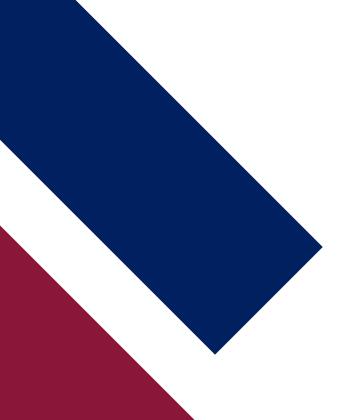
Few labels are all you need: A Weakly Supervised Framework for Appliance Localization in Smart-Meter Series



Adrien PETRALIA^{1,2}, Paul Boniol³, Philippe CHARPENTIER², Themis PALPANAS¹

¹Université Paris Cité, Paris, France

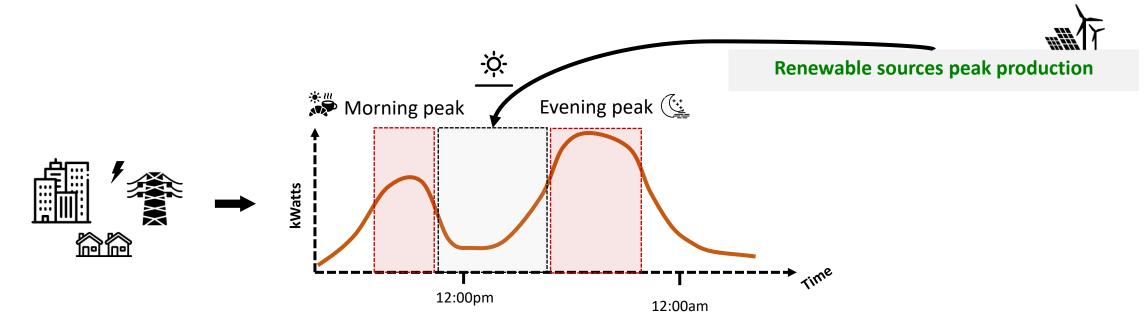
³INRIA – ENS, Paris, France

²EDF R&D, Palaiseau, France

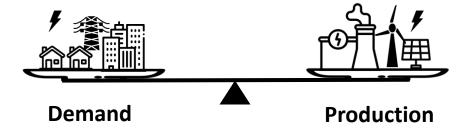
May21st, 2025

Context: From Renewable Surge to the Flexibility Challenge

Typical daily electricity grid domestic demand

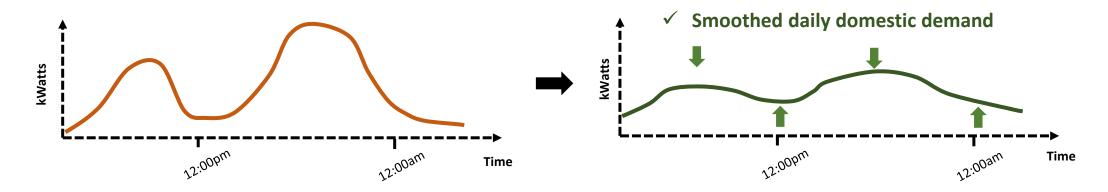


The Flexibility Challenge = real-time ability to match variable supply & demand



Context: The Flexibility Challenge

Reducing peak demand: shifting parts of the consumption to off-peak hours



Electricity suppliers (as EDF) need to play an active role in this process

How convince clients to change their consumption behaviors?

