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Abstract: Data mining is vital for smart grids because it enhances overall grid efficiency, enabling the
analysis of large volumes of data, the optimization of energy distribution, the identification of patterns,
and demand forecasting. Several performance metrics, such as the MAPE and RMSE, have been created
to assess these forecasts. This paper presents new performance metrics called Evaluation Metrics for
Performance Quantification (EMPQ), designed to evaluate forecasting models in a more comprehensive
and detailed manner. These metrics fill the gap left by established metrics by assessing the likelihood
of over- and under-forecasting. The proposed metrics quantify forecast bias through maximum and
minimum deviation percentages, assessing the proximity of predicted values to actual consumption and
differentiating between over- and under-forecasts. The effectiveness of these metrics is demonstrated
through a comparative analysis of short-term load forecasting for residential customers in Dubai. This
study was based on high-resolution smart meter data, weather data, and voluntary survey data of
household characteristics, which permitted the subdivision of the customers into several groups. The
new metrics were demonstrated on the Prophet, Random Forest (RF), and Long Short-term Memory
(LSTM) models. EMPQ help to determine that the LSTM model exhibited a superior performance with a
maximum deviation of approximately 10% for day-ahead and 20% for week-ahead forecasts in the “AC-
included” category, outperforming the Prophet model, which had deviation rates of approximately 44%
and 42%, respectively. EMPQ also help to determine that the RF excelled over LSTM for the ‘bedroom-
number’ subcategory. The findings highlight the value of the proposed metrics in assessing model
performance across diverse subcategories. This study demonstrates the value of tailored forecasting
models for accurate load prediction and underscores the importance of enhanced performance metrics in
informing model selection and supporting energy management strategies.

Keywords: smart grid; load forecasting; machine learning; deep learning; time series; performance metrics

1. Introduction

The evolution of the smart grid is pivotal in modernizing electrical power systems,
enhancing efficiency, reliability, and sustainability. It enables real-time management of
electricity flows and facilitates the incorporation of renewable energy sources while empow-
ering consumers with better control over their energy usage [1]. Data mining is essential
in this context, as it helps analyze the vast amount of data generated by smart meters
and sensors to uncover patterns that improve demand forecasting, enhance grid reliability,
and support proactive maintenance strategies, ultimately leading to more efficient energy
management practices [2,3].

An important part of data mining for electricity utilities is the development and application
of load forecasting models since they contribute to the optimal operation and planning of
energy market systems, considering customers’ behavior, hazardous environmental impacts,
and the proportion of wasted energy [4]. Accurate predictions of electricity demand can
lower the operating costs for energy systems by enabling more efficient electricity generation,
transmission, and distribution. However, accurately predicting electricity demand can be
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challenging due to variations in demand patterns [5], which are influenced by various factors,
including weather, demographics, socioeconomic characteristics, technology, and tariffs [6,
7]. Since ambient temperature is one of the most significant factors [8,9], the increase in
global temperatures due to climate change is projected to increase the use of air conditioning
systems, leading to increased energy demand in afternoons and evenings. [10]. Currently,
heating, ventilation, and air conditioning (HVAC) systems account for more than half of
the energy consumption of hot regions in the residential and commercial sectors [11]. In
addition to the time of day and season, occupant behavior also plays a significant role in
energy consumption, particularly in residential buildings [12]. Consequently, managing end-
user demand is becoming increasingly critical for optimizing energy system operations [13],
especially as more variable renewable energy sources, such as solar photovoltaics, are integrated
into global energy systems [14]. There are several methods to analyze and model electricity
demand, and that can be performed at multiple scales [15], including the following:

• Spatial resolution that considers geographical area or region.
• Temporal resolution corresponding to a data resolution, such as hourly, daily, or weekly.
• Temporal horizon that defines the scope of forecasting for short-term, medium-term,

and long-term periods.

Various electric load forecasting methods have been proposed in the literature [16,17]. In
relation to the temporal horizon, short-term load forecasting (STLF) refers to the use of load and
other data, such as weather, economic, event, and time-related information, from prior periods
to forecast electricity demand over a short period [15]. STLF permits electric utilities and grid
operators to anticipate the amount of electricity needed to meet consumer demand, allowing
them to efficiently plan and manage electricity generation, transmission, and distribution. Thus,
STLF methods have recently attracted much attention in electric grids and markets because of
their relatively high accuracy and reliability [16,18]. These STLF methods are conventional, ma-
chine learning-based artificial intelligence (AI), and hybrid methods [17,19]. The conventional
methods address mainly time series [18,20] and regression analysis approaches [19–22]. On
the other hand, regression methods seek to find the relationships between consumption target
loads and input features by introducing statistical components. Regression methods have
become popular among conventional methods because of their simplicity, good extrapolation
performance, rapid forecasting speed, and relatively simple structure. However, simple linear
regression methods have lower accuracy because of the non-stationarity and non-linearity of
the loads, which limits their applicability in real-time.

Machine learning-based AI methods have been used in recent years to address the non-
linear nature of electric loads. Behm et al. [21,23] proposed an integrated artificial neural
network (ANN) approach for load forecasting that considers the effects of weather, calendar,
and demographic information on the electric load. Shi et al. [22,24] proposed a deep
recurrent neural network (Deep-RNN) by considering pooling to address the overfitting
issue by increasing the data volume and diversity. Lazzari et al. [23,25] proposed Gaussian
mixture clustering and the eXtreme gradient boosting classifier (XGBoost 1.5.1) to predict
day-ahead behavior patterns. Then, they used this information to perform day-ahead
forecasting of residential households via an ANN. He et al. [24,26] used parametric copula
models within a deep belief network (DBN) to predict short-term loads. Similarly, Ouyang
et al. [25,27] used a DBN architecture similar to that of copula models to perform forecasting.
Deng et al. [26,28] used the Bagging-XGBoost method to perform STLF for a distribution
transformer under extreme weather conditions. Jurado et al. [27,29] proposed an STLF
method that uses total PV generation and electricity consumption. Furthermore, the authors
extended their approach by proposing Monte Carlo dropout and kernel density estimation
(KDE) to obtain probabilistic density forecasts. Deng et al. [28,30] proposed a multilevel
convolutional neural network to improve the accuracy of multi-step forecasting with the
help of the time-cognition factor. Langevin et al. [29,31] proposed a two-stage approach
for the STLF of residential households. In the first stage, the authors estimated the past
and future consumption of household appliances through a non-intrusive load monitoring
(NILM) approach based on variational encoders (VE) and a deep generative model. In
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the second stage, aggregated and disaggregated appliance consumption data were used
to train the temporal convolutional neural network model (T-CNN) to perform short-
term load forecasts for individual households. These AI-based methods have powerful
feature learning capabilities that enable them to improve forecasting results, for which
hyperparameters must be appropriately tuned. Weak hyperparameter tuning of deep
neural networks can slow down the learning process because of the convergence of local
optimal values. The pooling layer in CNN leads to a significant loss of valuable information.
Furthermore, when the network layer becomes too deep, the RNN’s ability to process long
sequences is hampered due to Gradient vanishing, resulting in poor performance.

Hybrid methods have been proposed to solve problems that combine two or more AI
methods to perform STLF. Wan et al. [30,32] used a hybrid combination of CNN, LSTM
network, and attention mechanisms to resolve the issue of information loss because of
excessively long input time series data. Wei et al. [31,33] used a detrending singular spec-
trum fluctuation analysis approach with the LSTM model to forecast long-range correlation
components. They then combined the trend, periodic, and long-range correlation forecasted
components to obtain the final forecasting results. Li et al. [32,34] proposed a hybrid STLF
model based on multiple seasonal patterns and a modified firefly algorithm. Similarly, Kim
et al. [33,35] and Sekhar et al. [34,36] proposed a hybrid CNN-LSTM model to perform
STLF for residential loads. In contrast, Sadaei et al. [35,37] proposed an integrated method
that combines fuzzy time series and CNNs. More recently, Ran et al. [36,38] proposed a
hybrid STLF approach that combines complete ensemble empirical model decomposition
with adaptive noise (CEEMDAN), sample entropy (SE), and transformer (TR) models. The
study performed STLF at 4 h, 8 h, 12 h, and 24 h horizons for New York City. The results
of the hybrid CEEMDAN-SE-TR approach outperformed those of other machine learning
methods. By working on the same objective, Tong et al. [37,39] proposed an attention-based
temporal–spatial convolutional network (ACN) for feature learning. They combined it
with a multi-head attention mechanism method to develop an ultra-short-term forecast-
ing model. Yang et al. [38,40] demonstrated the superiority of their proposed dynamic
decomposition–reconstruction method with an ensemble technique from safe operation
and rational dispatching. A summary of the key literature is shown in Table 1.

