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Abstract—Entity Resolution (ER) is the task of finding entity
profiles that correspond to the same real-world entity. Progressive
ER aims to efficiently resolve large datasets when limited time
and/or computational resources are available. In practice, its goal
is to provide the best possible partial solution by approximating
the optimal comparison order of the entity profiles. So far,
Progressive ER has only been examined in the context of
structured (relational) data sources, as the existing methods rely
on schema knowledge to save unnecessary comparisons: they
restrict their search space to similar entities with the help of
schema-based blocking keys (i.e., signatures that represent the
entity profiles). As a result, these solutions are not applicable
in Big Data integration applications, which involve large and
heterogeneous datasets, such as relational and RDF databases,
JSON files, Web corpus etc.

To cover this gap, we propose a family of schema-agnostic
Progressive ER methods, which do not require schema infor-
mation, thus applying to heterogeneous data sources of any
schema variety. First, we introduce a naive schema-agnostic
method, showing that the straightforward solution exhibits a poor
performance that does not scale well to large volumes of data.
Then, we propose three different advanced methods. Through an
extensive experimental evaluation over 7 real-world, established
datasets, we show that all the advanced methods outperform to a
significant extent both the naive and the state-of-the-art schema-
based ones. We also investigate the relative performance of the
advanced methods, providing guidelines on the method selection.

I. INTRODUCTION

When dealing with heterogeneous data, real-world entities
may have different representations; for instance, they can be
records in a relational database, sets of RDF triples, JSON
objects, text snippets in a web corpus, etc. We call entity profile
(or simply profile) each representation of a real-world entity in
data sources. The task of identifying different profiles that refer
to the same real-world entity is called Entity Resolution (ER)
and constitutes a critical process that has many applications in
areas such as Data Integration, Social Networks, and Linked
Data [1], [2], [3].

ER can be distinguished into two broad categories [4], [5]:
(i) Off-line or Batch ER, which aims to provide a complete
solution, after all processing is terminated, and (ii) On-line
or Progressive ER, which aims to provide the best possible
partial solution, when the response time, or the available
computational resources are limited. The latter is driven by
modern pay-as-you-go applications that do not require the
complete solution to produce useful results.

Progressive ER is becoming increasingly important [4],
[5], as the number of data sources (e.g., on the Web), and the
amount of available data (e.g., shopping catalogs) multiply,
while at the same time the relevant applications have strict

time requirements. (e.g., updating catalogs every few hours
for large online retailers'). In this paper, we propose novel,
schema-agnostic Progressive ER methods that significantly
outperform the current state-of-the-art approach, even when
this approach makes use of schema information.

Progressive Methods. A core characteristic of the existing
methods for Progressive ER is that they rely on blocking
in order to scale to large datasets [4], [5]. Blocking is a
typical pre-processing step for Batch ER that aims to index
together likely-to-match profiles into buckets (called blocks),
according to an indexing criterion (called blocking key). Thus,
comparisons are limited to pairs of profiles that co-occur in
at least one block, avoiding the quadratic complexity of the
naive ER solution, which compares every profile with all
others. In this way, progressive methods generate on-line the
most promising pairs of profiles to be compared by a match
function, i.e., a (usually) binary function that takes as input
two profiles and decides if they are matching, or not.

In fact, progressive methods use blocking to generate on-
line pairs of profiles in decreasing order of matching likeli-
hood. So far, however, they have been exclusively combined
with schema-based blocking [4], [5], which is specifically
crafted for structured (relational) data. That is, they rely on
schema knowledge in order to build blocks of low noise
and high discriminativeness, assuming implicitly that all input
records abide by a schema with attributes of known quality.
Limitations of Existing Approaches. The existing progres-
sive methods suffer from the following major drawbacks:

(1) In practice, their fundamental assumption that schema is
a-priori known holds for a small portion of the data we would
like to handle. For instance, Web data typically comprises
large, semi-structured, heterogeneous entities that manifest two
main challenges of Big Data [1], [2]: (i) Volume, as they
involve millions of entities that are described by billions of
statements, and (ii) Variety, since their descriptions entail
thousands of different attribute names. More generally, in a Big
Data integration scenario, schema-alignment is too expensive
and time consuming when multiple heterogeneous data sources
are involved [2], thus yielding a prohibitively high cost for
pay-as-you-go applications.

(2) Even when the schema assumption holds, there is plenty of
room for improving the performance of existing schema-based
progressive methods. We demonstrate this in Figure 1 over
four established, real-world and diverse datasets: the state-

Thttps://www.nchannel.com/blog/challenges-ecommerce-catalog-
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Fig. 1. The performance of Progressive Sorted Neighborhood on 4 real-world

structured datasets.

of-the-art schema-based method, Progressive Sorted Neigh-
borhood (PSN) [4], [5], finds only ~60% and ~85% of
all matches for Cora and US Census, respectively, after
executing 10 times the number of comparisons required by
the optimal algorithm to identify 100% of the matches (i.e., 1
comparison per pair of duplicates). For the rest of the datasets,
the performance is also far from optimal: for Restaurant,
PSN identifies almost all matches only after performing two
orders of magnitude more comparisons than the optimal algo-
rithm, while for Cddb, it detects less than 80% of the existing
matches with the same (excessive) number of comparisons.

Our Contributions. We propose novel and unsupervised
methods for Progressive ER that inherently address the
Variety of Big Data: they operate in a schema-agnostic fashion,
which overrides the need to search for and identify highly
discriminative attributes, rendering schema knowledge unnec-
essary. Our methods are also more effective in addressing the
Volume of Big Data, since they identify matches earlier than
the top-performing schema-based method. They actually go
beyond the state-of-the-art in Progressive ER by introducing
and exploiting redundancy, i.e., by associating every profile
with multiple blocking keys. Instead, existing schema-based
progressive methods typically rely on highly discriminative
attributes, which yield redundancy-free keys such that two
profiles cannot appear together in more than one block.

More specifically, our redundancy-based methods rely on
two principles. The first one is called similarity principle, as
it assumes that any two matching profiles have blocking keys
that are closer in alphabetical order than those of non-matching
ones. The second one is called equality principle, since it
assumes that the matching likelihood of any two profiles
is proportional to the number of blocks they share. Both
principles have been successfully applied in Batch ER [6],
but their application to the progressive context is non-trivial,
as we show empirically. For this reason, we introduce more
advanced methods for every principle.

Through an exhaustive experimental evaluation over 7 well-
known datasets, we verify that similarity-based methods excel
in structured datasets, outperforming even the state-of-the-art
schema-based progressive method. These datasets typically
involve a large portion of textual information, which provides
reliable matching evidence when sorted alphabetically. In
contrast, our equality-based method is the top-performer over
semi-structured datasets (e.g., RDF data); it can exploit the
semantics of the URIs that abound in this type of datasets,
disregarding the useless information of URI prefixes, which

introduce noise when sorted alphabetically.

