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Abstract—The recent rise in the use of social networks has
resulted in an abundance of information on different aspects of
everyday social activities that is available online. In the process
of analysis of identifying the information originating from social
networks, and especially Twitter, an important aspect is that of
the geographic coordinates, i.e., geolocalisation, of the relevant
information. Geolocalized information can be used by a variety
of applications in order to offer better, or new services. However,
only a small percentage of the twitter posts are geotagged,
which restricts the applicability of location-based applications.
In this work, we describe TweeLoc, our prototype system for
geolocalizing tweets that are not geotagged, which can effectively
estimate the tweet location at the level of a city neighborhood.
TweeLoc employs a dashboard that visualizes the social activity of
the geographic regions specified by the user, and provides relevant
easy-to-access statistics. Moreover, it displays information on the
way that these statistics evolve over time. Our system can help
end-users and large-scale event organizers to better plan and
manage their activities, and can complete this task fast and more
accurately than alternative solutions that we compare to.
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I. INTRODUCTION

[Motivation:] Every day activities and events affect peo-
ple’s lives, and in turn have a great impact on their social
activity. The development of social networks such as Twitter,
Facebook and Google+, allow their users to share whatever
they see, do, or observe. The social interactions supported
via these social networks have as a result the creation of
information, the analysis of which could allow us to recreate
(part of) the real-world. Furthermore, the development of
mobile devices and the usage of the social networks via these
devices provides to the user the possibility to share news
and information in real-time, providing also the geographic
location from which the post was made.

As a result, we now have access to datasets containing
detailed information of social activities. To that effect, several
applications and techniques have been developed that analyze
datasets created through the use of social networks, tracking
crowd movements and identifying needs, in order to provide
benefits to end users, businesses, civil authorities and scientists
alike. Applications use these datasets in order to characterize
an urban landscape and optimize urban planning [1], to moni-
tor and track mobility and traffic [2], [3], to identify and report
natural disasters [4], or for analyzing the impact of events [5].

Therefore, such applications rely on the quality and quantity
of data that include geolocalization information.

[Problem Description and Solution:] Although the use
and analysis of geotagged posts is very appealing, only a very
small percentage (around 2%) is geotagged [6], providing the
exact location of the observation that is described in the post.
The TweeLoc System addresses exactly this problem: it ge-
olocalizes the non-geotagged posts, enabling the applications
that need this information to produce better quality results.
Furthermore, it offers an interactive visualization interface,
facilitating the understanding and analysis of social activity
and its evolution over time.

The TweeLoc system is based on our previous work on
geolocalization of non-geotagged posts [7] (in particular, it
employs the TG-TI-CLR1 algorithm). Our focus is on fine-
grained location prediction: we wish to estimate the location
of a post at the level of a city neighborhood. This is in contrast
to previous approaches, which were predicting the geolocation
of tweets at the level of regions, cities or zip-codes [8], [9],
[10]. In our case, when the granularity becomes fine, the search
space of the algorithms increases significantly. Nevertheless,
the algorithms need to maintain a very high accuracy and, at
the same time, be able to operate efficiently in a streaming
fashion.

TweeLoc, provides interactive visualizations that include
heatmaps for the depiction of the volume of (geotagged and
geolocalized) tweets, and allows the user to zoom at different
levels of granularity, ranging from a country, down to a city
neighborhood. At the city neighborhood level, the user can also
visualize the keywords that characterize that neighborhood.
Finally, TweeLoc provides visualizations that illustrate in a
comprehensive manner the changes in the volume of posts
over time, for each neighborhood in a city (at a short time
scale), as well as for an individual neighborhood (over long
time intervals).

II. RELATED WORK

Several works have presented and studied a range of
problems of the identification of a geolocalization based on
posts that are already geolocalized. Some works that study
geolocalization issues rely on the similarity of user profile and
location profile while some other build location profiles and
try to match unique tweets with these locations.