The performance evaluation of forecasting algorithms is essential in developing ac-
curate forecast models. Domain-specific metrics provide insights that help users better
understand the performance of these models. The most commonly used evaluation metrics
for forecasting are the mean absolute error (MAE), mean absolute percentage error (MAPE),
and root mean square error (RMSE). Even though these metrics provide information about
the algorithm’s performance in forecasting electricity consumption compared with ac-
tual consumption, these metrics do not indicate how much the forecasted consumption
matches the actual consumption. Many forecasting methods may be biased and prone to
under-forecast (when the forecasted consumption is less than the actual consumption at
a given forecasting horizon) or over-forecast (forecasted consumption is greater than the
actual consumption). To calculate this bias, the forecasting bias [39,41] or mean bias error
(MBE) [40,42] is used. Forecast bias calculates the average bias of the model, and it can be
either positive or negative. A positive forecast bias indicates over-forecasting of consump-
tion. Similarly, a negative forecast bias indicates under-forecasting. However, reporting
only positive or negative bias is insufficient, as further quantification of forecast bias is
required to make meaningful changes to the model. To the best of the authors’ knowledge,
no study in the literature has proposed quantifying forecasting bias to evaluate short-term
load forecast methods. Therefore, the main contribution of this work is to propose new
detailed performance metrics (i.e., EMPQ) for the evaluation of forecasting methods that
enable quantifying forecasting bias by calculating the maximum and minimum differences
between forecasted and actual consumption and then reporting the differences in how
much and in which direction (i.e., higher or lower) the forecasted consumption deviates
from the actual consumption.
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Table 1. Summary of reviewed literature regarding proposed algorithms, key findings, and evaluation metrics used.

Metrics Used Ref.

Year Algorithm Used Key Findings MAE, MAPE, RMSE,
and Its Variants * R2 Mean Square

Error (MSE)
Hit Rate

(HR)

2020 Integrated ANN Improved forecasts with weather and demographic info • • [23]

2017 Deep-RNN Addressed overfitting with pooling to diversify data • [24]

2022 Gaussian Mixture Clustering + XGBoost + ANN Behavior patterns aid day-ahead forecasting • [25]

2017 Parametric Copula + DBN Used copula models for accurate load prediction • • [26]

2019 DBN Similar DBN models achieved accurate forecasting • • [27]

2022 Bagging-XGBoost Bagging-XGBoost excelled under extreme weather • [28]

2023 Monte Carlo Dropout + KDE Probabilistic density forecasts using KDE • [29]

2021 Multi-level CNN Time-cognition factor improved multi-step forecasting • [30]

2023 Variational Encoders + TCN NILM with VE improved household forecasting • [31]

2023 CNN + LSTM + Attention Attention improved long time series data handling • [32]

2022 LSTM + Detrend Singular Spectrum Analysis Combining trend and long-range correlation improved
the accuracy • • [33]

2020 Multiple Seasonal Patterns + Modified Firefly
Algorithm Modified firefly algorithm handled seasonal patterns • [34]

2019 Hybrid CNN-LSTM Hybrid CNN-LSTM enhanced load forecasting • • [35]

2023 Hybrid BiLSTM-CNN Proposed hybrid method outperforms standard
standalone LSTM, CNN models • • [36]

2019 Fuzzy Time Series + CNN CNN and fuzzy time series improved load forecasting • [37]

2023 CEEMDAN + SE + Transformer CEEMDAN-SE-TR outperformed other methods • • [38]

2023 Attention-based Temporal–Spatial CNN +
Multi-head Attention

Attention mechanism enhanced ultra-short-term
forecasting • • [39]

2023 Dynamic Decomposition-Reconstruction with
Ensemble Dynamic decomposition improved safe operation • [40]

* Variants were Normalized RMSE, Normalized MAPE, Absolute Percentage Error (APE), and Mean Arctangent APE.
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The proposed metrics provide both holistic insights and more comprehensive details
about meeting the actual target and provide a better understanding of the tendencies of
the developed models. They indicate how much the forecasts displace the actual value.
This information helps address power distribution/generation cases when less demand
or surplus is required on occasions, such as special days (e.g., public holidays) than on
regular days. Thus, an illustration of the proposed metrics is provided with a comparative
analysis of the STLF results from advanced approaches comprising traditional time series
techniques, machine learning, and deep learning-based forecasting techniques. Hence,
evaluation metrics that show under-forecasting and over-forecasting in time series load
forecasting provide a comprehensive understanding of forecast performance, which aids in
making informed decisions, optimizes resource allocation, and helps mitigate economic
impacts. It also supports the continuous improvement of forecasting models, leading to
more reliable and efficient operations.

The next section of this paper describes the materials and methods used in this study;
Section 3 discusses the results; and Section 4 summarizes the overall work presented.

2. Materials and Methods

Figure 1 shows an overview of the methods followed for the data used and their
processing performed in this study. First, electricity consumption data, occupant profile
data, and weather data were collected, followed by preprocessing procedures. The feature
selection, machine learning models, and cross-validation schemes were then defined in the
following subsections.
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2.1. Study Area

Dubai is the second-largest Emirate and economic capital (latitude: 25.25 N, longitude:
55.33 E) of the United Arab Emirates (UAE). It is part of the northern desert belt subregion
and has an arid climate [43]. Dubai is home to approximately 3.41 million people, of whom
88.5% are expatriates and 11.5% are Emiratis residing across its 24 regions. Dubai has
highly variable electricity consumption due to its scorching weather in summer and diverse
demographics. Dubai’s residential sector accounts for 30.4% of the Emirate’s total electricity
consumption, with air conditioning being the primary contributor to its energy demand.
On the other hand, as per the Dubai Supreme Council of Energy, the market penetration of
the district cooling sector in 2021 reached 25.6% and is expected to increase to 40% by 2030.
Therefore, it was necessary to distinguish between customers whose utility smart meters
record their cooling electricity consumption (those who used their own air conditioning)
and those whose cooling energy consumption is not reflected in the utility smart meter
readings. This latter group comprises apartments that receive the cooling services from
the building’s general air conditioning system (paid as part of the rent) and dwellings
connected to a district cooling network.

2.2. Data Sources

This study used data from three sources: residential smart meters, weather data, and
a customer survey. The collected data were used to develop short-term load forecasting
models using advanced time series, deep learning, and other machine learning techniques.
The following subsections provide the details of the smart meter dataset, weather data, and
survey records.

2.2.1. Electricity Smart Meter Dataset

The analysis in this study was based on anonymized electrical smart meter data with a
15-min resolution from 8000 residential customers of the Dubai Electricity and Water Authority
(DEWA). This dataset includes four years of data, from January 2018 to December 2021.

2.2.2. Weather Data

Dubai has an arid desert climate with two main seasons, extremely hot summers and
warm winters, which are separated by two short transitional periods. The two transitional
periods (April–May and October–November) are characterized by high variability and
rapid weather changes [42,44].

Owing to its proximity to the Gulf, Dubai’s relative humidity is higher than that of
other cities at the center of the Arabian Peninsula. Therefore, hot and humid air masses
affect cities, especially in summer. The present study utilized weather data collected from
the Dubai International Airport weather station during the same period as the smart meter
data (2018–2021) [45]. The temperature and relative humidity were used to determine the
intensity and variability correlation between weather, electricity consumption, and input
features for STLF modeling.

2.2.3. Survey Data

The smart meters and weather data were complemented with the information collected
from the anonymized household data survey conducted by DEWA’s “My Sustainable
Living Program”. This program targeted residential customers to support them in living a
sustainable lifestyle and improving their energy demand behavior [40]. The survey data
were utilized to define the customers’ profiles, considering the type of dwelling, total
occupants, built-up area, cooling provider, and bedroom number.

2.3. Data Processing
2.3.1. Data Sampling and Preprocessing

Out of the initial 8000 customers, only 586 fully completed the survey. Of these, only
439 had smart meter data across the entire study period (four years). Thus, 439 households
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were ultimately considered for further analysis. The 15-min-resolution smart meter data
were resampled to one-hour intervals for this study. The consumption data were merged
with the survey data to extract the occupant’s profile for each consumption. Moreover,
weather station temperature and relative humidity data were also incorporated into the re-
sulting dataset. The utilized smart meter dataset includes approximately 35,064 observation
records from every 439 consumers with continuous records over the study period.

2.3.2. Data Subsets

Segmenting the data into relevant subsets improves load forecasting accuracy and
offers utilities more actionable insights. Therefore, the author divided the datasets into
two main subsets: ‘AC-included’ (297 dwellings conditioned using their systems) and
‘AC-excluded’ (142 dwellings conditioned by a general system or a district cooling net-
work). This initial division was based on differing energy demand patterns and weather
dependencies. Dwellings with individual air conditioning systems have more variable
energy demand and higher peaks. Their greater variability is evidenced throughout the
hours of the day and the months of the year. Due to the particularities of these two groups,
this segmentation is critical for generating accurate forecasting models and managing
peak demand.

Socio-demographic factors also impact the households’ energy consumption levels
and patterns. Therefore, to capture some of these factors, each of the two main subsets was
further subdivided based on built-up area and number of bedrooms, allowing for even
more precise energy demand forecasting. The ‘built-up area’ subgroup was divided into
six subsets (0–50, 51–100, 101–150, 151–200, 201–300, and over 300 square meters). On the
other hand, the ‘number of bedrooms’ subgroup was divided into four subsets (zero-studio,
one, two, and three).

2.3.3. Feature Selection

The feature selection process enables identifying the most relevant features from the
available list. It facilitates isolating profitable features to ensure quality in the underly-
ing information. In addition, feature selection helps reduce the dimensionality of the
available data.

