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Context: From Renewable Surge to the Flexibility Challenge

12:00pm
12:00am

Morning peak Evening peak

Typical daily electricity grid domestic demand
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RTE technical reports, 2023.

The Flexibility Challenge = real-time ability to match variable supply & demand

Demand Production
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Context: The Flexibility Challenge

Electricity suppliers (as EDF) need to play an active role in this process

How convince clients to change their consumption behaviors?

Reducing peak demand: shifting parts of the consumption to off-peak hours

Criticial Peak Pricing
Peak Time Rebeat

2. Dynamic pricing1. Personalized contracts

Lower off-peak pricing, for
charging your Electric
Vehicle at night

How much does your heater cost 
you per month?

3. Appliance-level feedback 

✓ Smoothed daily domestic demand
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Context: The Flexibility Challenge

Electricity suppliers (as EDF) need to play an active role in this process

Criticial Peak Pricing
Peak Time Rebeat

2. Dynamic pricing1. Personalized contracts

Lower off-peak pricing, for
charging your Electric
Vehicle at night

How much does your heater cost 
you per month?

3. Appliance-level feedback 
Solutions based on customers’ consumption 

characteristics!

How convince clients to change their consumption behaviors?

Reducing peak demand: shifting parts of the consumption to off-peak hours

✓ Smoothed daily domestic demand
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Context: Smart Meter Deployement

Heater

Water
Heater

Electric 
Vehicle

Washer

Household

Aggregated smart meter signal
Collected at very low-frequency (sampling rate >1min)

Sum of all individual
appliances’ power 

consumption

Signal collected by suppliers
(if client consents)

Millions of Smart Meters deployed in individual households

=

+

+

+

+
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Non-Intrusive Load Monitoring (NILM): estimates power consumption, operational patterns, or
on/off state of individual appliances using only the total aggregated signal

Background: Smart Meter Data Analytics

Aggregated smart meter signal

NILM Solution

Individual appliance statusStatus

0

1

Individual appliance consumptionKwh

Appliance Pattern Localization
i.e., classification paradigm

Appliance Power Estimation
i.e., regression paradigm
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Background: Smart Meter Data Analytics

Appliance Pattern Localization = when the appliance is used?

Aggregated Consumption Series Ground Truth Appliance Status
(one label for each timestep)

Ground true appliance signals are extremely expensive to collect

+

SotA solutions require large number of strong labels

1000$ to instrument an household with dedicated sensors!
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Lever: Weak labels

We already have weak labels

Customers fill out a questionnaire in 
exchange for a small reward

Survey dataset

…

“Is the appliance X present 
in your household?”

Max 50$/house
Aggregated Consumption Series Labels

Weak labels :
No guarantee about when (or even if) 

the appliance is actually in use

Can we use weak labels for accurate appliance localization?
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Lever: Appliance Detection in Consumers Household

Time Series Classification

Detecting appliances in consumers households can be cast as a Time Series
Classification Problem1.

Recent studies demonstrate that deep learning (including CNNs) are
the most accurate solutions for tackling this task1,2.

[1] A. Petralia et al., Appliance Detection Using Very Low-Frequency Smart Meter Time Series, ACM e-Energy 2023
[2] A. Petralia et al., ADF & TransApp: A Transformer-Based Framework for Appliance Detection Using Smart Meter Consumption Series, PVLDB, 2024.

InceptionTime
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Problem

Aggregate electricity consumption series

0 500
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Challenges

Can we tackle the Appliance Pattern Localization problem
using minimal supervision?



11

Problem

(Problem 1) 
Appliance Detection

Washer:  Yes

Microwave:          No

Dishwasher:         No

Kettle: Yes

Aggregate electricity consumption series

0 500

Po
w

er
 (

W
)

Challenges

One label  per time series
and per appliance

Can we tackle the Appliance Pattern Localization problem
using minimal supervision?
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Problem

(Problem 1) 
Appliance Detection

Washer:  Yes

Microwave:          No

Dishwasher:         No

Kettle: Yes

Washer

Microwave

Dishwasher

Kettle

Aggregate electricity consumption series

0 500

0 500250125 375

Solving Problem 2 from Problem 1
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w

er
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W
)

(Problem 2)
Per-timestamp Appliance Localization

Challenges

One label  per time series
and per appliance

Can we tackle the Appliance Pattern Localization problem
using minimal supervision?
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Problem

Challenge

Can we tackle the Appliance Pattern Localization problem
using minimal supervision?