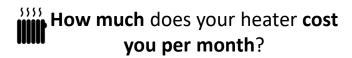
1. Personalized contracts

Lower off-peak pricing, for charging your Electric Vehicle at night

2. Dynamic pricing

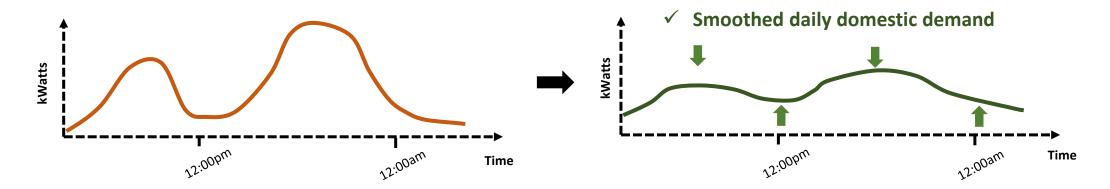
Criticial Peak Pricing Peak Time Rebeat

3. Appliance-level feedback



Context: The Flexibility Challenge

Reducing peak demand: shifting parts of the consumption to off-peak hours

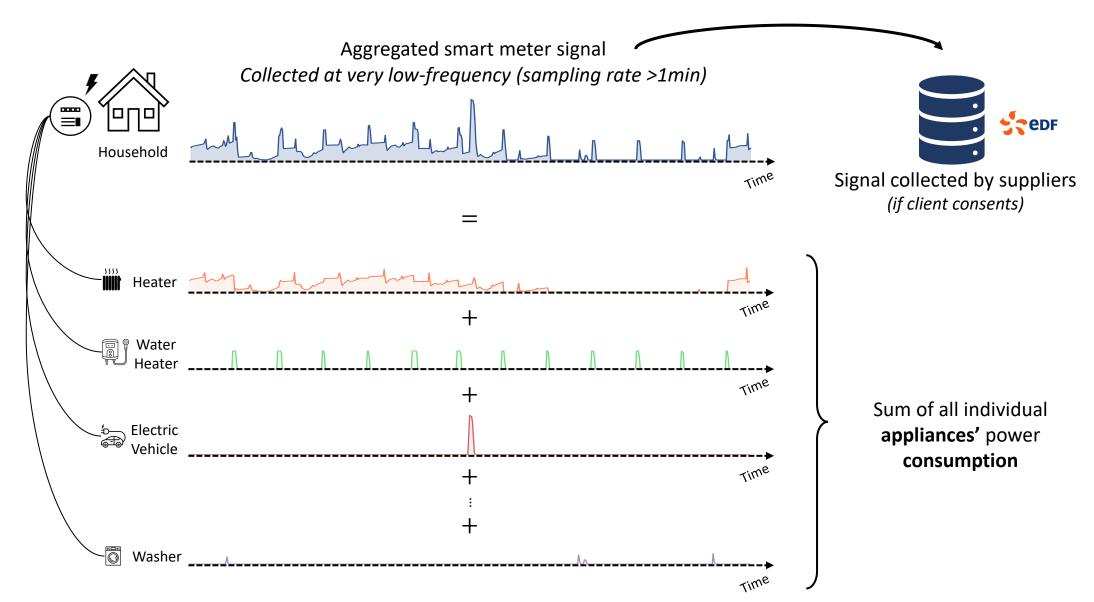


Electricity suppliers (as EDF) need to play an active role in this process

How convince clients to change their consumption behaviors?

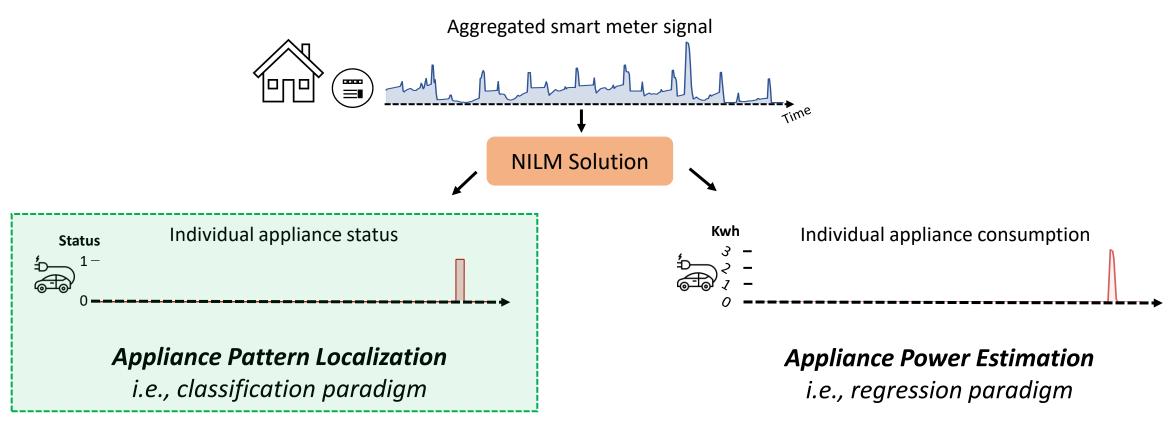
Context: Smart Meter Deployement

Millions of Smart Meters deployed in individual households



Background: Smart Meter Data Analytics

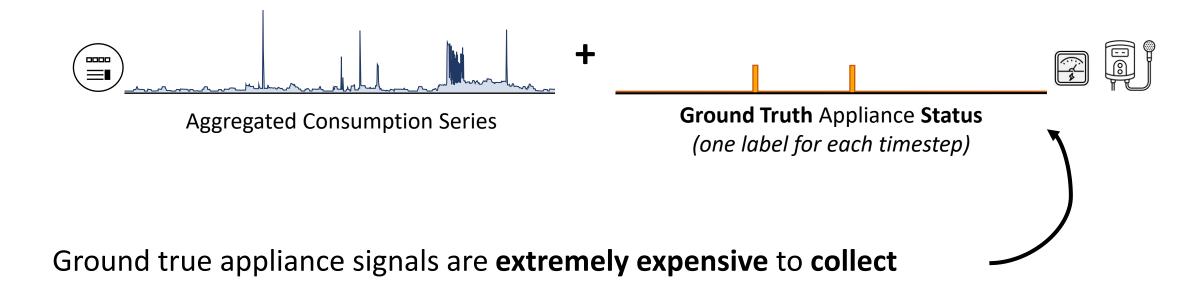
Non-Intrusive Load Monitoring (NILM): estimates **power consumption**, operational **patterns**, or **on/off state** of individual appliances using **only the total aggregated signal**



Background: Smart Meter Data Analytics

Appliance Pattern Localization = when the appliance is used?

SotA solutions require **large number** of **strong labels**



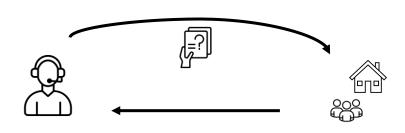
1000\$ to instrument an household with dedicated sensors!

Lever: Weak labels

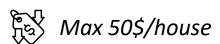
We already have weak labels

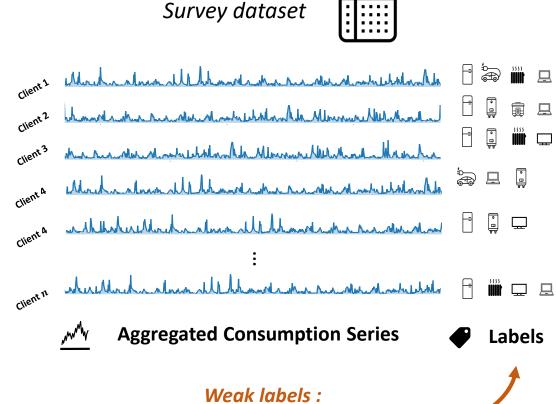
Can we use weak labels for accurate appliance localization?