The ranker-based feature selection approach presents many advantages, including sim-
plicity, efficiency, scalability, interpretability, and the ability to improve model performance
by focusing on the most relevant features of the dependent target variable. It generates the
rank of the features via a sorted list based on various scores, such as distance, correlation,
information gain, and consistency measures [46]. Therefore, considering their benefits, the
authors used this approach to evaluate and identify features based on their importance to
the target variable [43,45].

2.3.4. Data Splitting

The dataset was trained and validated using samples representing the entire popu-
lation to create a robust forecasting model. In this work, three initial years of data (2018,
2019, and 2020) were used to train the models using a cross-validation approach, and the
evaluation metrics were calculated on the test set of the fourth year (2021), the data used
for prediction.

2.4. Short-Term Forecasting Methods

Based on the literature review’s findings, summarized in the introduction, the authors
decided to validate the proposed new metrics by comparing the performance of three of
the most commonly used models for short-term load forecasting: Prophet (advanced time
series approach), Random Forest (machine learning), and LSTM (deep learning). They
were utilized in two forecasting scenarios: one day and one week. However, all the metrics
were reported for one whole year of test data.
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The following sections provide more information about these models and insights
into tuning hyperparameters to enhance the models’ performance. Including the details
of the hyperparameters’ tuning enhances the models’ transparency and supports their
reproducibility and reliability.

2.4.1. Time Series Analysis Approach

Time series analysis involves time series data and trend analysis. Time series data
generally follow periodic time intervals collected at particular time intervals. The appli-
cations of time series analysis include understanding the underlying data patterns and
fitting a statistical model accurately so that the process can be applied to forecasting and
monitoring. Hence, analyzing time series data requires unique tools and methods that
investigate trends, seasonality, and noise.

Prophet Model: The Prophet model is a time series-based forecasting model developed
by Facebook’s data analytics team [47]. Prophet processes time series data with a decom-
posable model where non-linear trends fit with daily, weekly, and yearly seasonality along
with the holiday effect. Recently, it has become popular because it works well with time
series data, has strong seasonality, and has multiple seasons of historical data [48].

Tuning of Hyperparameters in the Prophet Model: The Prophet model allows automatic
tuning of the four primary hyperparameters.

• The most influential parameter is the ‘changepoint prior scale’, which determines the
scale of the change at the trend change point in the time series. It is a regularization
penalty term referred to as L1-Lasso. When this parameter is very small, the model
tends to underfit; when this value is too large, the model tends to overfit, with the
trend changing significantly at the change point. Its default value is 0.05, and its
recommended range is between 0.001 and 0.5.

• The second most impactful parameter is the ‘seasonality prior scale’, which controls
the magnitude of the seasonality fluctuation. It can be considered a regularization
penalty term referred to as L2-Ridge. Its default value is 10, which indicates that no
regularization is applied. Its recommended range is between 0.01 and 10, where a
smaller value corresponds to having a smaller seasonality.

• The ‘holidays prior scale’ is similar to the ‘seasonality prior scale’ and determines the
scale of holiday effects. Its default value is 10, which means that no regularization is
applied. Thus, its recommended range is between 0.01 and 10, where a smaller value
corresponds to fewer holidays.

• The ‘seasonality mode’ has two main options: additive and multiplicative. The ad-
ditive model considers trends, seasonality, and other effects by adding them when
making predictions. This approach is appropriate for time series models with relatively
constant seasonal variation over time. On the other hand, the multiplicative model con-
siders multiplying the trend, seasonality, and other effects when making predictions.

Other existing hyperparameters include the changepoint range, growth, changepoints,
yearly seasonality, weekly seasonality, daily seasonality, and holidays. These required
manual tuning using a trial-and-error-based approach.

2.4.2. Machine Learning Approach

Machine Learning (ML) is a subset of Artificial Intelligence in which models learn
from data, identify patterns, and assist in making decisions with fewer human interactions.
The popular ML approaches used in STLF are Support Vector Regressors (SVRs), Neural
Networks (NNs), Decision Trees (DTs), and Random Forest (RF). This section describes the
RF-based machine learning approach used to develop the STLF model. Even though deep
learning is a subset of machine learning, it requires more computations than traditional
approaches do. Hence, this method is addressed separately in the following subsection.
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Random Forest: DTs are supervised learning methods that predict discrete values of
the parameters used to train a model. DTs start at the root and traverse slowly toward the
nodes by partitioning the predictors using the divide and conquer strategy per predictor,
with the greatest impact on uniformity in the result after a supervised learning technique is
used to combine the multiple regressions per split. RF is a supervised learning algorithm
that ensembles the outputs from various DTs (with bagging) or DTs with multiple subsets
of training data. It helps improve the performance of function approximation or regressive
prediction. The ensemble approach in RF uses various learning approaches and a majority
of votes concept to obtain better predictive performance than that obtained from any
constituent DT.

Tuning of Hyperparameters in the Random Forest Model: A grid of hyperparameter ranges
can be defined using ScikitLearn’s RandomizedSearchCV method, and performing random
sampling from the grid with K-Fold cross-validation allows one to walk through each
combination of grid values. The following are the parameters that need to be tuned in
Random Forest.

• ‘n estimators’ refers to the number of trees considered in the forest;
• ‘max features’ refers to the maximum number of features considered for splitting

a node;
• ‘max depth’ refers to the maximum number of levels in each decision tree;
• ‘min samples split’ refers to the minimum number of points placed in a node before it

is split;
• ‘min samples leaf’ refers to the minimum number of points allowed in a leaf node;
• ‘bootstrap’ refers to an approach for sampling data points (with or without replacement).

2.4.3. Deep Learning Approach

Deep learning is a subset of machine learning. Deep learning models have a neural
network architecture with multiple layers of processing units that have been applied
successfully to a broad set of problems in different areas of image recognition, especially
natural language processing. It is a type of artificial intelligence that imitates how humans
gain certain kinds of knowledge as they gain information from a big data set. One of the
key differences between machine learning and deep learning methods is that deep learning
models require a high amount of data and more computational power to solve more
complex problems, which cannot be solved with traditional machine learning methods.

Long Short-Term Memory (LSTM) is a widely used technique for deep learning based
on recurrent neural networks with feedback connections. LSTM networks allow the capture
of sequence pattern information in a time series manner. LSTMs utilize only the attributes
provided in the training set to work with temporal correlations. LSTM, as its name states,
tends to have both long-term and short-term memory. During the training phase, the
weights and biases change during each training episode, comparable to how physiological
changes in synaptic strength consider long-term memories; the activation patterns in the
network that change once during each time step are similar to how the electric firing
patterns change in the brain to consider short-term memories. The trained deep learning
model consists of its architecture’s LSTM, Dense, and Dropout layers.

Tuning of Hyperparameters in LSTM: Various hyperparameters in LSTM provide excep-
tional results when appropriately tuned.

• Number of hidden neurons (nodes) and layers: These two parameters are selected
with a trial-and-error approach. Regularization techniques are generally used within a
layer, which helps increase the model’s accuracy.

• Number of units in a dense layer: A dense layer is a composite layer where each
neuron receives input from all the neurons from the previous layers. Hence, it is
known as ‘densely connected’. Dense layers help improve the overall accuracy, and
5–10 units or nodes per layer are usually good input choices.

• Dropouts: Each LSTM layer, when accompanied by a dropout layer, helps to avoid
overfitting in the training phase as it helps to bypass randomly selected neurons or
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nodes. Thus, it is essential to note that dropout layers should not be used with output
layers because they may hinder the model’s output and cause calculation errors. A
value of 20% is generally considered a good choice to balance between preventing
model overfitting and maintaining model accuracy.

• Weight Initialization: Allocating different sets of weights gives the optimization pro-
cess different starting points, thus providing different performance characteristics.
Therefore, weights should be randomly initialized to small numbers to randomize the
search process.

• Decay Rate: The Decay Rate helps update the nodes’ weights after each training phase.
These weights are multiplied by a factor slightly less than 1, eventually preventing
them from growing too large.

• Activation Function: Activation functions help define a node’s output as either the
‘ON’ or ‘OFF’ state. These functions are used to introduce non-linearity to models,
allowing deep learning models to learn predictions from non-linear boundaries. The
selection of the activation layer depends on the purpose of the application. ‘SoftMax’
is a popular activation function that can interpret output as probabilities.

• Learning Rate: This ‘learning rate’ hyperparameter helps define how quickly the
network learns and updates its parameters. Setting a higher learning rate accelerates
the learning process, but the model may not converge to global minima. Hence, a
lower learning rate (between ‘0.0’ and ‘0.1’) is usually preferred, which slows down
the learning process and helps the model converge to global minima.

• Number of Epochs: This hyperparameter helps to define the running number of
iterations of the learning phase of the dataset. Theoretically, this number can be set
to any integer value. However, it is generally set after gradually increasing until
the validation accuracy decreases, considering that its training accuracy increases at
that point.

• Batch Size: The ‘batch size’ defines the number of samples to be considered in the
model before it updates the model’s internal parameters. Compared with smaller sizes,
larger sizes allow large gradient steps for the same number of samples considered.
Therefore, a widely preferred value for a good batch size is 32.

