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1. Extended Abstract
There is an increasingly pressing need, by several applications in diverse domains, for devel-

oping techniques able to manage and analyze very large collections of sequences, or data
series. Examples of such applications come from various monitoring applications, including
in power utility companies, where we need to apply machine learning techniques for knowl-
edge extraction. It is not unusual for these applications to involve numbers of data series in
the order of hundreds of millions to billions, which are often times not analyzed in their full
detail due to their sheer size. However, no existing data management solution can offer native
support for sequences and the corresponding operators necessary for complex analytics.

In this talk, we describe our efforts in designing techniques for indexing and analyzing truly
massive collections of data series that enable scientists to run complex analytics on their data.
These techniques are orders of magnitude faster than the state of the art. We also present our
recent work on (essentially, parameter-free) subsequence anomaly detection and explanation,
which is both more accurate and faster than competing approaches.

In the following, we summarize the main points along these two areas of research.
[Similarity Search] Similarity search in high-dimensional data spaces was a relevant and chal-
lenging data management problem in the early 1970s Bentley (1975), when the first solutions
to this problem were proposed. Today, fifty years later, we can safely say that the exact same
problem is more relevant (from Time Series Management Systems to Vector Databases) and
challenging than ever. This is true, not because the research community has been idle; on the
contrary, the literature on this topic is very large and diverse Bentley (1975); Guttman (1984);
Lin et al. (1994); Berchtold et al. (1996); Ciaccia et al. (1997); Berchtold et al. (1998); Palpanas
(2020); Wang et al. (2023), demonstrating both the interest in this problem, as well as the wide
range of ideas that have been applied to it and led to impressive advances. This is true, rather
because very large amounts of high-dimensional data are now omnipresent (ranging from tra-
ditional multidimensional data to time series and deep embeddings) Palpanas and Beckmann
(2019); Echihabi et al. (2020), and the performance requirements (i.e., response-time and accu-
racy) of a variety of applications that need to process and analyze these data have become very
stringent and demanding. In these past fifty years, high-dimensional similarity search has been
studied in its many flavors. Similarity search algorithms for exact and approximate, one-off
and progressive query answering Echihabi et al. (2018, 2019, 2023). In this talk, we review the
state of the art solutions for data series similarity search Peng et al. (2021b); Echihabi et al.
(2022); Peng et al. (2020, 2021a); Chatzakis et al. (2023); Fatourou et al. (2023); Schäfer et al.
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(2025); Azizi et al. (2023), we observe that the data series solutions are the methods of choice
for several of the similarity search problem flavors even for high-dimensional vector search,
and we point to interesting open research problems, including the role of machine learning in
this space Wang et al. (2025); Chatzakis et al. (2026).
[Anomaly Detection] Subsequence anomaly detection in long data series is an important prob-
lem with applications in a wide range of domains Boniol et al. (2024); Darban et al. (2025).
However, several of the approaches that have been proposed in the literature have limitations:
they require prior domain knowledge that is used to design the anomaly discovery algorithms,
they need training with labeled examples that are hard/expensive to produce, or have scalabil-
ity problems. In this talk, we present recent unsupervised methods suitable for domain agnostic
subsequence anomaly detection. We discuss two possible way to represent the normal behav-
ior of a long data series that lead to fast and accurate identification of abnormal subsequences.
These normal representations are either based on subsequences (using a data structure called
the normal model) Boniol et al. (2021a), or on graphs, by taking advantage of graph properties
to encode the normal transitions between neighboring subsequences of a long series Boniol
and Palpanas (2020). We describe their properties, and explain how they can be extended to
handle streaming time series Boniol et al. (2021b), or adapted to address other problems, such
as interpretable time series clustering Boniol et al. (2025).
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