerate the procedure. The ValmA ’s running time for
dishwasher and washing machine is significantly longer for UK-
DALE compared to REFIT because the sampling is smaller and we
extracted around 15/20 days for UK-DALE and 10 for REFIT.

5.5 Discussion
For a single appliance extraction activation, threshold methods
seem appealing thanks to their fast computation times and relatively
high accuracy. However, they are rather sensitive in their parameter
tuning that requires amanual calibration. This also implies that they
should be fine-tuned independently for each dataset, which may
be cumbersome. Nevertheless, we observe that Cartesio achieves
better accuracy than the threshold method for the special case of
the washing machine appliance, and hence we recommend its use
for this case. ValmA is a good alternative to the threshold method
since it exhibits very good performance without the need to set
(almost) any parameters. Therefore, it requires almost no human
intervention. Its major drawback is its relatively high computation
time, which could be reduced by using down-sampling, sliding
window computations, or modern hardware (e.g., computations in
SIMD, multi-core and GPU architectures). Although SimBA results
are not very competitive to the other methods, we believe that they
will improve when using larger datasets.

In this paper, we focused on the single appliance problem, but in
the general case, we may have more than one appliances recorded
in the same dataset. In this case, threshold methods will fail to
detect and distinguish the various appliances, which will be mixed,
especially if they have similar power and duration characteristics.
If the two appliances do not activate simultaneously, both ValmA
and SimBA would be able to recover their activations. If the two
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Figure 14: Accuracy comparison of activations extraction for
REFIT (above) and UK-DALE (below)

Figure 15: Running time comparison of activations extrac-
tion for REFIT (above) and UK-DALE (below)

appliances activate at the same time, only SimBA can potentially
recover part of the activations.

In summary, our experimental analysis with the REFIT and UK-
DALE demonstrates that:

• The state of the art threshold method exhibits high accuracy
and fast computation, but requires a manually fine-tuned
calibration on each dataset.

• The Cartesio method provides better results when the ac-
tivations are close to each other, or for specific activation
signatures, such as the washing machine.

• The k-NN similarity search method, SimBA, is suitable for
activation extraction, provided we already have a set of ex-
ample signatures.

• Finally, ValmA is an efficient method for extracting activa-
tions, and has very good accuracy and generalization abili-
ties with (almost) no parameters. The biggest advantage of
ValmA is that it can detect unknown signatures.

6 CONCLUSIONS AND FUTUREWORK
We developed solutions to the activation extraction problem based
on detection of the start and end times, as well as on time series
similarity search. To compare these methods, we also describe new
accuracy measures that take into account the special characteristics
of subsequences, leading to more precise performance evaluation
results.

In our future work, we plan to evaluate the algorithms on addi-
tional datasets, for which we know the ground-truth, including data
that involve more appliances (such as hotplate, oven, and others).
We will also test the ValmA and SimBA methods on the problem
of activation extraction from multi-appliances load curves. This
would be very useful, since in sub-meters data collection, even if the
aim is to measure only one appliance, technical problems appear
and several appliances are often measured on the same sub-meter.
Finally, we would like to use SimBA to extract activations from
total load curve as in the NILM disaggregation problem to compare
results with NILM literature.
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A VALMA AND EFFECT OF DOWNSAMPLING
Since the computing time is the major drawback of the ValmA ap-
proach, we looked at the downsampling impact on both computing
time and performance measures on REFIT dataset.

Figure 16 shows that downsampling by a factor of 2 (resp. 4)
decreases approximately the running time by a factor 4 (resp 16).
The total time for the test dataset downsampled by a factor 4 is
around 20 minutes. It is an acceptable time but it is still much longer
than threshold/Cartesio methods.

Figure 17 presents the impact of downsampling on performance
measures. The downsampling does not seem to have an effect on
fridge, freezer ad fridgefreezer activation extraction and has a slight
effect on dishwasher and washing machine. However, the down-
sampling affects significantly the performance measures of the
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Figure 16: Effect of downsampling on running time

Figure 17: Effect of downsampling on performances mea-
sures

microwave and the kettle. These two appliances can indeed be re-
ally in a short time-frame and downsampling can suppress some
important points.

B THRESHOLD METHODS AND EXTENSION
WITH OUTLIER REMOVAL

We compare here three methods:

(1) get_Kelly: threshold method proposed by Kelly with its own
parameters tuned on UK-DALE (in blue)

(2) thr_clus: threshold method with our own parameters fol-
lowed by the clustering step of SimBA methods. We select
only the activations in good clusters and then suppress out-
liers. (in orange)

(3) get_our: threshold method proposed by Kelly with our own
parameters tuned on REFIT (in green)

Figure 18 shows performance results on REFIT washing machine
on each houses. We can see that Kelly’s parameters are more suited
for House 1 than our parameters that lead to more double activation
and thus bad precision. However, threshold method with Kelly’s
parameters fails to recover House 4’s washing machine due to too
small min_off_duration and too low max_power. This special case
is an illustration on the high sensitivity of the parameters regarding
the parameters.

Figure 18: Performances measures on REFIT Washing Ma-
chine for get_Kelly, thr_clu and get_our

Figure 19: Performances measures on REFIT data for
get_our (blue), get_activations_overfit (orange) and
get_activations_test (green)

In general, the threshold method with clustering has a poorer
recovery since it deleted all the multiple activations than get_our
but has a way better precision ratio. If you are interested in clean
activations, you should favor thr_clus method and get_our if you
are more interested in recovering the maximum of activations.

