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Abstract—In several concept attainment systems, ranging
from recommendation systems to information filtering, a sliding
window of learning instances has been used in the learning
process to allow the learner to follow concepts that change
over time. However, no analytic study has been performed on
the relation between the size of the sliding window and the
performance of a learning system. In this work, we present
such an analytic model that describes the effect of the sliding
window size on the prediction performance of a learning
system based on iterative feedback. Using a signal-to-noise
approach to model the learning ability of the underlying
machine learning algorithms, we can provide good estimates
of the average performance of a modeling system indepen-
dently of the supervised machine learning algorithm employed.
We experimentally validate the effectiveness of the proposed
methodology with detailed experiments using synthetic and
real datasets, and a variety of learning algorithms, including
Support Vector Machines, Naive Bayes, Nearest Neighbor and
Decision Trees. The results validate the analysis and indicate
very good estimation performance in different settings.

Keywords-concept drift; user modeling; adaptive learning;
“demanding lord” problem

I. INTRODUCTION

In the literature, researchers have expressed the inability

of several classifiers to follow changing concepts (e.g., in

user preferences [1]). The implied change of context that

changes a target concept, its effects on classification, and

the evolution of learning methods in order to tackle the

change that have been studied in the machine learning and

the stream mining community as the problem of “concept

drift”. Drifting concepts appear in a variety of settings in

the real world, e.g., the state of a free market or the traits

of the most viewed movie.

The questions we answer with this study are the following.

How can we model the expected performance of learning

algorithms based on knowledge of the characteristics of the

abrupt concept drift (also termed “concept shift”), such as

the period of occurrence of these drifts? How can we esti-

mate the performance of a learner for different window sizes

and concept change periods, regardless of the underlying

learning algorithm?

To answer these questions, we focus on the functional

relation between the window size and the average perfor-

mance of a learning system. In summary, we make the

following contributions. We offer a formulation — under

the label “the problem of the demanding lord” — and

analytic solution of the problem of estimating the average

performance in learning systems in the presence of abrupt

concept drift (concept shift). We describe a methodology

to approximately estimate the performance of a learning

algorithm as a function of signal-to-noise in the training

set, regardless of the learning algorithm idiosyncrasies. This

allows practitioners to easily optimize the performance of

learning systems. To the best of our knowledge, this is

the first systematic approach for estimating the average

performance of learning algorithms in this setting. This

approach provides the basis for further analytic study of the

connection between average performance of an incremental

learning system and the noise in the training set.

In the following sections, we present the related work

(Section II) and we formulate the problem faced (Section

III). We then elaborate on the proposed analytic method-

ology (Section IV). Then, we experimentally validate the

analysis (Section V) and we conclude with a discussion on

our findings (Section VI).

II. RELATED WORK

There have been several studies with different assump-

tions on the speed or type of drift. The drift can be gradual

(termed ”drift”), instantaneous (termed ”abrupt drift” or

”shift”), or a function of time [2], where a parameter

indicates the speed of the drift.

In an early influential work, the problem of “concept

attainment” in the presence of noise was indicated and

studied in the STAGGER system [3]. The system approx-

imated a (boolean expression) concept based on examples,

through weighted symbolic characterizations. A backtrack-

ing methodology allowed changing the current description

of the target concept to account for the drift. In [4], a

full-memory (i.e., all remembering) incremental-learning

speed-efficient system is presented, aiming to find concept

descriptions that are both characteristic (wide coverage) and

discriminative (high precision).

A focused study of the mistake rate of a learning algo-

rithm that updates its estimate based on the most recent

examples [5] identifies bounds for this rate, based on the



number of recent examples. In [6] the authors connect the

VC-dimension (d) of a target concept to the difficulty of

attaining the target concept.

In later works, we find approaches where either hard-

coded thresholds are used [7] based on trial-and-error, or

the window is adjusted whenever a shift is detected [8],

possibly based on some optimization scheme [9], [10]. The

window size can also be adjusted based on heuristics [2],

or the observations in the window can be assigned different

weights over time [11]. Recently, researchers have also used

“local windows” in sub-parts of models, as in [12] where

an incremental decision tree uses local sub-concept adaptive

window sizes. Another approach uses multiple competing

windows of different sizes [13], that try to tackle the problem

of differentiating noise from virtual drift from actual concept

drift. In [14], two classifiers are used, one with full memory

and one with partial, fixed-size memory, in a paired learning

approach, where the partial memory reactive learner causes

a reset to the full-memory classifier in key time-points.

Other approaches use a window differently or not at all.

In user modeling, instead of a window, constantly updated

weights on terms are used to follow change in user interests

in [15]. In [16], the proposed system learns based on extreme

examples and batch learning. Ensemble-based approaches

exist, such as the case of boosting [17], or the Concept Drift

Committee of decision trees [18], or the case where an EM

algorithm assigns weights to ensemble classifiers, which are

created and disposed of over time as needed [19].

