
A Critical Re-evaluation of Record Linkage Bench-
marks for Learning-Based Matching Algorithms

George Papadakis
National & Kapodistrian University of Athens, Greece

gpapadis@di.uoa.gr

Nishadi Kirielle
The Australian National University, Australia

nishadi.kirielle@anu.edu.au

Peter Christen
The Australian National University, Australia

peter.christen@anu.edu.au

Themis Palpanas
Université Paris Cité & French University Institute, France

themis@mi.parisdescartes.fr

Abstract—Entity resolution (ER) is the process of identifying
records that refer to the same entities within one or across
multiple databases. Numerous techniques have been developed
to tackle ER challenges over the years, with recent emphasis
placed on machine and deep learning methods for the matching
phase. However, the quality of the benchmark datasets typically
used in the experimental evaluations of learning-based matching
algorithms has not been examined in the literature. To cover this
gap, we propose four complementary approaches to assessing the
difficulty and appropriateness of 13 commonly used datasets: two
theoretical ones, which involve new measures of linearity and
existing measures of complexity, and two practical ones – the
difference between the best non-linear and linear matchers, as
well as the difference between the best learning-based matcher
and the perfect oracle. Our analysis demonstrates that most
existing benchmark datasets pose rather easy classification tasks.
As a result, they are not suitable for properly evaluating learning-
based matching algorithms. To address this issue, we propose a
new methodology for yielding benchmark datasets. We put it into
practice by creating four new matching tasks, and we verify that
these new benchmarks are more challenging and therefore more
suitable for further advancements in the field.

Index Terms—Record Linkage, Supervised Matching, Deep
Learning, Benchmark Analysis

I. INTRODUCTION

Entity Resolution (ER) aims to identify and link records
that refer to the same entity across databases, called dupli-
cates [1]. ER has been an active topic of research since the
1950s [2], while various learning-based ER techniques, both
supervised and unsupervised, have been developed in the past
two decades. For overviews of ER see [3], [4], [5], [6].

ER faces several major challenges. First, databases typically
contain no unique global entity identifiers that would allow an
exact join to identify those records that refer to the same enti-
ties. As a result, matching methods compare quasi-identifiers
(QIDs) [4], such as names and addresses of people, or titles
and authors of publications. The assumption here is that the
more similar their QIDs are, the more likely the corresponding
records are to be matching. Second, as databases are getting
larger, comparing all possible pairs of records is infeasible, due
to the quadratic cost. Instead, blocking, indexing, or filtering
techniques [7] typically identify the candidate pairs or groups
of records that are forwarded to matching.

In recent years, a diverse range of methods based on
machine learning (ML) [8] and especially deep learning (DL)
has been developed to address the first challenge, namely
matching [9], [10]. Due to the similarity of ER to natural
language processing tasks, such as machine translation or
entity extraction and recognition, many DL-based matching
techniques leverage relevant technologies like pre-trained lan-
guage models. The experimental results reported have been
outstanding, as these methods maximize matching effective-
ness in many benchmark datasets [10], [11], [12].

However, the quality of these benchmark datasets has been
overlooked in the literature – the sole exception is the analysis
of the large portion of entities shared by training and testing
sets, which results in low performance in the case of unseen
test entities [13]. Existing ER benchmark datasets typically
treat matching as a binary classification task that applies to a
set of candidate pairs generated after blocking, which typically
has a significant impact on the resulting performance [5], [14].
In general, a loose blocking approach achieves high recall,
ensuring that all positive instances (i.e., matching pairs) are
included, at the cost of many negative ones (i.e., non-matching
pairs) with low similarity, which can thus be easily discarded
by a learning-based matching algorithm, even a linear one. In
contrast, a strict blocking approach might sacrifice a small
part of the positive instances, but mostly includes highly
similar negative ones, which involve nearest neighbors and are
harder to classify, thus requiring more effective, complex and
non-linear learning-based matching algorithms. Nevertheless,
most existing datasets lack any documentation about the
blocking process that generated their candidate pairs, i.e., no
information is provided about which blocking method was
used, how it was configured and which attributes provided
the textual evidence for creating blocks. As a result, there is a
large deviation in core characteristics like the imbalance ratio
between the existing benchmarks and those created through a
principled approach that employs a fine-tuned state-of-the-art
blocking method, as we describe in Section VI.

In this paper, we aim to cover the above gap by proposing a
principled framework for assessing the quality of benchmark
datasets for learning-based matching algorithms. It consists of

two complementary types of measures. First, a-priori measures
theoretically estimate the appropriateness of a benchmark
dataset, based on the characteristics of its classes. We propose
novel measures that estimate the degree of linearity in a
benchmark dataset as well as existing complexity measures
that are applied to ER benchmarks for the first time. Second,
a-posteriori measures rely on the performance of matching
algorithms on the data at hand.

To put the latter measures into practice, we consider 7 open-
source, non-linear ML- and DL-based matching algorithms,
which include the state-of-the-art techniques in the field. We
complement them with 6 novel matching algorithms, which
perform linear classification, thus estimating the baseline per-
formance of learning-based methods. These two types of al-
gorithms allow for estimating the real advantage of non-linear
learning-based matching algorithms over simple linear ones,
and their distance from the ideal matcher (the perfect oracle).

When applying our a-priori and a-posteriori measures on
widely used benchmark ER datasets, our experimental evalu-
ation shows that most of these datasets are inappropriate for
evaluating the full potential of complex matchers, such as DL-
based ones. To address this issue, we propose a novel way
of constructing benchmarks from the same original datasets
based on blocking and the knowledge of the complete set of
real true duplicates. We apply all our measures to these new
benchmarks, demonstrating that they form harder classification
tasks that highlight the advantages of complex matchers.

To the best of our knowledge, these topics have not been
examined in the literature before. We make the following
contributions: (1) In Section III, we coin novel theoretical
measures for a-priori assessing the difficulty of ER benchmark
datasets. We also introduce two novel aggregate measures that
leverage a series of matching algorithms to a-posteriori assess
the difficulty of ER benchmarks. (2) In Section IV, we intro-
duce a taxonomy of DL-based matching methods that facili-
tates the understanding of their functionality, showing that we
consider a representative sample of the recent developments in
the field. We also define a new family of linear learning-based
matching algorithms, whose performance depends heavily on
the difficulty of ER benchmarks. These algorithms lay the
ground for estimating the two a-posteriori measures. (3) In
Section V, we perform the first systematic evaluation of 13
popular ER benchmarks, demonstrating experimentally that
most of them are too easy to classify to properly assess the
performance of matching algorithms in real ER scenarios. (4)
In Section VI, we propose a novel methodology for creating
new ER benchmarks and experimentally demonstrate that they
are more suitable for assessing the benefits of matchers. All
our code and data are publicly available.1

II. PROBLEM DEFINITION

The goal of ER is to identify duplicates, i.e., different
records that describe the same real-world entities. To this end,
an ER matching algorithm receives as input a set of candidate

1See https://github.com/gpapadis/DLMatchers for more details.

record pairs C. These are likely matches that are produced by a
blocking or filtering technique [7], which is used to reduce the
inherently quadratic computational cost (instead of considering
all possible pairs, it restricts the search space to highly similar
pairs only). For each record pair (ri, rj) ∈ C, a matching
algorithm decides whether ri ≡ rj or not, where ≡ indicates
that they are duplicates (refer to the same entity). The resulting
set of matching pairs is denoted by M , and the non-matching
pairs by N (where C = M ∪N and M ∩N = ∅).

This task naturally lends itself to a binary classification
setting. In this case, C constitutes the testing set, which is
accompanied by a training and a validation set, T and V ,
respectively, with record pairs having known labels, such
that C, T and V are mutually exclusive. As a result, the
performance of matching is typically assessed through the
F-Measure (F1) [15], which is the harmonic mean of recall
(Re) and precision (Pr), i.e., F1 = 2 · Re · Pr/(Re + Pr),
where Re expresses the portion of existing duplicates that are
classified as such, i.e., Re = |G∩M |/|G| with G denoting the
ground truth (the set of true duplicates), and Pr determines the
portion of detected matches that correspond to duplicates, i.e.,
Pr = |G∩M |/|M | [16], [17]. All these measures are defined
in [0, 1], with higher values indicating higher effectiveness.

In this given context, we formally define matching as:
Problem 1 (Matching): Given a testing set of candidate

pairs C along with a training and a validation set, T and V ,
respectively, such that C∩T = ∅, C∩V = ∅, and T ∩V = ∅,
train a binary classification model that splits the elements of
C into the set of matching and non-matching pairs, M and N
respectively, such that F1 is maximized.

By considering the candidate pairs from blocking, this defi-
nition is generic enough to cover any type of ER. Following the
literature on learning-based matching algorithms, we exclu-
sively consider record linkage (RL) [4], also known as Clean-
Clean ER [18], where the input involves two individually
duplicate-free, but overlapping databases [12], [19], [20].

III. MEASURES OF DIFFICULTY

We now describe two types of theoretical measures and
two practical ones for a-priori and a-posteriori assessing the
difficulty of ER benchmark datasets. All operate in a schema-
agnostic manner that considers all attribute values in every
record, disregarding the attribute structures in the given data
sources. In preliminary experiments, we also explored schema-
aware settings, applying the same measures to specific attribute
values. These settings, though, showed no significant differ-
ence in performance in comparison to the schema-agnostic
settings for both types of theoretical measures. Thus, we omit
them for brevity, but report them in the extended version [21].

A. Degree of Linearity

To assess the difficulty of matching benchmarks, we in-
troduce two new measures for estimating the success of a
linear classifier. The higher their scores are, the easier it
is for any supervised matching algorithm to achieve high
effectiveness on the corresponding dataset. This means that

https://github.com/gpapadis/DLMatchers

Algorithm 1: Estimating the degree of linearity
Input: Training, validation, and testing sets T, V, C,

respectively, and the similarity measure sim
Output: Linearity degree F1max

sim and best threshold tbest
1 S ← {}, D ← T ∪ V ∪ C
2 foreach (ri, rj) ∈ D do
3 Ti ← tokens(ri), Tj ← tokens(rj)
4 S ← S ∪ (sim(Ti, Tj), (ri, rj))

5 F1max
sim ← 0, tbest ← 0

6 for t← 0.01 to 0.99 by 0.01 do
7 M ← {}, N ← {}
8 foreach (si,j , (ri, rj)) ∈ S do
9 if t ≤ si,j then M ←M ∪ {(ri, rj)} // Match

10 else N ← N ∪ {(ri, rj)} // Non-match

11 if F1max
sim < F1(M,N,D) then

12 F1max
sim ← F1(M,N,D), tbest ← t

13 return F1max
sim , tbest

benchmarks with a high degree of linearity are not suitable
for highlighting the differences between complex, non-linear
classifiers like those leveraging deep learning in Section IV-A.
Instead, datasets with a low degree of linearity are more likely
to stress the pros and cons of different classifiers.

