
3. What is the label collection cost for training CamAL vs. training strongly 

supervised approaches?

2.  Is appliance ownership information sufficient to train CamAL?

1. How does CamAL perform compared to strongly supervised approaches 

according to number of training labels?
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1. Motivation

• Smart grid flexibility requires identifying appliance usage from aggregate smart
meter data

• Existing methods for this task need fine-grained labels at each time step (e.g.,
strongly supervised) [1]

• Label collection is costly and intrusive (dedicated in-home sensors)

• Appliance detection (yes/no) can be framed as time series classification [2]

• Explainability-driven methods use weak labels to highlight relevant regions [3]

3. Proposed Approach: CamAL

2. Objective

Class Activation Maps based Appliance Localization

• Based on an ensemble of CNN classifiers (ResNets)
• Each model trained to only detect presence of an appliance
• Use explainability module to localize activation pattern

Step 1: Detect appliance presence in input consumption series

Step 2: If detected, extract and analyze decision-related information
(CAMs) to perform activation localization.

4. Experimental Evaluation
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• CamAL needs on average 145× less training labels for the same accuracy as 
strongly supervised methods (CamAL trained with only 1 label per sub-sequence)

• CamAL achieves comparable performance on high-consumption, strategic
appliances for suppliers (e.g., Electric Vehicle, Water Heater)

Yes!

Per-timestamp Appliance Localization based on Appliance Detection 

Problem 1 
Appliance Detection

Washer:  Yes

Microwave:          No

Dishwasher:         No

Kettle:                   Yes

Washer

Microwave

Dishwasher

Kettle

Aggregate electricity consumption series

Nb. of labels*: 1
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Nb of labels*: 𝑻 = 𝟓𝟎𝟎

* Per time series for one appliance
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Problem 2
Per-timestamp Appliance Localization

Household Timestamp

Asking customers to 
fill out a questionnaire

Instrumenting households with
dedicated submeters per appliance

One label per:

Cost for training 
CamAL

Cost for training 
strongly supervised methods
2 orders of magnitude higher
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1 label per subsequence
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• CamAL achieves equivalent or superior performance using only appliance 
ownership information

• CamAL needs up to 5200x less training labels compared to strongly supervised   
baselines