In this work, motivated by our related studies on window

size and its effect on user modeling [20], [21], we provide

an analytic framework that allows the a-priori estimation

of an optimal window size for the case of periodic con-

cept shifts, overcoming the heuristic or algorithm-specific

approaches of the literature. Another major contribution is

based on the proposal of an algorithm-agnostic signal-to-

noise function (see Section IV-A) as a description of the

connection between noisy input and the performance of a

learning algorithm.

III. PROBLEM FORMULATION

We call the problem we analyze the “problem of the de-

manding lord” (see Table I for an overview of the analogy).

The idea is that there is a demanding lord that requires a

meal every day from his good servant. The servant tries to

estimate a classification of the meals his lord likes, based on

his reactions to previous meals. Each day the servant offers

a set of meals and gets the full set of reactions from the lord

as feedback. The lord, however, may change his preferences.

We want to determine how many of the lord’s latest answers

the servant needs to remember in order to maximally satisfy

the lord on average over time.

We can differentiate servants from their policy of learning

P and by the number of reactions r they take into account.

The finite-memory servant remembers the last r reactions

Description Symbol Demanding lord analogy and other notes

User W demanding lord
User modeling system H servant
System iteration d days of service, d ∈ N∗

Concept instance G meal
Feedback instance A lord’s reaction to meal
Learning method P learning policy (i.e., the way the servant learns)
Memory window size r # of the latest reactions the servant remembers
Period of shift Ts days between two consecutive interest shifts

Table I
PROBLEM FORMULATION ANALOGY AND MAIN SYMBOLS

only. The all-remembering servant (r → ∞) remembers all

his lord’s reactions. Therefore, a servant can be described as

the pair H ≡< P, r >. The lord can be described based on

the probability distribution p(d) of an occurring shift, over

the days elapsed from the last shift: W ≡< p(d) >.

We make some assumptions that facilitate the representa-

tion of the problem. First, the lord W periodically changes

his interests through what we call an interest shift, or simply

shift. This implies that: p(d) = 1, if d = kTs, k ∈ N
∗

else p(d) = 0. Also, a shift is radical, so that no infor-

mation is valid concerning reactions on the previous sets

of meals. This makes sure that we can judge noise when

detecting a shift. For a given day d and a set of offered

meals Gd = {G1, G2, ..., Gn}, n > 0 the set of the lord’s

reactions on that day is Ad = {A1, A2, ..., An} containing

the reactions mapped to each one of the n meals.

In the following elaboration we refer to Figure 2 to

visualize the described states. In Figure 1 we provide the

legend of the corresponding symbols. Each given day dc,

the servant H uses the r last feedback sets (see Figure 2)

Adc−r,Adc−r+1, ...,Adc−1 to learn, using his training policy

P, to estimate meals. We call this set of feedback sets the

training set T of the servant. In a given point it time dc the

servant is trained using only valid information (the white

circles in Figure 2), if within the last r days, no shift has

occurred. Otherwise, if a shift occurred on day ds, before

the current day dc, dc − ds ≤ r, then the servant has some

no-longer-valid feedback set N ⊂ T (noise, shown as black

circles in Figure 2) and some valid S ⊂ T (signal), and

T = S∪N. The period of the shift will be noted as Ts, i.e.,

every shift happens exactly Ts days after the previous one1.

The first interest shift happens on day d = Ts. We start with

this assumption of periodicity, to facilitate the formulation

of the problem. Later, we verify whether the results of our

analysis are also valid for random shift frequency.

If |̇| is the operator of the size of a set, then we let S = |S|
and N = |N| represent the signal magnitude and the noise

magnitude of a training set T. We also allow S = ∅ ⇒ S =
0,N = T ⇒ N = r, when all the training set is not valid any

longer because a shift has just occurred. Correspondingly,

N = ∅ ⇒ N = 0, S = T ⇒ S = r, when no change has

1In the case of random shifts, Ts can be approximated by the expected
number of days between two consecutive interest shifts.
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Figure 4. Mean Performance (vertical axis) per signal-to-noise ratio
(horizontal axis): Means plot with confidence bars (left) and LOWESS
regression plot for well-supported points (right).

“upswing”, which label the current target concept based on

the current iteration. For more information on the datasets,

see [22].

Searching for a Good Sigmoid: Given an equation of

sigmoid type (see Equation 1), we need to identify the

parameters that best describe a set of observed data points.

In our case, the data points are measured performance values

for given signal-to-noise ratios. The search in the parameter

space is performed by a genetic algorithm (GA), searching

for an approximate good set of parameters6. The fitness

function of the GA used is based on the Kolmogorov-

Smirnov (KS) goodness-of-fit D statistic. The K-S test

statistic D is expected to have a low value if two sets

of samples from distributions are more likely to originate

from the same underlying distribution. In our case, the two

compared distributions are the actual and estimated values

of performance, corresponding to the possible Z values.