On the whole, we make the following contributions:

o We introduce a schema-agnostic approach to Progres-
sive ER, which inherently addresses the Variety issue of
Big Data.

o We show that adapting existing schema-based methods
to schema-agnostic Progressive ER is a non-trivial task:
we introduce a naive, schema-agnostic method, showing
experimentally that it fails to address the Volume issue
of Big Data.

o We present 3 novel advanced, schema-agnostic progres-
sive methods, which successfully address both the Vol-
ume and the Variety challenges of Big Data. They are
classified in two categories: those based on a sorted list
of profiles, leveraging the similarity principle, and those
based on a graph of profiles, leveraging the equality
principle.

o We perform a series of experiments over 7 established,
real-world datasets, demonstrating experimentally the su-
periority of our methods in comparison to the existing
schema-based state-of-the-art method, both in terms of
effectiveness and time efficiency. We also investigate the
relative performance of our methods, highlighting the top-
performing ones, and providing guidelines for method
selection.

The rest of the paper is structured as follows: Section II
discusses the main works in the literature, while Section III
describes the background of our methods. We present a naive
schema-agnostic solution to Progressive ER in Section IV,
and three advanced ones in Section V. We elaborate on our
extensive experimental evaluation in Section VI and conclude
the paper in Section VII, along with directions for future work.

II. RELATED WORK

Schema-based Progressive Methods. The state-of-the-art
progressive method is Progressive Sorted Neighborhood
(PSN) [4], [5]. Based on Batch Sorted Neighborhood [7], it
associates every profile with a schema-based blocking key.
Then, it produces a sorted list of profiles by ordering all
blocking keys alphabetically. Comparisons are progressively
defined through a sliding window, w, whose size is iteratively
incremented: initially, all profiles in consecutive positions
(w=1) are compared, starting from the top of the list; then,
all profiles at distance w=2 are compared and so on and so
forth, until the processing is terminated.

However, the performance of PSN depends heavily on the
attribute(s) providing the schema-based blocking keys that
form the sorted list(s) of profiles. In case of low recall,
the entire process is repeated, using multiple blocking keys
per profile. As a result, PSN requires domain experts, or
supervised learning on top of labeled data in order to achieve
high performance. In contrast, our methods are completely
unsupervised and schema-agnostic.

Two more schema-based methods were proposed in [5]:
Hierarchy of Record Partitions (HRP) and Ordered List of
Records (OLR). The main idea of HRP is to build a hierarchy



of blocks, such that the matching likelihood of two profiles
is proportional to the level in which they appear together
for the first time: the blocks at the bottom of the hierarchy
contain the profiles with the highest matching likelihood, and
vice versa for the top hierarchy levels. Thus, the hierarchy
of blocks can be progressively resolved, level by level, from
the leaves to the root. This approach has been improved in
the literature in two ways: (i) OLR exploits this hierarchy in
order to produce a list of records sorted by their likelihood
to produce matches, involving a lower memory consumption
than HRP at the cost of a slightly worse performance. (ii) A
schema-based variation of HRP is adapted to the MapReduce
parallelization framework for even higher efficiency in [8].

However, both HRP and OLR are difficult to apply in
practice. The hierarchies that lie at their core can be generated
only when the distance of two records can be naturally
estimated through a certain attribute (e.g., product price) [5].
The number of the hierarchy layers, L, has to be determined
a-priori, along with L similarity thresholds and the similarity
measure that compares attribute values. Moreover, they both
exhibit a performance inferior to PSN [5]. For these reasons,
we do not consider these two methods any further.

Finally, Altowim et al. [9] propose a progressive joint
solution in the context of multiple, relational datasets of
different entity types. In joint ER [10], the result on one
dataset can be exploited to resolve the others. As an example,
let us consider a joint ER on a movie dataset and on an
actor dataset: discovering matches among actors can help
to determine whether two movies associated to those actors
are matching too (and vice versa). Note that this approach is
applicable only to relational data.

Crowdsourced (or Oracle) Methods. In Crowdsourced ER
[11], humans are asked to label candidate profile pairs as either
matching or non-matching, i.e., they are asked to behave like
a binary match function. Such a function is typically assumed
to be perfect (i.e., being equivalent to an oracle [12]) and
transitive [13]. For example, given three profiles (p1, p2, p3),
if the crowd finds that p; matches with ps, and po with p3, then
the comparison between p; and ps is not crowdsourced, but is
automatically deduced as a match. Progressive crowdsourced
methods [13], [12], [14] exploit this transitivity to maximize
the progressive recall of ER. In this work, though, we propose
general methods for Progressive ER that are independent of
the employed match function, i.e., we do not assume the match
function to be transitive, nor to be perfect — a setting that is
common for (non-crowdsourced) match functions [15].

Yet, our methods could be combined with the current state-
of-the-art crowdsourced one, which is presented in [14]. Be-
fore submitting the first record pair to the crowd, this approach
builds a list of record pairs sorted in decreasing matching
likelihood. To assess this matching likelihood, it computes
the string similarity (e.g., Jaro-Winkler or Jaccard) of all
possible record pairs?. This is a prohibitively expensive pre-
processing step when a low latency response is required, even

2The same pre-processing step is required by [11], [12] and [13].

if a blocking method is used to avoid the all-pairs comparisons.
As an alternative, our methods could be employed to generate
the sorted list of record pairs efficiently (instead of using them
directly with match functions).

III. PRELIMINARIES

At the core of ER lies the notion of entity profile (or simply
profile), which constitutes a uniquely identified set of attribute
name-value pairs. An individual profile is denoted by p;, with
1 standing for its id in a profile collection P. Two profiles
pi,p; € P are called duplicates or matches (p; = pj) if they
represent the same real-world entity.

Depending on the input data, ER takes two forms [1], [2]:
(1) Clean-clean ER receives as input two duplicate-free, but
overlapping profile collections, P; and P», and returns as
output all pairs of duplicate profiles they contain, P, N Ps.
(2) Dirty ER takes as input a single profile collection that
contains duplicates in itself and produces a set of equivalence
clusters, with each one corresponding to a distinct profile.

To scale ER to large data collections, blocking is employed
to cluster similar profiles into blocks so that it suffices to
consider comparisons among the profiles of every block [16].
Each profile is indexed into blocks according to one or more
criteria called blocking keys. If a blocking key depends on
the schema(ta) of the data source(s), we call it schema-based,
otherwise schema-agnostic.

An individual block is symbolized by b;, with ¢ cor-
responding to its id. The size of b; (i.e., the number of
profiles it contains) is denoted by |b;| and its cardinality
(i.e., the number of comparisons it involves) by ||b;]|. A set
of blocks B is called block collection, with |B| standing
for its size (i.e., total number of blocks) and | B|| for its
aggregate cardinality (i.e., the total number of comparisons
entailed by B): || B||=)_,, c g [|bi]|- The set of blocks associated
with a specific profile p; is denoted by B;, and the average
number of profiles per block by |B|=ZbeB |b|/|B|. Finally,
the comparison between profiles p; and p; is symbolized by
c;j, while |p| stands for the average number of blocking keys
per profile.