"Is the appliance **X** present in your household?"



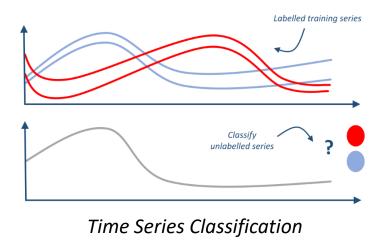
Customers fill out a **questionnaire** in exchange for a small reward

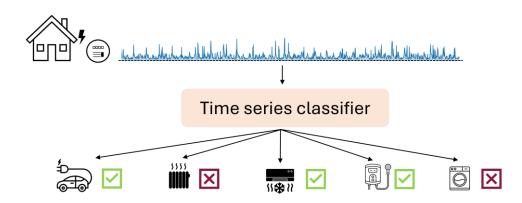




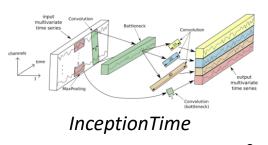
Lever: Appliance Detection in Consumers Household

Detecting appliances in consumers households can be cast as a **Time Series** Classification Problem¹.





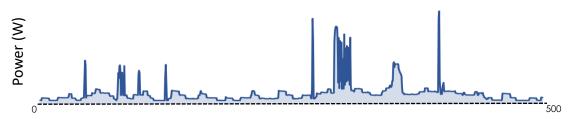
Recent studies demonstrate that **deep learning** (including CNNs) are the most **accurate** solutions for **tackling this task**^{1,2}.



Can we tackle the **Appliance Pattern Localization** problem using **minimal supervision**?

Challenges

Aggregate electricity consumption series

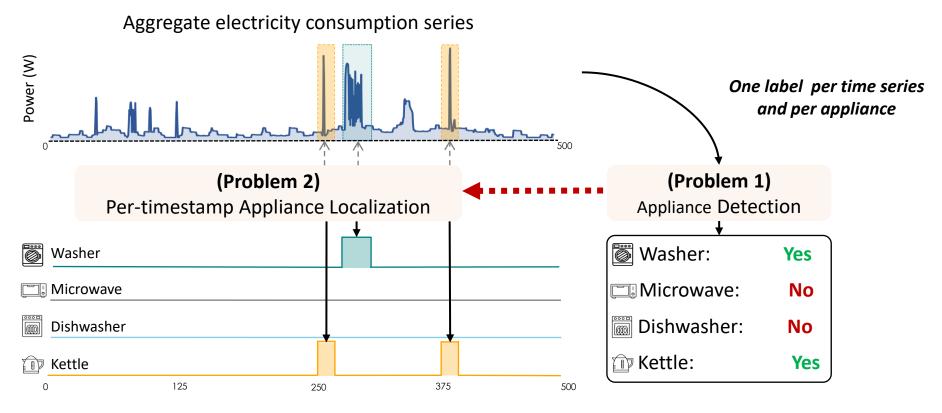


Can we tackle the **Appliance Pattern Localization** problem using **minimal supervision**?

Challenges Aggregate electricity consumption series One label per time series and per appliance (Problem 1) **Appliance Detection Washer:** Yes **Microwave:** No Dishwasher: No M Kettle: Yes

Can we tackle the **Appliance Pattern Localization** problem using **minimal supervision**?

Challenges



Can we tackle the **Appliance Pattern Localization** problem using **minimal supervision**?

Challenge

Aggregate electricity consumption series One label per time series and per appliance (Problem 2) (Problem 1) Per-timestamp Appliance Localization **Appliance Detection Washer** Washer: Yes ■ Microwave: No Microwave Dishwasher Dishwasher: No Yes Markettle: M Kettle 250