To determine whether the sigmoid estimation is good,

we perform a five-fold cross-validation of our sigmoid

estimation process. The training set is used to determine the

CTF and the test set to determine the collinearity (through

a Pearson test) between the estimation and the real values

of the performance with the given CTF. A high collinearity

value indicates that the CTF is a good estimate.

Discussion on the CTF: Observing the data in these runs,

we identified an important aspect of the learners, illustrated

in Figure 5: sometimes the sigmoid is shifted to the left

or to the right. Given this trait, we better expressed and

approximated the CTF by the form:

f(Z) = m+ (M −m)
1

1 + b× exp(−c× (Z − d))
(8)

which adds a parameter d that models the horizontal position

shift, improving CTF estimation.

In Table II we illustrate the Pearson correlation values

indicating how collinear the performance values from the

estimated sigmoid CTFs are to the actual values. In order

6Non-linear regression, which we tried first, failed to converge in some
cases for the given setting and had to be abandoned.
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Figure 5. Shift in the Sigmoid. Gray: true points, Black: estimation.

Setting Correlation Quantiles

STAGGER Dataset Naive Bayes J48 Decision Tree

Ts ρ 1st Q. Mean 3rd Q. 1st Q. Mean 3rd Q.

40 0.50 0.94 0.94 0.95 0.86 0.92 0.96
40 0.85 0.88 0.90 0.89 0.87 0.89 0.91
40 1.00 0.70 0.76 0.79 0.68 0.77 0.81

IFO Dataset SVM NN

Ts ρ(r) 1st Q. Mean 3rd Q. 1st Q. Mean 3rd Q.

8.46 0.59 (5) 0.72 0.76 0.90 0.84 0.86 0.94
8.64 1.04 (9) 0.58 (0.08) 0.77 0.93 0.81 0.84 0.94

Table II
CORRELATION OF TRUE PERFORMANCE TO CTF-BASED ESTIMATE.

P-Value of tests < 0.1.

to elaborate on the whole set of results over all folds,

we provide the 1st and 3rd quantiles of the collinearity

values, as well as the mean value. The results on both the

STAGGER and the market dataset indicate the consistently

high correlation, and thus success, of the estimation to the

actual data points7. We should note, however, that in the

worst case of the market dataset — where neither of our

prerequisites the correlation is not statistically significant (p-

value > 0.05), even though it is rather strong. This indicates

that there is still room for improvement in CTF estimation.

Lastly, we note that the estimation time for a CTF is on the

order of a few seconds per fold (< 1000 iterations).

Estimation of Performance over Time: In this section we

study whether the estimated and real average performance

of a demanding lord system (DLS) converge over time.

Using the best performing estimated CTF (in terms of

collinearity to the actual performance), we follow a learning

system over time recalculating on every iteration the average

period of the shift, the estimated performance and the actual

performance, based on the feedback.

Given the above information we plot graphs of iteration

(x-axis) vs. delta (y-axis) between the estimation and the

actual value (absolute error). We measure the Spearman and

7For the specifics on the evaluation process for the market dataset please
consult [22].



Synthetic dataset: Boolean Concept Dataset - 6000 Iterations

Setting Spearman Pearson

Bayes 40-20 -0.3022561 -0.272744

Bayes 40-40 -0.9611965 -0.482552

Real dataset: Business Climate, 212 Iterations

Setting Spearman Pearson

SVM Random-5 -0.1777558 -0.3815536

SVM Random-9 -0.3168430 -0.4193718

Table III
CORRELATION OF ITERATION NUMBER AND DELTA (10-FOLD

VALIDATION). P-value of tests < 0.05.
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Figure 6. Convergence (10-fold validation) of the average delta. ρ < 1.
Left to right: Boolean Concept and Real Dataset.

the Pearson correlations, indicating rank and linear correla-

tion correspondingly between iteration and delta. In the case

of the real dataset, where the shift period changes over time,

the system takes into account on every iteration the average

period of the shifts. We perform 10-fold validation, also

increasing the number of iterations during which we examine

the system, for the synthetic dataset. We can see the Boolean

Concept dataset graph (exhibiting periodic shifts), Figure

6-left and the Business Climate dataset graph (aperiodic

shifts) in Figure 6-right. We observe (refer to Table III) that

the performance estimation converges (negative values for

correlation) well within the statistical significance level of

99%. It is very interesting that the convergence also happens

in the random shift dataset (Table III, Business Climate

dataset), which indicates that the estimator is robust.

It appears that the estimation error falls to levels below 5%
rather quickly (few hundreds of iterations), which indicates

that the average performance can be estimated quite early,

allowing for early optimization of the memory window.

VI. CONCLUSIONS

In this study, we have shown that on a partial memory

online learning system, we can estimate a good memory

window to maximize performance for a given series of

instances, regardless of the underlying learner. The analysis

we have performed offers a basis for studying learning

algorithms from a signal-to-noise-response perspective. For

a given dataset, calculating a good CTF allows practition-

ers to optimize a system’s learning performance, without

exhaustive experiments.
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