In this context, we propose Algorithm 1, which relies on
all labels in a benchmark dataset. First, it merges the training
with the validation and the testing sets into a single dataset D
in line 1. Then, for every candidate pair (ri, rj) ∈ D, it creates
two token sequences, Ti and Tj , where Tx comprises the set
of tokens in all attribute values in record rx, after converting
all tokens to lower-case (lines 2 and 3). A similarity score per
pair, si,j = sim(Ti, Tj) ∈ [0, 1], is then calculated based on
Ti and Tj and added to the set of similarities S along with
the candidate pair in line 4. Finally, the algorithm classifies
all labelled pairs using a threshold t with the following rule:
if t ≤ si,j , we have a matching pair (line 9) otherwise a non-
matching pair (line 10). In line 6, the algorithm loops over
all thresholds in [0.01, 0.99] with an increment of 0.01, and
identifies the threshold that results in the highest F-measure
value (lines 11 and 12). We denote this maximum F1 as the
degree of linearity, F1max

sim , which is returned as output along
with the corresponding threshold, tbest in line 13.

We consider two similarity measures between the token
sequences Ti and Tj of the candidate pair ci,j = (ri, rj):

1) The Cosine similarity: CS(ci,j) = |Ti ∩ Tj |/
√
|Ti| × |Tj |.

2) The Jaccard similarity: JS(ci,j) = |Ti ∩ Tj |/|Ti ∪ Tj |.

They yield two degrees of linearity: F1max
CS and F1max

JS ,
respectively. By considering their maximum possible value,
these measures indicate the optimal performance of a linear
matching algorithm, with F1=1.0 indicating perfect separation
(no false matches and no false non-matches). Other measures
like the Dice or Overlap similarities [16] also seem applicable,
but are linearly dependent on the Cosine and Jaccard similar-
ities, thus providing no additional useful information.

TABLE I
DEFINITION OF COMPLEXITY MEASURES

f1 Maximum Fisher’s discriminant ratio
f1v Directional-vector maximum Fisher’s discriminant ratio
f2 Volume of the overlapping region
f3 Max individual feature efficiency in separating the classes

(a) Feature-based measures
l1 Sum of the error distance by linear programming
l2 Error rate of a linear SVM classifier

(b) Linearity measures
n1 Fraction of borderline points
n2 Ratio of intra/extra class nearest neighbor distance
n3 Error rate of the nearest neighbor classifier
n4 Non-linearity of the nearest neighbor classifier
t1 Fraction of hyperspheres covering data
lsc Local set average cardinality

(c) Neighborhood measures
den Average density of the network
cls Clustering coefficient
hub Hub score

(d) Network measures
c1 Entropy of class proportions
c2 Imbalance ratio

(e) Class balance measures

B. Complexity Measures

Measures for estimating the complexity of imbalanced clas-
sification tasks are examined in [22], [23]. They serve the
same purpose as the degree of linearity, determining whether a
benchmark is suitable for comparing learning-based matching
algorithms. In this case, the lower the average score of a
dataset is, the easier is the corresponding classification task.
Collectively, these measures consider versatile and comprehen-
sive evidence that is complementary to the degree of linearity;
there are datasets where the degree of linearity is low, but the
average complexity score suggests otherwise, indicating that
simple patterns suffice for a high effectiveness, and vice versa.

Essentially, there are five types of such measures, as shown
in Table I, which summarizes them: (a) The feature-based
measures assess how discriminative the numeric features are.
(b) The linearity measures check how effective the hyperplane
defined by a linear SVM classifier is in separating the two
classes. (c) The neighborhood measures characterize the deci-
sion boundary between the two classes, taking into account the
class overlap in local neighborhoods according to the Gower
distance [24]. (d) The network measures model a dataset as
a graph, whose nodes correspond to instances and the edges
connect pairs of instances with a Gower distance [24] lower
than a threshold. Edges between matching and non-matching
instances are pruned after constructing the graph. (e) The class
balance measures rely on the relative class sizes.

These 17 measures yield values in [0, 1], with higher values
indicating more complex classification tasks. They assume that
every instance is represented as a set of features suitable for
the data at hand. In our case, every instance corresponds to
a candidate pair of entities, ci,j ∈ D. To transform a pair
into a feature vector, we use the same methodology as in
Section III-A, modelling ci,j as fi,j = [CS(ci,j), JS(ci,j)],
where CS(ci,j) and JS(ci,j) are defined above.

In this context, the dimensionality measures defined in
[22], [23] do not provide any useful information and can be
excluded from our analysis: t2, t3 and t4 remain constant at
0, 0 and 0.5 in all cases, because we use just two features per
instance. We also exclude f4 from the feature-based measures
and l3 from the linearity ones, because in each dataset they
are almost identical with f3 and l2, respectively.

C. Practical Measures

The above a-priori measures provide no evidence about
the actual performance of learning-based matching algorithms
on a particular benchmark. To cover this aspect, we comple-
ment them with two a-posteriori measures that encapsulate
the performance of the matching algorithms in Section V-B.
These measures help to identify benchmarks that contain a
considerable portion of non-linearly separable candidate pairs,
thus yielding low scores for the a-priori measures, but are still
not suitable for benchmarking matching algorithms. There are
two conditions for these cases: (i) a linear matching algorithm
achieves a performance comparable to the top-performing non-
linear ones, and (ii) the maximum F1 score among all learning-
based matching algorithms is very close to the maximum
possible score of F1=1. Only datasets satisfying none of these
conditions are suitable for benchmarking supervised matching
algorithms, despite their low a-priori scores.

Our practical measures include two ML-based and five
DL-based matching algorithms, each combined with different
configurations, as we describe in more detail in Section
V-B. Overall, we consider 7 state-of-the-art algorithms, which
together provide a representative performance of non-linear,
learning-based techniques. Especially the DL-based algorithms
cover all subcategories in our taxonomy, as shown in Table
II. Along with the above six linear classifiers, they yield two
novel, aggregate measures for assessing the advantage of the
non-linear and the potential of all learning-based matchers:
1) Non-linear boost (NLB) is defined as the difference be-

tween the maximum F1 of all considered ML- and DL-
based matching algorithms and the maximum F1 of all
linear ones. The larger its value is, the greater is the advan-
tage of non-linear classifiers, due to the high difficulty of
an ER benchmark. In contrast, values close to zero indicate
trivial ER benchmarks with linearly separable classes.

2) Learning-based margin (LBM) is defined as the difference
between 1 and the maximum F1 of all considered learning-
based matching algorithms. The higher its value is for a
benchmark, the more room for improvements there is. Low
values, close to zero, indicate datasets where learning-based
matchers already exhibit practically perfect performance.

IV. MATCHING ALGORITHMS

To quantify the practical measures, we use three types of
matchers. Each one is presented in a different subsection.

A. DL-based Matching Algorithms

Selection Criteria. We consider as many DL-based match-
ing algorithms as possible to get a reliable estimation on this

type of algorithms on each dataset. To this end, we consider
algorithms that satisfy the following four selection criteria:

(1) Publicly available implementation: All DL-based algo-
rithms involve hyperparameters that affect their performance
to a large extent, but for brevity or due to limited space,
their description and fine-tuning are typically omitted in the
context of a scientific publication. Reproducing experiments
can therefore be a challenging task that might bias the results
of our experimental analysis. In fact, as our experimental
results in Section V-B demonstrate, it is also challenging
to reproduce the performance of publicly available matching
algorithms. To avoid such issues, we exclusively consider
methods with a publicly released implementation.

(2) No auxiliary data sources: Practically, all DL-based
matching algorithms leverage deep neural networks in combi-
nation with pre-trained language models, such as fastText [25]
or BERT-based models [26], [27], which transform every input
record into a (dense) numerical vector. Despite the different
sources of embedding vectors, this approach is common to all
methods we analyze, ensuring a fair comparison. We exclude,
though, any other external evidence, like a knowledge-base
that could be used for transfer learning [28], [29].

(3) Scope: We exclusively consider RL, excluding methods
for multi-source ER [30] and for entity alignment [31], [32].

(4) Guidelines: We exclude open-source algorithms that
provide neither instructions nor examples on how to use them
(despite contacting their authors).

Due to the first criterion, we exclude well-known techniques
like Seq2SeqMatcher [33], GraphER [34], CorDEL [35],
EmbDI [36] (despite contacting its authors) and Leva [37].
The second criterion excludes DL-based methods that aim
to reduce the size of the training set through transfer and
active learning approaches, such as Auto-EM [28], Deep-
Matcher+ [29], DIAL [38] and DADER [39]. The third cri-
terion leaves out methods on tasks other than matching, like
Name2Vec [40] and Auto-ML [41], methods crafted for multi-
source ER like JointBERT [30], as well as all DL-based
methods targeting the entity alignment problem [31], [42]
(these require non-trivial adaptations for matching). The fourth
criterion excludes MCAN [43] and HIF-KAT [44], as we could
not run their code. Finally, we exclude DeepER [45], since it
is subsumed by DeepMatcher [10], as explained below.

Taxonomy. To facilitate a better understanding of the DL-
based matching algorithms, we propose a new taxonomy that
is formed by the following three dimensions:

1) Language model type: We distinguish methods as being
static or dynamic. The former leverage pre-trained lan-
guage models that associate every token with the same
embedding vector, regardless of its context. Methods such
as word2vec [46], [47], Glove [48] and fastText [25] fall
into this category. The opposite is true for dynamic meth-
ods, which leverage context-aware BERT-based language
models [26], [27], [49], [50]. Based on the context of every
token, they support polysemy, where the same word has
different meanings (e.g., ‘bank’ as an institution and ‘bank’

TABLE II
TAXONOMY OF THE SELECTED DL-BASED ER METHODS.