A. Progressive ER

In Batch ER, the profile comparisons entailed in a block
collection B are executed without a specific order. Let T,
be the overall time required for performing Batch ER on B.
Based on T,, Progressive ER is formally defined by two
requirements [4], [5]:

o Improved Early Quality. If both Progressive and Batch

ER are applied to B and terminated at the same time
t < Ty, then the former should detect significantly more
matching profiles than the latter.

e Same Eventual Quality. The result produced at time 7,
by Progressive and Batch ER should be identical. Even
though progressive methods rarely run for so a long
time as 7,, this requirement ensures their correctness,
verifying that they yield the exact same outcome as batch
methods.



In the following, we break the functionality of progressive
methods into two phases:

i) The initialization phase takes as input the profiles to
be resolved, builds the data structures needed for their
processing, and processes them until producing the first
(i.e., overall best) comparison.

ii) The emission phase returns the next best comparison
from a list of candidate comparisons, ranked in non-
increasing order of matching likelihood. In other words,
it identifies the remaining pair of profiles that has the
highest matching likelihood.

By definition, the initialization phase is activated just once,
while the emission phase is repeated whenever a new compar-
ison is requested for processing.

B. Core Data Structures

We now describe two fundamental data structures for our
progressive methods: the Blocking Graph and the Neighbor
List. Every method discussed in the following has at its core
either the former or the latter. Note that both data structures
are known from the literature, sometimes with different names
(e.g., the Neighbor List is called sorted list of records in [5]).

Blocking Graph — This data structure lies at the core
of Batch Meta-blocking [1], [2], [17], [18], [19], which
aims at restructuring an existing block collection B into a
new one B’ that has similar recall, but significantly higher
precision than B. Meta-blocking relies on the assumption
that the matching likelihood of any two profiles is analogous
to their degree of co-occurrence in a block collection. This
means that B has to be generated by a blocking method that
yields redundancy-positive blocks, where the similarity of
two profiles is proportional to the number of blocks they share.

Based on redundancy, which is common for schema-
agnostic blocking methods [18], Meta-blocking represents the
block collection as a blocking graph. This is an undirected
weighted graph Gp(Vp, E), where Vg is the set of nodes,
and E'p is the set of weighted edges. Every node n; € Vg
represents a profile p; € P, while every edge e; ; represents a
comparison ¢; ; € B C P x P. A schema-agnostic weighting
function is employed to weight the edges, leveraging the co-
occurrence patterns of profiles in B: each edge is assigned a
weight that is derived exclusively from the (characteristics of
the) blocks its adjacent profiles have in common. For example,
the ARCS function sums the inverse cardinality of common
blocks, assigning higher scores to pairs of profiles sharing
smaller (i.e., more distinctive) blocks: ARCS(p;,pj, B) =
> bpening; 1/1bkll. Similarly, all other weighting functions
[18], [19] assign high weights to edges connecting profiles
with strong co-occurrence patterns and low weights to casual
co-occurrences.

Example 1. Figure 2a shows a set of entity profiles, P. Figure
2b illustrates the block collection that is generated by applying
Token Blocking [20] to P, i.e., by creating a separate block
for every token that appears in any attribute value of the input
profiles (these tokens are called attribute value tokens in the

following). Finally, Figure 2c depicts the Blocking Graph that
is derived from the block collection of Figure 2b, when using
the ARCS function for edge weighting.

Note that materializing and sorting all edges of a blocking
graph is impractical for large datasets, due to the resulting
huge graph size (i.e., the number of edges it contains) [18].
For this reason, all existing Meta-blocking methods [18],
[19] discard low-weighted edges through a pruning algorithm,
while building the Blocking Graph. As a result, they retain
only the most promising comparisons, which are collected and
employed for Batch ER. Based on such a Blocking Graph,
we present in Section V-B a novel algorithm that generates
comparisons in a progressive way.

Neighbor List — The Neighbor List is the core data structure
of Sorted Neighborhood [7] and its derived methods (i.e.,
PSN [4], [5]). It is a list of profiles that is generated by
sorting all profiles alphabetically, according to the blocking
keys that represent them. This data structure is exploited to
generate comparisons under the assumption that the matching
likelihood of any two profiles is analogous to their proximity
after sorting.

The Neighbor List can be built from schema-based or from
schema-agnostic blocking keys and is typically employed to
generate blocks: a window slides over the Neighbor List, and
blocks correspond to groups of profiles that fall into the same
window. The size of the window is iteratively incremented.
The resulting blocks are called redundancy-neutral blocks,
because the similarity of two profiles is not related to the
number of blocks they share; the corresponding blocking
keys might be close when sorted alphabetically, but rather
dissimilar.

Example 2. 7o understand the notion of redundancy-neutral
blocks, consider the sorted schema-agnostic blocking keys (i.e.,
the attribute value tokens) of the profiles in Figure 2a, which
are depicted in Figure 2d. The keys ‘carl’ and ‘ellen’
are placed in consecutive positions, but the corresponding pro-
files have nothing in common. Figure 2e shows the Neighbor
List that corresponds to this sorted list of schema-agnostic
blocking keys.

Note that in the schema-agnostic Neighbor List, every
profile typically has multiple placements (e.g., once for
each attribute value token). Hence, multiple distances can be
measured for any pair of matching profiles. In Section V-A,
we present two approaches that leverage this phenomenon to
improve the early quality of Progressive ER.

IV. NAIVE METHOD

Schema-based progressive methods (see Section II) are hard
to apply in a domain like Web data, where Variety renders
the selection of schema-based blocking keys into a non-
trivial task. Yet, we can convert the state-of-the-art schema-
based progressive method (PSN) into a schema-agnostic one
with minor modifications, as explained below. However, our
experimental analysis (Section VI) shows that this method
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Fig. 2. (a) A set of profiles P that is extracted from a data lake with a variety of data formats: structured/relational data (p1, p4), semi-structured/RDF data
(p2, p3) and unstructured/free-text data (ps, pg). Note that p1=p2=p3 and p4=p5. (b) The block collection B derived from P by applying Token Blocking
to its profiles. (c) The Blocking Graph derived from B, with every edge representing a profile comparison that is weighted by the ARCS function. (d) The
sorted list of attribute value tokens that appear in the profiles of P. (e) The corresponding schema-agnostic Neighbor List.
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has inherent limitations that lead to poor performance, thus
calling for the development of more advanced schema-agnostic
progressive methods.

1) Schema-Agnostic PSN (SA-PSN): The main idea of this
approach is to combine the sliding window with incremental
size of PSN [5] with the Neighbor List of the schema-
agnostic Sorted Neighborhood [6]. The resulting method
is called Schema-Agnostic Progressive Sorted Neighborhood
(SA-PSN).

