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Questions This Tutorial Answers

• how important is high-dimensional data nowadays?

• what types of analyses are performed on high-d data?

• how can we speed up such an analysis?

• what are the different kinds of similarity search?

• what are the state-of-the-art high-d similarity search methods?

• how do methods designed for data series compare to those designed 
for general high-d vector similarity search?

• what are the open research problems in this area?

• what are the connections to deep learning?
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High-d data is everywhere

Finance Manufacturing

Seismology

Neuroscience

Paleontology

Biology

AstronomyAgriculture

Medicine

Aviation

Criminology
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≈ 500 ZB per year

> 500 TB per day
1 PB = 1 thousand TB

1 ZB =  1 billion TB
> 5 TB per day

> 40 PB per 
day

≈ 130 TB

High-d collections are massive
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Popular High-d data
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Popular High-d data

Time

Position
Frequency

Mass

Data series

A collection of points ordered over a dimension
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A low-d vector learned from data using a DNN
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Position
Frequency
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Data series
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Popular High-d data

Time

Position
Frequency

Mass

Data series

A collection of points ordered over a dimension

embedded
text, images, video, graphs, etc. 
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Deep Embeddings

A low-d vector learned from data using a DNN

High-d data -> High-d vector



Classification

Predictive 
Maintenance

Classification

Extracting value requires analytics
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Clustering

Classification

Predictive 
Maintenance

Classification

Extracting value requires analytics
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Clustering

Classification

Predictive 
Maintenance

Classification

Recommendation

Extracting value requires analytics

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



Outlier Detection

Clustering

Classification

Predictive 
Maintenance

Classification

Recommendation

Extracting value requires analytics
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Similarity 
Search

Outlier Detection

Clustering

Classification

Predictive 
Maintenance

Classification

Recommendation

Extracting value requires analytics
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Similarity 
Search

Outlier Detection

Clustering

Classification

Predictive 
Maintenance

Classification

Recommendation

Extracting value requires analytics

Data Cleaning Data Integration
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Similarity 
Search

Outlier Detection

Clustering

Classification

Predictive 
Maintenance

Classification

Recommendation

Extracting value requires analytics

Data Cleaning Data Integration

HARD, because of very high dimensionality:
each high-d point has 100s-1000s of 

dimensions!

Classification
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Similarity 
Search

Outlier Detection

Clustering

Classification

Predictive 
Maintenance

Classification

Recommendation

Extracting value requires analytics

Data Cleaning Data Integration

HARD, because of very high dimensionality:
each high-d point has 100s-1000s of 

dimensions!

even HARDER, because of very large size:
millions to billions of high-d points (multi-TBs)!
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Problem Variations

Series
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Problem Variations

Series

Univariate

each point represents one   
value (e.g., temperature)

8
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Problem Variations

Series

Univariate

each point represents one   
value (e.g., temperature)

Multivariate

each point represents many   
values (e.g., temperature, 

humidity, pressure, wind, etc.)
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Problem Variations

• similarity search is based on measuring distance between 
sequences

• dozens of distance measures have been proposed
▫ lock-step 

 Minkowski, Manhattan, Euclidean, Maximum, DISSIM, …

▫ sliding
 Normalized Cross-Correlation, SBD, …

▫ elastic
 DTW, LCSS, MSM, EDR, ERP, Swale, …

▫ kernel-based
 KDTW, GAK, SINK, …

▫ embedding 
 GRAIL, RWS, SPIRAL, …

Data Series Distance Measures

Publications

Ding-
PVLDB‘08

Paparrizos-
SIGMOD’20

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



Problem Variations

• similarity search is based on measuring distance between 
sequences

• dozens of distance measures have been proposed
▫ lock-step 

 Minkowski, Manhattan, Euclidean, Maximum, DISSIM, …

▫ sliding
 Normalized Cross-Correlation, SBD, …

▫ elastic
 DTW, LCSS, MSM, EDR, ERP, Swale, …

▫ kernel-based
 KDTW, GAK, SINK, …

▫ embedding 
 GRAIL, RWS, SPIRAL, …

Data Series Distance Measures

Publications

Ding-
PVLDB‘08

Paparrizos-
SIGMOD’20

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



Problem Variations

• similarity search is based on measuring distance 
between vectors

• A variety of distance measures have been proposed
▫ Lp distances (0<p≤2, ∞),  (Euclidean for p = 2)

▫ Cosine distance 

▫ Correlation

▫ Hamming distance

▫ …

High-d Vectors Distance Measures
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Euclidean Distance

v1
v2
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Euclidean Distance

v1
v2
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Euclidean Distance

• Euclidean distance

▫ pair-wise point distance

v1
v2
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Similarity Matching

Fast Euclidean Distance

• similarity matching requires many distance 
computations

▫ can significantly slow down processing

 because of large number of data series in the 
collection

 because of high dimensionality of each data series
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Similarity Matching

Fast Euclidean Distance

• similarity matching requires many distance 
computations
▫ can significantly slow down processing
 because of large number of data series in the collection

 because of high dimensionality of each data series

• in case of Euclidean Distance, we can speedup 
processing by
▫ smart implementation of distance function
▫ early abandoning
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Similarity Matching

Fast Euclidean Distance

• similarity matching requires many distance 
computations
▫ can significantly slow down processing
 because of large number of data series in the collection
 because of high dimensionality of each data series

• in case of Euclidean Distance, we can speedup 
processing by
▫ smart implementation of distance function
▫ early abandoning

• result in considerable performance improvement
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Similarity Matching

Fast Euclidean Distance

• smart implementation of distance function

𝐸𝐷 𝑋, 𝑌 = ෍

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2

Publications

Keogh-
DMKD’03
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Similarity Matching

Fast Euclidean Distance

• smart implementation of distance function

▫ do not compute the square root (of the Euclidean 
Distance)

𝐸𝐷(𝑋, 𝑌) =෍

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2

Publications

Keogh-
DMKD’03
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Similarity Matching

Fast Euclidean Distance

• smart implementation of distance function

▫ do not compute the square root (of the Euclidean 
Distance)

• does not alter the results

• saves precious CPU cycles

𝐸𝐷(𝑋, 𝑌) =෍

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2

Publications

Keogh-
DMKD’03
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Similarity Matching

Fast Euclidean Distance

• early abandoning

▫ stop the distance computation as soon as it exceeds the 
value of bsf

𝐸𝐷 𝑋, 𝑌 =෍

𝑖=1

𝑚

𝑥𝑖 − 𝑦𝑖
2 , 𝑚 ≤ 𝑛

Publications

Keogh-
DMKD’03
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Similarity Matching

Fast Euclidean Distance

• early abandoning

▫ stop the distance computation as soon as it exceeds the 
value of bsf

• does not alter the results

• avoids useless computations

𝐸𝐷 𝑋, 𝑌 =෍

𝑖=1

𝑚

𝑥𝑖 − 𝑦𝑖
2 , 𝑚 ≤ 𝑛

Publications

Keogh-
DMKD’03
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Correlation

• measures the degree of relationship between data series
▫ indicates the degree and direction of relationship

• direction of change
▫ positive correlation
 values of two data series change in same direction

▫ negative correlation
 values of two data series change in opposite directions

• linear correlation
▫ amount of change in one data series bears constant ratio of 

change in the other data series

• useful in several applications
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Pearson’s Correlation Coefficient

• used to see linear dependency between values of data series of 
equal length, n
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Pearson’s Correlation Coefficient

•
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Pearson’s Correlation Coefficient

• used to see linear dependency between values of data series of 
equal length, n

• takes values in [-1,1]
▫ 0 – no correlation
▫ -1, 1 – inverse/direct correlation

• there is a statistical test connected to PC, where null hypothesis 
is the no correlation case (correlation coefficient = 0)
▫ test is used to ensure that the correlation similarity is not caused by 

a random process 
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PC and ED

• Euclidean distance: 

• In case of Z-normalized data series (mean = 0, stddev = 1):

and

so the following formula is true:  

• direct connection between ED and PC for Z-normalized data 
series
▫ if ED is calculated for normalized data series, it can be directly 

used to calculate the p-value for statistical test of Pearson’s 
correlation instead of actual PC value.