2.5. Traditional Evaluation Metrics and Their Strengths and Limitations

The three main metrics used to validate the models’ effectiveness and determine the
models’ fitness are the RMSE, MAE, and MAPE. These metrics have their own strengths
and limitations, which are discussed below:

2.5.1. Root Mean Squared Error

The RMSE is a valuable metric for assessing forecasting accuracy because of its simplic-
ity and sensitivity to large errors. It is a commonly used metric in forecasting to evaluate
the accuracy of predictions by measuring the differences between the predicted values
and actual observations. Therefore, it is essential to consider its limitations and use it
with other metrics and diagnostic tools to understand the forecasting model performance
comprehensively. Table 2 shows the advantages and disadvantages of using the RMSE
metric to evaluate short-term forecasting methods.

Considering (xi) as the actual value and (x′i) as the modeled or predicted value for the
‘n’ number of observations, the RMSE is calculated as follows:

RMSE =

√
1
n∑n

i=1

(
xi − x′i

)2 (1)
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Table 2. Traditional evaluation metrics’ advantages and limitations.

Metric Advantages Limitations

RMSE

- Provides a straightforward measure of forecasting
accuracy that is easy to interpret. It represents the
average magnitude of errors between predicted
and actual values, clearly indicating the
model’s performance.

- Gives higher weight to large errors than metrics
like MAE. This sensitivity can be beneficial in
scenarios where large errors have significant
consequences and must be minimized.

- Allows for comparing forecasting accuracy
between different models or approaches. Lower
RMSE values indicate better predictive
performance, making it useful for model selection
and improvement.

- Can be sensitive to outliers, meaning that extreme
values can disproportionately influence the overall
error measure. This may lead to overemphasizing the
importance of outliers in evaluating
forecasting models.

- Does not provide information about the directionality
of errors (over or underestimation). As a result, it may
not fully capture the performance of a forecasting
model, especially if systematic biases exist.

- Is sensitive to the scale of the data. Changes in the
dependent variable’s scale can affect the RMSE’s
magnitude, making comparisons between RMSE
values across different datasets or time series with
different scales challenging.

MAE

- Provides a simple and intuitive measure of
forecasting accuracy. It represents the average
magnitude of errors between predicted and actual
values, making it easy to interpret and
communicate to stakeholders.

- Is scale-invariant, meaning that it is not affected by
the scale of the data or the units in which the
variables are measured. This property makes MAE
suitable for comparing forecast accuracy across
different datasets with varying magnitudes.

- Is less sensitive to outliers than other error metrics
like RMSE, as it does not square the errors. This
robustness of outliers makes MAE a reliable
measure of forecasting accuracy, especially in
datasets with extreme values.

- Treats all forecasting errors equally without
considering their magnitude or directionality,
bringing simplicity.

- Its simplicity in treating all forecasting errors equally,
without considering their magnitude or directionality,
may also be a limitation. Not differentiating between
small and large errors could significantly impact
decision-making and may not align with the priorities
of certain forecasting applications where minimizing
large errors is crucial.

- Does not provide information about the variability or
dispersion of forecast errors. In datasets with
heterogeneous error magnitudes, MAE may not fully
capture the distribution of errors or the consistency of
forecasting performance.

- Is not differentiable with respect to model parameters,
making it unsuitable for optimization algorithms that
require gradient-based optimization techniques. This
limitation restricts the use of MAE in model tuning or
parameter estimation tasks.

- Does not distinguish between overestimation and
underestimation errors, treating them equally. This
lack of sensitivity to error directionality can be
considered a drawback in certain forecasting
applications, especially those where overestimation or
underestimation has asymmetric costs
or consequences.

MAPE

- Is scale-invariant, meaning that it is not affected by
the scale of the data or the units in which the
variables are measured. This property makes
MAPE suitable for comparing forecasting accuracy
across different datasets with varying magnitudes.

- Gives equal weight to errors across different levels
of actual values, reflecting forecast accuracy
proportionally regardless of the magnitude of the
observations. This property is particularly useful
when forecasting across a wide range of values.

- Is sensitive to extreme values or outliers in the data,
which means that large errors can disproportionately
influence the overall percentage of errors. This
sensitivity may distort the assessment of forecast
accuracy, especially in the presence of outliers. Thus,
MAPE should be used wisely with other metrics to
evaluate forecast performance comprehensively.
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2.5.2. Mean Absolute Error

The MAE is a simple and robust metric for evaluating forecasting accuracy, offering
advantages such as ease of interpretation, scale-invariance, and robustness to outliers.
However, it also has limitations, including its inability to differentiate between error
magnitudes, lack of sensitivity to error directionality, and unsuitability for optimization
tasks. The MAE should be used wisely in conjunction with other metrics to obtain a
comprehensive assessment of forecast performance. Table 2 shows the advantages and
limitations of this metric. The MAE measures the errors between paired observations and
is calculated as follows:

MAE =
1
n∑n

i=1

∣∣xi − x′i
∣∣ (2)

2.5.3. Mean Absolute Percentage Error

The MAPE is another commonly used metric in forecasting to evaluate the accuracy of
predictions. It is a valuable metric for evaluating forecasting accuracy, offering a percentage-
based measure that is intuitive and scale-invariant. It expresses the average magnitude
of errors relative to the actual values, allowing for straightforward comparisons across
different datasets and forecast horizons. However, one needs to be careful of its limitations,
particularly regarding division by zero, sensitivity to extreme values, and bias towards
underestimation, as Table 2 explains.

The MAPE is calculated as follows:

MAPE =
1
n∑n

i=1

∣∣∣∣ xi − x′i
xi

∣∣∣∣ (3)

2.5.4. Summary of Traditional Evaluation Metrics Comparison

The RMSE, MAE, and MAPE each offer distinct advantages and limitations for evalu-
ating forecasting accuracy. The RMSE is beneficial for highlighting large errors, providing
a measure that gives higher weight to large deviations, which is useful in cases where mini-
mizing significant errors is critical. However, it is sensitive to outliers and scale changes,
making comparing datasets challenging. The MAE is simple, intuitive, and robust against
outliers, as it treats all errors equally. Its scale-invariance makes it suitable for comparing
forecasts across datasets of different magnitudes, though its equal treatment of errors can
be a drawback in applications where larger errors are prioritized. Like the MAE, the MAPE
is scale-invariant and expresses forecast accuracy as a percentage, which is especially useful
for comparing forecasts across varying ranges. However, the MAPE is highly sensitive to
outliers, as large errors can skew its interpretation, making it less reliable in datasets with
extreme values. Figure 2 summarizes these key aspects.
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2.5.5. Bias

Bias metrics quantify a forecasting model’s tendency to overestimate or underestimate
actual values. This information is valuable for understanding the directionality of errors
and identifying and addressing systematic biases. Bias metrics should be used with error
metrics and other diagnostic tools to ensure a comprehensive assessment of forecasting
performance and effectively inform decision-making.

• Bias metrics are often easy to interpret and communicate since they represent the
average difference between the predicted and actual values. A positive bias indicates
overestimation, whereas a negative bias indicates underestimation, providing clear
insights into the forecasting model’s performance.

• Bias metrics can help align forecasting performance with decision-making objectives by
highlighting any systematic tendencies that may impact prediction accuracy. Decision-
makers can use this information to adjust their expectations or take corrective actions
to mitigate bias-related risks.

• Bias metrics complement traditional error metrics such as the MAE or RMSE by
focusing specifically on the directionality of errors. By considering bias and error
metrics together, stakeholders can gain a more comprehensive understanding of
forecasting performance. However, bias metrics alone may not comprehensively
evaluate forecasting accuracy, as they quantify only the directionality of errors without
considering their magnitude or variability. The ‘bias’ is calculated as follows:

Bias =
1
n∑n

i=1 xi − x′i (4)

2.6. Proposed Evaluation Metrics for Performance Quantification

Traditional evaluation metrics such as the RMSE, MAE, and MAPE are commonly
used to assess forecasting models. These metrics offer valuable information related to the
models’ performance. However, they provide limited insights into biases, such as over-
or under-forecasting. To address this need, the authors proposed new metrics within the
EMPQ framework, designed to complement existing metrics by evaluating the model’s
bias tendencies and improving decision-making based on forecast demand accuracy.

The proposed EMPQ metrics classify predictions into three main categories: under-
forecasts, over-forecasts, and overlapping values, which are instances where predictions closely
match the actual values. For each forecast category, the metrics capture detailed aspects of
prediction accuracy, including the percentage of forecasts near the actual values, intermediate
range, and well above actual values (extreme deviations). These three categories enable an
understanding of how close or far predictions lie from actual values and facilitate model
adjustments for better alignment with real-world demand trends. This approach provides a
layered analysis, helping identify patterns and systematic biases within forecasting models.

Each category corresponds to a different (bias) distribution defined based on calculated
quartiles. The quartiles are four continuous intervals containing 25% of the data points,
usually used to help understand the distribution and spread of data. Quartile 1 (Q1: 25th
percentile) defines the border of the lower quarter of the data points. In the proposed
EMPQ, any point of the under- and over-forecast falling in or below Q1 is considered part
of the near-actual category. Similarly, Quartile 3 (Q3: 75th percentile) defines the border
of the upper quarter of the data, and any point of the under- and over-forecast falling
above this quartile is considered part of the well-above category. The third category, the
intermediate range, contains all the data points higher than Q1 and lower than or equal to
Q3. The three categories are illustrated in Figure 3.