Notice that consecutive places may involve the same profile
(i.e., a profile which contains two alphabetically consecutive
tokens), or two profiles from the same source. For this reason,
SA-PSN allows comparisons only if they involve differ-
ent profiles (Dirty ER), or profiles stemming from different
sources (Clean-clean ER).

Overall, SA-PSN involves a parameter-free functionality
that requires no schema-based blocking key definition and
has low space and time complexities. Its space complexity is

i.e., O(|p|-|P|), because it merely keeps in memory the Neigh-
bor List. Its time complexity is dominated by the sorting of
blocking keys in alphabetical order, O(|p|-|P|-log(|p|-|P])),
thus ensuring high scalability.

On the flip side, SA-PSN may perform repeated com-
parisons: the same pair of profiles might co-occur multiple
times in the various windows. Moreover, the proximity of
two profiles in the list may be partially random; if more than
two profiles share the same blocking key, they are inserted
with a relatively random order in the Neighbor List. We call
this phenomenon coincidental proximity. Note that PSN also
suffers from coincidental proximity, which is a critical point
to consider when devising the schema-based blocking keys.

Example 3. Figure 3 applies PSN and SA-PSN to the
profiles of Figure 2a. For PSN, we assume that the schema of
p1 and py describes all other profiles, even pd and p6, which
represent unstructured data and would require an information
extraction preprocessing step. This assumption allows for
defining a schema-based blocking key that concatenates the
surname and the first two letters of the name. In this context,
PSN in Figure 3a starts by emitting all comparisons produced
by the initial window size, w = 1; then, it continues with those

PSN w=1.5 we1 SA-PSN
[ p1, p2,Jp4, p6, p5, p3 [ p1, p2Jp4, p6, p5, p3, p4, p5, p2, p1, ps,...
w=1 2| i3 pa s p6, p2, p3, p1, p5, p4, p1, P2, p3, p4, p5, p6,p6
1st  2nd

w=2 = L

sth
wes B

13rd
P e |

15th

(@) (b)
Fig. 3. Progressive emission of comparisons for (a) PSN, and (b)

SA-PSN; dashed boxes indicate non-matching comparisons.

comparisons entailed by window w = 2 etc. The final pair
of matches is emitted during the 15" comparison, i.e., after
raising the window size to w = 5. In Figure 3b, SA-PSN
applies the same procedure to the schema-agnostic Neighbor
List, finding all matching profiles within the initial window
frame w = 1, after the 14*" comparison. Figure 3b also shows
examples of: (i) repeated comparisons, e.g., c13 is emitted as
the 1% and the 9" comparison within the same window frame,
w = 1; and (ii) coincidental proximity, since all 6 profiles are
associated with the token white and are placed in random
order at the end of the Neighbor List.

V. ADVANCED METHODS

We now introduce more elaborate methods for schema-
agnostic Progressive ER, using a broad spectrum of tech-
niques. We distinguish them into two categories: the similarity-
based ones, which employ a weighted Neighbor List, and
the equality-based one, which employs a Blocking Graph.
They are presented in Sections V-A and V-B, respectively. The
former achieve the highest performance over structured (rela-
tional) data, while the latter excels over the semi-structured or
unstructured Web data (Section VI).

Note that all our methods employ a data structure called
Comparison List, which essentially constitutes a list of com-
parisons sorted in non-increasing order of matching likelihood.
Its purpose is to store the best comparisons that were detected



during the initialization phase so that they are efficiently
emitted during the emission phase. Whenever the Comparison
List gets empty, it is refilled with the next batch of the best
remaining comparisons, during the next emission phase.

A. Similarity-based Methods

In the previous section, we explained that SA-PSN suffers
from two drawbacks: it contains numerous repeated com-
parisons and it defines a processing order of comparisons
that is partially random, due to coincidental proximity. To
address both disadvantages, we propose the use of a weighted
Neighbor List, which employs a weighting scheme in order
to associate every comparison with a numerical estimation
of the likelihood that it involves a pair of matching profiles.
This weighting scheme leverages the Neighbor List, with
a functionality that is both schema- and domain-agnostic.
Consequently, our approach addresses inherently the Variety
of Web data.

We note that Meta-blocking [18] cannot be used in this
case: it does not apply to the Neighbor List of SA-PSN,
since it requires redundancy-positive blocks as input, whereas
SA-PSN produces redundancy-neutral blocks. Therefore, SA-
PSN calls for a novel weight-based functionality.

To this end, we propose the Relative Co-occurrence Fre-
quency (RCF) weighting scheme. RCF counts how many
times a pair of profiles lies at a distance of w positions in the
Neighbor List and then normalizes it by the number of posi-
tions corresponding to each profile. To efficiently implement
RCF and weighted Neighbor List, we go beyond Neighbor
List by introducing a new data structure called Position Index.
In essence, this is an inverted index that associates every
profile (id) with its positions in the Neighbor List. Thus, it
is generic enough to accommodate any weighting scheme that
similarly to RCF relies on the co-occurrence frequency of
profile pairs.

Below, we present two algorithms that exploit the RCF
weighting scheme. Both of them are compatible with any
other schema-agnostic scheme that infers the similarity of
profiles exclusively from their co-occurrences in the incremen-
tal sliding window. The core idea of these algorithms is to
trade a higher computational cost of the initialization phase,
and probably the emission phase, for a significantly better
comparison order.

1) Local Schema-Agnostic PSN (LS-PSN): This approach
applies the selected weighting scheme only to the comparisons
of a specific window size, thus defining a local execution order.
At its core lie two data structures:

i) NL, which is an array that encapsulates the Neighbor
List such that N L[] denotes the profile id that is placed
in the i*" position of the Neighbor List. An exemplary
NL array is shown in Step 1.i of Figure 4.

i) PI, which stands for Position Index, is an inverted
index that points from profile ids to positions in N L.
It is implemented with an array that uses profile ids as
indexes, such that PI[i] returns the list of the positions
associated with profile p; in N L. This array accelerates

Algorithm 1: Initialization phase for LS-PSN.

Input: (i) Profile collection P, (ii) Weighting scheme, wScheme
Output: The overall best comparison

1 windowSize = 1;

2 ComparisonList < (;

3 N L[] < buildNeighborList(P);

4 PI[] < buildPositionIndex(NN L[]);

5 foreach p; € P do

6 distinct Neighbors < 0; // a set containing distinct neighbors
frequency[] < 0;

7 foreach position € PI[i] do

8 pj + N L[position+windowSizel];

9 if isValidNeighbor(p;) then

10 frequency[jl++;

1 distinct N eighbors.add(j);

12 pr < N L[position-windowSize];
13 if isValidNeighbor(py,) then

14 frequencylkl++;

15 distinctNeighbors.add(k);

16 foreach j € distinct Neighbors do
17 weight; j < wScheme(frequencyljl, j, 1);
18 Comparison List.add(getComparison(i, j, weight; ;);

19 sortInDescreasingWeight(C'omparison List);
20 return ComparisonList.removeFirst();

Algorithm 2: Emission phase for LS-PSN.