Two representative works that belong to the first category
are the studies presented in [11] and [8]. In the first study
Cheng et al. propose the creation of location profiles based
on idiomatic keywords and unique phrases mentioned in the
tweets of users who have declared those locations as their ori-
gins, while in the second the authors create user profiles for the
active users, and extract the keywords that are characteristic of
specific locations (i.e., they usually appear in some location,
and not in the rest of locations). For the extraction of these
keywords they initially assign weights, and then prune them
using a predefined keyword-weight threshold. This leads to a
set of representative keywords for each location, which allows
the algorithm to compute the probability that a given user
comes from that location (Geometric-Localness (GL) method).
A recent study evaluates the GL method, and compares it to
other methods that solve the same problem: the experimen-
tal evaluation shows that the GL method achieves the best
results [6]. Two additional studies target to geotag unique
tweets [12], [13]. These two methods create chains of words
that represent a location by using Latent Dirichlet Allocation
(LDA) [14]. The latter study also takes into consideration the
location a user has recorded as their home location.

A study that belongs to both categories, targeting to predict
both a user’s location and the place a tweet was generated
from is presented in [9]. In this study, the authors construct
language models by using Bayesian inversion, achieving good
results for the country and state level identification tasks.

Even though the studies of the second group are closely
related to our work, we observe that they operate at a much
coarser time and space scale (e.g., space granularity of cities,
or zip codes [9]). Moreover, previous studies rely on coarse-
grain timeslots, and on the assumption of high volume training
data being available at every timeslot (thus, leading to long-
duration timeslots, in the order of weeks). On the contrary, in
our work we predict the location of individual tweets at the
granularity of city neighborhoods (in this study, we define a
neighborhood as a square of 1km side).

The interested reader may also refer to a recent survey that
discusses methods relevant to location inference [10].

III. METHOD DESCRIPTION

We now briefly describe the inner-workings of TweeLoc,
and the TG-TI-CLR1 algorithm, which is language agnostic
(for a detailed description, see our previous work [7]).

We first have to extract the most important keywords
describing a particular location and its current activity. That
is, we have to retrieve the geotagged tweets deriving from
this location, create a signature keyword-vector, and find the
similarity of the non-geotagged posts with this vector.

Extract Location Keyword-Vector: Initially, we gather
all the geotagged tweets posted at a specific period of time (in
our setup, a window of 4 hours), from each Coarse-Grained
Location (CGL: in our setup, the different cities of a country)
that we are interested in, and we group them into a single
document for each CGL. Then, we compute the concordance

of each word in each document, and we also employ the Tf-
Idf model: Idfkeyword = log(n

k ), where n is the total number
of documents, k is the number of documents that contain the
specific keyword, and Tf−Idfi,keyword = count

l ∗Idfkeyword,
where l is the total number of keywords in document i. The use
of the Tf-Idf model allows us to assess the importance of each
keyword. Subsequently, we sort the keywords of each location
according to their importance (i.e., we consider the Tf − Idf
score as the measure of the importance of each keyword), and
we remove non-important keywords (i.e., common keywords,
or stopwords are expected to have low Tf − Idf scores). At
the end, we obtain a keyword vector, CGL-kv representing
each CGL. We repeat the same process for the Fine-Grained
Locations (FGLs).

Location Activity Parameter: In addition to the analysis
above, we examine the FGL activity volume, and compare
that to the activity volume of the corresponding CGL. The
intuition is that in the case of an important event, the number
of posts in that FGL will be significantly increased, to the
point that it will influence in the same way the number of
posts in the CGL (where the FGL is located in). In order to
capture this relationship, we measure the Pearson correlation
between the two time-series (i.e., number of posts over time
for CGL and FGL):

corrc,f =
Σt2

t=t1(Ctst − C̄ts)(FLtst − ¯Fts)√
Σt2

t=t1(Ctst − C̄ts)2Σt2
t=t1(Ftst − ¯Fts)2

+ 1,

(1)
where t1 and t2 are the beginning and end times of the
time-window we are interested in, t is the timeslot under
examination (inside the larger time-window), c is the CGL, f
is the FGL and Cts, Fts their activity time series. We also
add 1 in order to shift the correlation range from [-1,1] to
[0,2], so that candidate locations that correspond to positive
correlation receive a bonus (they get multiplied by a number
in the range (1,2]), while those that correspond to a negative
correlation get penalized (they get multiplied by a number in
[0,1)). Finally, we note that the above correlation can only
be exploited if the activity (number of posts) is increasing.
Therefore, we check the slope of the time-series (λts) of every
possible sub-window with length n/2 (in our setup, a window
of 2 hours):

λts =
Σ((x− x̄)(y − ȳ))

Σ(x− x̄)2Σ(y − ȳ)2
. (2)

Only if a location has at least one sub-window with positive
slope, it is considered as a candidate FGL.