𝐸𝐷2 = 2𝑛 𝑛 − 1 − 2෍
𝑖=1

𝑛

𝑥𝑖𝑦𝑖
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Distance Measures:

LCSS against Euclidean, DTW

• Euclidean

▫ rigid
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Distance Measures:

LCSS against Euclidean, DTW

• Euclidean

▫ rigid

• Dynamic Time Warping (DTW)

▫ allows local scaling
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Distance Measures:

LCSS against Euclidean, DTW

• Euclidean
▫ rigid

• Dynamic Time Warping (DTW)
▫ allows local scaling

• Longest Common SubSequence (LCSS)
▫ allows local scaling

▫ ignores outliers
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Distance Measures:

Cosine Distance

▫ Cosine distance = 1 - cosine similarity
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Problem Variations

Queries

Whole matching

Entire query 

Entire candidate

Whole matching

Entire query

Entire candidate
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Problem Variations

Queries

Whole matching

Entire query

Entire candidate

Subsequence matching

Entire query

A subsequence of a candidate
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Problem Variations

Queries

Nearest Neighbor (1NN)

k-Nearest Neighbor (kNN)

Farthest Neighbor

epsilon-Range

and more…
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Similarity Matching

• given a data series collection D and a query data series q,  
return the data series from D that are the most similar to q

▫ there exist different flavors of this basic operation

• basis for most data series analysis tasks
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Similarity Matching

Nearest Neighbor (NN) Search

• given a data series collection D and a query data series q,  
return the data series from D that has the smallest distance to q

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



Similarity Matching

Nearest Neighbor (NN) Search

• given a data series collection D and a query data series q,  
return the data series from D that has the smallest distance to q

• result set contains one data series
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Similarity Matching

Nearest Neighbor (NN) Search

• serial scan

▫ compute the distance between q and every di ∈ D

▫ return di with the smallest distance to q
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Similarity Matching

Nearest Neighbor (NN) Search

• serial scan

▫ bsf = Inf // best so far distance

▫ for every di ∈ D

 compute distance, dist, between di and q

 if this dist less than bsf then bsf=dist

▫ return di corresponding to bsf
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Similarity Matching

k-Nearest Neighbors (kNN) Search

• given a data series collection D and a query data series q,  
return the k data series from D that have the k smallest 
distances to q
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Similarity Matching

k-Nearest Neighbors (kNN) Search

• given a data series collection D and a query data series q,  
return the k data series from D that have the k smallest 
distances to q

• result set contains k data series
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Similarity Matching

k-Nearest Neighbors (kNN) Search

• serial scan

▫ compute the distance between q and every di ∈ D

▫ return the k di with the k smallest distances to q
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Similarity Matching

k-Nearest Neighbors (kNN) Search

• serial scan

▫ kbsf = Null // best so far max-heap of k elements

▫ for every di ∈ D

 compute distance, dist, between di and q

 if this dist less than max of kbsf then insert dist in kbsf

▫ return k di corresponding to k elements in kbsf
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Similarity Matching

𝜀-Range Search

• given a data series collection D and a query data series q,  
return all data series from D that are within distance 𝜀 from q
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Similarity Matching

𝜀-Range Search

• given a data series collection D and a query data series q,  
return all data series from D that are within distance 𝜀 from q

• result set contains [?] data series
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Similarity Matching

𝜀-Range Search

• serial scan

▫ compute the distance between q and every di ∈ D

▫ return all di with distance less than 𝜀 to q
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Similarity Matching

𝜀-Range Search

• serial scan

▫ res = {} // empty result set

▫ for every di ∈ D

 compute distance, dist, between di and q

 if this dist less than 𝜀 then insert dist in res

▫ return all di corresponding to elements in res
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Problem Variations

Queries

Nearest Neighbor (1NN)

k-Nearest Neighbor (kNN)

Farthest Neighbor

epsilon-Range

And more…
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Nearest Neighbor (NN) Queries… Publications

Echihabi et al.
PVLDB‘19
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OQ

Nearest Neighbor (NN) Queries…
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Publications

Echihabi et al.
PVLDB‘19



72

OQ

Ox

exact 
NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1

result is exact NN

Publications

Echihabi et al.
PVLDB‘19
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OQ

Ox

exact 
NN

Nearest Neighbor (NN) Queries…
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OQ

Ong

Ox

exact 
NN

dng

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1
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OQ

Ong

Ox
Oε

exact 
NN

dε

dng

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1

result is exact NN

Publications

Echihabi et al.
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Oδε

Ong

Ox

OQ

δ-ε-approximate
neighbor

Oε

exact 
NN

dε

dδε

dng

Prob(dε <= dx (1+ε)) >= δ

result within (1+ ε) of exact NN 

with probability at least δ

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries…
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dε

Ox

Oδε

OQ

δ-ε-approximate
neighbor

dδεOng

Oε

Prob(dε <= dx (1+ε)) >= δ

result within (1+ ε) of exact NN 

with probability at least δ

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

dng

exact 
NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1

result is exact NN

Publications
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Meaningfulness of NN queries

in high-d spaces

• Some studies have argued that NN search is not meaningful for a 
number of high dimensional datasets due to the concentration of 
distances. 

▫ However, these conclusions were based on over-restrictive 
assumptions such as:

 data being identical and independently distributed (i.i.d.) in each 
dimension

 dimensionality being the only factor determining meaningfulness

 an asymptotic analysis of dimensionality growing to infinity

• Other studies have shown that high-dimensional NN search is 
meaningful for:

▫ non-i.i.d data

▫ data with low intrinsic dimensionality

▫ for a variety of real world datasets

Publications

Aggarwal et al.
ICDT‘01

Beyer et al.
ICDT‘99

He et al.
ICML‘12
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Similarity Search Process

Query Answering ProcedureData Loading Procedure

Raw data
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data-to-query time 

Query Answering ProcedureData Loading Procedure

Data Series 
Database/
Indexing

DataRaw data
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Similarity Search Process



data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

Data Series 
Database/
Indexing

DataRaw data

Queries
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Similarity Search Process



data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

Data Series 
Database/
Indexing

DataRaw data

Queries

83

these times are big!
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Similarity Search Process



data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

we need solutions 
for both problems!

Data Series 
Database/
Indexing

DataRaw data

Queries
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Similarity Search Process
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Outline

• Pre-processing Tasks

• Classes of Methods

• State-of-the-art Techniques

• New extensions
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Pre-Processing

z-Normalization

• data series encode trends

• usually interested in identifying similar trends
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Pre-Processing

z-Normalization

• data series encode trends

• usually interested in identifying similar trends

• but absolute values may mask this similarity
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Pre-Processing

z-Normalization

• two data series with similar trends

v1

v2

sequence dimension
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Pre-Processing

z-Normalization

• two data series with similar trends

• but large distance…

v1

v2
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence

v1

v2
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

▫ compute the standard deviation of the sequence

▫ divide every value of the sequence by the stddev
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one
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Pre-Processing

z-Normalization

• when to z-normalize

▫ interested in trends
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Pre-Processing

z-Normalization

• when to z-normalize

▫ interested in trends

• when not to z-normalize

▫ interested in absolute values
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Publications

Keogh -
KDD‘04

for a complete 
and detailed 
presentation, 
see tutorial:



Comparison of Representations

• which representation is the best?
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Comparison of Representations

• which representation is the best?