Output: The next best comparison
1 if ComparisonList.isEmpty() then
2 L windowSize++;

/* repeat lines 5 — 20 in Algorithm 1 */
3 return ComparisonList.removeFirst();

the estimation of comparison weights, since it minimizes
the computational cost of retrieving the neighbors of any
profile in the current window, as described below.3

Based on these data structures, the initialization phase of
LS-PSN is outlined in Algorithm 1. Initially, it sets the
window size to 1 (Line 1), considering only consecutive
profiles. Then, it creates its data structures (Lines 2-4) and for
every profile p; (Line 5), it iterates over all its positions in the
Position Index (Line 8). In every position, LS-PSN checks
the neighbors in both directions, i.e., the profiles located
windowSize places before and after p; (Lines 13 and 9,
respectively) - provided that the corresponding positions are
within the limits of the Neighbor List. For every neighbor
pj, LS-PSN checks if j<i (Lines 10) and k<: (Line 14) to
avoid repeated comparisons. For every valid neighbor, LS-
PSN increases its frequency (Lines 11 and 15) and adds it
into the set of neighbors (Lines 12 and 16). Then, the overall
weight for every comparison is computed according to the
selected weighting scheme* (Line 18). Finally, all comparisons
are aggregated and sorted from the highest weight to the lowest
(Line 20) and the top one is returned (Line 21).

Note that Algorithm 1 pertains to Dirty ER. Yet, it can be
adapted to Clean-clean ER with two minor modifications: (i)

3Instead of a Position Index, LS-PSN could use a hash index that has
comparisons as keys and weights as values. This approach, however, would
increase both the space and the time complexity of comparison weighting.

4Assuming a comparison between p; and pj, i.e., ¢i j, the corresponding

frequencylj]
PI[i].length()+PI[j].length()— frequency[j]”

RCF weight is equal to



Line 5 iterates over the profiles of P;, and (ii) in Lines 10 and
14, a neighbor p; is considered valid only if p; € Ps.

The emission phase of LS-PSN is illustrated in Algorithm
2 and is common for both Clean-clean and Dirty ER: if the
Comparison List corresponding to the current window is not
empty, the top weighted one is removed and returned as output.
If the list is empty, the window size is incremented (Line
2) and the process for extracting all comparisons of the new
window (Lines 5 - 20 in Algorithm 1) is repeated.

Example 4. We demonstrate the functionality of LS-PSN by
applying it to the profiles of Figure 2a. The result appears
in Figure 4. Step 0 extracts all blocking keys and sorts them
alphabetically, while Step 1.i forms N L and slides a window
of size 1 over it. In Step 1.ii, we see the result of the nested
loops in Lines 5 - 16 for the RCF weighting scheme for
windowSize=1. In Step 1.iii, all comparisons are weighted
and sorted from the highest to the lowest weight. Finally, the
sorted comparisons are emitted one by one in Step 1.iv. Note
that the first three comparisons correspond to the three pairs
of duplicate profiles.

Complexity Analysis. LS-PSN mainly keeps in memory
the Neighbor List along with the Position Index. For both
data structures, the space complexity is O(|p|-| P|), depending
linearly on the number of input profiles. Similar to SA-PSN,
the time complexity of the initialization phase is dominated
by the sorting of blocking keys in alphabetical order, i.e.,
O(|p|-|P|-log(|p|-|P|)). Finally, the time complexity of the
emission phase is usually constant, O(1), simply emitting
the next comparison from the Comparison List. Whenever
this list gets empty, LS-PSN renews its contents by re-
peating their initialization phase, raising the complexity to
O(|p|-|P|-log(|p|-|P|)); the only difference with the initial-
ization phase is the incremented window size.

2) Global Schema-Agnostic PSN (GS-PSN): The main
drawback of LS-PSN is the local execution order it defines
for a specific window size. This means that LS-PSN is likely
to emit the same comparison(s) multiple times, for two or
more different window sizes, since it does not remember
past emissions. GS-PSN aims to overcome this drawback by
defining a global execution order for all the comparisons in a
range of window sizes [1, Wyqz]. To this end, its initialization
phase differs from Algorithm 1 in that Line 1 is converted
into an iteration over all window sizes in [1, Wyqz]; this loop
starts before Line 8 and ends before Line 20. This allows
for a simpler emission phase, which just returns the next best
comparison, until Comparison List gets empty.

Compared to LS-PSN, GS-PSN introduces one more con-
figuration parameter, namely w,,,, in order to eliminate all
repeated comparisons in a particular range of windows. Thus,
GS-PSN occupies more space, O(Wqz:|P||P]), due to its
Comparison List, which contains 1 comparison per position
in the Neighbor List for every window size, in the worst
case. The time complexity of the initialization phase is the
same as for LS-PSN, being dominated by the sorting of
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Fig. 4. Applying LS-PSN to the profiles of Figure 2a.
blocking keys in alphabetical order, while the emission phase
exhibits a consistently constant time complexity, O(1). Note
also that GS-PSN takes into account more co-occurrence
patterns than LS-PSN, when determining comparison weights.
Consequently, its matching likelihood estimations are expected
to be more accurate than those of LS-PSN.

B. Equality-based Methods

The methods in this category rely on a redundancy-positive
block collection that is derived from any suitable schema-
agnostic blocking method or workflow [18]. From these
blocks, we extract the Blocking Graph of Meta-blocking, using
the weights of its edges as approximations for the matching
likelihood of the corresponding comparison. In particular, we
order the graph edges in decreasing weight in order to produce
a sorted list of comparisons at the level of individual blocks
or profiles. Below, we propose a novel algorithm of this type.

1) Progressive Block Scheduling (PBS): This algorithm
is specifically designed for Progressive ER, but relies on
a Batch ER technique. Indeed, Block Scheduling has been
proposed in order to optimize the processing order of blocks
in the context of Batch ER, based on the probability that
they contain duplicates [1]. It assigns to every block a weight
that is proportional to the likelihood that it contains duplicates
and then, it sorts all blocks in descending weight order.
Even though we would like to use such a functionality for
Progressive ER, it is not applicable, because: (i) it does not
specify the execution order of comparisons inside blocks with
more than two profiles, and (ii) its weighting cannot generalize
to Dirty ER, applying exclusively to Clean-clean ER.

We now describe our algorithm, PBS, in detail:

(1) PBS introduces a weighting mechanism that applies
uniformly to Clean-clean and Dirty ER. In fact, it relies on
the reasonable hypothesis that the smaller a block is, the more
distinctive information it encapsulates and the more likely
it is to contain duplicate profiles, and vice versa. Thus, it
sets weights inversely proportional to block cardinalities (i.e.,
1/|1b:]]) and sorts blocks in decreasing weights; the fewer
comparisons a block entails, the higher it is ranked.

