Few labels are all you need:
A Weakly Supervised Framework for
Appliance Localization in Smart-Meter Series
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Context: From Renewable Surge to the Flexibility Challenge

Typical daily electricity grid domestic demand
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The Flexibility Challenge = real-time ability to match variable supply & demand
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Context: The Flexibility Challenge

Reducing peak demand: shifting parts of the consumption to off-peak hours
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Electricity suppliers (as EDF) need to play an active role in this process

How convince clients to change their consumption behaviors?

1. Personalized contracts 2. Dynamic pricing 3. Appliance-level feedback
- Lower off-peak pricing, for Criticial Peak Prici §553
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Context: The Flexibility Challenge

Reducing peak demand: shifting parts of the consumption to off-peak hours
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Electricity suppliers (as EDF) need to play an active role in this process

How convince clients to change their consumption behaviors?

Solutions based on customers’ consumption

characteristics!




Context: Smart Meter Deployement

Millions of Smart Meters deployed in individual households
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Aggregated smart meter signal
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s /\ Collected at very low-frequency (sampling rate >1min)

e Signal collected by suppliers
(if client consents)
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Background: Smart Meter Data Analytics

Non-Intrusive Load Monitoring (NILM): estimates power consumption, operational patterns, or
on/off state of individual appliances using only the total aggregated signal

Aggregated smart meter signal
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Appliance Pattern Localization
i.e., classification paradigm

Appliance Power Estimation
i.e., regression paradigm



Background: Smart Meter Data Analytics
Appliance Pattern Localization = when the appliance is used?

SotA solutions require large number of strong labels
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Aggregated Consumption Series Ground Truth Appliance Status
(one label for each timestep)

Ground true appliance signals are extremely expensive to collect

10005 to instrument an household with dedicated sensors!



Lever: Weak labels

We already have weak labels

Can we use weak labels for accurate appliance localization?

“Is the appliance X present Survey dataset

in your household?”
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Customers fill out a questionnaire in
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Weak labels : /
No guarantee about when (or even if)

the appliance is actually in use



Lever: Appliance Detection in Consumers Household

Detecting appliances in consumers households can be cast as a Time Series
Classification Problem.

Labelled training series
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Recent studies demonstrate that deep learning (including CNNs) are 7 - ‘/ ‘aq
the most accurate solutions for tackling this task®. Do\
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Problem

Can we tackle the Appliance Pattern Localization problem
using minimal supervision?

Challenges

Aggregate electricity consumption series
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Problem

Can we tackle the Appliance Pattern Localization problem
using minimal supervision?

Challenges

Aggregate electricity consumption series

One label per time series
and per appliance
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(Problem 1)

Appliance Detection
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Washer: Yes

=7J Microwave: No
Dishwasher: No

Kettle: Yes




Problem

Can we tackle the Appliance Pattern Localization problem
using minimal supervision?

Challenges

Aggregate electricity consumption series

z
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Problem

Can we tackle the Appliance Pattern Localization problem
using minimal supervision?

Challenge Solution

Aggregate electricity consumption series

g One label ] i / CamAL

5 per time series

E \ and per appliance
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Background: Weakly Supervised Localization

Explainable Al - Class Activation Map (CAM)
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Background: Weakly Supervised Localization

Explainable Al - Class Activation Map (CAM)

Trained CNN
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Proposed Approach: CAM for Appliance Pattern Localization?
CNNs (ResNet, Inception) perform well on the Appliance Detection task

Is CAM a « Free Lunch » for Appliance-Pattern Localization ?

Trained CNN 1
s o —> |
o
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Proposed Approach: CAM for Appliance Pattern Localization?
CNNs (ResNet, Inception) perform well on the Appliance Detection task

Is CAM a « Free Lunch » for Appliance-Pattern Localization ?
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Proposed Approach: CAM for Appliance Pattern Localization?
CNNs (ResNet, Inception) perform well on the Appliance Detection task

Is CAM a « Free Lunch » for Appliance-Pattern Localization ?

Trained CNN 1
s o —> |
o

J
CAM = ) wyf*
Z ‘

Class Activation Map

A Kettle

19



Proposed Approach: CAM for Appliance Pattern Localization?

CNNs (ResNet, Inception) perform well on the Appliance Detection task

Is CAM a « Free Lunch » for Appliance-Pattern Localization ?

Trained CNN
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Class Activation Map
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Proposed Approach: CAM for Appliance Pattern Localization?

CNNs (ResNet, Inception) perform well on the Appliance Detection task

Is CAM a « Free Lunch » for Appliance-Pattern Localization ?
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Proposed Approach: CAM for Appliance Pattern Localization?

CNNs (ResNet, Inception) perform well on the Appliance Detection task

Is CAM a « Free Lunch » for Appliance-Pattern Localization ? —> Not that simple...
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Proposed Approach: CamAL

Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes

Trained ResNet Ensemble
—>
ResNet 1 ResNet 2 ResNet n
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Proposed Approach: CamAL

Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes

Trained ResNet Ensemble

ResNet 1 ResNet 2 ResNet n
P(a) P(a); P(a), Return 0
- ~ J for all timesteps
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P(a); No
P(a)ens = (n)l If P(@)ens > 0.5
i=1 \L
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Proposed Approach: CamAL

Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes

Trained ResNet Ensemble

ResNet 1 ResNet 2 ResNet n
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Proposed Approach: CamAL

Improving CAM for Appliance Localization
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A ResNet ensemble with varying kernel sizes
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Proposed Approach: CamAL

Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes

Trained ResNet Ensemble
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Proposed Approach: CamAL
Improving CAM for Appliance Localization

A ResNet ensemble with varying kernel sizes

Trained ResNet Ensemble
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Proposed Approach: CamAL

Improving CAM for Appliance Localization

Continues to depend on a hyperparameter, which needs to
be manually tuned for each scenario

Trained ResNet Ensemble
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A ResNet ensemble with varying kernel sizes
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Proposed Approach: CamAL

Improving CAM for Appliance Localization

Considers the shape of the input aggregated signal!
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A ResNet ensemble with varying kernel sizes

Trained ResNet Ensemble
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Proposed Approach: CamAL

Improving CAM for Appliance Localization

Considers the shape of the input aggregated signal!
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Proposed Approach: CamAL

Improving CAM for Appliance Localization

Considers the shape of the input aggregated signal! A ResNet ensemble with varying kernel sizes
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Experimental Evaluation: Results

How does CamAL perform compared to strongly-supervised baselines?

Water Heater case (IDEAL dataset)
CamAL (ours)
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2.2x more accurate for same number of labels!
Up to 5200x less labels for same accuracy!



Experimental Evaluation: Results

How do label-collection costs vary between approaches?
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Conclusion

e CamAL (Class Activation Map based Appliance Localization)

» Leverage explainable Al to tackle appliance-pattern localization using weak
labels

» Achieve near—strongly supervised method’s accuracy while drastically reducing
labeling costs

e CamALl is the first “frugal” yet accurate method for identifying appliance-usage
patterns in smart-meter data.

* Promising open research direction: generate softly labeled sub-meter activation
signals to train sequence-to-sequence approaches.
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