• depends on data characteristics
▫ periodic, smooth, spiky, …
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Comparison of Representations

• which representation is the best?

• depends on data characteristics
▫ periodic, smooth, spiky, …

• overall (averaged over many diverse datasets, using same 
memory budget), when measuring reconstruction error (RMSE)
▫ no big differences among methods

▫ DFT, PAA, DWT (Haar), iSAX slightly better

• should also take into account other factors
▫ visualization, indexable, ...

Publications

Palpanas et al.
ICDE’04

Palpanas et al.
TKDE’08

Shieh et al.
KDD’08
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GEMINI Framework

• Raw data: original full-dimensional space 

• Summarization: reduced dimensionality space

• Searching in original space costly

• Searching in reduced space faster:

▫ Less data, indexing techniques available, lower bounding

• Lower bounding enables us to

▫ prune search space: throw away data series based on reduced 

dimensionality representation

▫ guarantee correctness of answer

 no false negatives

 false positives filtered out based on raw data

Publications

Faloutsos-
SIGMOD’94
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GEMINI Solution: Quick filter-and-refine:

• extract m features (numbers, e.g., average)

• map to point in m-dimensional feature space

• organize points

• retrieve the answer using a NN query

• discard false positives

Publications

Faloutsos-
SIGMOD’94

GEMINI Framework
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GEMINI: contractiveness

• GEMINI works when:

Dfeature(F(x), F(y)) <= D(x, y)

• Note that, the closer the feature distance to the
actual one, the better

Publications

Faloutsos-
SIGMOD’94
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Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Answering a similarity search query using different access paths

(a) Serial scan

Similarity Matching

Serial Scan
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Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Similarity Matching

Serial Scan
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Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx
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its corresponding leaf cannot be pruned
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Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

bsf     = +ꝏ

lbcur = +ꝏ

lower-bounding (lb) property:   
dlb(Q’, Ci’)  <= d(Q, Ci)

Publications

Faloutsos-
SIGMOD’94
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Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 
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(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans
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Memory

Disk

2

4

1

Answering a similarity search query using different access paths

(a) Serial 
scan

(b) Skip-sequential 
scan

(c) Tree-based index

3

1 2

Access Paths

OQ O
Q

OQ

The summary of OQ (OQ’) is compared to 
the summary of each candidate

Ox OxOx

OQ is compared to each raw candidate in 
the dataset before returning the answer Ox

OQ is compared to a raw candidate only if 
its summary cannot be pruned 
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Memory

Disk

Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)

lbcur =  dlb(OQ’, Ox’) < bsf
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Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)

lbcur =  dlb(OQ’, Ox’) < bsf

lbcur =  dlb(OQ’, Ox’) < (1+ε) bsf
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Memory

Disk

Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε) = δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)
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Memory

Disk

Extensions: Skip-Sequential Scans

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)
If bsf <=(1+ε) rδ(OQ)

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer

with probability at 

least δ
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bsf = d(OQ,O3)

lbcur =  dlb(OQ’,      ) < bsf

3

1 2

Extensions: Indexes

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

1   

Ox
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Extensions: Indexes
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distance (1+ ε) of 

the exact answer with 
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bsf = d(OQ,O3)

If bsf <=     

3

1 2

Extensions: Indexes

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer

with probability at 

least δ

(1+ε) rδ(OQ)

Ox
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for a more complete and detailed presentation, see tutorial:

Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas. Big Sequence 
Management: Scaling Up and Out. EDBT 2021

http://helios.mi.parisdescartes.fr/~themisp/publications.html#tutorials

171
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Publications

Echihabi-
EDBT‘21

http://helios.mi.parisdescartes.fr/~themisp/publications.html#tutorials
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A data series T
iSAX Summarization

• indexable Symbolic Aggregate 
approXimation (SAX) 
▫ (1) Represent data series T of length n

with w segments using Piecewise 
Aggregate Approximation (PAA)
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iSAX Summarization

• indexable Symbolic Aggregate 
approXimation (SAX) 
▫ (1) Represent data series T of length n

with w segments using Piecewise 
Aggregate Approximation (PAA)
 T typically normalized to μ = 0, σ = 1

 PAA(T,w) =                         

where  
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iSAX Summarization

• indexable Symbolic Aggregate 
approXimation (SAX) 
▫ (1) Represent data series T of length n

with w segments using Piecewise 
Aggregate Approximation (PAA)
 T typically normalized to μ = 0, σ = 1

 PAA(T,w) =                         

where  

▫ (2) Discretize into a vector of symbols 
 Breakpoints map to small alphabet a

of symbols

wttT ,,1 =


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w
n
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iSAX Summarization

iSAX Summarization

• based on iSAX representation, which offers a bit-aware, 
quantized, multi-resolution representation with variable 
granularity

=    { 6, 6, 3, 0}  =    {110 ,110 ,0111 ,000}

=    { 3, 3, 1, 0}    =    {11  ,11  ,011 ,00 }

=    { 1, 1, 0, 0}    =    {1 ,1 ,0 ,0  }

Publications

Shieh-
KDD‘08
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index Family
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index Family

e.g., th=4, w=4, b=1

1  1  1  0
1  1  1  0
1  1  1  0
1  1  1  0
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index Family

1  1  1  0
1  1  1  0
1  1  1  0
1  1  1  0

e.g., th=4, w=4, b=1

Insert:
1  1  1  0
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index Family

1  1  10 0
1  1  10 0

1  1  11 0
1  1  11 0

e.g., th=4, w=4, b=1

1  1  11 0

1  1  1 0
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index Family
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▫ base cardinality b (optional), segments w, threshold th
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• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

iSAX Index Family
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iSAX Index Family

• non-balanced tree-based index with non-overlapping regions, and 
controlled fan-out rate

▫ base cardinality b (optional), segments w, threshold th

▫ hierarchically subdivides SAX space until num. entries ≤ th

• Approximate Search
▫ Match iSAX representation at each level

• Exact Search
▫ Leverage approximate search

▫ Prune search space

 Lower bounding distance
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ROOT

. . .0  0  0  0 1  1  1 0 1  1  1  1

1  1  1  0 1  1  1  0

1  1  1  0

1  1  1  11  1  1  10 1

0 1

0
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iSAX

. . .

Publications

Shieh-
KDD‘08
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iSAX2+
Publications

Camerra-
ICDM‘10

Camerra-
KAIS‘14
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ADS+

• novel paradigm for building a data series index

▫ does not build entire index and then answer queries

▫ starts answering queries by building the part of the index needed 
by those queries

• still guarantees correct answers

• intuition for proposed solution

▫ builds index using only iSAX summaries; uses large leaf size

▫ postpones leaf materialization to query time

▫ only materialize (at query time) leaves needed by queries

▫ parts that are queried more are refined more

▫ use smaller leaf sizes (reduced leaf materialization and query 
answering costs)

Publications

Zoumbatianos-
SIGMOD‘14

Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16
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Raw data

PARTIAL
PARTIAL

ROOT

I1

L5L2

L1

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

TOO BIG!

Publications

Zoumbatianos-
SIGMOD‘14

Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16
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Raw data
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ROOT
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L5

I3
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LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

PARTIAL

L5L4

Adaptive split

Create a smaller leaf

Publications

Zoumbatianos-
SIGMOD‘14

Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16
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ADS Index creation

190
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Breakdown of time consumption 

Read data

Write data

CPU



ADS Index creation
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35%

5%

60%

Breakdown of time consumption 

Read data

Write data

CPU

~60% of time spent in CPU: potential for improvement!