(2) PBS defines the processing order of comparisons inside
every block using the Blocking Graph. This means that for
each block b; with ||b;||>1, PBS associates all comparisons
with a weight derived from any schema-agnostic weighting
scheme of Meta-blocking. Then, it sorts them from the highest
weight to the lowest one.

It is worth noting that all repeated comparisons are dis-
carded before computing their weight. In fact, the efficient
detection of repeated comparisons is crucial for PBS. This



Algorithm 3: Initialization phase for PBS.

Input: (i) Profile collection P, (ii) Weighting scheme, wScheme
Output: The overall best comparison
1 B < buildRedundancyPositiveBlocks(P);
2 B’ < blockScheduling(B);
3 ProfileIndex < buildProfileIndex(B’);
4 by < B’.removeFirst();
s ComparisonList < 0;
6
7
8
9

foreach c;; € by do
B; < ProfileIndex.getBlocks(e;);
Bj <+ ProfileIndex.getBlocks(e;);
if nonRepeated(k, B;, B;) then
10 w;,j +— wScheme(k, B;, Bj);
11 Comparison List.add(getComparison(i, j, w;, ;));

12 sortlnDescreasingWeight(C'omparison List);
13 return ComparisonList.removeFirst(),

Algorithm 4: Emission phase for PBS.

Output: The next best comparison
1 if ComparisonList.isEmpty() then
L /+ repeat lines 4 - 12 in Algorithm 3 */

2 return ComparisonList.removeFirst();

functionality is based on a data structure called Profile Index,
which constitutes an inverted index that associates every
profile with the ids of the blocks that contain it. In this way,
it facilitates the efficient computation of comparison weights,
similar to the Position Index of LS/GS-PSN. Note that the
Profile Index is generic enough to accommodate any weighting
scheme that is based on the block co-occurrence frequency of
profile pairs.

In practice, the Profile Index is implemented as a two-
dimensional array. The first dimension is of size | P| such that
ProfileIndex[i] points to an array that contains all ids of the
blocks involving profile p;. As a result, the second dimension
contains arrays of variable length. The block ids in every such
array are sorted from the lowest to the highest one in order to
ensure high efficiency for the two operations that are built on
top of the Profile Index.

The first operation is the Least Common Block Index
(LeCoBI) condition, which checks whether a comparison is
repeated in the following way: given a comparison c;; in block
by, the LeCoBI condition identifies the least common block
id, X, between the profiles p; and p; and compares it with the
id of by, Y. If the two ids match (X =Y), ¢;; corresponds to a
new comparison. Otherwise X < Y, which means that c;; has
already been compared in block bx, but is repeated in block
by . Note that X > Y is impossible, because the id of every
block indicates its position in the processing list after sorting
all blocks in increasing cardinalities (i.e., by denotes the block
placed in the k' position after sorting). Note also that by
ordering the block ids of the second dimension in increasing
order, the Profile Index minimizes the checks required for
detecting the least common block id, thus accelerating the
LeCoBI condition.

The second operation is Edge Weighting, which infers the
matching likelihood of every comparison from the weight of
the corresponding edge in the blocking graph. Given a non-
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Fig. 5. Applying PBS to the blocks of Figure 2b.

repeated comparison c;;, it compares the block lists associated
with profiles p; and p; in order to estimate the number of
blocks they share. This number, which lies at the core of
practically all Meta-blocking weighting schemes [18], can be
derived from the evidence provided by the Profile Index. Note
that by ordering the block ids of its second dimension in
increasing order, the Profile Index allows for accelerating Edge
Weighting by traversing the two block lists in parallel.

On the whole, the initialization phase of PBS appears in
Algorithm 3. Initially, it creates a redundancy-positive block
collection and sorts its elements in non-decreasing order of
comparisons (Lines 1-2). Then, it builds the corresponding
Profile Index (Line 3) and goes on to remove the first (i.e.,
smallest) block, iterating over its comparisons (Lines 4-6).
For every comparison c¢;;, PBS gets the block lists that are
associated with profiles p; and p; from the Profile Index (Lines
7-8). Based on these lists, it evaluates the LeCoBI condition,
checking whether c;; is repeated or not (Line 9). If ¢;; is a
new comparison, it is placed in the Comparison List along with
the weight of the corresponding Blocking Graph edge (Lines
10-11). After processing all comparisons in the current block,
the elements of the Comparison List are sorted in decreasing
weight and the first one is emitted (Lines 12-13).

The emission phase of PBS appears in Algorithm 4. If the
Comparison List is empty, it processes the next block V'€ B’,
applying the Lines 4-12 of Algorithm 3 to it. Otherwise, the
next best comparison is emitted from the Comparison List.

Example 5. Figure 5 illustrates the functionality of PBS by
applying it to the blocks of Figure 2b. First, it sorts them
in non-decreasing cardinality and assigns to each one an
incremental block id that indicates its processing order (note
that we chose a random permutation of the blocks that have
the same number of comparisons, without affecting the end
result). Then, PBS processes the sorted list of blocks one
block at a time, emitting iteratively the comparisons entailed in
every block. Inside every block, all comparisons that satisfy the
LeCoBI condition (i.e., non-repeated comparisons) are sorted
according to the corresponding edge weight in the Blocking
Graph of Figure 2c. For instance, when PBS processes b,
the comparison cys satisfies the LeCoBI condition, since the
least common block id shared by p4 and p5 is 2. This means
that PBS encounters cys for the first time in b, assigning
the edge weight 1.33 to it. In contrast, when PBS processes
bs, the comparison cy5 does not satisfy the LeCoBI condition



TABLE I
DATASET CHARACTERISTICS: ER TYPE, NUMBER OF ENTITY PROFILES,
NUMBER OF attribute names, AND NUMBER OF EXISTING MATCHES.

[ ER type [ [P] [ Hattr. [ 1Dp] ]
Structured Datasets
census Dirty ER 841 5 344
restaurant Dirty ER 864 5 112
cora Dirty ER 1.3k 12 17k
cddb Dirty ER 9.8k 106 300
Large, Heterogeneous Datasets
movies Clean-clean ER 28k—23k 4—7 23k
dbpedia Clean-clean ER 1.2M—2.2M 30k—50k 893k
freebase Clean-clean ER | 42M—3.7M | 37k—I11k 1.5M

anymore and is thus discarded.

Complexity Analysis. The space complexity of PBS is
dominated by the space requirements of the Profile Index, i.e.,
O(|p|-|P]). The time complexity of its initialization time is
dominated by the sorting of blocks in non-decreasing compar-
isons, i.e., O(|B|-log | B]). In contrast, the cost of building the
block collection B is insignificant, as it typically requires a sin-
gle iteration over the input profiles, O(|P|). Finally, the time
complexity of its emission phase is usually constant, unless
its Comparison List gets empty. In these cases, PBS refills its
Comparison List with the sorted comparisons of the next block
to processed. The time complexity of this procedure is very
low, since it is dominated by the sorting of all comparisons
in an individual block, i.e., O(||b||-log ||b]|) on average, rather
than the sorting of the entire block collection, B.