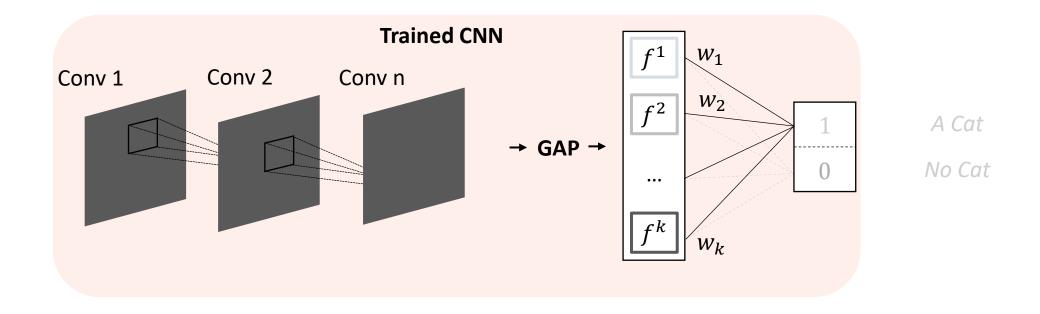
Solution

✓ CamAL

Class Activation Map based Appliance Localization

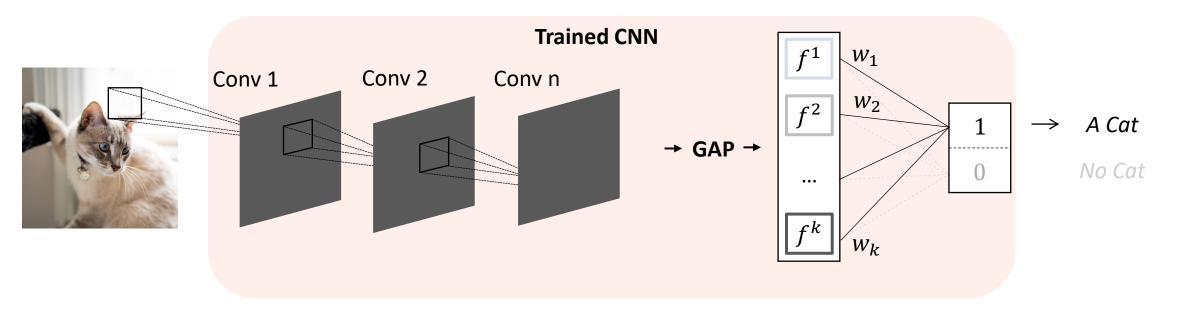
Background: Weakly Supervised Localization

Explainable AI - Class Activation Map (CAM)



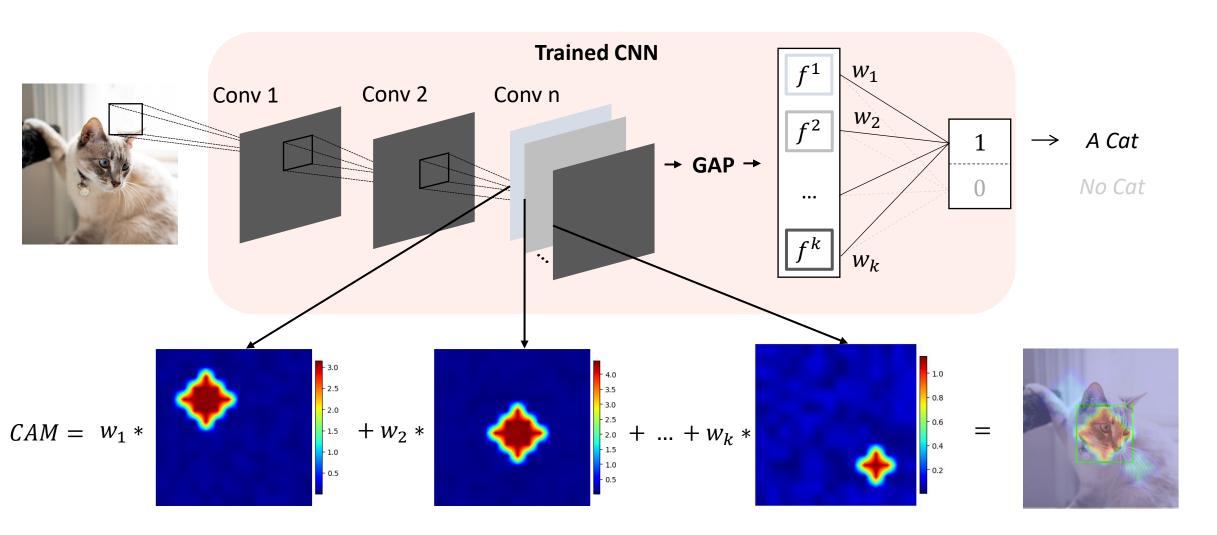
Background: Weakly Supervised Localization

Explainable AI - Class Activation Map (CAM)

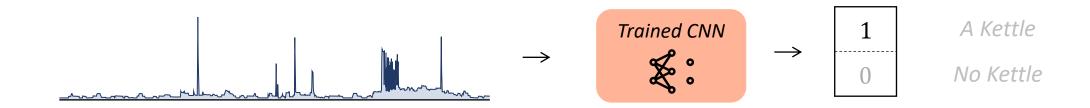


Background: Weakly Supervised Localization

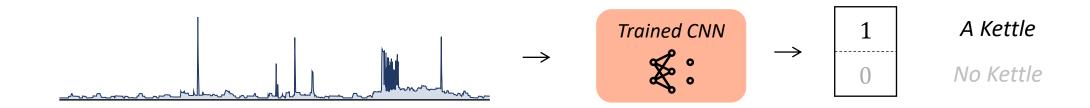
Explainable AI - Class Activation Map (CAM)



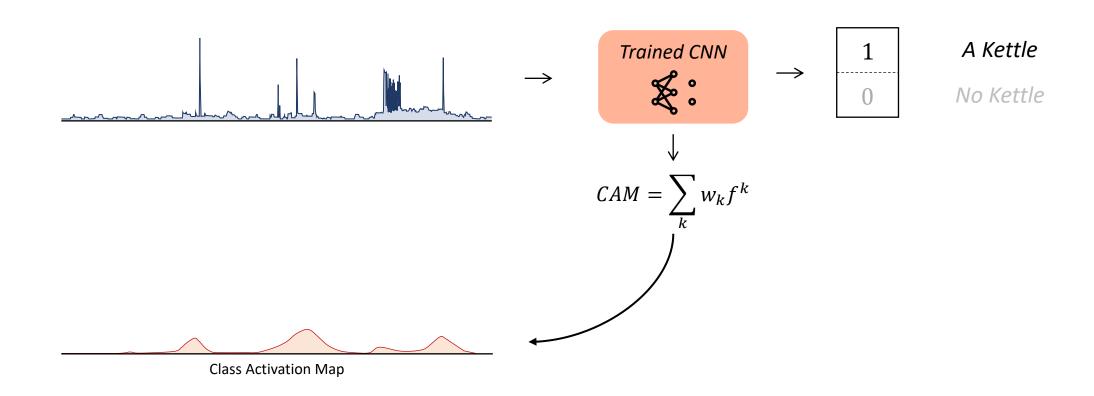
CNNs (ResNet, Inception) perform well on the Appliance Detection task



