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1. Motivation

 Smart grid flexibility requires identifying appliance usage from aggregate smart
meter data

* Existing methods for this task need fine-grained labels at each time step (e.g.,
strongly supervised) [1]

* Label collection is costly and intrusive (dedicated in-home sensors)
* Appliance detection (yes/no) can be framed as time series classification [2]

* Explainability-driven methods use weak labels to highlight relevant regions [3]

3. Proposed Approach: CamAL

Class Activation Maps based Appliance Localization

2. Objective

Per-timestamp Appliance Localization based on Appliance Detection

Aggregate electricity consumption series _ _ ,
* Per time series for one appliance
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4. Experimental Evaluation

1. How does CamAL perform compared to strongly supervised approaches

according to number of training labels?
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 CamAL needs on average 145x less training labels for the same accuracy as

strongly supervised methods (CamAL trained with only 1 label per sub-sequence)

 CamAL achieves comparable performance on high-consumption, strategic

appliances for suppliers (e.g., Electric Vehicle, Water Heater)

2. Is appliance ownership information sufficient to train CamAL?
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3. What is the label collection cost for training CamAL vs. training strongly
supervised approaches?

S
“

Cost for training
CamAL

Values (log scale)
S
&

S
N

e

Cost for training
strongly supervised methods
2 orders of magnitude higher

-

One label per: Household Timestamp
Asking customers to SR -’ S
fill out a questionnaire
Survey [ =L,
dataset (::::: doIIars$

[1] A review of current methods and challenges of advanced deep learning-based non-intrusive load monitoring (NILM) in residential context, Hasan Rafig, Prajowal Manandhar, Edwin Rodriguez-Ubinas,
Omer Ahmed Qureshi, Themis Palpanas, Energy&Building, 2024.

[2] Appliance Detection Using Very Low-Frequency Smart Meter Time Series, Adrien Petralia, Paul Boniol, Philippe Charpentier, and Themis Palpanas, ACM e-Energy, 2023.

[3] dCAM: Dimension-wise Class Activation Map for Explaining Multivariate Data Series Classification, Paul Boniol, Mohamed Meftah, Emmanuel Remy and Themis Palpanas, SIGMOD, 2022.

¢
~'>eDF

| Universite
Paris Cite

an
Resilient sECure digITAL identitieS

ECOLF; NORMALE
SUPERIEURE

X Instrumenting households with
dedicated submeters per appliance

gC02 (cor 2] & | |

[m] =55 [m]

Github

[=]

JiN® ..z eNg  (© wveuror RECITALS e TWinODIS  weosc @ vatevs