VI. EXPERIMENTS

System setup. All experiments have been performed on a
server running Ubuntu 14.04, with 80GB RAM, and an
Intel Xeon E5-2670 v2 @ 2.50GHz CPU. All methods are
implemented in Java 8 and the code is publicly available’.

Datasets. For the experimental evaluation, we employ 7
diverse real-world datasets that are widely adopted in the
literature as benchmark data for ER [16], [18], [19], [21],
[22]. Their characteristics are reported in Table I. The
census, restaurant, cora, and cddb datasets are
extracted from a single data source containing duplicated
profiles, hence they are meant to test Dirty ER tasks. The
remaining datasets (movies, dbpedia, and freebase)
are suitable for testing scalability, as well as Clean-
clean ER, since they are extracted from two different
data sources, where matching profiles exist only between
a source and another: movies from imdb.com and
dbpedia.org; dbpedia from two different snapshots
of DBpedia (dbpedia.org 2007-2009)°; freebase
from developers.google.com/freebase/ and
dbpedia.org (extracted from [22]). For all the datasets,
the ground truth is known and provided with the data.

For the structured datasets, the best schema-based blocking
keys for PSN are known from the literature [6], [16]”. Note

Shttps://stravanni.github.io/progressiveER/

%Due to the constant changes in DBpedia, the two versions share only 25%
of the name-value pairs, forming an non-trivial ER task [6], [18].

7See also the code at: https://sourceforge.net/projects/febrl and
https://sourceforge.net/projects/erframework.

that the schema-based methods are inapplicable to the large,
heterogeneous datasets. This is due to the size of the attribute
set and the lack of a schema-alignment for Clean-clean
datasets — movies has a total of 11 distinct attributes, but to
the best of our knowledge no schema-based blocking key is
known from the literature to perform well, while the schema-
alignment for determining a schema-based blocking key is
non-trivial. Finally, in dbpedia and freebase, there is a
very small overlap in the attributes describing their profile
collections.

Parameter configuration. We apply the following settings to
all datasets. For LS-PSN and GS-PSN, we set w,,,4,=20 for
structured datasets and w4, =200 for large, heterogeneous
datasets. For PBS, we use the Token Blocking Workflow to
derive the redundancy-positive block collection. This workflow
has been experimentally verified to address effectively and
efficiently the Volume and Variety of Web data [18]. It consists
of the following steps: (1) Schema-agnostic Standard Blocking
[6], ak.a. Token Blocking [20], creates a separate block for
every attribute value token that stems from at least two profiles.
(2) Block Purging [18] discards large blocks that correspond
to stop words, involving more than 10% of the input profiles.
(3) Block Filtering [18] retains every profile in 80% of its
most important (i.e., smallest) blocks. (4) ARCS performs
edge weighting on the Blocking Graph.

Metrics. Recall is typically employed to evaluate the ef-
fectiveness of a Batch ER method m over a profile col-
lection P. It measures the portion of detected matches:
recall=|D,,|/|Dp|, where D,, is the set of matches detected
(emitted) by m, while Dp is the set of all matches in P.

In Progressive ER, we are interested in how fast matches
are emitted. To illustrate this, we consider recall progres-
siveness by plotting the evolution of recall (vertical axis)
with respect to the normalized number of emitted comparisons
(horizontal axis): ec*=ec/|Dp|, where ec is the number of
emitted comparisons at a certain time during the processing.
The purpose of this normalization is twofold: (i) it allows
for using the same scale among different datasets, and (ii)
it facilitates the comparison of all progressive methods with
the ideal one, which achieves recall=1 after emitting just the
first |Dp| comparisons, i.e., at ec*=1.

To facilitate the comparisons between progressive methods,
we quantify their progressive recall using the area under
the curve (AUC) of the above plot®. For a method m, we
indicate with AUC,,Qec* the value of AUC for a given
ec*; for instance, AUCpgn@5 is the area under the recall
curve of the method PSN after the emission of ec=>5:|Dp]
comparisons. To restrict AUC,,@Qec* to the interval [0, 1],
we normalize it with the performance of the ideal method:
AUC;, @ect = a0Cmlec  AUC;, @ec* is called nor-
malized area under the curve: higher values correspond
to a better progressiveness, with the ideal method having
AUCY,, =1 for any value of ec”.

idea

8The AUC expressed in function of ec (not the normalized ec*) is known in
the literature as progressive recall [14], and is employed for the same purpose.
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For the time performance evaluation of a method m, we

consider the initialization time and the comparison time:
the former is the time required to emit the first comparison,
considering all the pre-processing steps (e.g., Token Blocking,
Block Purging, Block Filtering for PBS); the comparison
time is the average time between two consecutive comparison
emissions. It includes both the emission time (i.e., the time
required for generating the next best comparison) and the
time required for applying the selected match function to that
comparison.
Baselines. In the following, we use PSN and SA-PSN as
baseline methods. As explained above, the best schema-based
blocking keys, which are necessary for PSN, are only known
for the Dirty ER datasets. For the Clean-clean ER ones, no
such blocking keys have been reported in the literature. As
a result, we consider only SA-PSN as baseline method for
Clean-clean ER datasets.

A. Structured Datasets

We now compare our schema-agnostic methods against the
state-of-the-art schema-based method, i.e. PSN [4], [5], on
the structured datasets. We assess the relative effectiveness
of all methods with respect to recall progressiveness. The
corresponding plots appear in Figure 6. They depict the
performance of all methods for up to ec*=30, i.e., we measure
the recall for a number of comparisons thirty times the
comparisons required by the ideal method to complete each
ER task. We focus, though, on the interval [0,10] in order to
highlight the behavior of the methods in the early stage of ER,
which is the most critical for pay-as-you-go applications.

We observe that the advanced schema-agnostic methods
outperform PSN and SA-PSN across all datasets’. Only
for census does PSN perform better than PBS (but not

°In Figure 6d, the curve of SA-PSN is too low to be visible, almost
coinciding with the horizontal axis.

census contains very discriminative attributes, whose values
are employed as blocking keys for PSN!, identifying its
duplicates with very high precision. Moreover, the profiles of
census have short strings as attribute values: on average,
every profile contains just 4-5 distinct tokens in its values.
Inevitably, this sparse information has significant impact on
the performance of similarity- and equality-based methods,
restricting the co-occurrence patterns that lie at their core, i.e.,
the co-occurrences in windows for the former, and in blocks
for the latter. The impact is larger in the latter case, due to the
stricter definition of co-occurrence, which requires the equality
of tokens, not just their similarity.