DL-based Token embedding Schema Entity sim-
algorithm context awareness ilarity context

DeepMatcher Static Homogeneous Local
EMTransformer Dynamic Heterogeneous Local
GNEM Static, Dynamic Homogeneous Global
DITTO Dynamic Heterogeneous Local
HierMatcher Dynamic Heterogeneous Local

as the edge of a river) as well as synonymy, where different
words have similar meanings (e.g., ‘job’ and ‘profession’).

2) Schema awareness: We distinguish methods as being ho-
mogeneous and heterogeneous. The former require that
both input databases have the same or at least aligned
schemata, unlike methods in the latter category.

3) Entity similarity context. We distinguish methods as being
local and global. The former receive as input the textual
description of two entities and decide whether they are
matching or not, based exclusively on their encoding and
the ensuing similarity. Global methods leverage contextual
information, which goes beyond the semantic similarity
of record pairs, e.g., by leveraging knowledge from the
entire input datasets (e.g., overall term salience), or from
the relations between candidates.

Regarding the first dimension, we should stress that the
dynamic approaches cast matching as a sequence-pair clas-
sification problem. All QID attribute values in a record
are concatenated into a single string representation called
sequence. Then, every candidate pair is converted into the
following string representation that forms the input to the neu-
ral classifier: “[CLS] Sequence 1 [SEP] Sequence 2
[SEP]”, where [CLS] and [SEP] are special tokens that
designate the beginning of a new candidate pair and the
end of each entity description, respectively. In practice, every
input should involve up to 512 tokens, which is the maximal
attention span of transformer models [12]. These methods also
require fine-tuning on a task-specific training set, while their
generated vectors are much larger than those of the static ones
(768 versus 300 dimensions [45], [51]).

Table II shows that the considered DL-based matching
algorithms cover all types defined by our taxonomy, providing
a representative sample of the field.

Methods Overview. We describe the five DL-based meth-
ods satisfying our selection criteria in chronological order.

DeepMatcher [10] (Jun. 2018) proposes a framework for
DL-based matching algorithms that generalizes DeepER [45].
by combining three modules: (1) The attribute embedding
one converts every word of an attribute value into a static
embedding vector using an existing pre-trained model, such
as fastText [25]. (2) The attribute similarity vector module
operates in a homogeneous way that summarizes the sequence
of token embeddings in each attribute and then obtains a
similarity vector between every pair of candidate records (local
functionality). (3) The classification module employs a two-
layer fully connected ReLU HighwayNet [52], followed by a
softmax layer for classification.

EMTransformer [12] (Mar. 2020) employs dynamic token
embeddings using attention-based transformer models like
BERT [53]. The selected model is applied in an out-of-the-box
manner. To handle noise, especially in the form of misplaced
attribute values (e.g., name associated with profession), it
concatenates all attribute values per entity and then vectorizes
them (heterogeneous approach). Every pair of records is
processed independently of all others (local operation).

GNEM [19] (Apr. 2020) is a global approach that considers
the relations between all candidate pairs that result from
blocking. For the semantic similarity of record pairs, it lever-
ages static (e.g., fastText) or dynamic (e.g., BERT) language
models. Its interaction module simultaneously calculates the
matching likelihood between all candidate pairs. It assumes
that all input records are described by the same schema,
therefore involving a homogeneous operation.

DITTO [11], [20] (Sep. 2020) extends EMTransformer’s
straightforward application of dynamic BERT-based models
in three ways: (1) It incorporates domain knowledge through
a named entity recognition model that identifies entity types
(such as persons or dates), as well as regular expressions
for identities (like product ids). (2) Its heterogeneous func-
tionality summarizes long attribute values that exceed the
512-tokens limit of BERT by keeping only the tokens that
do not correspond to stop-words and have a high TF-IDF
weight. (3) It uses data augmentation to artificially produce
additional training instances. It processes every candidate pair
independently of the others in a local manner.

HierMatcher [54] (Jan. 2021) constructs a hierarchical
neural network with four layers: (1) The representation layer
is a dynamic approach that leverages static embeddings. (2)
The token matching layer performs a cross-attribute token
alignment that renders HierMatcher a heterogeneous approach.
(3) The attribute matching layer adjusts the contribution of
every token in an attribute value according to its importance.
(4) The entity matching layer builds a local comparison vector
by concatenating the outcomes of the previous layer.

B. Non-neural, Non-linear ML-based Methods

Two ML-based methods are typically used in the literature,
both of which satisfy the selection criteria in Section IV-A.

Magellan [8] (Sep. 2016) combines traditional ML clas-
sifiers with a set of automatically extracted features: every
candidate pair is mapped to a numerical feature vector, where
every dimension corresponds to the score of a particular sim-
ilarity function on a specific attribute. Magellan implements
several established functions like Jaro, Jaccard, Monge-Elkan
etc [16]. Several established classifiers are also supported.

ZeroER [55] (Jun. 2020) is an unsupervised method that
uses the same features as Magellan, but requires no training
data. It extends the expectation-maximisation approach [56]
through Gaussian mixture models that capture the distributions
of matches and non-matches, while considering the dependen-
cies between different features.

C. Non-neural, Linear Supervised Methods

We now present our new linear matching algorithms for ef-
ficiently assessing the difficulty of a benchmark dataset. They
are inspired from the degree of linearity, but unlike Algorithm
1, they do not report a characteristic of the dataset based on the
tokens in the entity profiles of all labeled instances. They use
only the training and validation sets for their learning, while
being more flexible, using character n-grams and language
models for the similarity estimation between each pair of
profiles (not just tokens). Their performance can be measured
in terms of effectiveness, time and space complexity, thus
being suitable for a holistic comparison with the matching
algorithms proposed in the literature.

Algorithm 2 details our methods. For each pair of records
in the training set T , (ri, rj), it extracts the features from
their QID attributes, e.g., by tokenizing all the values on
whitespaces (lines 2 and 3). Using the individual features, the
algorithm calculates and stores the feature vector fi,j for each
record pair (ri, rj) in lines 4 and 5. For example, fi,j could
be formed by comparing the tokens of the individual features
with similarity measures like Cosine, Jaccard and Dice. Note
that all dimensions in fi,j are defined in [0, 1].

Next, the algorithm identifies the threshold that achieves the
highest F1 score per feature, when applied to the instances of
the training set. Line 6 loops over all thresholds in [0.01, 0.99]
with a step increment of 0.01, and lines 7 to 11 generate a set
of matching and non-matching pairs for each individual feature
f . Using these sets, lines 12 to 14 estimate the maximum F1
score per feature f , F1Tmax[f], and the respective threshold.

The resulting configurations are then applied in lines 15 to
24 to the validation set in order to identify the overall best
feature and the respective threshold. For each candidate pair
in V (line 16), the algorithm extracts the individual features
and the corresponding feature vector (lines 17 and 18), using
the same functions that were applied to the training instances
in lines 3 and 4. Rather than storing the feature vectors, it
directly applies the best threshold per feature to distinguish
the matching from the non-matching pairs of each dimension
(lines 19 to 21). This lays the ground for estimating F1 per
feature and the maximum F1 over all features in lines 22 to 24.

Finally, the algorithm applies the identified best feature
and threshold to the testing instances in order to estimate
the overall F1 in lines 25 to 29. For each candidate pair in
C, it estimates only the value of the feature with the highest
performance over the validation set (lines 26 and 27). Using
the respective threshold, it distinguishes the matching from the
non-matching pairs and returns the ensuing F1 (lines 28-30).

We call this algorithm Efficient Supervised Difficulty Esti-
mation (ESDE). Its space complexity is linear, storing one
feature vector per training instance. Its time complexity is lin-
ear, going through the training set 100 times, |F | times through
the validation set (where |F | denotes the dimensionality of the
feature vector and is practically constant in each dataset, as
explained below), and once through the testing set. It is also
versatile, accommodating diverse feature vectors:

Algorithm 2: Efficient Supervised Difficulty Estimation
Input: Training T , validation V and testing C sets & the set of

features F
Output: The F-Measure on the testing set F1

1 FT ← {}, F1Tmax[]← {}, tTbest[]← {}
2 foreach (ri, rj) ∈ T do // Training phase
3 Fi ← getFeatures(ri), Fj ← getFeatures(rj)
4 fi,j ← getFeatureV ector(Fi, Fj)
5 FT ← FT ∪ (fi,j , (ri, rj))

6 for t← 0.01 to 0.99 by 0.01 do
7 MF []← {}, NF []← {}
8 foreach (fi,j , (ri, rj)) ∈ FT do
9 foreach f ∈ fi,j do

10 if t ≤ f then M [f]←M [f] ∪ {(ri, rj)}
11 else N [f]← N [f] ∪ {(ri, rj)}

12 foreach f ∈ F do
13 if F1Tmax[f] < F1(M [f], N [f], T) then
14 F1Tmax[f]← F1(M [f], N [f], T), tTbest[f]← t

15 F1Vmax ← 0, fbest ← null, tbest ← 0, MF []← {}, NF []← {}
16 foreach (ri, rj) ∈ V do // Validation phase
17 Fi ← getFeatures(ri), Fj ← getFeatures(rj)
18 fi,j ← getFeatureV ector(Fi, Fj)
19 foreach f ∈ fi,j do
20 if tTbest[f] ≤ f then M [f]←M [f] ∪ {(ri, rj)}
21 else N [f]← N [f] ∪ {(ri, rj)}

22 foreach f ∈ F do
23 if F1Vmax < F1(M [f], N [f], V) then
24 F1Vmax ← F1(M [f], N [f], V), fbest ← f ,

tbest ← tTbest[f]

25 M ← {}, N ← {}
26 foreach (ri, rj) ∈ C do // Testing phase
27 sbest ← getFeature(ri, rj , fbest)
28 if tbest ≤ sbest then M ←M ∪ {(ri, rj)}
29 else N ← N ∪ {(ri, rj)}
30 return F1(M,N,C)

1) Schema-agnostic ESDE (SA-ESDE). getFeatures() rep-
resents every record ri by its distinct tokens, Fi=Ti.
Every candidate pair ci,j is represented by the vector
fi,j = [CSi,j , DSi,j , JSi,j], where CSi,j =

|Fi∩Fj |√
|Fi|×|Fj |

stands for the Cosine, DSi,j =
2×|Fi∩Fj |
|Fi|+|Fj | for the Dice, and

JSi,j =
|Fi∩Fj |
|Fi∪Fj | for the Jaccard similarity. Hence, |F | = 3.

