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1. Motivation 3. DeviceScope

 Appliance detection and typical usage pattern analysis are key to
electricity suppliers [1, 3] Stand-alone webapp developed on Streamlit with 3 main

 Appliance localization is commonly formulated as a sequence-to- features:

sequence task requiring strong labels (one label per timestep)

* However, suppliers typically only have access to weak labels : binary 1. Visualizing electricity consumption time series

presence indicators per sequence or per households 2. Detecting and localizing appliance usage patterns
* Recent explainability-driven methods have emerged to highlight 3. Benchmarking the performance of CamAL against
anomalous or relevant regions in time series based on weak labels [2] baselines (weakly and strongly supervised ones)
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