60%



Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Lavchenko-
KAIS’20
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current solution for modern hardware

▫ completely masks out the CPU cost

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current solution for modern hardware

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 3 orders of magnitude faster then single-core solutions
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current solution for modern hardware

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 3 orders of magnitude faster then single-core solutions

k-NN Classification

Publications
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current solution for modern hardware

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 3 orders of magnitude faster then single-core solutions

18x faster

k-NN Classification

Publications
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current solution for modern hardware

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 3 orders of magnitude faster then single-core solutions

18x faster

k-NN Classification

classifying 100K objects using a 100GB dataset 
goes down from several days to few hours!

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current single-node parallel solution

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 >1 order of magnitude faster then single-core solutions

• MESSI: current single-node parallel solution + in-memory data

▫ answers exact queries at interactive speeds: ~50msec on 100GB

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21

Peng-
ICDE’20
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS+: current single-node parallel solution

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 >1 order of magnitude faster then single-core solutions

• MESSI: current single-node parallel solution + in-memory data

▫ answers exact queries at interactive speeds: ~50msec on 100GB

• SING: current single-node parallel solution + GPU + in-memory data

▫ answers exact queries at interactive speeds: ~32msec on 100GB

Publications

Yagoubi-
ICDM‘17

Yagoubi-
TKDE’18

Peng-
BigData’18

Lavchenko-
KAIS’20

Peng-
TKDE’21

Peng-
ICDE’20

Peng-
ICDE’21
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time

Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19
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Extensions…

Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19

Kondylakis-
VLDBJ’20

Coconut-LSM
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Extensions…

Coconut-LSM
Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19

Kondylakis-
VLDBJ’20
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time

• ULISSE: current solution for variable-length queries

▫ single-index support of queries of variable lengths

Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19

Linardi-
ICDE’18

Linardi-
PVLDB‘19

Kondylakis-
VLDBJ’20

Linardi-
VLDBJ‘20
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time

• ULISSE: current solution for variable-length queries

▫ single-index support of queries of variable lengths

Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19

Linardi-
ICDE’18

Linardi-
PVLDB‘19

Kondylakis-
VLDBJ’20

Linardi-
VLDBJ‘20
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time

• ULISSE: current solution for variable-length queries

▫ single-index support of queries of variable lengths

▫ orders of magnitude faster than competing approaches

Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19

Linardi-
ICDE’18

Linardi-
PVLDB‘19

Kondylakis-
VLDBJ’20

Linardi-
VLDBJ‘20
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iSAX Index Family

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows 
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity 
search with deterministic and probabilistic quality guarantees.

Publications

Palpanas-
ISIP‘19

iSAX

iSAX2+ 

2008 2010 2014 2015 2017 2018 2019 2020

basic 

index

C

C#, C

C#

Java
(Spark)

C

C

C

timeline

iSAX 2.0

ADS / 
ADS+

ADSFull

DPiSAX 

ParIS ParIS+ MESSI

Coconut-Trie / 
Coconut-Tree

ULISSE

Coconut-LSM

iSAX2+*

ADS+*

+ Bulk 

Loading

+ Adaptive

+ Distributed 

+ Multi-Core, 

Multi-Socket, SIMD

+ Sortable Summarizations,

Streaming Data Series

+ Variable-Length Queries

CSING
+ Graphics Processing   

Units (GPUs)
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Symbolic Fourier Approximation (SFA)

Summarization

The SFA representation*
*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx

Publications

Schafer-
ICDE‘12
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SFA

Indexing

The SFA Trie*
*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx

Publications

Schafer-
ICDE‘12
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DSTree

Summarization

Intertwined with indexing

The APCA and EAPCA representations

Publications

Wang-
PVLDB‘13
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DSTree

Indexing

Each node contains
❑ # vectors
❑ segmentation SG
❑ synopsis Z

Each Leaf node also :
❑ stores its raw 
vectors in a separate
disk file

Publications

Wang-
PVLDB‘13
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ParSketch
⚫ solution for distributed processing (Spark)

⚫ represents data series using sketches

⚫ using a set of random vectors (Johnson-Lindenstrauss lemma)

Publications

Cole et al.
KDD‘05

Yagoubi et al.
DMKD‘18
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ParSketch
⚫ solution for distributed processing (Spark)

⚫ represents data series using sketches

⚫ using a set of random vectors (Johnson-Lindenstrauss lemma)

Publications

Cole et al.
KDD‘05

Yagoubi et al.
DMKD‘18
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ParSketch
⚫ solution for distributed processing (Spark)

⚫ represents data series using sketches

⚫ using a set of random vectors (Johnson-Lindenstrauss lemma)

⚫ define groups of dimensions in sketches

⚫ store the values of each group in a grid (in parallel)

⚫ each grid is kept by a node

node 1 node 2

Publications

Cole et al.
KDD‘05

Yagoubi et al.
DMKD‘18
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ParSketch
⚫ solution for distributed processing (Spark)

⚫ represents data series using sketches

⚫ using a set of random vectors (Johnson-Lindenstrauss lemma)

⚫ define groups of dimensions in sketches

⚫ store the values of each group in a grid (in parallel)

⚫ each grid is kept by a node

⚫ for ng-approximate query answering (originally proposed for ε-range queries)

⚫ find in the grids time series that are close to the query

⚫ finally, check the real similarity of candidates to find the results

⚫ performs well for high-frequency series

node 1 node 2

Publications

Cole et al.
KDD‘05

Yagoubi et al.
DMKD‘18
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⚫ other techniques, not covered here:

⚫ TARDIS

⚫ KV-Match

⚫ L-Match

Publications

Feng-
IEEE Access‘20

Wu-
ICDE‘19

Zhang-
ICDE‘19
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⚫ other techniques, not covered here:

⚫ TARDIS

⚫ KV-Match

⚫ L-Match

• for a more complete and detailed presentation, see tutorial:

▫ Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas. Big Sequence 
Management: Scaling Up and Out. EDBT 2021

Publications

Feng-
IEEE Access‘20

Wu-
ICDE‘19

Zhang-
ICDE‘19

Echihabi-
EDBT‘21
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High-d Vector Similarity Search Methods

• Tree-Based Methods

• Hash-Based Methods

• Quantization-Based Methods 

• Graph-Based Methods

Echihabi, Zoumpatianos, Palpanas - ICDE 2021
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KD-tree

• Solution for exact kNN search

Publications

Bentley
CACM’75
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Randomized KD-tree
Publications

Silpa-Anan
CVPR’08

• Solution for ng-approximate kNN search
▫ Multiple randomized kd-trees with a small set of 

dimensions with highest variance

▫ Concurrent search on the forest of kd-trees

Example of randomized kd-trees. The nearest neighbor is across a decision 
boundary from the query point in the first decomposition, however is in the same 
cell in the second decomposition.

Figure from Muja 
et al. VISAPP’’09
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Flann

• Solution for ng-approximate kNN search
▫ Randomized kd-tree

▫ Hierarchical k-means

Publications

Muja et al.
VISAPP’09

Projections of priority search k-means trees constructed using different 
branching factors: 4, 32, 128
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dL2

C D E F

A  B

B

F
D

EA

C

Slide by M. Patella.

• Solution for exact and δ-ε-approximate kNN search

• Each node N of the tree has an associated region, Reg(N), defined as

Reg(N) = {p: p U , d(p,vN)  rN}

where:

▫ vN (the “center”) is also called a routing object, and 

▫ rN is called the (covering) radius of the region

• The set of indexed points p that are reachable from node N are guaranteed to have d(p,vN)  rN

Publications

MTree Ciaccia et al.
VLDB’97

Ciaccia et al.
ICDE’00
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Slides by M. Patella.