2) Schema-based ESDE (SB-ESDE) applies the functions of
SA-ESDE to every attribute of the given records. It consid-
ers every attribute independently of the others, yielding a
feature vector with the Cosine, Dice and Jaccard similarity
of the tokens per attribute. |F | = 3×|A|, where |A| denotes
the number of attributes in the input dataset.

3) Schema-agnostic Q-gram-based ESDE (SAQ-ESDE) alters
SA-ESDE to work with character q-grams (q ∈ [2, 10])
instead of tokens. Fi = [2g(ri), 3g(ri), ..., 10g(ri)], where
xg(ri) returns the set of x-grams from all attribute values
of record ri. The feature vector includes the Cosine, Dice
and Jaccard similarity per q, such that |F | = 30.

4) Schema-based Q-gram-based ESDE (SBQ-ESDE). It al-
ters SB-ESDE so that it works with character q-grams
(2≤q≤10) instead of tokens. Every attribute value is con-

TABLE III
THE ESTABLISHED DATASETS FOR DL-BASED MATCHING ALGORITHMS. |Dx| IS THE NUMBER OF RECORDS, |A| THE NUMBER OF

ATTRIBUTES, AND |Ix|, |Px|, |Nx| ARE THE NUMBERS OF LABELLED, POSITIVE AND NEGATIVE INSTANCES IN THE TRAINING (x=TR)
OR THE TESTING (x=TE) SET. IR IS THE CLASS IMBALANCE RATIO.

D1 D2 |D1| |D2| |A| |Itr| |Ite| |Ptr| |Pte| |Ntr| |Nte| IR References
(a) Structured datasets

Ds1 DBLP ACM 2,616 2,294 4 7,417 2,473 1,332 444 6,085 2,029 18.0% [10], [20], [54]
Ds2 DBLP Google Scholar 2,616 64,263 4 17,223 5,742 3,207 1,070 14,016 4,672 18.6% [10], [20], [54]
Ds3 iTunes Amazon 6,907 55,923 8 321 109 78 27 243 82 24.3% [10], [20]
Ds4 Walmart Amazon 2,554 22,074 5 6,144 2,049 576 193 5,568 1,856 9.4% [10], [19], [20], [54]
Ds5 BeerAdvo RateBeer 4,345 3,000 4 268 91 40 14 228 77 14.9% [10], [20]
Ds6 Amazon Google Products 1,363 3,226 3 6,874 2,293 699 234 6,175 2,059 10.2% [10], [19], [20], [54]
Ds7 Fodors Zagat 533 331 6 567 189 66 22 501 167 11.6% [10], [20]

(b) Dirty datasets
Dd1 DBLP ACM 2,616 2,294 4 7,417 2,473 1,332 444 6,085 2,029 18.0% [10], [12], [20], [54]
Dd2 DBLP Google Scholar 2,616 64,263 4 17,223 5,742 3,207 1,070 14,016 4,672 18.6% [10], [12], [20], [54]
Dd3 iTunes Amazon 6,907 55,923 8 321 109 78 27 243 82 24.3% [10], [12], [20]
Dd4 Walmart Amazon 2,554 22,074 5 6,144 2,049 576 193 5,568 1,856 9.4% [10], [12], [20], [54]

(c) Textual datasets
Dt1 Abt Buy 1,081 1,092 3 5,743 1,916 616 206 5,127 1,710 10.7% [10], [12], [19], [20]
Dt2 CompanyA CompanyB 28,200 28,200 1 67,596 22,503 16,859 5,640 50,737 16,863 24.9% [10], [20]

verted into its set of q-grams, which are then used to
calculate the Cosine, Dice and Jaccard similarities of this
attribute. Fi = [2g(ri, a1), ..., 10g(ri, a|A|)], where |A| is
the number of attributes in the input dataset. |F | = 30×|A|.

5) Schema-agnostic S-GTR-T5 ESDE (SAS-ESDE). In this
algorithm, the function getFeatures() represents every
record ri by the 768-dimensional pre-trained Sentence-
BERT (S-GTR-T5) embedding vector of the concatenation
of all its attribute values, vi. Every candidate pair ci,j is
then represented by the feature vector fi,j = [CSi,j , ESi,j ,
WSi,j], where CSi,j is the Cosine similarity of the vectors
vi and vj , ESi,j is their Euclidean similarity, which is de-
fined as ESi,j=1/(1+ED(vi, vj), where ED(vi, vj) stands
for the Euclidean distance of the two vectors, and WSi,j

is the Wasserstein similarity between vi and vj , which is
derived from the Wasserstein/Earth mover’s distance [57]
with the same equation combining ESi,j and ED. |F | = 3.

6) Schema-based S-GTR-T5 ESDE (SBS-ESDE) applies the
previous feature generation function to each attribute. The
dimensionality of its feature vector is |F | = 3× |A|, with
|A| denoting the number of attributes in the given dataset.

V. ANALYSIS OF EXISTING BENCHMARKS

We now assess how challenging are the datasets that are
commonly used in the evaluation of DL-based matching al-
gorithms. They were originally used to evaluate DeepMatcher
and are available on its repository [58] (which provides details
on their content and generation). Their characteristics are
shown in Table III, where the rightmost column cites the
methods from Section IV-A that used each dataset in its
experiments. DeepMatcher and DITTO used all 13 datasets,
while HierMatcher, EMTransformer and GNEM used 7, 5 and
3 datasets, resp. No other dataset is shared by at least two of
these methods. Note that the dirty datasets, Dd1 to Dd4, were
generated from the structured datasets Ds1 to Ds4 by injecting
artificial noise: for each record, the value of every attribute
except “title” was randomly assigned to its “title” with 50%
probability [10], [58]. Note also that each dataset is split into
specific training, validation, and testing sets, with ratio 3:1:1.

A. Theoretical Measures

Degree of Linearity. The results for each benchmark
dataset are shown in Figure 1. We observe that the linearity
of six datasets exceeds 0.8 (with three exceeding 0.9) for both
similarity measures, which indicates rather easy classification
tasks, as the two classes can be separated by a linear classifier
with high accuracy. The maximum values are obtained with
Ds7, where indeed practically all DL-based algorithms achieve
a perfect F1 score of F1=1.0 [43].

There is a wide deviation between the thresholds used by
the Cosine and Jaccard similarities, but the actual difference
between them is rather low: F1max

CS is higher than F1max
JS by

just 0.8%, on average, across the structured and dirty datasets.
In the case of textual datasets, though, Cosine similarity out-
performs Jaccard similarity by 12.3% on average. This is due
to the large number of tokens per record, which significantly
reduces the Jaccard scores.

Overall, F1max
CS and F1max

JS suggest that among the struc-
tured datasets, only Ds3, Ds4 and Ds6 are complex enough
to call for non-linear classification models. The same applies
only to Dd3 and Dd4 from the dirty datasets, and to both
textual datasets (Dt1 and Dt2).

Complexity Measures. We now present the first complexity
analysis of the main benchmark datasets for matching algo-
rithms. All measures are implemented by the problexity
Python package [59]. We adapted them to matching using
the two-dimensional feature vector we defined at the end of
Section III-B. The results appear in Figure 2.

More specifically, datasets identified as rather easy by the
above linearity degree analysis achieve the lowest scores for
the majority of the complexity measures, and the lowest ones
on average. As expected, the lowest average score corresponds
to Ds7 (0.179), since the vast majority of its individual
measures falls far below 0.2. Among the remaining easy
datasets (Ds1, Ds2, Ds5, Dd1 and Dd2), the maximum average
score corresponds to Ds5, amounting to 0.346.

We observe that there are three datasets with an average
score close to 0.346: Ds3 with 0.354, Dd2 with 0.341 and Dd3

0.0

0.2

0.4

0.6

0.8

1.0

Ds1 Ds2 Ds3 Ds4 Ds5 Ds6 Ds7 Dd1 Dd2 Dd3 Dd4 Dt1 Dt2

(a) Linearity Degree F1(JS)max F1(CS)max

0.0

0.2

0.4

0.6

0.8

1.0

Ds1 Ds2 Ds3 Ds4 Ds5 Ds6 Ds7 Dd1 Dd2 Dd3 Dd4 Dt1 Dt2

(b) Threshold

Fig. 1. Degree of linearity per dataset in Table III (left) and the respective threshold (right) with respect to F1max
CS and F1max

JS in Section III-A.

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Ds1

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Ds2

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Ds3

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Ds4

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Ds5

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Ds6

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Ds7
f1 f1v f2

f3
l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dd1

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dd2

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dd3

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dd4

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dt1

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dt2
Fig. 2. Complexity measures per dataset shown in Table III. See the extension of our work in [21] for an enlarged version of these diagrams.

with 0.355. Comparing them with Ds5, we observe that they
get higher scores for most measures. However, Ds3 and Dd3

achieve the minimum value for f2 among all datasets, i.e., the
overlapping region between the two classes has the smallest
volume among all datasets. They also exhibit comparatively
low values for f3, which implies that the two features we have
defined are quite effective in separating the two classes. Most
importantly, their scores for both class imbalance measures are
close to the minimum score across all datasets. The reason
is that they have an unrealistically high portion of positive
instances, which, as shown in Table III, is second only to that
of Dt2 (which gets the lowest scores for c1 and c2 in Figure 2).
Regarding Dd2, it exhibits scores close to the minimum ones
for l1, which indicates low distances of incorrectly classified
instances from a linear classification boundary, as well as
for n1 and n2, which indicate a low number of instances
surrounded by examples from the other class. As a result,
the complexity measures indicate that Ds3, Dd2 and Dd3 pose
easy classification tasks, which is in line with Table IV, where
most matchers achieve high F1 over these datasets.

All other datasets achieve an average score that fluctuates
between 0.423 and 0.457. Overall, a mean complexity score
below 0.400 indicates easy classification tasks, with only Ds4,
Ds6, Dd4, Dt1 and Dt2 being challenging.