Please note that the thr_clus method can also be really useful
to disentangle two appliances with similar parameters as washing
machine and dishwasher. Indeed, it will create separate clusters
between the two appliances.

C SIMBA: EFFECT OF TRAINING DATASET
In this appendix, we compare the results of SimBA when comput-
ing the barycenter on the same houses that we want to extract
the signatures. We will call it «SimBA_overfit". The procedure by
cross-validation as presented in the section 4.4 will be referred as
"SimBA_test".

Figure 19 shows the comparison between the threshold method
(blue), the get_activations_overfit (orange) and get_activations_test
(green). As expected, the results when performing the similarity
search from the barycenter extracted from the same appliance gives
better results than when performing with an appliance of an other
house. The performances of get_activations_overfit are not far from
the one of the threshold method tuned on REFIT dataset.



e-Energy ’21, June 28-July 2, 2021, Virtual Event, Italy Pauline Laviron, Xueqi Dai, Bérénice Huquet, and Themis Palpanas

REFERENCES
[1] Eamonn Keogh Abdullah Mueen. 2017. The First Matrix Profile Tutorial. The

UCR Matrix Profile Page. https://www.cs.ucr.edu/~eamonn/MatrixProfile.html.
[2] Nipun Batra, Jack Kelly, Oliver Parson, Haimonti Dutta, William Knottenbelt,

Alex Rogers, Amarjeet Singh, and Mani Srivastava. 2014. NILMTK: An Open
Source Toolkit for Non-intrusive Load Monitoring. In e-Energy.

[3] Lina Stankovic David Murray. 2015. REFIT: Electrical Load Measurements. https:
//pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements.

[4] Alexander Davis, Tamar Krishnamurti, Baruchm Fischhoff, and Wandi Bruine
de Bruin. 2013. Setting a standard for electricity pilot studies. Energy Policy 62
(2013), 401–409.

[5] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2020. Big Sequence
Management: on Scalability. In IEEE BigData.

[6] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. Big Sequence
Management: Scaling up and Out. In EDBT.

[7] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. High-
Dimensional Similarity Search for Scalable Data Science. In ICDE.

[8] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. New Trends
in High-D Vector Similarity Search: AI-driven, Progressive, and Distributed. In
VLDB.

[9] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2018. The Lernaean Hydra of Data Series Similarity Search: An Experimental
Evaluation of the State of the Art. PVLDB (2018).

[10] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2019. Return of the Lernaean Hydra: Experimental Evaluation of Data Series
Approximate Similarity Search. PVLDB 13(3) (2019).

[11] George W. Hart. 1992. Nonintrusive Appliance Load Monitoring. Proc. IEEE 80,
12 (1992), 1870–1891.

[12] Jack Kelly and William Knottenbelt. 2015. Neural NILM: Deep Neural Networks
Applied to Energy Disaggregation. In BuildSys.

[13] Jack Kelly and William Knottenbelt. 2015. The UK-DALE dataset, domestic
appliance-level electricity demand and whole-house demand from five UK homes.
2, 150007 (2015).

[14] Michele Linardi and Themis Palpanas. 2018. Scalable, variable-length similarity
search in data series: The ULISSE approach. PVLDB 11, 13 (2018), 2236–2248.

[15] Michele Linardi and Themis Palpanas. 2020. Scalable data series subsequence
matching with ULISSE. VLDB J. 29, 6 (2020).

[16] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn Keogh. 2018. Matrix
Profile X: VALMOD - Scalable Discovery of Variable-Length Motifs in Data Series.
In SIGMOD.

[17] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn Keogh. 2018. VALMOD:
A Suite for Easy and Exact Detection of Variable Length Motifs in Data Series. In
SIGMOD.

[18] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh. 2020. Matrix
profile goes MAD: variable-length motif and discord discovery in data series.
Data Min. Knowl. Discov. 34, 4 (2020), 1022–1071.

[19] Themis Palpanas. 2015. Data Series Management: The Road to Big Sequence
Analytics. SIGMOD Record (2015).

[20] Themis Palpanas. 2020. Evolution of a Data Series Index. Communications in
Computer and Information Science (CCIS) (2020).

[21] Themis Palpanas and Volker Beckmann. 2019. Report on the First and Second
Interdisciplinary Time Series Analysis Workshop (ITISA). SIGMOD Rec. 48, 3
(2019).

[22] Lucas Pereira and Nuno Nunes. 2018. Performance evaluation in non-intrusive
load monitoring: Datasets, metrics, and tools—A review. Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 8, 6 (2018), 1–17.

[23] Quentin Reynaud, Yvon Haradji, François Sempé, and Nicolas Sabouret. 2017.
Using Time Use Surveys in Multi Agent based Simulations of Human Activity. In
ICAART.

[24] Nesime Tatbul, Tae Jun Lee, Stan Zdonik, Mejbah Alam, and Justin Gottschlich.
2018. Precision and recall for time series. NeurIPS (2018).

https://www.cs.ucr.edu/~eamonn/MatrixProfile.html
https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements
https://pureportal.strath.ac.uk/en/datasets/refit-electrical-load-measurements

	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Similarity Search
	3.2 Motif Discovery

	4 Proposed Approach
	4.1 Threshold Method
	4.2 Cartesio
	4.3 ValmA
	4.4 SimBA

	5 Experimental setup
	5.1 Setup
	5.2 Datasets
	5.3 Evaluation Measures
	5.4 Results
	5.5 Discussion

	6 Conclusions and Future Work
	Acknowledgments
	A ValmA and effect of downsampling
	B Threshold methods and extension with outlier removal
	C SimBA: effect of training dataset
	References