CNNs (ResNet, Inception) perform well on the Appliance Detection task



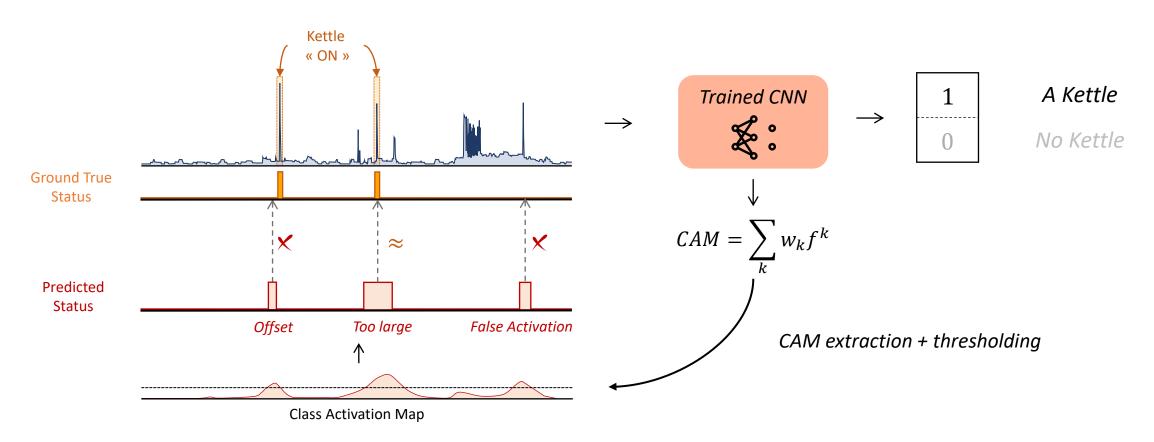
CNNs (ResNet, Inception) perform well on the Appliance Detection task



CNNs (ResNet, Inception) perform well on the Appliance Detection task



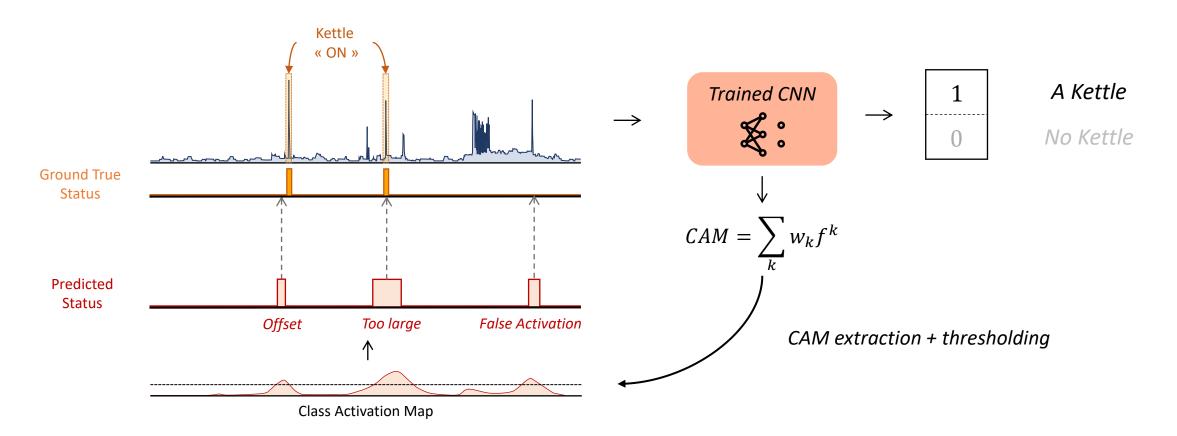
CNNs (ResNet, Inception) perform well on the Appliance Detection task



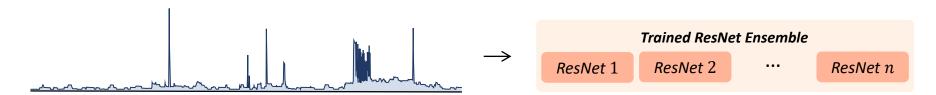
CNNs (ResNet, Inception) perform well on the Appliance Detection task

Is CAM a « Free Lunch » for **Appliance-Pattern Localization**?

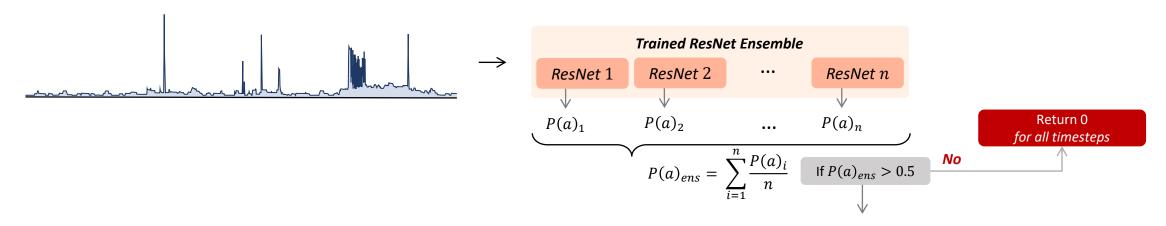
Not that simple...