B. Practical Measures

Setup. We conducted all experiments in Python, on a server
with an Nvidia GeForce RTX 3090 GPU (24 GB RAM) and a
dual AMD EPYC 7282 16-Core CPU (256 GB RAM). Given
that every method depends on different Python versions and
packages, we aggregated all of them into a Docker image,
which facilitates the reproducibility of our experiments. Note
that every evaluated method requires a different format for the

input data; we performed all necessary transformations and
will publish the resulting files upon acceptance (the Docker
image is already public, see end of Section I).

Methods Configuration. Following [10], DeepMatcher is
combined with fastText [25] embeddings in the attribute
embedding module, the Hybrid model in the attribute simi-
larity vector module, and a two layer fully connected ReLU
HighwayNet [52] classifier followed by a softmax layer.

EMTransformer has two versions: EMTransformer-B and
EMTransformer-R, which use BERT and RoBERTa, respec-
tively. As noted in [60] (Section E in their Appendix), its
original implementation ignores the validation set. Instead, “it
reports the best F1 on the test set among all the training
epochs”. To align it with the other methods, we modified
its code so that it uses the validation set to select the best
performing model that is applied to the testing set.

For GNEM, we employ a BERT-based embedding model,
because its dynamic nature outperforms the static pre-trained
models like fastText, as shown by the authors in [25]. In
the interaction module, we apply a single-layer gated graph
convolution network, following the authors’ recommendation.

DITTO employs RoBERTa, since it is best performing
in [11], [20]. However, we were not able to run DITTO
with part-of-speech tags, because these tags are provided by a
service that was not available. Therefore, like all other methods
we evaluated, DITTO did not employ any external knowledge.

HierMatcher employs the pre-trained fastText model [25]
for embeddings, while the hidden size of each GRU layer is
set to 150 in the representation layer, following [54].

We decoupled ZeroER from the blocking function that is
hand-crafted for each dataset. Only in this way we can ensure
that it applies to exactly the same instances as all other
methods, allowing for a fair comparison.

TABLE IV
F1 PER METHOD AND DATA SET. HYPHEN INDICATES INSUFFICIENT MEMORY. THE HIGHEST F1 PER CATEGORY AND DATASET IS IN BOLD.

Ds1 Ds2 Ds3 Ds4 Ds5 Ds6 Ds7 Dd1 Dd2 Dd3 Dd4 Dt1 Dt2

(a) DL-based matching algorithms
DeepMatcher (15) 98.65 95.50 88.46 69.66 75.86 65.98 95.45 96.63 93.07 75.00 46.56 68.53 94.04
DeepMatcher (40) 98.76 93.70 84.62 64.42 66.67 53.73 91.67 96.54 92.73 66.67 46.99 69.21 -
DeepMatcher [10] 98.40 94.00 88.00 66.90 72.70 69.30 100.00 98.10 93.80 74.50 46.00 62.80 92.70
DITTO (15) 51.46 88.62 67.61 51.44 42.62 70.66 28.76 42.29 91.21 61.73 44.15 38.94 54.60
DITTO (40) 89.43 91.18 56.82 58.02 28.00 66.94 65.67 90.16 91.05 65.06 60.80 42.09 64.77
DITTO [20] 98.99 95.60 97.06 86.76 94.37 75.58 100.00 99.03 95.75 95.65 85.69 89.33 93.85
EMTransformer-B (15) 98.99 95.42 92.59 80.80 82.35 68.14 97.78 98.88 95.24 98.04 79.59 83.94 78.31
EMTransformer-B (40) 99.21 95.38 92.31 82.72 82.35 66.20 97.78 98.99 95.53 94.34 82.81 85.42 77.65
EMTransformer-R (15) 98.87 95.90 96.15 84.83 80.00 69.04 100.00 98.19 95.78 94.12 83.95 89.29 77.65
EMTransformer-R (40) 98.52 95.83 94.55 85.04 80.00 68.36 100.00 98.30 95.22 94.34 82.69 87.11 77.12
EMTransformer [12], [60] N/A N/A N/A N/A N/A N/A N/A 98.90 95.60 94.20 85.50 90.90 N/A
GNEM (10) 98.21 95.19 96.43 84.96 77.78 70.85 100.00 98.87 93.93 94.74 79.19 88.66 -
GNEM (40) 98.55 94.95 98.18 20.45 80.00 74.75 100.00 98.87 93.92 89.66 83.87 86.49 -
GNEM [19] N/A N/A N/A 86.70 N/A 74.70 N/A N/A N/A N/A N/A 87.70 N/A
HierMatcher (10) - 94.85 - 79.37 72.00 72.06 100.00 - - - 58.63 - -
HierMatcher (40) - 94.85 - 79.37 72.00 72.06 100.00 - - - 58.63 - -
HierMatcher [54] 98.80 95.30 N/A 81.60 N/A 74.90 N/A 98.01 94.50 N/A 68.50 N/A N/A

(b) Non-neural, non-linear ML-based matching algorithms
Magellan-DT 97.65 86.88 88.52 62.37 84.85 54.42 100.00 40.07 78.76 50.00 33.89 48.46 100.00
Magellan-LR 97.66 88.61 84.21 65.99 80.00 44.44 100.00 83.20 76.03 50.00 32.77 37.36 100.00
Magellan-RF 98.32 92.96 89.66 67.76 84.85 56.10 100.00 60.47 81.67 52.00 38.06 51.30 100.00
Magellan-SVM 90.19 81.41 84.62 65.03 84.62 2.53 84.21 10.99 48.15 12.12 12.62 0.00 99.96
Magellan [10] 98.40 92.30 91.20 71.90 78.80 49.10 100.00 91.90 82.50 46.80 37.40 43.60 79.80
ZeroER 98.80 65.67 49.81 64.41 35.90 18.50 90.91 36.53 39.23 10.42 20.00 2.56 -
ZeroER [55] 96.00 86.00 N/A N/A N/A 48.00 100.00 N/A N/A N/A N/A 52.00 N/A

(c) Non-neural, linear supervised matching algorithms
SA-ESDE 93.06 87.57 52.94 45.27 85.71 51.58 100.00 92.71 86.80 52.94 45.27 37.67 43.97
SAQ-ESDE 93.08 88.62 55.81 43.91 82.76 54.13 97.77 93.16 88.51 49.41 42.82 37.94 58.40
SAS-ESDE 93.49 87.40 64.00 43.62 87.50 48.17 95.45 93.35 86.79 64.00 42.27 40.57 79.86
SB-ESDE 91.19 79.63 92.31 67.81 82.76 52.65 84.44 84.27 78.18 46.43 42.94 45.63 41.23
SBQ-ESDE 91.44 82.71 84.21 67.55 83.33 45.20 100.00 87.54 82.29 55.70 37.47 47.17 58.37
SBS-ESDE 90.89 82.45 87.72 67.35 82.76 46.68 100.00 85.68 80.06 43.14 41.29 49.15 79.86

Finally, we combine Magellan with four different classifica-
tion algorithms: Magellan-DT uses a Decision Tree, Magellan-
LR Logistic Regression, Magellan-RF a Random Forest, and
Magellan-SVM a Support Vector Machine. Similar to ZeroER,
we deactivated the blocking method provided by Magellan,
applying it to the same blocked data sets as all other methods.

Hyperparameters. Initial experiments showed that the
number of epochs is probably the most important hyperpa-
rameter for most DL-based matching algorithms. To illustrate
this, we report the performance of every DL algorithm for
two different settings: (i) the default number of epochs as
reported in the corresponding paper, and (ii) 40 epochs, which
is the most common in the original papers. Table IV shows the
resulting performance, with the number in parenthesis next to
each DL-based algorithm indicating the number of epochs.

Reproducibility Analysis. To verify the validity of the
above configurations, which will also be applied to the new
datasets, Table IV also presents the fine-tuned performance
of each non-linear matching algorithm, as reported in the
literature. For each method, the lower the difference between
the best F1 performance we achieved from the one reported
in the literature, the closer we are to its optimal configuration.

Our experiments with DeepMatcher exceed those of [10]
in most cases, by 1.5%, on average. For EMTransformer, we

consider the results reported in [60], because the original
experiments in [12] show the evolution of F1 across the
various epochs, without presenting exact numbers. The average
difference with our F1 is just 0.15% on average. Slightly
higher, albeit negligible, just 0.3%, is the mean difference
between our results and GNEM’s performance in [19]. Our
results for HierMatcher are consistently lower than those
in [54], with an average difference of 5.4%. Finally, DITTO’s
performance in [20] is consistently higher than our experimen-
tal results to a significant extent – on average by 25%. This
is caused by the lack of external knowledge and the absence
of two optimizations (see Section 3 in [20]). Yet, our best
performance among all DL-based matching algorithms per
dataset is very close or even higher than DITTO’s performance
in [20] in all datasets, but Ds5.

Magellan underperforms the results in [10] in Ds4 and Dd1,
while for Ds1, Ds2, Ds3, Dd2 and Dd4, the differences are
minor (≤ 1.8% in absolute terms). For the remaining five
datasets, though, our results are significantly higher than [10],
by 13% on average. For ZeroER, we get slightly better
performance in Ds1, while for the other four datasets examined
in [55], our results are lower by 60%, on average. The reason
is that [55] combines ZeroER with custom blocking methods
and configurations in each case, whereas we use the same

TABLE V
THE NEW DATASETS GENERATED BY DEEPBLOCKER. BLOCKING PERFORMANCE IS REPORTED WITH RECALL (PC), PRECISION (PQ) AS WELL AS THE

TOTAL NUMBER OF MATCHES, I.E., DUPLICATES (|M |), OF CANDIDATE PAIRS (|C|) AND OF THE MATCHING ONES (|P |).

D1 D2 |D1| |D2| |M | |A| Blocking performance DeepBlocker config. |Itr| |Ite| |Ptr| |Pte| |Ntr| |Nte| IR
PC PQ |C| |P | attr. cl. K ind.