Energies 2024, 17, 6131 14 of 30

The key calculations of the proposed EMPQ metrics include the minimum difference
(mindiff), the maximum difference (maxdiff), and the average difference (avgdiff) between
the actual and predicted values. Algorithm 1 provides the pseudocode for calculating
these metrics, detailing the process for quantifying the forecast distribution around mindiff,
maxdiff, and avgdiff. This clustering enables decision-makers to assess forecasting precision
readily and make necessary adjustments for operational efficiency. For example, a high
percentage of forecasts lying close to the actual value (within Q1) indicates high accuracy,
whereas values exceeding Q3 indicate significant deviations.

The EMPQ framework is especially beneficial in scenarios with sudden demand shifts,
such as ramp-up or ramp-down events in energy usage. By quantifying both over- and
under-forecasting errors, the proposed metrics support continuous monitoring and real-time
adjustments, enhancing the adaptability of the forecasting models to dynamic changes
in demand.

Algorithm 1 Evaluation Metrics for Performance Quantification

Input: Observed and Forecasted values
Output: Performance Quantified metrics
for each modeled data do

Calculate the difference between modeled and actual data.
Differentiate data as under-forecast or over-forecast based on negative or
positive difference values.
for the data with negative difference do

Generate mindiff, maxdiff, and avgdiff between observed and actual values.
Create three clusters Cuf1, Cuf2, Cuf3 centered with these three difference values.
Apply clustering technique to rest of the differenced data considering
minimum Euclidean distance (similar to k-means, where k = 3).
Report the population of each of the three clusters (as a percentage).
Report quartile values Q1, Q3 which represent mindiff (i.e., CuQ1) and
maxdiff, i.e., (CuQ3) as a minimum and maximum deviation (or bias), respectively,
from actual observed values.
Classify reported output as under-forecast.

end for
for the data with positive difference do
Generate mindiff, maxdiff, and avgdiff between observed and actual
values.
Create three clusters Cof1, Cof2, Cof3 centered with these three
difference values.
Apply clustering technique to rest of the differenced data considering
minimum Euclidean distance (similar to k-means, where k = 3).
Report the population of each of the three clusters (as a percentage).
Report quartile values Q1, Q3 which represent mindiff (i.e., CoQ1) and
maxdiff, i.e., (CoQ3) as a minimum and maximum deviation (or bias), respectively,
from actual observed values.
Classify reported output as over-forecast.
end for

end for
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Interpretation of the Proposed Metrics

The EMPQ metrics not only quantify the directionality of errors (under- vs. over-
forecasting) but also evaluate how close the predictions are to the actual values. The metrics
highlight values within Q1 as near actual values, suggesting high precision, whereas values
beyond Q3 represent well above actual values. This classification provides practical insights
for improving forecasting models by identifying consistent trends in under- or over-forecasting,
which are critical for model selection and real-time adjustments in demand management.

For decision-makers, models with the highest percentage of predictions near the actual
value in both the under- and over-forecasting categories (i.e., metrics Cof1 and Cuf1) and
the lowest maximum deviation percentages (CoQ3 and CuQ3) are preferred. This balanced
approach to evaluating forecast precision supports more informed resource allocation and
operational adjustments, ensuring that models meet strategic goals in energy demand man-
agement. Table 3 presents the proposed evaluation metrics for performance quantification.

Table 3. Proposed evaluation metrics for performance quantification.

Proposed Evaluation Metrics for Performance Quantification Type

1 Percentage of instances having Over-Forecasts

2 Percentage of instances having Under-Forecasts

3 Percentage of Over-Forecasts near actual value (Cof1)

4 Percentage of Over-Forecasts intermediate range near Actual (Cof3)

5 Percentage of Over-Forecasts well-above actual value (Cof2) Over_forecasts

6 Max-Deviation Percentage from actual value

7 Min-Deviation Percentage from actual value

8 Percentage of Under-Forecasts near actual value (Cuf1)

9 Percentage of Under-Forecasts intermediate range near to actual (Cuf3)

10 Percentage of Under-Forecasts well-below actual value (Cuf2) Under-Forecasts

11 Max-Deviation Percentage from actual value

12 Min-Deviation Percentage from actual value

3. Results and Discussion

This section presents the results and discusses the use of the established and proposed
metrics in the selected datasets and subsets in four subsections. The first covers the trends and
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seasonal profiles of the main categories, ‘AC-included’ and ‘AC-excluded’. The second includes
the forecasting analysis for the two cooling categories at two different forecast horizons (one
day ahead and one week ahead). Finally, the final two sections discuss the subsets’ results
based on the dwelling’s built-up area and the number of bedrooms. Three advanced techniques
were utilized for the two cooling categories in each domain of the time series: Prophet, Random
Forest (machine learning), and LSTM (deep learning). However, for the dwelling subcategories
(built-up areas and the number of bedrooms), only RF and LSTM were utilized since they
yielded better performance metrics than Prophet did. All the metrics demonstrated in this
section were calculated over a year for the specified forecast horizons (Tables 4–9).

Table 4. AC-included: Comparison of metrics across different forecast horizons for different ap-
proaches. The lowest RMSE achieved across the different models is highlighted by an arrow (→).

Category AC-Included

Forecast Horizon Day Ahead Week Ahead

Metrics/Comparison of Different Algorithms Prophet RF LSTM Prophet RF LSTM

Overall

RMSE 80.02 62.78 → 32.22 90.21 75.88 → 48.67

MAE 63.09 45.40 25.85 72.91 55.77 37.28

MAPE 9.77 5.98 → 3.92 11.46 7.65 → 5.04

Percentage of instances having Over-Forecasts 77.72 47.29 73.26 78.15 51.94 44.40

Percentage of instances having Under-Forecasts 22.28 52.71 26.74 21.85 48.06 55.60

Over-Forecasts

Percentage of Over-Forecasts near Actual value 73.09 86.51 64.66 73.06 90.66 78.67

Percentage of Over-Forecasts intermediate range near Actual 26.62 13.42 34.65 26.73 9.23 20.77

Percentage of Over-Forecasts well-above Actual value 0.29 0.07 0.69 0.20 0.11 0.56

Max-Deviation Percentage from Actual value 44.44 33.39 → 10.68 42.24 44.02 → 19.41

Min-Deviation Percentage from Actual value 0.00 0.00 0.00 0.00 0.00 0.00

Under-Forecasts

Percentage of Under-Forecasts near Actual value 85.91 83.24 77.14 67.82 70.81 73.84

Percentage of Under-Forecasts intermediate range near Actual 13.73 16.55 22.69 30.46 27.89 25.93

Percentage of Under-Forecasts well-below Actual value 0.36 0.22 0.17 1.72 1.31 0.23

Max-Deviation Percentage from Actual value 23.37 19.80 → 15.98 20.77 31.39 → 20.32

Min-Deviation Percentage from Actual value 0.00 0.00 0.00 0.00 0.00 0.00

Bold numbers represent best results.

Table 5. AC-excluded: Comparison of metrics across different forecast horizons for approaches. The
lowest RMSE achieved across the different models is highlighted by an arrow (→).

Category AC-Excluded

Forecast Horizon Day Ahead Week Ahead

Metrics/Comparison of Different Algorithms Prophet RF LSTM Prophet RF LSTM

Overall

RMSE 5.61 5.50 → 3.37 6.27 5.65 → 5.44

MAE 4.42 4.30 2.61 4.89 4.35 4.98

MAPE 8.70 8.28 4.93 9.72 8.26 9.56

Percentage of instances having Over-Forecasts 61.29 50.94 45.00 65.94 47.60 1.64

Percentage of instances having Under-Forecasts 38.71 49.06 55.00 34.06 52.40 98.36

Over-Forecasts

Percentage of Over-Forecasts near Actual value 75.21 67.97 64.83 66.52 68.85 62.94

Percentage of Over-Forecasts intermediate range near Actual 24.70 31.65 33.96 33.14 30.82 32.87

Percentage of Over-Forecasts well-above Actual value 0.09 0.38 1.21 0.35 0.34 4.20

Max-Deviation Percentage from Actual value 75.96 54.12 → 21.06 99.72 45.60 → 11.46

Min-Deviation Percentage from Actual value 0.00 0.00 0.00 0.00 0.00 0.02

Under-Forecasts

Percentage of Under-Forecasts near Actual value 75.55 78.41 75.94 84.38 81.87 27.16

Percentage of Under-Forecasts intermediate range near Actual 23.98 21.45 23.65 15.42 17.95 72.67

Percentage of Under-Forecasts well-below Actual value 0.47 0.14 0.41 0.20 0.17 0.17

Max-Deviation Percentage from Actual value 31.13 35.71 → 26.08 35.55 37.35 → 32.05

Min-Deviation Percentage from Actual value 0.00 0.01 0.00 0.00 0.00 0.01

Bold numbers represent best results.
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Table 6. AC-included Built-up area subcategory: Comparison of day-ahead forecast metrics across day-ahead forecasts between the LSTM and RF approaches. The
lowest RMSE achieved across the different models is highlighted by an arrow (→).