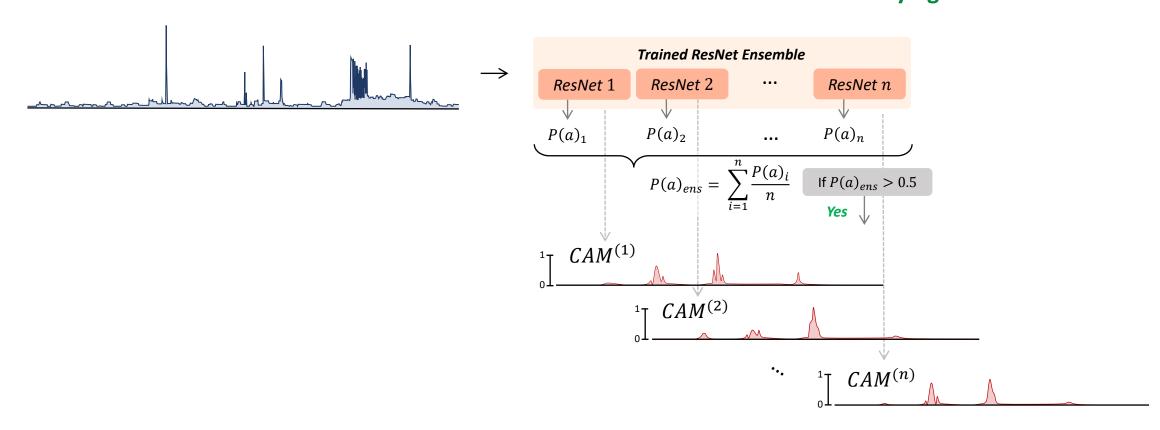
Improving CAM for Appliance Localization



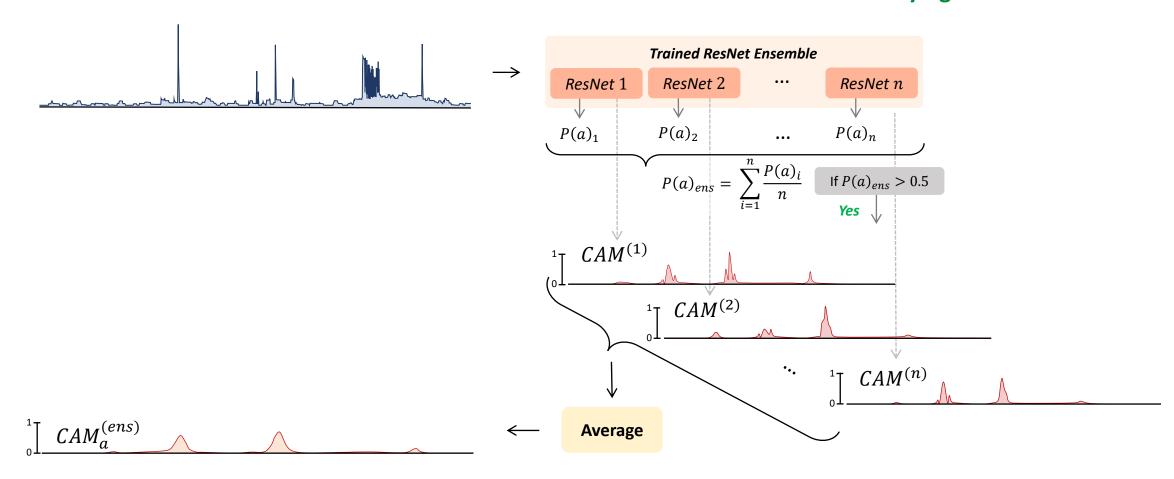
Improving **CAM** for **Appliance Localization**



Improving **CAM** for **Appliance Localization**



Improving **CAM** for **Appliance Localization**



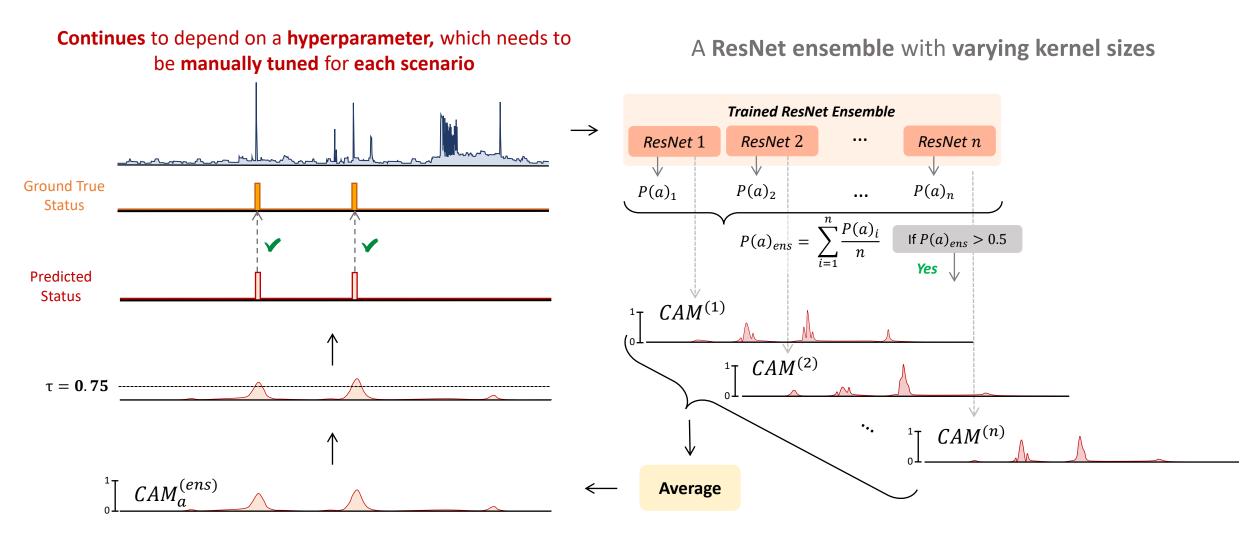
Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes **Trained ResNet Ensemble** ResNet 1 ResNet 2 ResNet n $P(a)_2$ $P(a)_n$ $P(a)_1$ If $P(a)_{ens} > 0.5$ Yes Predicted Status $CAM^{(1)}$ ¹T CAM⁽²⁾ $CAM^{(n)}$ **Average**