Solution

✓ CamAL

Class Activation Map based 
Appliance Localization
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GAP

Conv nConv 1 Conv 2

Trained CNN

𝑓𝑘

…

𝑓2

𝑓1 𝑤1

𝑤2

𝑤𝑘

1

0

A Cat

No Cat

Background: Weakly Supervised Localization

Explainable AI - Class Activation Map (CAM)

B. Zhou et al., Learning Deep Features for Discriminative Localization, CVPR, 2016.
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GAP

Conv nConv 1 Conv 2

Trained CNN

𝑓𝑘

…

𝑓2

𝑓1 𝑤1

𝑤2

𝑤𝑘

1

0

A Cat

No Cat

Background: Weakly Supervised Localization
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B. Zhou et al., Learning Deep Features for Discriminative Localization, CVPR, 2016.
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Background: Weakly Supervised Localization

𝑓𝑘

…

𝑓2

𝑓1

𝑤1 ∗ + 𝑤2 ∗ + … + 𝑤𝑘 ∗

𝑤1

𝑤2

𝑤𝑘

1

0
GAP

Conv n

=

Conv 1 Conv 2

No Cat

A Cat

Trained CNN

Explainable AI - Class Activation Map (CAM)

𝐶𝐴𝑀 =

B. Zhou et al., Learning Deep Features for Discriminative Localization, CVPR, 2016.
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Proposed Approach: CAM for Appliance Pattern Localization?

Trained CNN 1

0 No Kettle

A Kettle

Is CAM a « Free Lunch » for Appliance-Pattern Localization ?

CNNs (ResNet, Inception) perform well on the Appliance Detection task

A. Petralia et al., Appliance Detection Using Very Low-Frequency Smart Meter Time Series, ACM e-Energy, 2023.
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Proposed Approach: CAM for Appliance Pattern Localization?

Trained CNN 1

0 No Kettle

A Kettle

𝐶𝐴𝑀 =෍

𝑘

𝑤𝑘𝑓
𝑘

Class Activation Map

Is CAM a « Free Lunch » for Appliance-Pattern Localization ?

CNNs (ResNet, Inception) perform well on the Appliance Detection task

A. Petralia et al., Appliance Detection Using Very Low-Frequency Smart Meter Time Series, ACM e-Energy, 2023.
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Proposed Approach: CAM for Appliance Pattern Localization?

Trained CNN

CAM extraction + thresholding

𝐶𝐴𝑀 =෍

𝑘

𝑤𝑘𝑓
𝑘

1

0

A Kettle

Class Activation Map

Predicted
Status

Is CAM a « Free Lunch » for Appliance-Pattern Localization ?

No Kettle

CNNs (ResNet, Inception) perform well on the Appliance Detection task

A. Petralia et al., Appliance Detection Using Very Low-Frequency Smart Meter Time Series, ACM e-Energy, 2023.
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Proposed Approach: CAM for Appliance Pattern Localization?

Trained CNN

Ground True
Status

CAM extraction + thresholding

𝐶𝐴𝑀 =෍

𝑘

𝑤𝑘𝑓
𝑘

1

0

A Kettle

Kettle
« ON »

Offset Too large False Activation

Class Activation Map

Predicted
Status

Is CAM a « Free Lunch » for Appliance-Pattern Localization ?

No Kettle

≈

CNNs (ResNet, Inception) perform well on the Appliance Detection task

A. Petralia et al., Appliance Detection Using Very Low-Frequency Smart Meter Time Series, ACM e-Energy, 2023.
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Proposed Approach: CAM for Appliance Pattern Localization?