Publications

MTree Ciaccia et al.
VLDB’97

Ciaccia et al.
ICDE’00• Each node N stores a variable number of entries

Leaf node:

• An entry E has the form E=(ObjFeatures,distP,TID), where

▫ ObjFeatures are the feature values of the indexed object

▫ distP is the distance between the object and its parent routing 
object (i.e, the routing object of node N)

Internal node:

• E=(RoutingObjFeatures,CoveringRadius,distP,PID), where

▫ RoutingObjFeatures are the feature values of the routing object

▫ CoveringRadius is the radius of the region

▫ distP is the distance between the routing object and its parent 
routing object (undefined for entries in the root node)
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Mtree- Fast pruning based on distP
• Pre-computed distances distP are exploited during query 

execution to save distance computations

• Let vP be the parent (routing) object of vN

• When we come to consider the entry of vN, we

▫ have already computed the distance d(q,vP) between the 
query and its parent

▫ know the distance d(vP,vN)

rN

vN

q

r

From the triangle inequality it is:
d(q,vN)  |d(q,vP) - d(vP,vN)|

Thus we can prune node N 
without computing d(q,vN) if 

|d(q,vP) - d(vP,vN)| > rN + r

vP

d(vP,vN)
d(q,vP)

Publications

Ciaccia et al.
VLDB’97

Ciaccia et al.
ICDE’00

Consider a range query {p: d(p,q)  r}
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HD-Index
• Solution for ng-approximate kNN search

▫ Index creation

 Dimensions are partitioned
 For each partition, a space-filling (Hilbert) curve is passed
 Hilbert keys are indexed using a modified B+-tree
 Reference objects are chosen
 Leaves of B+-trees contain distance to reference objects in the

full-dimensional space
 Modified B+-trees are called Reference Distance B+-trees (RDB-trees)
 Collection of RDB-trees form High-Dimensional Index (HD-Index)

Publications

Arora et al.
PVLDB‘18

Slide by A. Bhattacharya
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HD-Index
• Solution for ng-approximate kNN search

▫ Query answering

 Query Q partitioned into same subspaces
 For each RDB-tree, initial search retrieves α candidates 

 α/2 on each side of the query Hilbert key
 Candidates are refined successively to β and γ candidates using triangular and 

Ptolemaic inequalities
 Collection of all such candidates form the final candidate set of size κ
 Exact distance computations are done with these κ candidates to return top-k

Publications

Arora et al.
PVLDB‘18

Slide by A. Bhattacharya
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• Solution for δ-ε-approximate kNN search δ < 1

• Random projections into a lower dimensional space using hashing

• Probability of collisions increases with locality

• c-Approximate r-Near Neighbor: build data structure which, for any 
query q:
▫ If there is a point p ∈P, ||p-q|| ≤ r  Then return p’ ∈ P, ||p-q|| ≤ c r 

• c-approximate nearest neighbor reduces to c-approximate near neighbor
▫ Enumerate all approximate near neighbors

• Find a vector in a preprocessed set S ⊆ {0, 1} d that has minimum 
Hamming distance to a query vector y ∈ {0, 1} d

Locality Sensitive Hashing (LSH) Publications

Indyk et al.
STOC’98

(r1, r2, p1, p2)-sensitive [IM98]
• Pr[ h(x) = h(y) ] ≥ p1 , if dist(x, y) ≤ r1

• Pr[ h(x) = h(y) ] ≤ p2 , if dist(x, y) ≥ r2
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• A large family

▫ Different distance measures:

 Hamming distance

 Lp (0 < p ≤ 2): use p-stable distribution to generate 
the projection vector

 Angular distance (simHash)

 Jaccard distance (minhash)

▫ Tighter Theoretical Bounds

▫ Better query efficiency/smaller index size

Locality Sensitive Hashing (LSH)
Publications

Andoni et al.
CACM’08
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• Probabilistic, linear mapping from the original 
space to the projected space

hat about the distances (wrt Q or 𝜋(Q)) in these two 
spaces?

d dims

P

𝜋(P)

m dims

𝜋(O) = [h1(O), h2(O),  …, 
hm(O)]

Probabilistic Mapping

Slide by W. Wang
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• Probabilistic, linear mapping from the original space to 
the projected space

• What about the distances (wrt Q or 𝜋(Q)) in these two 
spaces?

d dims

Dist(P)

P

𝜋(Q)

𝜋(P)

m dims

𝜋(O) = [h1(O), h2(O),  …, 
hm(O)]

Q

Probabilistic Mapping

Slide by W. Wang
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SRS
d dims

Q

Dist(P)

P

𝜋(Q)

𝜋(P)

m dims

𝜋(O) = [h1(O), h2(O),  …, 
hm(O)]

Publications

Sun et al.
PVLDB’ 14

• Given that ProjDist(P) ≤ r, what can we infer about Dist(P)?
▫ If Dist(P) ≤ R, then Pr[ ProjDist(P) ≤ r ] ≥  Ψm( (r/R)2 )
▫ If Dist(P) > cR, then Pr[ ProjDist(P) ≤ r ] ≤ Ψm( (r/cR)2 ) = t
▫ (some probability) at most O(tn) points with ProjDist ≤ R
▫ (constant probability) one of the O(tn) points has Dist ≤ R

ProjDist(P)2 ~ Dist(P)2 * χ2
m

• This solves the so-called (R, c)-NN queries ➔ returns a c2 ANN
• Using another algorithm & proof ➔ returns a c-ANN Slide by W. Wang
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C2LSH/QALSH

d dims

Q

Dist(P)

P

𝜋(Q)

𝜋(P)

m dims

𝜋(O) = [h1(O), h2(O),  …, 
hm(O)]

Publications

• Given that P’s #collision ≥ 𝛼m, what can we infer about Dist(P)?
▫ If Dist(P) ≤ R, then Pr[ #collision ≥ 𝛼m ] ≥  𝛾1

▫ If Dist(P) > cR, then Pr[ #collision ≥ 𝛼m ] ≤ 𝛾2

▫ (some probability) at most O(𝛾2*n) points with #collision ≥ 𝛼m
▫ (constant probability) one of the O(𝛾2*n) points has #collision ≥ 𝛼m

Collision wrt w: if |hi(P) – hi(Q)| ≤ w

Huang et al.
PVLDB’ 15

Gan et al.
SIGMOD’12

Slide by W. Wang
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Query-oblivious LSH functions Publications

Huang et al.
PVLDB’15

• The query-oblivious LSH functions for Euclidean distance:

ℎ𝑎,𝑏 𝑜 =
Ԧ𝑎 ⋅ Ԧ𝑜 + 𝑏

𝑤

𝒙𝟎

𝒚

𝒐 𝒂

Ԧ𝑎 ⋅ Ԧ𝑜
random shift 
𝒃

Ԧ𝑎 ⋅ Ԧ𝑜 + 𝑏

random 
projection

Query-Oblivious Bucket 
Partition: 

– Buckets are statically determined 
before any query arrives;

– Use the origin (i.e., “0”) as anchor;

– If 𝒉𝒂,𝒃 𝒐 = 𝒉𝒂,𝒃 𝒒 , we say 𝒐 and 𝒒

collide under ℎ𝑎,𝑏 ⋅ .