Category AC-Included

Approach LSTM (Day-Ahead Forecasting) RF (Day-Ahead Forecasting)

Metrics/Areas (m2) 0–50 51–100 100–150 151–200 201–300 >300 0–50 51–100 100–150 151–200 201–300 >300

Overall

RMSE → 4.70 → 12.16 → 37.50 → 16.09 → 5.85 → 1.87 12.34 64.16 74.99 37.02 16.53 11.86

MAE 4.36 9.88 30.11 13.51 4.56 1.75 7.88 36.52 42.21 22.03 10.65 7.98

MAPE 17.23 7.15 11.87 13.69 9.65 8.89 30.61 18.40 17.78 19.77 24.20 36.15

% of instances having Over-Forecasts 3.56 53.15 19.31 27.22 76.55 4.51 54.26 56.45 54.50 56.69 58.33 63.92

% of instances having Under-Forecasts 96.44 46.85 80.69 72.78 23.45 95.49 45.74 43.55 45.50 43.31 41.67 36.08

Over-
Forecasts

% of Over-Forecasts near Actual value 51.45 57.92 55.54 49.33 72.61 46.45 84.39 89.50 86.82 90.84 85.91 87.03

% of Over-Forecasts intermediate range near Actual 45.34 40.14 41.73 48.02 27.35 43.40 15.27 10.27 12.53 9.02 13.82 12.81

% of Over-Forecasts well-above Actual value 3.22 1.94 2.73 2.65 0.04 10.15 0.34 0.22 0.65 0.14 0.27 0.16

Max-Deviation % from Actual value → 113.30 → 81.47 → 45.58 → 61.60 → 11.63 → 72.66 175.44 129.84 132.63 158.77 134.42 351.31

Min-Deviation % from Actual value 0.11 0.00 0.00 0.02 0.00 0.01 0.01 0.01 0.00 0.01 0.00 0.04

Under-
Forecasts

% of Under-Forecasts near Actual value 12.25 56.73 41.67 35.57 78.72 18.47 92.36 92.98 92.55 93.67 93.15 89.31

% of Under-Forecasts intermediate range near Actual 83.74 42.34 56.28 61.09 21.13 81.17 7.44 6.89 7.23 6.17 6.74 10.47

% of Under-Forecasts well-below Actual value 4.01 0.93 2.04 3.33 0.15 0.36 0.20 0.13 0.23 0.16 0.11 0.22

Max-Deviation % from Actual value → 9.45 → 10.96 → 17.63 → 11.87 → 14.23 → 4.17 74.00 68.07 57.34 53.57 58.12 55.70

Min-Deviation % from Actual value 0.00 0.00 0.02 0.00 0.00 0.03 0.03 0.03 0.00 0.01 0.00 0.01

Bold numbers represent best results.
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Table 7. AC-excluded Built-up area subcategory: Comparison of day-ahead forecast metrics across day-ahead forecasts between the LSTM and RF approaches. The
lowest RMSE achieved across the different models is highlighted by an arrow (→).

Category AC-Excluded

Approach LSTM (Day-Ahead Forecasting) RF (Day-Ahead Forecasting)

Metrics/Areas (in m2) 0–50 51–100 100–150 151–200 201–300 >300 0–50 51–100 100–150 151–200 201–300 >300

Overall

RMSE → 0.14 → 0.18 → 0.85 → 0.21 → 0.56 → 0.08 6.02 4.32 7.72 3.56 1.61 1.58

MAE 0.13 0.13 0.84 0.20 0.55 0.06 3.71 2.68 4.73 2.38 1.12 1.09

MAPE 2.31 1.59 4.08 2.50 17.38 2.12 22.79 25.44 20.13 26.13 38.08 38.99

% of instances having Over-Forecasts 55.49 26.97 0.35 99.79 0.85 11.19 58.68 60.89 56.47 61.85 61.20 70.29

% of instances having Under-Forecasts 44.51 73.03 99.65 0.21 99.15 88.81 41.32 39.11 43.53 38.15 38.80 29.71

Over-
Forecasts

% of Over-Forecasts near Actual value 77.91 94.86 48.39 69.51 14.86 86.30 86.05 87.53 84.56 88.83 76.31 97.58

% of Over-Forecasts intermediate range near Actual 21.92 4.58 41.94 30.45 82.43 13.39 13.68 12.19 15.16 11.13 23.35 2.40

% of Over-Forecasts well-above Actual value 0.17 0.55 9.68 0.03 2.70 0.31 0.28 0.28 0.28 0.04 0.34 0.02

Max-Deviation Percentage from Actual value → 22.33 → 2.69 → 1.88 → 2.07 → 97.93 → 42.59 253.42 287.10 219.73 196.32 315.93 290.16

Min-Deviation Percentage from Actual value 0.01 0.00 0.02 0.01 0.13 0.00 0.01 0.00 0.01 0.01 0.00 0.00

Under-
Forecasts

% of Under-Forecasts near Actual value 59.59 63.08 1.21 38.89 0.42 80.29 92.34 93.67 91.00 94.23 93.12 95.43

% of Under-Forecasts intermediate range near Actual 34.83 36.81 97.67 50.00 87.07 19.65 7.42 6.13 8.71 5.66 6.65 4.42

% of Under-Forecasts well-below Actual value 5.58 0.11 1.13 11.11 12.51 0.05 0.25 0.20 0.29 0.12 0.24 0.15

Max-Deviation Percentage from Actual value → 1.70 → 6.26 → 3.06 → 0.27 → 24.49 → 3.13 75.61 76.26 74.95 79.51 82.29 76.83

Min-Deviation Percentage from Actual value 0.00 0.00 0.01 0.00 3.56 0.00 0.01 0.00 0.01 0.00 0.01 0.01

Bold numbers represent best results.
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3.1. Trend and Seasonal Profiles

Figure 4 shows the trends and daily, weekly, and yearly seasonal component profiles
for the ‘AC-included’ and ‘AC-excluded’ categories. The ‘AC-included’ category shows
a rising quadratic trend. In contrast, the ‘AC-excluded’ category shows a close to linear
trend, as shown in Figure 4 top-left and top-right, respectively. However, their weekly
profiles are similar but at different scales, where consumption is lower during weekends
than on weekdays.
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The daily profile correlates with the temperature and occupancy in the ‘AC-included’
category. Since people tend to be out during the daytime, consumption during that period
is lower.

As the temperature increases, consumption gradually increases, and, when people
return home in the evening, consumption peaks. With respect to the yearly profile, the
effect of temperature can be observed starting in April and peaking in June.

The temperature usually peaks in July and August in Dubai, but people (most of
whom are expats) also tend to go on vacation during this time, thus reducing the energy
demand. Therefore, consumption decreased slightly in those months.

Figure 4 also shows a similar dip in the ‘AC-excluded’ category. The overall results
reinforce the initial idea of studying these two categories separately since, as the results
show, they have distinct profiles and very different consumption levels. It is also important
to note that the negative values in the seasonal component plot do not necessarily signify
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negative consumption. Negative values indicate periods where the observed values are
lower than the overall trend or the seasonal average.

3.2. Cooling Categories

The authors named the cooling categories ‘AC-included’ and ‘AC-excluded’. The
‘AC-included’ demand usually correlates positively with the ambient temperature and
occupancy. In the case of ‘AC-excluded’, there is a tendency for more irregularity since the
load is affected mainly by occupancy.

Figure 5 presents day-ahead forecast comparison plots for both categories using
Prophet, RF, and LSTM. In the AC-included case, the RF and Prophet models followed the
general trend of the observed data, although they missed finer variations in demand.
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The LSTM model captured short-term fluctuations more closely than the other models
did, particularly during peak periods, suggesting that it may be better suited for capturing
short-term dependencies in these data. All the models show some lag or underprediction
during peaks, which could indicate a challenge in accurately predicting sudden demand
spikes in the AC-Included category.

For the AC-included category, the overall demand was lower, and the fluctuations
were less intense than those in the AC-included category. The RF model followed the trend
closely and had lower deviations than the Prophet model. The LSTM model exhibited
some degree of underprediction during demand peaks but performed slightly better than
Prophet in capturing the structure of the demand curve. Prophet is overestimated or
underestimated in certain sections, indicating that it may not be as effective as RF and
LSTM for this category.

Figure 6 shows a week-ahead forecast plot for both AC categories. The LSTM model
again demonstrated a close fit to the actual data, capturing demand fluctuations more
accurately than Prophet and the RF. The LSTM model appeared to adapt well to the
complex temporal dependencies in the AC-included category and smoother patterns in the
AC-excluded category, making it suitable for capturing short- and medium-term patterns
over the week. RF also performed relatively well, especially in week-ahead forecasts for
the AC-included category. It generally captured the trend and seasonal components but
underpredicted the peaks. Overall, Figures 5 and 6 highlighted the suitability of each
model for different forecasting tasks, with LSTM generally excelling in scenarios requiring
more complex temporal modeling, such as day-ahead and week-ahead load forecasting.
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Prophet is a time series approach, so the modeling of the daily seasonal compo-
nent is visible in its week-ahead forecasting plot. However, since RF and LSTM are
more data-centric black-box approaches, such seasonal components are not visible in their
forecasting plots.