Improving CAM for Appliance Localization

Trained ResNet Ensemble ResNet 1 ResNet 2 ResNet n **Ground True** $P(a)_n$ $P(a)_1$ $P(a)_2$ Status If $P(a)_{ens} > 0.5$ Yes \ Predicted **Status** $CAM^{(1)}$ ¹T CAM⁽²⁾ $CAM^{(n)}$ **Average**

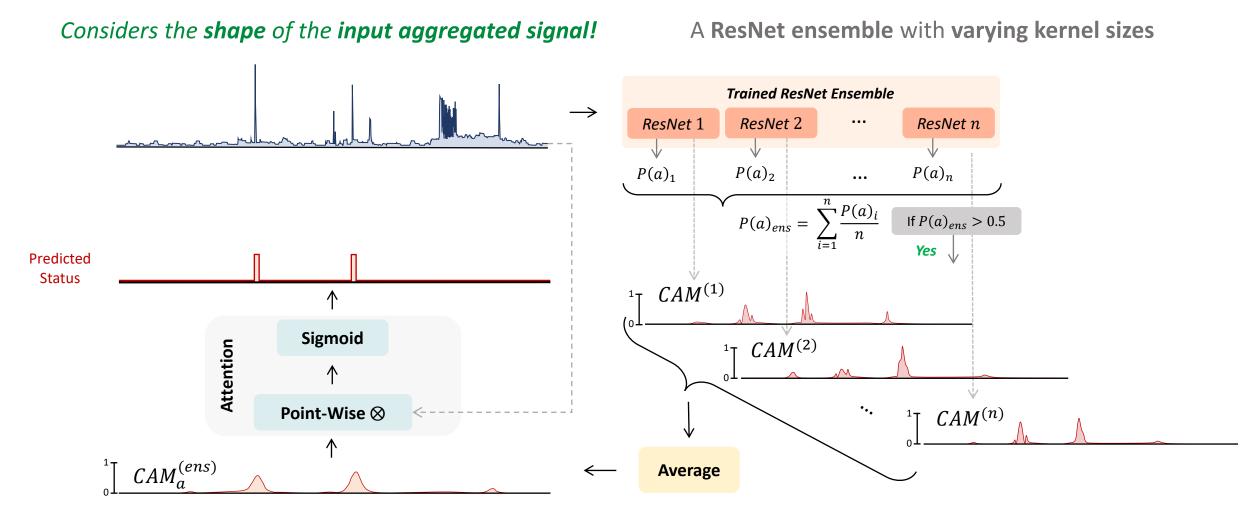
Improving CAM for Appliance Localization



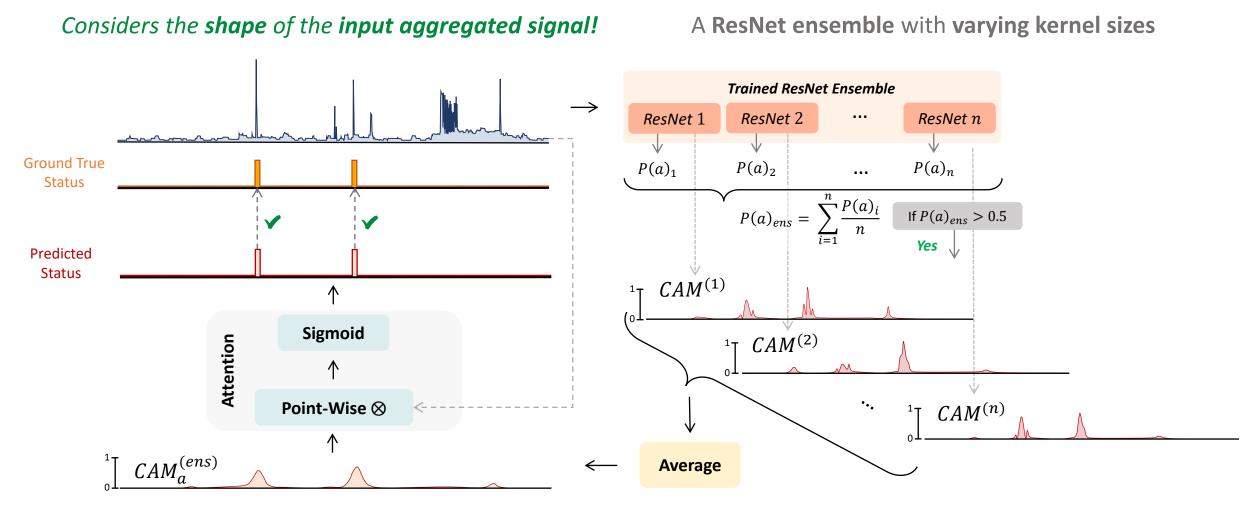
Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes Considers the **shape** of the **input aggregated signal! Trained ResNet Ensemble** ResNet 1 ResNet 2 ••• ResNet n $P(a)_2$ $P(a)_n$ $P(a)_1$ If $P(a)_{ens} > 0.5$ Yes | $CAM^{(1)}$ ¹T *CAM*⁽²⁾ $CAM^{(n)}$ $CAM_a^{(ens)}$ **Average**