Slide by Q. Huang
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Publications

Huang et al.
PVLDB’ 15

QALSH

• Query-aware LSH function = random projection + query-aware 
bucket partition 

𝒉𝒂 𝒐 = 𝒂 ⋅ 𝒐

Query-Aware Bucket Partition: 

– Buckets are dynamically determined 
when 𝒒 arrives;

– Use “𝒉𝒂(𝒒)” as anchor ;

– If an object 𝑜 falls into the anchor 

bucket, i.e., 𝒉𝒂 𝒐 − 𝒉𝒂 𝒒 ≤
𝒘

𝟐
, we 

say 𝒐 and 𝒒 collide under ℎ𝑎 ⋅ .𝒙𝟎

𝒚

𝒒 𝒂random 
projection

𝒉𝒂(𝒒)

𝒉𝒂(𝒐𝟏)

𝒉𝒂(𝒐𝟐)

𝒐𝟏

𝒐𝟐

Slide by Q. Huang
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Publications

Lu et al.
PVLDB’ 20

VHP

▫ Indexing:
 Store LSH projections with 

independent
B+ trees.

▫ Querying
 Impose a virtual hypersphere in the 

original high-d space

 Keep enlarging the virtual 
hypersphere to accommodate more 
candidate until the success probability 
is met

• Solution for δ-ε-approximate kNN search

Slide by W. Wang
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Method Collision Count (Observed) 
Distance 

Max Candidates

SRS = m ≤ r T

QALSH ≥ 𝛼m n/a 𝛽n

VHP ≥ i (i = 1, 2, …, m) ≤ li 𝛽n

Candidate Conditions

Candidate Regions

SRS

VHP = SRS ∩ QALSH

VHP

Some Comparisons

Slide by W. Wang

Publications

Huang et al.
PVLDB’ 15

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



247

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



11

10

01

00

00 01 10 11

p1 0.1  0.6

p2 0.7  0.4

p3 0.9  0.3

p1

p2

p3

p1 00 10

p2 10  01

p3 11  11

Data space

Feature values VA-file

Publications

Blott et. al
VLDB’98

VA-file

Slides by M. Patella.

• A solution for exact kNN search

• The basic idea of the VA-file is to speed-up the sequential scan 
by exploiting a “Vector Approximation”

• Each dimension of the data space is partitioned into 2bi intervals
using bi bits

▫ E.g.: the 1st coordinate uses 2 bits, which leads to the 
intervals 00,01,10, and 11

• Thus, each coordinate of a point (vector) requires now bi bits 
instead of 32 

• The VA-file stores, for each point of the dataset, its 
approximation, which is a vector of i=1,D bi bits
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Publications

Blott et. al
VLDB’98

VA-file

Slides by M. Patella.

actual results
false drops
excluded points

q
r

• Query processing with the VA-file 
is based on a filter & refine 
approach

• For simplicity, consider a range 
query

Filter: the VA file is accessed and 
only the points in the regions that 
intersect the query region are 
kept

Refine: the feature vectors are 
retrieved and an exact check is 
made
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VA+file

• Solution for exact kNN search

• An improvement of the VA-file method:
▫ Does not assume that neighboring dimensions are 

uncorrelated

▫ Decorrelates the data using KLT

▫ Allocates bits per dimension in a non-uniform fashion

▫ Partitions each dimension using k-means instead of 
equi-depth

Publications

Ferhatosmanoglu
et al.

CIKM’00
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Visual codebook

"Visual word"

Publications

Sivic et al.
ICCV’ 03

The Inverted Index

Slide by A. Babenko
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• Have to consider several 
words for best accuracy

• Want to use as big 
codebook as possible 

• Want to spend as little 
time as possible for 
matching to codebooks

conflict

Query:

Querying the Inverted Index Publications

Sivic et al.
ICCV’ 03

Slide by A. Babenko
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1. Split vector into correlated subvectors
2. use separate small codebook for each chunk

For a budget of 4 bytes per descriptor:

1. Can use a single codebook with 1 billion codewords many minutes     128GB 

2. Can use 4 different codebooks with 256 codewords each    < 1 millisecond    32KB

IVFADC+ variants (state-of-the-art for billion scale datasets) =
inverted index for indexing + product quantization for reranking

Quantization vs. Product quantization:

Product Quantization Publications

Jegou et al.
TPAMI’ 11

Slide by A. Babenko
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Idea: use product quantization
for indexing 

Main advantage:
For the same K, much finer 
subdivision achieved

Main problem:
Very non-uniform entry size 
distribution

The Inverted Multi-Index
Publications

Babenko et al.
TPAMI’ 12

Slide by A. Babenko

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



1 2

3 4

5 6

7

8

9

1
0

Input: query
Output: stream of entries

Answer to the query:

Querying the Inverted Multi-Index Publications

Babenko et al.
TPAMI’ 12

Slide by A. Babenko
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Conceptual Graphs

• Voronoi/Delaunay Diagrams

• kNN Graphs

• Navigable Small World Graphs

• Relative Neighborhood graphs
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The Delaunay Diagram
Publications

Delaunay
CSMN’ 39

Delaunay Diagram – Dual of Voronoi 
Diagram   
• The VD is constructed by 

decomposing the space using a finite 
number of points, called sites into 
regions, such that each site is 
associated to a region  consisting of all 
points closer to it than to any other 
site. 

• The DT is the dual of the VD, 
contructed by connecting sites with an 
edge if their regions share a side.

Voronoi Diagram

Delaunay Diagram
Echihabi, Zoumpatianos, Palpanas - ICDE 2021



kNN Graphs

• Exact kNN graphs on n d-dimensional points:
▫ Each point in the space is considered a node
▫ A directed edge is added between nodes node A and B (A -=> B) 

if B is a k-nearest neighbor of A
▫ O(dn2)
▫ Example: L2knng

• Approximate kNN Graphs:
▫ LSH
▫ Heuristics

 Example: NN-Descent: “a neighbor of a neighbor is also likely to be a 
neighbor”

Publications

Anastasiu et al.
CIKM’ 15

Dong et al.
WWW’ 11

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



NSW Graphs

• Augment approximate kNN graphs with long range links:

▫ Milgram experiment

▫ Shorten the greedy algorithm path to log(N)

Publications

Kleinberg
STOC’ 00
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Relative Neighbourhood graph (RNG)

 A superset of the minimal spanning tree (MST) and a subset of the 
Delaunay Diagram.

 Two algorithms for obtaining the RNG of n points on the plane:

 An algorithm for 1-d space in 0(n2) time

 Another algorithm for d-dimensional spaces running in 0(n3).

 An edge is constructed between two vertices if there is no vertex in the 
intersection of the two balls

Publications

Toussaint
Pat. Recognit.’80
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N2=N/4

N1=N/2

N0=N

● In HNSW we split the graph into layers 

(fewer elements at higher levels) 

● Search starts for the top layer. Greedy 

routing at each level and descend to 

the next layer.

● Maximum degree is capped while 

paths ~ log(N) → log(N) complexity 

scaling.

● Incremental construction 

Publications

Malkov et al.
TPAMI’ 20
Arxiv’16

HNSW

Slides by Malkov
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Publications

Fu et al.
PVLDB’ 19Navigating Speading-out Graph (NSG)

 RNGs do not guarantee monotonic search

 There exists at least one monotonic path. Following 
this path, the query can be approached with the 
distance decreasing monotonically

 Propose a Monotonic RNG (MRNG)

 Build an approximate kNN graph.

 Find the Navigating Node. (All search will start 
with this fixed node – center of the graph ).

 For each node p, find a relatively small 
candidate neighbour set. (sparse)

 Select the edges for p according to the definition 

of MRNG. (low complexity)

 leverage Depth-First-Search tree (connectivity)

Slides by Fu
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How do similarity search methods 

compare?