Dn1 Abt Buy 1,076 1,076 1,076 3 0.899 0.029 33,356 967 name × 31 D2 20,014 6,671 580 193 19,433 6,478 2.9%
Dn2 Amazon GP 1,354 3,039 1,104 4 0.910 0.074 13,540 1,005 title × 10 D1 8,124 2,708 603 201 7,521 2,507 7.4%
Dn3 DBLP ACM 2,616 2,294 2,224 4 0.983 0.953 2,294 2,186 all ✓ 1 D2 1,376 459 1,312 437 65 22 95.3%
Dn4 IMDB TMDB 5,118 6,056 1,968 5 0.898 0.011 158,658 1,768 all ✓ 31 D1 95,195 31,732 1,061 354 94,134 31,378 1.1%
Dn5 IMDB TVDB 5,118 7,810 1,072 4 0.891 0.003 322,434 955 all × 63 D1 193,460 64,487 573 191 192,887 64,296 0.3%
Dn6 TMDB TVDB 6,056 7,810 1,095 6 0.927 0.130 7,810 1,015 all ✓ 1 D2 4,686 1,562 609 203 4,077 1,359 13.0%
Dn7 Walmart Amazon 2,554 22,074 853 6 0.894 0.018 43,418 763 all ✓ 17 D1 26,051 8,684 458 153 25,593 8,531 1.8%
Dn8 DBLP GS 2,516 61,353 2,308 4 0.906 0.166 12,580 2,091 all ✓ 5 D1 7,548 2,516 1,255 418 6,293 2,098 16.6%

-5
0
5
10
15
20
25
30
35
40

Ds1 Ds2 Ds3 Ds4 Ds5 Ds6 Ds7 Dd1 Dd2 Dd3 Dd4 Dt1 Dt2

(%
)

NLB LBM

Fig. 3. Practical measures per dataset in Table III.

configuration in all datasets. Yet, the best performance per
dataset that is achieved by one of Magellan’s variants consis-
tently outperforms ZeroER’s performance in [55], except for
Dt1, where its top F1 is 0.7% lower.

On the whole, the selected configurations provide an overall
performance close to or even better than the best one for non-
linear matching algorithms in the literature.

Aggregate Practical Measures. Figure 3 presents the non-
linear boost (NLB) and the learning-based margin (LBM) mea-
sures per dataset. Both measures should exceed 5%, ideally
10%, in a dataset that is considered as challenging, i.e., the
two classes are linearly inseparable to a large extent, leaving
a significant room for improvements. Among the structured
datasets, this requirement is met only by Ds4 and Ds6. The
first three datasets exhibit a high NLB, demonstrating their
non-linearity, but have a very low LBM, as many algorithms
achieve a practically perfect performance. In Ds5, there is
room for improvements, but the two classes are linearly sepa-
rable to a large extent, as the best linear algorithms outperform
the best non-linear ones. Finally, both measures are reduced
to 0 over Ds7, because both linear and non-linear algorithms
achieve perfect F1. All dirty datasets have a higher degree of
non-linearity, as indicated by their NLB, which consistently
exceeds 5%. However, the first three are ideally solved by the
DL-based matching algorithms, especially EMTransformer,
leaving Dd4 as the only challenging dataset of this type. Both
textual datasets exhibit high non-linearly, but on Dt2, Magellan
achieves perfect performance. Only Dt1 is challenging.

Conclusion. Given that our two theoretical and two practical
measures are complementary, a benchmark dataset is challeng-
ing for entity matching only if it is marked easy by none of our
measures. This applies to four out of the 13 datasets, namely
Ds4, Ds6, Dd4 and Dt1.

VI. METHODOLOGY FOR NEW BENCHMARKS

Our methodology for creating new benchmarks consists of
the following four steps:

1) Given a dataset with a complete ground truth, apply a state-
of-the-art blocking method that is suitable for the data at
hand. Blocking is indispensable for reducing the search
space to the most likely duplicates, which can be processed
by a matching algorithm within a reasonable time frame.

2) Based on the available ground truth, fine-tune the selected
blocking method for a minimum level of recall. In practical
situations, recall should be very high (e.g., 90%), because
most learning-based matchers take decisions at the level
of individual record pairs and, thus, they cannot infer
duplicates not included in the candidate pairs. The fine-
tuning maximizes precision for the selected recall so as
to minimize the class imbalance. In this process, the
selected recall level determines the difficulty of the labeled
instances. The higher the recall levels are, the more difficult
to classify positive instances (true matches) are included at
the expense of including more and easier negative instances
(true non-matches), and vice versa for low recall levels.
We term “easy positive instances” those duplicates whose
similarity is higher than most non-matching pairs, whereas
“easy negative instances” involve non-matching entities
with a similarity lower than most matching ones.

3) Randomly split the candidates pairs into training, validation
and testing sets with a typical ratio, using the ground truth.

4) Apply all difficulty measures from Section III to decide
whether the resulting benchmark is challenging enough.

To put this methodology into practice, we use the eight,
publicly available, established datasets for RL in Table V.
They cover a wide range of domains, from product matching
(Dn1, Dn2, Dn7) to bibliographic data (Dn3, Dn8) and movies
(Dn4-Dn6). We apply DeepBlocker [61] to these datasets,
a generic state-of-the-art approach leveraging Autoenconder,
self-supervised learning and fastText embeddings. Through
grid search, DeepBlocker is configured so that its recall, also
known as pair completeness (PC) [16], exceeds 90%. Note
that our methodology is generic enough to support any other
blocking method and recall limit.

For every dataset, DeepBlocker generates the candidate pair
set C by indexing one of the two data sources (D1 or D2 in
Table V), while every record of the other source is used as a
query that retrieves the K most likely matches. To maximize
precision, we consider the lowest K that exceeds the minimum
recall. In each dataset, we use both combinations of indexing
and query sets and select the one yielding the lowest number
of candidates for the required recall.

0.0

0.2

0.4

0.6

0.8

1.0

Dn1 Dn2 Dn3 Dn4 Dn5 Dn6 Dn7 Dn8

(a) Linearity Degree F1(JS)max F1(CS)max

0.0

0.2

0.4

0.6

0.8

1.0

Dn1 Dn2 Dn3 Dn4 Dn5 Dn6 Dn7 Dn8

(b) Threshold

Fig. 4. Degree of linearity per dataset in Table V (left) and the respective threshold (right) with respect to F1max
CS and F1max

JS in Section III-A.

TABLE VI
F1 PER METHOD AND DATASET IN TABLE V, WITH THE BEST ONE

IN BOLD. HYPHEN MEANS INSUFFICIENT MEMORY.
Dn1 Dn2 Dn3 Dn4 Dn5 Dn6 Dn7 Dn8

(a) DL-based matching algorithms
DM(15) 70.49 52.01 99.32 90.50 59.88 69.95 56.57 95.10
DM(40) 71.43 56.15 99.32 89.73 63.18 67.28 57.14 93.51
DITTO(15) 86.43 38.10 - 86.50 66.82 - 71.73 95.31
DITTO(40) - 67.95 - 86.84 0.59 - 63.91 95.04
EM-B(15) 84.68 64.39 99.43 91.91 67.14 77.78 67.56 93.16
EM-B(40) 85.88 65.38 99.54 91.26 - 78.54 62.86 92.98
EM-R(15) 91.35 65.49 99.43 92.51 - 79.28 67.55 94.81
EM-R(40) - 70.12 99.54 - - 77.56 63.29 93.21
GNEM(10) - - 99.43 - - - 62.89 95.53
GNEM(40) - - 99.43 - - - 60.05 95.34
HM(10) - - - 91.39 58.52 - 63.31 -
HM(40) - - - 91.39 58.52 - 63.31 -

(b) Non-neural, non-linear ML-based matching algorithms
MG-DT 52.55 41.67 99.54 91.69 59.72 56.84 50.00 91.73
MG-LR 43.84 39.19 99.66 91.25 59.64 61.10 55.65 91.06
MG-RF 57.42 44.44 99.66 92.64 61.11 59.74 61.18 93.82
MG-SVM - - 98.20 91.01 59.34 61.01 61.67 88.70
ZeroER 32.66 22.14 99.32 43.32 0.50 53.76 61.52 84.14

(c) Non-neural, linear supervised matching algorithms
SA-ESDE 47.79 40.35 98.64 85.75 47.86 43.98 34.41 88.24
SAQ-ESDE 44.59 41.41 98.64 82.80 49.93 43.96 37.77 88.57
SAS-ESDE 47.97 39.58 98.75 77.41 49.53 44.22 35.19 87.47
SB-ESDE 49.62 46.87 99.66 61.95 58.87 60.50 66.13 89.95
SBQ-ESDE 52.95 49.79 99.66 20.00 7.61 54.26 34.07 91.36
SBS-ESDE 53.65 45.39 99.66 20.00 7.61 53.60 33.43 88.29

We also fine-tune two more hyperparameters: (1) whether
cleaning is used or not (if it does, stop-words are removed
and stemming is applied to all words), and (2) the attributes
providing the values to be blocked. We consider all indi-
vidual attributes as well as a schema-agnostic setting that
concatenates all attributes into a sentence. DeepBlocker uses
fastText to convert these attributes into embedding vectors.
fastText’s static nature ensures that the order of words in the
concatenated text does not affect the resulting vector. For every
hyperparameter, we consider all possible options and select the
one minimizing the returned set of candidates, i.e., maximizing
precision, also known as pairs quality (PQ) [16].

The exact configuration of DeepBlocker per dataset is
shown in Table V. Column attr. indicates that the schema-
agnostic setting yields the best performance in most cases,
column cl. suggests that cleaning is typically required, and
column ind. shows that the smallest data source is typically
indexed. Finally, the number of candidates per query entity,
K, differs widely among the datasets.

Given that DeepBlocker constitutes a stochastic approach,
the performance reported in Table V corresponds to the
average after 10 repetitions. For this reason, in some cases,

TABLE VII
EXISTING VS NEW BENCHMARKS

PC PQ IR PC PQ IR
Dt1 0.955 0.120 12.03% Dn1 0.899 0.029 2.90%
Ds1 0.998 0.137 13.68% Dn3 0.983 0.953 95.30%
Ds2 1.000 0.229 22.89% Dn8 0.906 0.166 16.60%
Ds4 1.000 0.104 10.37% Dn7 0.894 0.018 1.80%
Ds6 0.898 0.247 24.66% Dn2 0.910 0.074 7.40%

PC drops slightly lower than 0.9. The resulting candidate
pairs are randomly split into training, validation, and testing
sets with the same ratio as the benchmarks in Table III (3:1:1).
These settings simulate the realistic scenarios, where blocking
is applied to exclude obvious non-matches, and then a subset
of the generated candidate pairs is labelled to train a matching
algorithm that resolves the rest of the candidates. The instances
per class and set are reported in Table V (note that the testing
and validation sets have the same size, while the imbalance
ratio in the rightmost column is the same in all sets).