Improving CAM for Appliance Localization

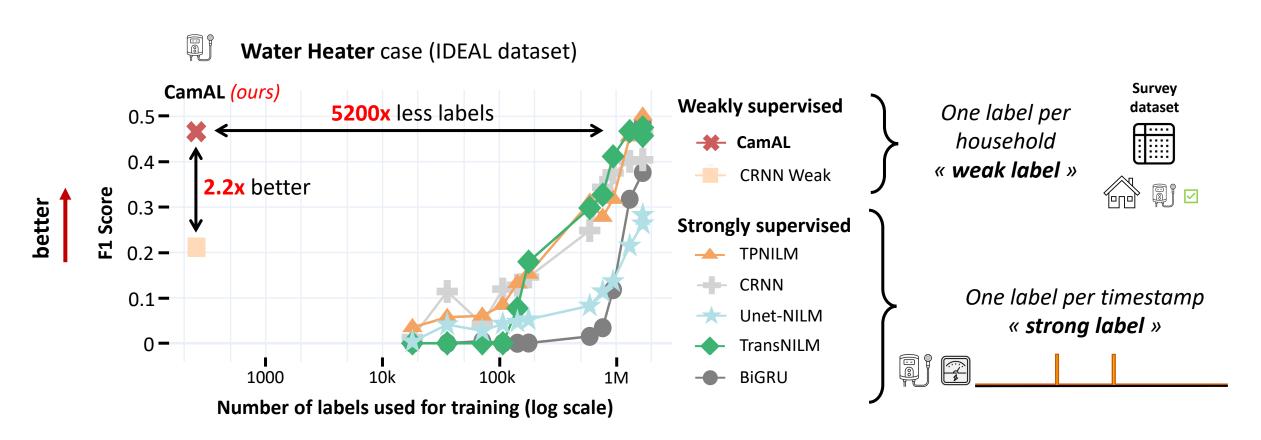


Improving CAM for Appliance Localization



Experimental Evaluation: Results

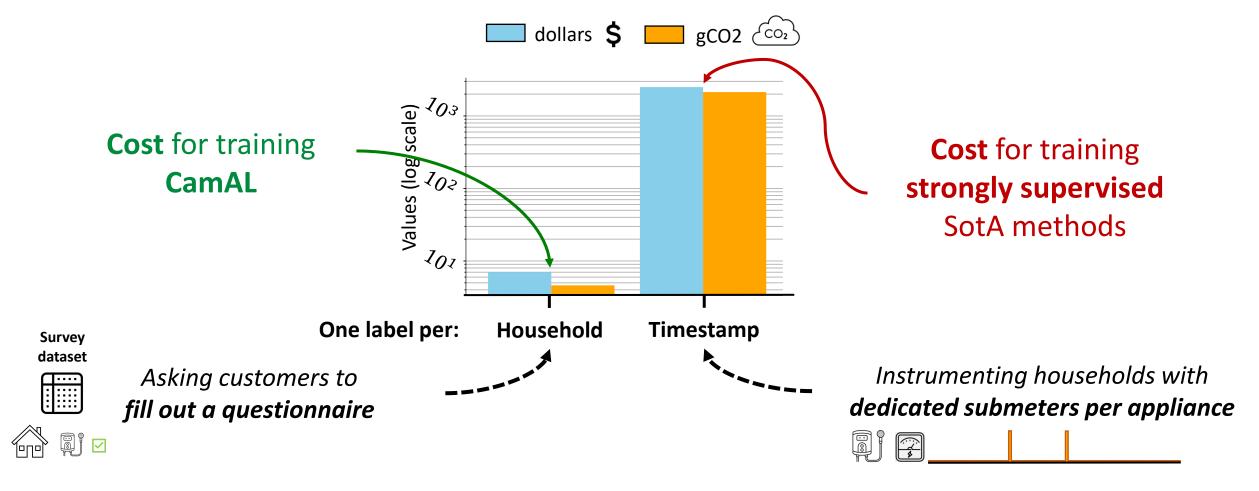
How does CamAL perform compared to strongly-supervised baselines?



2.2x more accurate for same number of labels! Up to **5200x less labels** for same accuracy!

Experimental Evaluation: Results

How do label-collection costs vary between approaches?



Conclusion

- CamAL (Class Activation Map based Appliance Localization)
 - Leverage explainable AI to tackle appliance-pattern localization using weak labels
 - Achieve near-strongly supervised method's accuracy while drastically reducing labeling costs
- CamAL is the first "frugal" yet accurate method for identifying appliance-usage patterns in smart-meter data.
- Promising open research direction: generate softly labeled sub-meter activation signals to train sequence-to-sequence approaches.

Thank you!

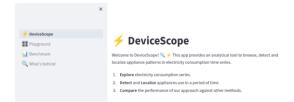
Contact: adrien.petralia@edf.fr

41st IEEE International Conference on Data Engineering

— HONG KONG SAR, CHINA I MAY 19 – 23, 2025 —

Want to learn more about our work?

Github repo



Online demo