• several methods proposed in last 3 decades by different 
communities

• never carefully compared to one another

• we now present results of extensive experimental comparison
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Similarity Search 
Methods

Methods

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees
0 ⩽ δ ⩽ 1, ε ⩾ 0

* result is within distance

(1+ ε) of the exact answer 
with probability δ

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

* result is within distance

(1+ ε) of the exact answer 
with probability δ

Probabilistic

δ < 1, ε guarantee

0 ⩽ δ ⩽ 1, ε ⩾ 0

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

* result is within distance

(1+ ε) of the exact answer 
with probability δ

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

0 ⩽ δ ⩽ 1, ε ⩾ 0

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

* result is within distance

(1+ ε) of the exact answer 
with probability δ

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

Exact

δ = 1, ε = 0 guarantee

0 ⩽ δ ⩽ 1, ε ⩾ 0

Publications

Echihabi-
PVLDB‘18

Echihabi-
PVLDB‘19
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

* result is within distance

(1+ ε) of the exact answer 
with probability δ

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

Exact

δ = 1, ε = 0 guarantee

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

0 ⩽ δ ⩽ 1, ε ⩾ 0

Echihabi-
PVLDB‘19

Techniques for data Series
Techniques for High-D vectors

Publications

Echihabi-
PVLDB‘18
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

Exact

δ = 1, ε = 0 guarantee

* result is within distance

(1+ ε) of the exact answer 
with probability δ
extensions

0 ⩽ δ ⩽ 1, ε ⩾ 0

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

ADS+           IMI

CK-Means iSAX2+[ ]

DSTree [ ]     NSG

Flann SFA 

HD-index VA+file[ ]

HNSW

Echihabi-
PVLDB‘19

Techniques for data Series
Techniques for High-D vectors

Publications

Echihabi-
PVLDB‘18
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ng-Approximate

Similarity Search 
Methods

No guarantees

Methods

δ-ε-Approximate*

δ,ε guarantees

Probabilistic

δ < 1, ε guarantee

ε-Approximate

δ = 1, ε guarantee

Exact

δ = 1, ε = 0 guarantee

* result is within distance

(1+ ε) of the exact answer 
with probability δ

extensions

ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

VA+file[ ]

0 ⩽ δ ⩽ 1, ε ⩾ 0

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

ADS+           IMI

CK-Means iSAX2+[ ]

DSTree [ ]     NSG

Flann SFA 

HD-index VA+file[ ]

HNSW

Echihabi-
PVLDB‘19

Techniques for data Series
Techniques for High-D vectors

Publications

Echihabi-
PVLDB‘18
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δ-ε-Approximate* ng-Approximate

Probabilistic ε-Approximate

Exact

Similarity Search 
Methods

δ,ε guarantees No guarantees

δ < 1, ε guarantee δ = 1, ε guarantee

δ = 1, ε = 0 guarantee

* result is within distance

(1+ ε) of the exact answer 
with probability δ

extensions

Methods

ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

VA+file[ ]

ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

QALSH

SRS

VA+file[ ]

0 ⩽ δ ⩽ 1, ε ⩾ 0

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

ADS+           IMI

CK-Means iSAX2+[ ]

DSTree [ ]     NSG

Flann SFA 

HD-index VA+file[ ]

HNSW

Echihabi-
PVLDB‘19

Techniques for data Series
Techniques for High-D vectors

Publications

Echihabi-
PVLDB‘18
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Experimental Framework

• Hardware

▫ HDD and SSD

• Datasets

▫ Synthetic (25GB to 1TB) and 4 real (100 GB)

• Exact Query Workloads

▫ 100 – 10,000 queries 

• Performance measures

▫ Time, #disk accesses, footprint, pruning, Tightness of Lower 
Bound (TLB), etc.

• C/C++ methods (4 methods reimplemented from scratch) 

• Procedure:

▫ Step 1: Parametrization

▫ Step 2: Evaluation of individual methods

▫ Step 3: Comparison of best methods

Publications

Echihabi-
PVLDB‘18
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Time for Indexing (Idx) vs. Dataset 

Size
RAM=75GB
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Time for Indexing (Idx) vs. Dataset 

Size

ADS+ fastest

RAM=75GB
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Time for Indexing (Idx) vs. Dataset 

Size

ADS+ fastest

DSTree slowest 
RAM=75GB
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Time for 100 Exact Queries vs. 

Dataset size
RAM=75GB
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Time for 100 Exact Queries vs. 

Dataset size
RAM=75GB

In-memory:

VA+file fastest 
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Time for 100 Exact Queries vs. 

Dataset size
RAM=75GB

disk: 

DSTree fastest

In-memory:

VA+file fastest 
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Time for Idx + 10K Exact Queries vs. 

Dataset size
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Time for Idx + 10K Exact Queries vs. 

Dataset size

In-memory:

VA+file fastest
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Time for Idx + 10K Exact Queries vs. 

Dataset size

In-memory:

VA+file fastest

disk: 

DSTree fastest

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



Time for Idx + 10K Exact Queries vs. 

Series Length

(Size = 100GB, Dimensions = 16)
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Time for Idx + 10K Exact Queries vs. 

Series Length

Steady performance for 

most methods

(Size = 100GB, Dimensions = 16)
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Time for Idx + 10K Exact Queries vs. 

Series Length

VA+file and ADS+ get faster 

with increasing length

Steady performance for 

most methods

(Size = 100GB, Dimensions = 16)
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Unexpected Results

• Some methods do not scale as expected (or not at all!)

• Brought back to the spotlight two older methods VA+file
and DSTree
▫ New reimplementations outperform by far the original ones 

• Optimal parameters for some methods are different 
from the ones reported in the original papers

• Tightness of Lower Bound (TLB) does not always 
predict performance

Publications

Echihabi-
PVLDB‘18
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TLB does not always predict 

performance

Publications

Echihabi-
PVLDB‘18

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



TLB does not always predict 

performance
The TLB measures the quality of a summarization (higher is better)

Publications

Echihabi-
PVLDB‘18
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TLB does not always predict 

performance
The TLB measures the quality of a summarization (higher is better)

TLB =
𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑝𝑎𝑐𝑒

𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒

Publications

Echihabi-
PVLDB‘18
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TLB does not always predict 

performance
The TLB measures the quality of a summarization (higher is better)

0 ≤ ≤ 1

worst best

TLB =
𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑝𝑎𝑐𝑒

𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒
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TLB does not always predict 

performance
The TLB measures the quality of a summarization (higher is better)

0 ≤ ≤ 1

worst best

DSTree and iSAX2+ have similar TLB

TLB =
𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑝𝑎𝑐𝑒

𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒

Publications
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TLB does not always predict 

performance
The TLB measures the quality of a summarization (higher is better)

0 ≤ ≤ 1

worst best

DSTree and iSAX2+ have similar TLB

iSAX2+ 5x slower than 

DSTree

TLB =
𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑝𝑎𝑐𝑒

𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒
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TLB does not always predict 

performance
The TLB measures the quality of a summarization (higher is better)

TLB =
𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑝𝑎𝑐𝑒

𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒
0 ≤ ≤ 1

worst best

DSTree and iSAX2+ have similar TLB

No bias, same data and same implementation framework

iSAX2+ 5x slower than 

DSTree

Publications

Echihabi-
PVLDB‘18
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Insights

• Results are sensitive to:

▫ Parameter tuning

▫ Hardware setup

▫ Implementation

▫ Workload selection

• Results identify methods that would benefit from modern 
hardware

Publications

Echihabi-
PVLDB‘18
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Scenario: Indexing and answering 10K exact queries on HDD

Recommendations

Publications

Echihabi-
PVLDB‘18
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Experimental Framework
• Datasets

▫ In-memory and disk-based datasets

▫ Synthetic data modeling financial time series 

▫ Four real datasets from deep learning, computer vision, seismology, and 
neuroscience (25GB-250GB)

• Query Workloads

▫ 100 – 10,000 kNN queries k in [1,100]

▫ ng-approximate and δ-ε-approximate queries (exact queries used as yardstick)

• C/C++ methods (3 methods reimplemented from scratch) 