At this point, it is worth juxtaposing the existing and the
new benchmarks that have the same origin. These datasets are
compared in Table VII. We observe that Dt1 and Ds2 outper-
form Dn1 and Dn8, respectively, both in terms of recall and
precision, even though DeepBlocker outperforms Magellan’s
blocking methods [61]. Therefore, the higher precision of Dt1

and Ds2 is most likely achieved due to the removal of negative
pairs. Moreover, the recall of Ds4 is lower than Ds7 by just
6%, but its precision is higher by a whole order of magnitude,
whereas the recall of Ds6 is lower than Dn2 by just 1.2%, but
its precision is higher by 3.3 times. These tradeoffs are not
common in blocking over these two particular datasets [62]
and could be caused by removing a large portion of negative
pairs. Finally, Dn3 exhibits much higher precision (almost by
7 times) than Ds1, even though their difference in recall is just
1.5%. Given that a wide range of blocking methods achieves
exceptionally high precision in this bibliographic dataset [62],
the low precision of the existing benchmark could be caused by
including a large number of easy, negative pairs, i.e. obvious
non-matches. Overall, the five existing benchmarks in Table
VII seem to involve an undocumented approach for inserting
or removing an arbitrary number of negative pairs.

A. Analysis of New Benchmarks

The above process is not guaranteed to yield challenging
classification tasks for learning-based matching algorithms.
For this reason, we include a third step, which assesses the
difficulty of each new benchmark through the theoretical and
practical measures defined in Sections III and IV, respectively.

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dn1

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dn2

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dn3

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dn4

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dn5

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dn6

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dn7

f1 f1v f2
f3

l1

l2

n1

n2

n3
n4t1lsc

density
clsCoef

hubs

c1

c2

Mean

0.2
0.4
0.6
0.8
1.0

Dn8

Fig. 5. Complexity measures per dataset in Table V. See the extension of our work in [21] for an enlarged version of these diagrams.

1) Theoretical Measures: Degree of Linearity. In Figure
4(a), we show the values of F1max

CS and F1max
JS per dataset

along with the respective thresholds. We observe that both
measures exceed 0.87 for Dn3, Dn4 and Dn8, while remaining
below 0.49 for all other datasets. For Dn3, this is expected,
because, as explained above, it involves quite unambiguous
duplicates, due to the low levels of noise. The same is also
true for Dn8, which also conveys bibliographic data, with
its duplicates sharing clean and distinguishing information.
The opposite is true for Dn4: its low precision after blocking
indicates high levels of noise and missing values, requiring
many candidates per entity to achieve high recall. The fastText
embeddings may add to this noise, as the attribute values
are dominated by movie titles and the names of actors and
directors, which are underrepresented in its training corpora.
In contrast, the traditional textual similarity measures at the
core of F1max

CS and F1max
JS are capable of separating linearly

the two matching classes.
On the whole, these a-priori measures suggest that Dn1,

Dn2, Dn5, Dn6 and Dn7 pose challenging matching tasks.
Complexity Measures. These are presented in Figure 5.

The average complexity score is lower than 0.40 for Dn3 and
Dn8 (0.339 and 0.251, respectively), in line with the degree
of linearity, but it exceeds this threshold for Dn4 (0.431).
This is caused by its very low imbalance ratio (see also
Table V), which results in high scores for the class imbalance
measures and some of the feature overlapping ones. In all other
cases, though, it exhibits the (second) lowest score among all
datasets, including the established ones. Note also that Dn5

yields a very low average score (0.282), that surpasses only
Dn8. This indicates a rather easy classification task, because
of the very low values (≪0.2) for 9 out of the 17 complexity
measures. Hence, only Dn1, Dn2, Dn6 and Dn7 correspond
to challenging, non-linearly separable matching benchmarks.

2) Practical Measures: For the DL-based matching algo-
rithms, we use the same configurations as for the existing
benchmarks in Table IV, due to their high performance, which
matches or surpasses the literature. The results appear in Table
VI, while Figure 5 reports the corresponding non-linear boost
(NLB) and the learning-based margin (LBM).

For the datasets marked as challenging by all theoretical
measures (Dn1, Dn2, Dn6 and Dn7), both practical measures
take values well above 5%. LBM takes its minimum value
(8.7%) over Dn1, as EMTransformer with RoBERTa performs
exceptionally well, outperforming all other DL-based algo-
rithms by at least 5% and all others by at least 34%. NLB
takes its minimum value over Dn7, because the F1 for SB-
ESDE is double as that of all other linear algorithms, reducing
is distance from the top DL-based one to 5.6%.

0
5
10
15
20
25
30
35
40

Dn1 Dn2 Dn3 Dn4 Dn5 Dn6 Dn7 Dn8

(%
)

NLB LBM

Fig. 6. Practical measures per dataset in Table V.

All algorithms achieve perfect performance over Dn3, thus
reducing both practical measures to 0. The same applies to a
lesser extent to Dn8, where both measures amount to around
4.3%. In Dn4 and Dn5, both practical measures exceed 5% to
a significant extent. The reason for the former is that the best
DL- and ML-matchers lie in the middle between the perfect
F1 and the best linear algorithm, whose performance matches
the degree of linearity. For Dn5, the practical measures are
in line with the degree of linearity, unlike the complexity
measures, which suggest low levels of difficulty.

Overall, the practical measures suggest that, with the ex-
ception of Dn3 and Dn8 (which exhibit linear separability
of their classes), all other datasets are challenging enough for
assessing the relative performance of DL-based matchers. This
means that Dn1, Dn2, Dn6 and Dn7 are marked as challenging
by all theoretical and practical measures.

VII. CONCLUSIONS

We make the following observations: (1) The datasets used
for benchmarking ER matching algorithms should be evaluated
both a-priori, through their degree of linearity and complexity,
and a-posteriori, through the aggregate measures summarizing
the performance of linear and non-linear matchers. Excelling
in all these respects is necessary for datasets that leave enough
room for improvements by complex, learning-based classifiers.
(2) Most of the popular datasets used as benchmarks for DL-
based matchers involve almost linearly separable candidate
pairs, or are perfectly solved by most existing matching
algorithms (therefore, leaving no room for improvement).
These characteristics render these datasets unsuitable for
benchmarking matching algorithms. (3) We experimentally
demonstrate that our proposed methodology for creating new
ER benchmarks leads to datasets that are better suited for
assessing the benefits of DL-based matchers.

In the future, we plan to examine whether different config-
urations can extract challenging benchmarks from one of the
easy datasets, like the bibliographic ones (e.g., DBLP-ACM).
We actually intend to create a series of datasets that cover the
entire continuum of benchmark difficulty.

Acknowledgments. This research was partially funded by
the Horizon Europe project STELAR (GA No. 101070122).

REFERENCES

[1] F. Naumann and M. Herschel, An Introduction to Duplicate Detection,
ser. Synthesis Lectures on Data Management. Morgan and Claypool
Publishers, 2010.

[2] H. Newcombe, J. Kennedy, S. Axford, and A. James, “Automatic linkage
of vital records,” Science, vol. 130, no. 3381, pp. 954–959, 1959.

[3] O. Binette and R. C. Steorts, “(Almost) all of entity resolution,” Science
Advances, vol. 8, no. 12, p. eabi8021, 2022.

[4] P. Christen, T. Ranbaduge, and R. Schnell, Linking Sensitive Data –
Methods and Techniques for Practical Privacy-Preserving Information
Sharing. Heidelberg: Springer, 2020.

[5] X. L. Dong and D. Srivastava, Big Data Integration, ser. Synthesis
Lectures on Data Management. Morgan and Claypool Publishers, 2015.

[6] G. Papadakis, E. Ioannou, E. Thanos, and T. Palpanas, The Four Genera-
tions of Entity Resolution, ser. Synthesis Lectures on Data Management.
Morgan and Claypool, 2021.

[7] G. Papadakis, D. Skoutas, E. Thanos, and T. Palpanas, “Blocking and
filtering techniques for entity resolution: A survey,” ACM Computing
Surveys, vol. 53, no. 2, pp. 1–42, 2020.

[8] P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan, J. R. Ballard,
H. Li, F. Panahi, H. Zhang, J. F. Naughton, S. Prasad, G. Krishnan,
R. Deep, and V. Raghavendra, “Magellan: Toward building entity
matching management systems,” Proc. VLDB Endow., vol. 9, no. 12,
pp. 1197–1208, 2016.

[9] N. Barlaug and J. A. Gulla, “Neural networks for entity matching: A
survey,” Transactions on Knowledge Discovery from Data, vol. 15, no. 3,
2021.

[10] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,
E. Arcaute, and V. Raghavendra, “Deep learning for entity matching: A
design space exploration,” in SIGMOD, 2018, pp. 19–34.

[11] Y. Li, J. Li, Y. Suhara, J. Wang, W. Hirota, and W. Tan, “Deep
entity matching: Challenges and opportunities,” ACM J. Data Inf. Qual.,
vol. 13, no. 1, pp. 1:1–1:17, 2021.

[12] U. Brunner and K. Stockinger, “Entity matching with transformer
architectures - A step forward in data integration,” in EDBT, 2020, pp.
463–473.

[13] T. Wang, H. Lin, C. Fu, X. Han, L. Sun, F. Xiong, H. Chen, M. Lu,
and X. Zhu, “Bridging the gap between reality and ideality of entity
matching: A revisiting and benchmark re-construction,” arXiv preprint
arXiv:2205.05889, 2022.

[14] V. Christophides, V. Efthymiou, and K. Stefanidis, Entity Resolution in
the Web of Data, ser. Synthesis Lectures on the Semantic Web: Theory
and Technology. Morgan & Claypool Publishers, 2015.

[15] P. Christen, D. J. Hand, and N. Kirielle, “A review of the f-measure:
Its history, properties, criticism, and alternatives,” ACM Comput. Surv.,
2023.