3.2.1. ‘AC-Included’ Category

Table 4 compares the established and proposed performance metrics for the Prophet,
RF, and LSTM results, specifically for the “AC-included” category in every forecast horizon.
The established metrics, such as the RMSE and MAPE, indicate that Prophet performed
lower than RF and LSTM did. These metrics also suggest that the LSTM outperformed the
other two approaches mentioned.

The model was selected based on the least RMSE. Then, the proposed metrics were
extracted. The lowest RMSE achieved across the different models is highlighted in bold in
the following tables. Similarly, the least maximum deviation among several approaches,
which indicates the preciseness of the models, is also highlighted in the following tables.
The proposed metrics show over-/under-forecasts by the selected approach and maximum
and minimum deviation percentages from the actual values. The higher the percentage of
forecasts (i.e., under-/over-forecasts) near the actual value is, the more precise the estimates.

For the ‘AC-included’ category, the maximum deviation of the prophet algorithm is
approximately 44% for the day-ahead and 42% for the week-ahead forecast horizons. Addi-
tionally, most of the time, the Prophet algorithm is over-forecasting with an approximately
80% distribution in all three horizons. The distribution of RF is approximately 50% at all
three forecast horizons, whereas LSTM tends to over-forecast with approximately 75% for
day-ahead forecasts. On the other hand, the LSTM under-forecast for a week-ahead forecast
with approximately 55%. However, the maximum deviation for the RF is approximately
33% for day-ahead forecasts and approximately 44% for week-ahead forecasts. Moreover,
the maximum deviation for LSTM is approximately 10% for day-ahead forecasts and 20%
for week-ahead forecasts. Therefore, LSTM performed better in this scenario.

3.2.2. ‘AC-Excluded’ Category

The information in Table 5 is similar to that in Table 4 but in relation to the ‘AC-
excluded’ category. Prophet again showed the least performance in terms of the RMSE and
MAPE, and LSTM outperformed the Prophet and RF approaches.

For the ‘AC-excluded’ category, the maximum deviation of the prophet algorithm
is approximately 75% for day-ahead horizons and approximately 100% for week-ahead
horizons. Additionally, most of the time, the prophet algorithm is over-forecasting with an
approximately 60% distribution on its side in all three horizons. The distribution of the RF is
approximately 50% in the two forecast horizons, whereas the LSTM tends to under-forecast
with approximately 55% for day-ahead forecasts. LSTM significantly under-forecasts in
its week-ahead forecasts with values of approximately 98%. However, the percentage
distribution of LSTM near the maximum deviation is low, with values of approximately
0.17% and 0.67%. Additionally, the maximum deviation for the RF is approximately 54%
for day-ahead forecasts, and approximately 45% for week-ahead forecasts. Moreover, the
maximum deviation for the LSTM is approximately 26% for day-ahead forecasts, and 32%
for week-ahead forecasts.
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3.3. Built-Up Area

Since the RF and LSTM models outperformed the Prophet method in the main cooling
categories, only the performances of RF and LSTM models are discussed here for the
built-up area’s subcategory for day-ahead forecasting. Tables 6 and 7 show that LSTM
outperformed the RF based on the lowest RMSE and MAPE for each built-up area size
for the ‘AC-included’ and ‘AC-excluded’ categories. LSTM outperforms RF by having an
RMSE that is less than three times lower and achieving a MAPE of less than half in most
built-up area subcategories. Table 6 shows that the LSTM model outperformed the RF
model for each area-type apartment in the ‘AC-excluded’ categories. LSTM outperforms RF
since its RMSE and MAPE values are ten times lower in most built-up area subcategories.

3.4. Bedroom Number

Although the LSTM outperformed the other approaches in the previous evaluation
comparison (Sections 3.2.1, 3.2.2 and 3.3), the RF outperformed LSTM in the ‘bedroom-
number’ subcategory for both the ‘AC-included’ and ‘AC-excluded’ categories concerning
the RMSE and MAPE. Table 7 shows that the MAPE value for the LSTM model is almost
twice that of the RF model. The resulting error in forecasting this subcategory is relatively
large due to the high variance in the ‘bedrooms-number’ category data. Table 7 also shows
that the modeled LSTM is only slightly inclined towards under-forecasts for the’ AC-
included’ category. The percentage of maximum deviation for over-forecasts is relatively
lower, approximately 70% in most cases for the LSTM approach. In contrast, the modeled
RF seems inclined towards over-forecasts, with most instances, approximately 90%, having
values close to the actual values. RF obtained the best evaluation since the total percentage
of instances near the actual value for both under-forecasts and over-forecasts was higher
than that of the LSTM. Table 8 shows that the modeled LSTM is inclined towards over-
forecasts where the maximum deviation is close to or greater than 200%. At the same
time, the modeled RF (unlike the AC category) is also inclined towards over-forecasts, with
a maximum deviation slightly less than that of the LSTM. Since the total percentage of
instances near the actual value for both under-forecasts and over-forecasts in the case of
the RF is better, providing the RF with better evaluation. Thus, the RF performed better
than the LSTM did in both AC categories.

This proposed experimental work shows that on the occasions in which the lowest
RMSE is observed across various comparable approaches, the maximum deviation percent-
age from the actual value (i.e., Q3 of the differenced bias) from the proposed metrics is also
the lowest for both over-/under-forecasting. Thus, the experimental results show that the
best model selected based on RMSE tends to have the best fit for the predicted values as
the percentage of highly deviated values (also referred to as predicted outliers) is lower.

Like the ‘AC-included’ category, Table 9 shows that even for the ‘AC-excluded’ cate-
gory, the MAPE is almost twice for LSTM compared with that of the RF. The percentage of
instances for over-forecasts is approximately 95% for LSTM modeling apartments with two
and three bedrooms. In contrast, the percentage of over-forecast instances for RF modeling
is close to 60% for the same-mentioned ‘bedroom-number’, which is slightly greater.
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Table 8. AC-included Bedroom-number subcategory: Comparison of day-ahead forecast metrics between the LSTM and RF approaches.

Category AC-Included

Approach LSTM (Day-Ahead Forecasting) RF (Day-Ahead Forecasting)

Metrics/Bedroom-Type 0
Studio

1
Bedroom

2
Bedrooms

3
Bedrooms

0
Studio

1
Bedroom

2
Bedrooms

3
Bedrooms

Overall

RMSE 68.33 186.53 41.88 15.83 → 57.05 → 179.09 → 36.94 → 8.15

MAE 43.50 109.37 27.82 10.28 26.97 82.95 18.01 4.25

MAPE 23.14 16.71 22.78 31.13 13.02 12.46 12.94 14.83

% of instances having Over-Forecasts 43.41 42.10 72.44 19.69 73.44 71.96 74.54 80.31

% of instances having under-Forecasts 56.59 57.90 27.56 80.31 26.56 28.04 25.46 19.69

Over-
Forecasts

% of Over-Forecasts near Actual value 83.87 80.51 79.82 84.30 → 91.42 → 90.42 → 90.52 → 93.76

% of Over-Forecasts intermediate range near Actual 15.53 18.73 19.89 14.94 8.05 9.31 9.04 6.11

% of Over-Forecasts well-above Actual value 0.61 0.76 0.28 0.76 0.53 0.27 0.44 0.13

Max-Deviation % from Actual value 131.23 139.72 96.44 97.98 → 98.94 → 91.96 → 87.59 → 76.96

Min-Deviation % from Actual value 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00

Under-
Forecasts

% of Under-Forecasts near Actual value 90.51 93.40 88.87 91.58 88.14 88.93 84.93 79.01

% of Under-Forecasts intermediate range near Actual 9.32 6.50 10.59 8.37 11.65 10.79 14.84 20.70

% of Under-Forecasts well-below Actual value 0.16 0.10 0.54 0.06 0.21 0.29 0.22 0.29

Max-Deviation % from Actual value 72.75 69.52 → 45.95 73.44 → 65.61 → 66.22 51.92 → 46.43

Min-Deviation % from Actual value 0.01 0.00 0.01 0.01 0.00 0.00 0.00 0.00

Bold numbers represent best results.
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Table 9. AC-excluded Bedroom-number subcategory: comparison of day-ahead forecast metrics between the LSTM and RF approaches.