• Performance measures
▫ Efficiency: time, throughput, #disk accesses, % of data accessed

▫ Accuracy: average recall, mean average precision, mean relative error 

• Procedure:

▫ Step 1: Parametrization

▫ Step 2: Evaluation of indexing/query answering scalability in-memory 

▫ Step 3: Evaluation of indexing/query answering scalability on-disk

▫ Step 4: Additional experiments with best-performing methods on disk

Publications

Echihabi-
PVLDB‘19
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Approximate Methods Covered in Study
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Our extensions

Approximate Methods Covered in Study
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Our extensions

Approximate Methods Covered in Study
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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DSTree
iSAX2+
VA+file

o Our new extensions are the overall winners even for general 
high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint
DSTree
iSAX2+
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iSAX2+
VA+file

o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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Exciting research direction for approximate similarity search in high-d 
spaces:

Currently two main groups of solutions exist:

We show that it is possible to have efficient approximate algorithms with 
guarantees

Insights
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with guarantees

relatively slow

Insights
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Approximate state-of-the-art techniques for high-d vectors are not 
practical:

Insights
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Approximate state-of-the-art techniques for high-d vectors are not 
practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)
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Data series approaches 

are the overall winners!

The only exception is HNSW for in-memory

ng-approximate queries using an existing index

Recommendations for approx. techniques
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Scenario: Answering a query workload using an existing index

Recommendations
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Challenges and Open Problems

• we are still far from having solved the problem

• several challenges remain in terms of 

▫ usability, ease of use

▫ scalability, distribution

▫ benchmarking

• these challenges derive from modern data science 
applications
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Challenges and Open Problems

Outline

• benchmarking

• interactive analytics

• parallelization and distribution

• deep learning
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Massive High-d Data Collections

Human Genome project

130 TB

NASA’s Solar Observatory 

1.5 TB per day

Large Synoptic Survey 
Telescope (2019)

~30 TB per night

336

data center and
services monitoring

2B data series
4M points/sec

Publications

Palpanas-
SIGREC’19
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Challenges and Open Problems

Outline

• benchmarking

• interactive analytics

• parallelization and distribution

• deep learning
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Previous Studies

• chosen from the data (with/without noise)

338

evaluate performance of indexing methods using random queries
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Previous Studies

With or without noise

noise

339
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Problem with
Random Queries

No control on their characteristics

We cannot properly evaluate summarizations and indexes

340

We need queries that cover the entire range 
from easy to hard
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Previous Workloads
Most previous workloads are skewed to easy queries

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

0

25

50

75

100

0.0 0.1 0.2 0.3 0.4 0.5
Hardness

%
 o

f 
q

u
e

ri
e

s

DNA

64 256 1024

341

Publications

Zoumbatianos
KDD ‘15

Zoumbatianos
TKDE ‘18

Echihabi, Zoumpatianos, Palpanas - ICDE 2021



Previous Workloads
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Most previous workloads are skewed to easy queries
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Benchmark Workloads

343

If all queries are easy 
all indexes look good

If all queries are hard 
all indexes look bad

need methods for generating queries of varying hardness
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Characterizing Queries

P4

MINDIST

MINDIST

344

Approximating distances using 
Lower Bounding functions on 
summarizations.
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Distribute points such that:
The worse a summarization
the more data it checks

Equal number of points in every “zone”

Q
1

Densification Method:

Equi-densification

345

New points

Original points
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64 bytes 32 bytes 16 bytes 8 bytes
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Experiments 
Densification Methods

Using all datasets of size 256 (100 queries for each dens. method), we measured the:
• 1-TLB: Summarization Error (0: perfect bound, 1: worst possible bound)
• Minimum Effort for a set of summarizations using 8 – 64 bytes.

Normalized over SAX-64 
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For equi-densification 
normalized Effort is closer to the normalized Summarization Error

The worse a summarization the bigger effort it does
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Summary

Theoretical background
Methodology for characterizing 
NN queries for data series indexes

Nearest neighbor query workload generator
Designed to stress-test data series indexes 
at varying levels of difficulty

348

Pros:

Time complexity
Need new approach to scale to very large datasets

Cons:
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Challenges and Open Problems

Outline

• benchmarking

• interactive analytics

• parallelization and distribution

• deep learning
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Interactive Analytics?

• analytics over high-d data is computationally expensive

▫ very high inherent complexity

• may not always be possible to remove delays

▫ but could try to hide them!
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

Publications
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BigVis‘19
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way

Echihabi, Zoumpatianos, Palpanas - ICDE 2021

358

Publications

Gogolou-
SIGMOD‘20

Gogolou-
BigVis‘19



Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way

• several exciting research problems in intersection of visualization 
and data management

▫ frontend: HCI/visualizations for querying/results display

▫ backend: efficiently supporting these operations

Publications

Gogolou-
Vis‘18
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Challenges and Open Problems

Outline

• benchmarking

• interactive analytics

• parallelization and distribution

• deep learning
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Need for

Parallelization/Distribution

• take advantage of all modern hardware opportunities!

▫ Single Instruction Multiple Data (SIMD) 

 natural for data series operations

▫ multi-tier CPU caches

 design data structures aligned to cache lines

▫ multi-core and multi-socket architectures

 use parallelism inside each computation server

▫ Graphics Processing Units (GPUs)

 propose massively parallel techniques for GPUs

▫ new storage solutions: NVRAMs, FPGAs

 develop algorithms that take these new characteristics/tradeoffs into 
account

▫ compute clusters

 distribute operation over many machines

Publications

Palpanas-
HPCS’17
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Need for

Parallelization/Distribution

• further scale-up and scale-out possible!

▫ techniques inherently parallelizable

 across cores, across machines

• need to 

▫ propose methods for concurrent query answering 

▫ combine multi-core and distributed methods 

▫ examine FPGA and NVM technologies

• more involved solutions required when optimizing for energy

▫ reducing execution time is relatively easy

▫ minimizing total work (energy) is more challenging

Publications

Palpanas-
HPCS’17
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Challenges and Open Problems

Outline

• benchmarking

• interactive analytics

• parallelization and distribution

• deep learning
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Connections to Deep Learning

• data series indexing for deep embeddings
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Connections to Deep Learning

• data series indexing for deep embeddings
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• data series indexing for deep embeddings
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Connections to Deep Learning

• data series indexing for deep embeddings
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high-d vectors learned using a DNN
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Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

Echihabi, Zoumpatianos, Palpanas - ICDE 2021

371



Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing for high-d vectors

▫ Different summarization for different high-d data types

▫ eg, autoencoders can learn efficient data series summaries
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Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing for high-d vectors

▫ Different summarization for different high-d data types

▫ eg, autoencoders can learn efficient data series summaries

• deep learning for designing index data structures

▫ learn an index for similarity search
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Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing for high-d vectors

▫ Different summarization for different high-d data types

▫ eg, autoencoders can learn efficient data series summaries

• deep learning for designing index data structures

▫ learn an index for similarity search

• deep learning for query optimization

▫ search space is vast

▫ learn optimization function Echihabi, Zoumpatianos, Palpanas - ICDE 2021
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Overall Conclusions

• High-d data is a very common data type

▫ across several different domains and applications
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• Complex analytics on high-d data are challenging

▫ have very high complexity

▫ efficiency comes from data series management/indexing techniques
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Overall Conclusions

• High-d data is a very common data type

▫ across several different domains and applications

• Complex analytics on high-d data are challenging

▫ have very high complexity

▫ efficiency comes from data series management/indexing techniques

• Several exciting research opportunities
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thank you!

google: Karima Echihabi

Kostas Zoumpatianos

Themis Palpanas

visit: http://nestordb.com
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