[16] P. Christen, Data Matching – Concepts and Techniques for Record
Linkage, Entity Resolution, and Duplicate Detection, ser. Data-Centric
Systems and Applications. Springer, 2012.

[17] D. J. Hand and P. Christen, “A note on using the F-measure for
evaluating record linkage algorithms,” Statistics and Computing, vol. 28,
no. 3, pp. 539–547, 2018.

[18] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, and K. Ste-
fanidis, “An overview of end-to-end entity resolution for big data,” ACM
Comput. Surv., vol. 53, no. 6, pp. 127:1–127:42, 2021.

[19] R. Chen, Y. Shen, and D. Zhang, “GNEM: A generic one-to-set neural
entity matching framework,” in WWW, 2020, pp. 1686–1694.

[20] Y. Li, J. Li, Y. Suhara, A. Doan, and W. Tan, “Deep entity matching
with pre-trained language models,” Proc. VLDB Endow., vol. 14, no. 1,
pp. 50–60, 2020.

[21] G. Papadakis, N. Kirielle, P. Christen, and T. Palpanas, “A critical re-
evaluation of benchmark datasets for (deep) learning-based matching
algorithms,” arXiv preprint arXiv: 2307.01231, 2023.

[22] V. H. Barella, L. P. F. Garcia, M. C. P. de Souto, A. C. Lorena, and
A. C. P. L. F. de Carvalho, “Data complexity measures for imbalanced
classification tasks,” in IEEE International Joint Conference on Neural
Networks IJCNN, 2018, pp. 1–8.

[23] A. Lorena, L. Garcia, J. Lehmann, M. Souto, and T. Ho, “How complex
is your classification problem,” A survey on measuring classification
complexity. arXiv, 2018.

[24] J. C. Gower, “A general coefficient of similarity and some of its
properties,” Biometrics, pp. 857–871, 1971.

[25] P. Bojanowski, E. Grave, A. Joulin, and T. Mikolov, “Enriching word
vectors with subword information,” Trans. Assoc. Comput. Linguistics,
vol. 5, pp. 135–146, 2017.

[26] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[27] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[28] C. Zhao and Y. He, “Auto-em: End-to-end fuzzy entity-matching using
pre-trained deep models and transfer learning,” in The World Wide Web
Conference. San Francisco, USA: ACM, 2019, pp. 2413–2424.

[29] J. Kasai, K. Qian, S. Gurajada, Y. Li, and L. Popa, “Low-resource deep
entity resolution with transfer and active learning,” in Annual Meeting
of the Association for Computational Linguistics, Florence, 2019, pp.
5851–5861.

[30] R. Peeters and C. Bizer, “Dual-objective fine-tuning of BERT for entity
matching,” Proc. VLDB Endow., vol. 14, no. 10, pp. 1913–1921, 2021.

[31] R. Zhang, B. D. Trisedya, M. Li, Y. Jiang, and J. Qi, “A benchmark
and comprehensive survey on knowledge graph entity alignment via
representation learning,” The VLDB Journal, pp. 1–26, 2022.

[32] M. Leone, S. Huber, A. Arora, A. Garcı́a-Durán, and R. West, “A
critical re-evaluation of neural methods for entity alignment,” Proc.
VLDB Endow., vol. 15, no. 8, pp. 1712–1725, 2022.

[33] H. Nie, X. Han, B. He, L. Sun, B. Chen, W. Zhang, S. Wu, and H. Kong,
“Deep sequence-to-sequence entity matching for heterogeneous entity
resolution,” in International Conference on Information and Knowledge
Management. Beijing, China: ACM, 2019, pp. 629–638.

[34] B. Li, W. Wang, Y. Sun, L. Zhang, M. A. Ali, and Y. Wang, “Gra-
pher: Token-centric entity resolution with graph convolutional neural
networks,” in AAAI Conference on Artificial Intelligence, vol. 34, no. 05,
2020, pp. 8172–8179.

[35] Z. Wang, B. Sisman, H. Wei, X. L. Dong, and S. Ji, “Cordel: A
contrastive deep learning approach for entity linkage,” in ICDM, 2020,
pp. 1322–1327.

[36] R. Cappuzzo, P. Papotti, and S. Thirumuruganathan, “Creating embed-
dings of heterogeneous relational datasets for data integration tasks,” in
SIGMOD, 2020, pp. 1335–1349.

[37] Z. Zhao and R. C. Fernandez, “Leva: Boosting machine learning per-
formance with relational embedding data augmentation,” in SIGMOD,
2022, pp. 1504–1517.

[38] A. Jain, S. Sarawagi, and P. Sen, “Deep indexed active learning for
matching heterogeneous entity representations,” Proceedings of the
VLDB Endowment, vol. 15, no. 1, pp. 31–45, 2021.

[39] J. Tu, J. Fan, N. Tang, P. Wang, C. Chai, G. Li, R. Fan, and X. Du,
“Domain adaptation for deep entity resolution,” in ACM Conference on
Management of Data, Philadelphia, 2022.

[40] J. Foxcroft, A. d’Alessandro, and L. Antonie, “Name2vec: Personal
names embeddings,” in Canadian Conference on Artificial Intelligence.
Springer, 2019, pp. 505–510.

[41] M. Paganelli, F. Del Buono, P. Marco, F. Guerra, and M. Vincini,
“Automated machine learning for entity matching tasks,” in EDBT, 2021.

[42] K. Zeng, C. Li, L. Hou, J. Li, and L. Feng, “A comprehensive survey
of entity alignment for knowledge graphs,” AI Open, vol. 2, pp. 1–13,
2021.

[43] D. Zhang, Y. Nie, S. Wu, Y. Shen, and K. Tan, “Multi-context attention
for entity matching,” in WWW, 2020, pp. 2634–2640.

[44] Z. Yao, C. Li, T. Dong, X. Lv, J. Yu, L. Hou, J. Li, Y. Zhang, and Z. Dai,
“Interpretable and low-resource entity matching via decoupling feature
learning from decision making,” in ACL/IJCNLP, 2021, pp. 2770–2781.

[45] M. Ebraheem, S. Thirumuruganathan, S. R. Joty, M. Ouzzani, and
N. Tang, “Distributed representations of tuples for entity resolution,”
Proc. VLDB Endow., vol. 11, no. 11, pp. 1454–1467, 2018.

[46] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” arXiv preprint arXiv:1301.3781,
2013.

[47] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,
“Distributed representations of words and phrases and their composi-
tionality,” Advances in neural information processing systems, vol. 26,
2013.

[48] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proceedings of the 2014 conference on
empirical methods in natural language processing (EMNLP), 2014, pp.
1532–1543.

[49] Z. Lan, M. Chen, S. Goodman, K. Gimpel, P. Sharma, and R. Soricut,
“Albert: A lite bert for self-supervised learning of language representa-
tions,” arXiv preprint arXiv:1909.11942, 2019.

[50] F. A. Acheampong, H. Nunoo-Mensah, and W. Chen, “Transformer
models for text-based emotion detection: a review of bert-based ap-
proaches,” Artif. Intell. Rev., vol. 54, no. 8, pp. 5789–5829, 2021.

[51] M. Paganelli, F. D. Buono, A. Baraldi, and F. Guerra, “Analyzing how
BERT performs entity matching,” Proc. VLDB Endow., vol. 15, no. 8,
pp. 1726–1738, 2022.

[52] J. G. Zilly, R. K. Srivastava, J. Koutnı́k, and J. Schmidhuber, “Recurrent
highway networks,” in ICML, vol. 70, 2017, pp. 4189–4198.

[53] J. Devlin, M. Chang, K. Lee, and K. Toutanova, “BERT: pre-training of
deep bidirectional transformers for language understanding,” in NAACL-
HLT, 2019, pp. 4171–4186.

[54] C. Fu, X. Han, J. He, and L. Sun, “Hierarchical matching network for
heterogeneous entity resolution,” in IJCAI, 2020, pp. 3665–3671.

[55] R. Wu, S. Chaba, S. Sawlani, X. Chu, and S. Thirumuruganathan,
“Zeroer: Entity resolution using zero labeled examples,” in Proceedings
of the 2020 ACM SIGMOD International Conference on Management
of Data, 2020, pp. 1149–1164.

[56] T. Herzog, F. Scheuren, and W. Winkler, Data Quality and Record
Linkage Techniques. Springer Verlag, 2007.

[57] C. Villani and C. Villani, “The wasserstein distances,” Optimal Trans-
port: Old and New, pp. 93–111, 2009.

[58] “Deepmatcher data repository,” 2018, https://github.com/anhaidgroup/
deepmatcher/blob/master/Datasets.md.

[59] J. Komorniczak, , and P. Ksieniewicz, “problexity — an open-source
python library for binary classification problem complexity assessment,”
arXiv preprint arXiv:2207.06709, 2022.

[60] Y. Li, J. Li, Y. Suhara, A. Doan, and W. Tan, “Deep entity matching
with pre-trained language models,” CoRR, vol. abs/2004.00584, 2020.

[61] S. Thirumuruganathan, H. Li, N. Tang, M. Ouzzani, Y. Govind,
D. Paulsen, G. M. Fung, and A. Doan, “Deep learning for blocking
in entity matching: A design space exploration,” Proc. VLDB Endow.,
vol. 14, no. 11, pp. 2459–2472, 2021.

[62] G. Papadakis, M. Fisichella, F. Schoger, G. Mandilaras, N. Augsten,
and W. Nejdl, “How to reduce the search space of entity resolution:
with blocking or nearest neighbor search?” CoRR, vol. abs/2202.12521,
2022. [Online]. Available: https://arxiv.org/abs/2202.12521

https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
https://github.com/anhaidgroup/deepmatcher/blob/master/Datasets.md
https://arxiv.org/abs/2202.12521

	Introduction
	Problem Definition
	Measures of Difficulty
	Degree of Linearity
	Complexity Measures
	Practical Measures

	Matching Algorithms
	DL-based Matching Algorithms
	Non-neural, Non-linear ML-based Methods
	Non-neural, Linear Supervised Methods

	Analysis of Existing Benchmarks
	Theoretical Measures
	Practical Measures

	Methodology for New Benchmarks
	Analysis of New Benchmarks
	Theoretical Measures
	Practical Measures

	Conclusions
	References