On the other hand, for datasets with a high token overlap of
matching profiles, and low discriminative attributes, the recall
progressiveness of PBS is significantly higher than (Figure
6b-c) or similar to (Figure 6d) that of schema-based PSN.

Among the advanced methods, we now list the best per-
former for each dataset. On census (Figure 6a), GS-PSN
is the best performer, but LS-PSN is only slightly worse. On
restaurant (Figure 6b) and cddb (Figure 6d), LS-PSN
has the best recall progressiveness. On cora (Figure 6¢), GS-
PSN has the best initial progressiveness, but PBS reaches
the highest recall from ec*=4 on — note that the final recall
of PBS is lower than 100%, because the underlying Token
Blocking cannot identify all duplicates in cora.

We now compare all the methods with respect to their mean
value of normalized area under the curve. Figure 7 shows the
mean AUC™ of all methods across all structured datasets for
four different values of ec*: 1, 5, 10 and 20. We observe that,
on average, for any level of AUC*, LS-PSN and GS-PSN
are the top performers, in particular for the earliest phase of
Progressive ER: their AUC*@1 is three times the AUC*@1
of PSN and PBS.

Overall, we conclude that the best performing methods
for structured datasets are LS-PSN and GS-PSN (the dif-
ference in their performance is almost negligible). Thus, the
selection of one method over the other should be driven by
the differences in their space and time complexities for the
initialization and emission phases, depending on wy,q,. The
higher wy,q. i, the higher gets the space complexity of GS-
PSN in comparison to LS-PSN; thus, LS-PSN should be

10Soundex encoded surnames concatenated to initials and zipcodes.
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preferred when the availability of memory may be a issue. On
the other hand, if memory is not an issue, GS-PSN should
be preferred, since it avoids multiple emissions of the same
comparisons.

B. Large, Heterogeneous Datasets

We now assess the relative performance of all methods with
respect to recall progressiveness over the large, heterogeneous
datasets movies, dbpedia, freebase. The corresponding
plots appear in Figure 8.

The results confirm our intuition about the ineffectiveness
of the naive SA-PSN, since all advanced methods outperform
it to a significant extent across all datasets.

The only exceptions are LS-PSN and GS-PSN!' on
freebase, which perform poorly: the performance of LS-
PSN is similar to that of SA-PSN, while GS-PSN has
lower recall progressiveness than SA-PSN, terminating before
achieving a recall greater that 20%. The performance of these
two advanced methods can be explained by the characteristics
of the dataset. Freebase is composed of RDF triples. The
extracted tokens consist of RDF keywords, URI, and other
RDF properties, which generate a noisy Neighbor List, since
their alphabetical ordering is often meaningless. Thus, the
RCF weighting scheme cannot approximate correctly the
similarity of the profiles. On the other hand, PBS is able to get
the most of the semantics in URI tokens, due to the equality
requirement, thus being more robust on freebase than the
similarity-based methods.

Overall, PBS is the best performer across all the large,
heterogeneous datasets (Figure 8). To quantify the difference
in performance of all the methods, we compare them with
respect to their mean value of normalized area under the curve.
Figure 9 shows the mean AUC™ of all methods across all

1On freebase, we limited the number of maximum comparisons of
GS-PSN according to the available memory, i.e., 80GB.

files are matching or not. Yet, to assess their efficiency in
terms of execution time, we evaluate them in combination
with two match functions (ED and JS) based on the Damerau-
Levenshtein edit distance [23] and the Jaccard similarity [24],
respectively'?. The former is meant to test the performance of
our methods with an expensive match function, while the latter
with a cheap one. The time complexities of edit-distance and
jaccard-sim are O(s-t) and O(s+t), respectively, where s and
t are the lengths of the two strings to be compared (i.e., the
two profiles compared with the match function).

The schema-based methods are not considered in this eval-
uation, since they inherently require an additional overhead
time to select the blocking keys (and to perform the schema-
alignment in the case of Clean-clean ER). There is a plethora
of techniques to perform these two tasks [26], [27], [28], [29],
but it is out of the scope of this work to determine which one
is the best, since our proposed methods do not rely on them.

In Figure 10, we report the result of the time experiments
on the datasets movies and dbpedia. (We do not consider
freebase for this test, because comparing data composed of
RDF triples would require more advanced match functions.) In
particular, Figures 10a-d plot the performance of all methods,
considering both the initialization time and the comparison
time. The initialization times are listed in Figure 10e and
are independent of the match function. We note that for all
methods and datasets the emission time is negligible (w.r.t. the
time required by the match functions), and we do not report
it here: it is at least two orders of magnitude smaller than that
required by the match functions to compare two profiles.

121 a real-world scenario, each match function would require a threshold
parameter to discriminate between matching and non-matching pairs, on
the basis of their edit distance (or Jaccard similarity). Here, we are only
interested in measuring the time performance, not the effectiveness of the
match function; hence, we do not employ any threshold, and the outcome of
the match function is assumed to be identical to the known ground truth.
Furthermore, more complex similarity functions (such as [25]) could be
employed to achieve high quality results.
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Fig. 10. Time experiments with jaccard-sim (a,c) and edit-dist (b,d); initialization times (e).

The results in Figure 10 clearly show that our advanced
methods produce most of the matches much earlier than the
baseline, with both the expensive and cheap match functions.
LS-PSN is able to outperform SA-PSN since the early stages
of the process, thanks to its fast initialization phase (see left
part of Figures 10a-d). GS-PSN and PBS exhibit a similar
behavior with minor exceptions: SA-PSN combined with a
cheap matching function reaches the 20% recall mark faster
than PBS on movies (Figure 10a), and faster than GS-PSN
on dbpedia (Figure 10c).

Overall, PBS achieves higher level of recall much earlier
than similarity-based methods on large and heterogeneous
datasets. The only exceptions are LS-PSN and GS-PSN on
movies (Figure 10a) with the cheap match function, where
both similarity-based methods reach recall = 40% earlier than
PBS, thanks to their lower initialization time. This is because
the overhead of the Token Blocking Workflow, which lies at the
core of PBS, becomes negligible when using an expensive
match function (Figure 10b) or when applying it to large
datasets (Figure 10c-d).

VII. CONCLUSIONS AND FUTURE WORK

We have introduced schema-agnostic methods to maximize
the recall progressiveness of Entity Resolution for pay-as-
you-go applications, while addressing the Volume and Variety
dimensions of Big Data. They can be distinguished into
equality-based (PBS) and similarity-based methods (LS-PSN
and GS-PSN). PBS was shown to be the best choice on large
and heterogeneous datasets, while LS/GS-PSN on structured
datasets described with a limited number of attributes. More-
over, our experimental evaluation with several real, structured
datasets demonstrated that the proposed methods significantly
outperform the schema-based state-of-the-art method in the
field, PSN, identifying most of the matches much earlier.

An interesting direction for extending our work is to investi-
gate how to combine the proposed methods with crowdsourc-
ing strategies [13], [12], [14].
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