Trained CNN

Ground True
Status

CAM extraction + thresholding

𝐶𝐴𝑀 =෍

𝑘

𝑤𝑘𝑓
𝑘

CNNs (ResNet, Inception) perform well on the Appliance Detection task

1

0 No Kettle

A Kettle

Not that simple…

Offset Too large False Activation

Class Activation Map

Predicted
Status

Is CAM a « Free Lunch » for Appliance-Pattern Localization ?

Kettle
« ON »

A. Petralia et al., Appliance Detection Using Very Low-Frequency Smart Meter Time Series, ACM e-Energy, 2023.
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Proposed Approach: CamAL

ResNet 1 ResNet 2 ResNet 𝑛…
Trained ResNet Ensemble

Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes



24

Proposed Approach: CamAL

ResNet 1 ResNet 2 ResNet 𝑛…

𝑃 𝑎 1 𝑃 𝑎 2 𝑃 𝑎 𝑛…

Trained ResNet Ensemble

If 𝑃 𝑎 𝑒𝑛𝑠 > 0.5𝑃 𝑎 𝑒𝑛𝑠 = ෍

𝑖=1

𝑛
𝑃 𝑎 𝑖

𝑛

No

Return 0 
for all timesteps

Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes
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Proposed Approach: CamAL
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ResNet 1 ResNet 2 ResNet 𝑛…

𝑃 𝑎 1 𝑃 𝑎 2 𝑃 𝑎 𝑛…

Trained ResNet Ensemble

If 𝑃 𝑎 𝑒𝑛𝑠 > 0.5𝑃 𝑎 𝑒𝑛𝑠 = ෍

𝑖=1

𝑛
𝑃 𝑎 𝑖

𝑛
Yes

1

0

𝐶𝐴𝑀(1)

𝐶𝐴𝑀(2)

𝐶𝐴𝑀(𝑛)

Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes
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Proposed Approach: CamAL
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Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes
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Proposed Approach: CamAL
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Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes
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Proposed Approach: CamAL
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Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes
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Proposed Approach: CamAL
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A ResNet ensemble with varying kernel sizes

𝐶𝐴𝑀(1)

𝐶𝐴𝑀(2)

𝐶𝐴𝑀(𝑛)

Continues to depend on a hyperparameter, which needs to 
be manually tuned for each scenario

Improving CAM for Appliance Localization
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Proposed Approach: CamAL
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A ResNet ensemble with varying kernel sizesConsiders the shape of the input aggregated signal!
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Improving CAM for Appliance Localization
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Proposed Approach: CamAL
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Improving CAM for Appliance Localization
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Proposed Approach: CamAL
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Improving CAM for Appliance Localization
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Experimental Evaluation: Results

                      

 

   

   

   

   

   

                                               

                        

 
 

  
 

 
 

 

CamAL (ours)

2.2x better 

5200x less labels 

Number of labels used for training (log scale)
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CamAL

CRNN Weak

TPNILM

BiGRU

CRNN

TransNILM

Unet-NILM

Strongly supervised

One label per 
household

« weak label »

One label per timestamp
« strong label »

b
et

te
r

Survey 
dataset

How does CamAL perform compared to strongly-supervised baselines?

Water Heater case (IDEAL dataset)

2.2x more accurate for same number of labels!
Up to 5200x less labels for same accuracy!
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Experimental Evaluation: Results

How do label-collection costs vary between approaches?
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dollars

Household

gCO2

Timestamp

Reduce collection cost (gCO2 and cash) by up to 2 magnitude orders!

Asking customers to 
fill out a questionnaire

Instrumenting households with
dedicated submeters per appliance

One label per:

Cost for training 
CamAL

Cost for training 
strongly supervised

SotA methods

Survey 
dataset
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Conclusion

• Promising open research direction: generate softly labeled sub-meter activation
signals to train sequence-to-sequence approaches.

• CamAL is the first “frugal” yet accurate method for identifying appliance-usage
patterns in smart-meter data.

• CamAL (Class Activation Map based Appliance Localization)

➢ Leverage explainable AI to tackle appliance-pattern localization using weak
labels

➢Achieve near–strongly supervised method’s accuracy while drastically reducing
labeling costs



Thank you!
Contact: adrien.petralia@edf.fr

Github repo

Want to learn more about 
our work?

Online demo