Category AC-Excluded

Approach LSTM (Day-Ahead Forecasting) RF (Day-Ahead Forecasting)

Metrics/Bedroom-Type 0
Studio

1
Bedroom

2
Bedrooms

3
Bedrooms

0
Studio

1
Bedroom

2
Bedrooms

3
Bedrooms

Overall

RMSE 6.38 11.45 7.86 2.37 → 4.57 → 10.86 → 5.29 → 1.61

MAE 4.60 7.65 6.07 2.03 3.02 6.89 3.46 1.12

MAPE 42.71 20.45 52.86 65.80 26.07 20.27 26.49 37.90

% of instances having Over-Forecasts 78.28 17.10 93.51 95.64 66.34 50.24 65.81 61.00

% of instances having Under-Forecasts 21.72 82.90 6.49 4.36 33.66 49.76 34.19 39.00

Over-
Forecasts

% of Over-Forecasts near Actual value 65.36 81.93 87.29 60.29 80.24 79.41 84.79 75.62

% of Over-Forecasts interm. range near Actual 34.22 17.14 12.59 39.47 19.38 20.06 14.85 23.88

% of Over-Forecasts well-above Actual value 0.42 0.94 0.11 0.24 0.38 0.52 0.36 0.51

Max-Deviation % from Actual value 205.08 → 78.47 265.17 318.93 → 140.24 158.34 → 188.43 → 308.73

Min-Deviation % from Actual value 0.01 0.01 0.06 0.18 0.01 0.00 0.01 0.00

Under-
Forecasts

% of Under-Forecasts near Actual value 90.46 88.91 75.49 75.07 90.23 89.33 93.42 93.18

% of Under-Forecasts interm. range near Actual 8.96 10.85 23.28 23.88 9.29 10.30 6.51 6.62

% of Under-Forecasts well-below Actual value 0.58 0.23 1.23 1.05 0.47 0.37 0.07 0.20

Max-Deviation % from Actual value → 49.18 → 65.00 → 48.90 → 49.89 69.17 67.52 75.87 82.41

Min-Deviation % from Actual value 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.01

Bold numbers represent best results.
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3.5. Significance of the Proposed EMPQ Metrics

Quantifying under- and over-forecasting errors in electricity load forecasting has
significant implications for forecasting accuracy, the applicability of different forecasting
models, and the potential for improving demand predictions in electricity systems. Given
that electricity demand is highly variable, influenced by numerous factors (e.g., temperature,
holidays, and economic activity), and subject to predictable and unpredictable events,
understanding and addressing the impacts of under- and over-forecasting is crucial for
effective grid management, resource planning, and operational efficiency. In time series
load forecasting, metrics such as EMPQ show several significant benefits by considering
details about under-forecasting and over-forecasting.

The proposed EMPQ provide valuable insights that were not fully captured by tradi-
tional metrics like MAPE and RMSE. In Table 4, while LSTM achieved the lowest RMSE
and MAPE for both day-ahead and week-ahead forecasts in the “AC-included” category,
the EMPQ metrics revealed high percentages of over- and under-forecasts, indicating devi-
ations from actual values that traditional metrics overlooked. Similarly, in Table 5, where
RF and LSTM had similar MAPE and RMSE values in the “AC-excluded” week-ahead
forecasting, EMPQ metrics identified LSTM as the better model due to its lower maximum
deviation percentage. Furthermore, Table 8 shows a case where the RMSE and MAPE
favored the RF in the “bedroom-number” subcategory under “AC-included” conditions,
yet the EMPQ metrics revealed that the LSTM model had a higher percentage of forecasts
close to the actual demand values, suggesting that it was better at capturing demand
fluctuations. These cases highlight the importance of the proposed EMPQ framework in
providing a more comprehensive and informative evaluation of model performance.

3.5.1. Balanced Performance Assessment

EMPQ metrics help to distinguish between under-forecasting and over-forecasting,
which enables the identification of systematic biases in the forecasting model. For example,
in Table 7 (AC-included category), the LSTM model exhibited favorable RMSE and MAPE
values. However, EMPQ metrics revealed a significant bias, with 73.26% over-forecasts
for day-ahead predictions, suggesting that while LSTM minimized overall error, it consis-
tently overestimated demand. This insight highlights potential systematic biases in LSTM
predictions, which would be overlooked by the RMSE and MAPE alone. Such detailed
metrics allow forecasters to adjust models and create a more balanced, reliable forecast by
specifically addressing these biases.

3.5.2. Model Improvement and Selection

EMPQ metrics also serve as a diagnostic tool for model improvement and selection,
clarifying model performance beyond traditional error measures. In Table 8 (AC-excluded
category, week-ahead forecast), both the RF and LSTM models had similar MAPE and
RMSE values, but the EMPQ metrics showed LSTM’s superior performance with a much
lower maximum deviation percentage (11.46% compared to RF’s 45.60%). This result
indicates that LSTM’s forecasts were closer to the actual values despite similar traditional
metrics, which helps identify the LSTM as the more accurate model under specific condi-
tions. Additionally, Table 8 (bedroom-number subcategory in AC-included) showed that
traditional metrics favored RF over LSTM, yet EMPQ metrics revealed the LSTM’s higher
percentage of forecasts near actual values, indicating better demand fluctuation captured
by LSTM. This further underscores the value of the EMPQ in nuanced model selection
and tuning.

3.5.3. Enhanced Decision Making and Risk Mitigation

With respect to proper resource allocation in businesses, particularly those in energy
or utilities, knowing whether forecasts tend to be over or under can significantly impact
resource planning. For example, in Table 5 (AC-excluded category, week-ahead forecast),
Random Forest showed high over-forecast percentages (up to 45.60%) compared with the
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LSTM. This tendency toward over-forecasting by RF can lead to inefficient planning and
operation due to over-provisioning and increased costs. On the other hand, LSTM demon-
strated a more balanced approach, making it suitable for situations where minimizing the
forecast deviation is crucial. Thus, understanding the direction of forecast errors helps in
risk management.

3.5.4. Economic Impact

Different forecasting errors have different cost implications. Under-forecasting might
lead to emergency purchases or ramp-up costs, whereas over-forecasting results in higher
operational costs. For example, Table 4 highlights that LSTM had a 10% maximum devi-
ation in day-ahead forecasts under the AC-included category, whereas Prophet showed
deviations as high as 44% in some cases. The lower deviation of the LSTM suggests it
could minimize the economic impact by reducing the potential penalties associated with
under-forecasting, which can lead to emergency ramp-up costs. Similarly, understanding
Prophet’s high deviation rate allows for preemptive measures to mitigate these costs. Thus,
quantifying these errors helps calculate potential economic impacts more accurately and
makes cost-effective decisions.

Additionally, in many regulated industries, there are penalties associated with forecast-
ing inaccuracies. Distinguishing between under- and over-forecasting can aid in minimizing
these penalties by addressing the specific causes of forecast deviations.

3.5.5. Operational Efficiency

The proposed EMPQ metrics facilitate continuous monitoring and improvement of
forecasting models by identifying patterns of under- and over-forecasting, which supports
real-time adjustments and enhances operational efficiency. For example, in Table 4, the
LSTM model for day-ahead forecasts in the AC-included category showed lower overall
RMSE but exhibited a tendency toward over-forecasting (73.26%) compared to other models.
This information allows organizations to implement corrective measures if they observe a
consistent trend toward over-forecasting, minimizing unnecessary energy allocation and
resource costs. Conversely, Table 5 (week-ahead forecast for AC-excluded) shows Random
Forest’s higher maximum deviation (45.60%) in over-forecasting, highlighting the need for
adjustment if under-utilized resources become a recurring issue.

These EMPQ metrics can also support a feedback loop for continuous learning and
improvement. As organizations track and analyze these error patterns, they can iteratively
refine models to capture load dynamics better and adjust to changing conditions. This
approach ensures that forecasting models evolve in response to observed errors, leading to
improved demand prediction over time.

Quantifying under- and over-forecasting errors in electricity load forecasting has
significant implications for forecasting accuracy, model applicability, and efforts to optimize
demand predictions. By understanding the asymmetry of forecasting errors, organizations
can do the following:

• Improve model accuracy through tailored metrics that better capture the operational
impacts of forecast deviations.

• Select and adapt models that accommodate system constraints and respond dynami-
cally to shifts in electricity demand.

• Implement adaptive, real-time forecasting techniques and integrate external factors to
strengthen predictive capabilities, ultimately enhancing the resilience, efficiency, and
cost-effectiveness of the electricity grid.

4. Conclusions

This study presents a novel approach to evaluating forecasting models for residential
load prediction by introducing the EMPQ, new metrics that provide a deeper understand-
ing of model performance beyond the established ones. The EMPQ framework reveals
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crucial insights into over- and under-forecasting tendencies, which are often overlooked in
conventional assessments such as RMSE or MAPE.

To demonstrate the validity of the proposed evaluation metrics, the authors applied
them to evaluate the performance of three forecasting models for short-term electricity de-
mand forecasting among residential customers of the Dubai Electricity and Water Authority.
The residential customers were grouped according to whether their cooling demand was
captured by electricity smart meters. The analysis considered other variables, including
temperature, dwelling size, and number of bedrooms.

The assessment of the new performance metrics revealed that they were crucial in
determining that the LSTM model outperforms both the Prophet and Random Forest
models in capturing demand fluctuations. LSTM exhibited lower maximum deviation
percentages, and its forecasts were more aligned with actual demand, establishing it as
the most accurate model in this study. This finding highlights the importance of adopting
a more comprehensive evaluation strategy, such as the EMPQ algorithm, for comparing
forecasting models, especially in contexts such as smart grid operations where accuracy
and bias control are paramount.

While the proposed new metrics offer valuable performance insights, they also in-
troduce increased complexity in model comparison and may challenge interpretability in
certain contexts. Future research could focus on extending the EMPQ framework to longer-
term forecasts and diverse geographical conditions, as well as refining these metrics to
enhance usability and interpretability. Additionally, future research could explore various
forecasting models developed for various forecast horizons and temporal resolutions and
evaluate them using the proposed metrics. By applying these aspects, EMPQ could become
a more universally applicable tool for evaluating load forecasts in smart grids, ultimately
guiding more informed decision-making in energy management and for professionals
responsible for demand-related initiatives.
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