Post Geolocalization: When we want to geolocalize
a non-geotagged tweet, Qtweet, we constuct its keyword
vector, compute its similarity (we use cosine similarity) to
the keyword vectors of all candidate locations, and pick the
most similar one. Each CGL that has a non-zero similarity
with the Qtweet is a “candidate location”, and is further
split into finer-grain candidate locations, i.e., the FGLs (in
our setup, squares of 1km side). At the FGL level, the
keyword-vector similarity includes an additional multiplicative



Fig. 1: TweeLoc Architecture

factor based on the correlation of the activity series. Finally,
we sort the candidate FGLs according to their similarity,
and those exceeding a dynamic threshold are considered as
valid answers [7]. TweeLoc picks the FGL with the highest
similarity score among those.

IV. THE TWEELOC SYSTEM

We now describe the TweeLoc architecture (see Figure 1).
The input to our system are the tweets deriving from the

public API of Twitter, or alternatively from a json file that
contains historical tweets, as well as a file with all required
initialization parameters. The parameters are user-defined, and
they refer to the bounding box of the CGLs in interest, the
space resolution of the FGLs (by default: 1 square km), the
length of a timeslot in minutes (by default: 15), the number
of timeslots in a window (by default: 16), the percentage of
tweets to use for training (by default: 80%), the elasticity
of the threshold (by default: +20%), whether we focus on a
specific language or not (by default: no), the set of stopwords
to filter out during preprocessing (by default: no stopwords
filtered), and the percentage of keywords we want to keep in
our keyword-vectors (by default: 60%).

TweeLoc accesses the Twitter stream using the python
library “geopy” 1. The downloaded tweets are processed in
batches (one timeslot at a time): initially stored in a json file,
and then “fed” to our system for building the model of each
location (CGL and FGL). In this way, we can process both
live and historical data using the same workflow. Note that the
latency that this choice imposes to the processing of the live
data (as low as a few minutes) is not a show-stopper for the
applications targeted by TweeLoc.

The proposed system utilizes the TG-TI-CLR1 algorithm
(described earlier) for building the model and estimating the
locations of non-geotagged tweets. Previous studies [7] have
shown that TG-TI-CLR1 is up to 3 times faster compared
to the state-of-the art QL algorithm [9], while it achieves up

1https://github.com/geopy/geopy

(a) Precision Comparison

(b) Recall Comparison

(c) F1 Comparison

Fig. 2: Comparison with the state-of-the-art for 7 CGLs

to almost 4 times better F1, with recall more than 2 times
better and precision up to 8 times better. The experimental
results for precision, recall, and the F1 measure are shown
in Figure 2. The difference in performance between TG-TI-
CLR1 and QL can be explained by the different focus of



the QL algorithm, which was developed to operate at much
bigger spatial (in the order of zipcodes, or cities) and temporal
granularities (in the order of weeks, or months), relying on
cases with high volume of training data. The decrease of the
spatial and temporal granularity, has as a result the decrease of
the volume of available information, which adversely affects
the performance of the probabilistic models used by QL. In
our figures we also include the results for another algorithm
with similar characteristics to QL, the KL algorithm [9], which
performs worse than QL. The detailed experimental results for
TG-TI-CLR1 and QL, including the average execution times
needed per window (4-hours window), are presented in Table I.

This part of the system was built using Python 2.7. The
geolocalized tweets are then passed on to the visualization
layer, which overlays their positions on maps, along with
additional statistics.

The geographical maps that we use are composed of tiles
downloaded from “Openstreetmap”. These tiles change when-
ever we zoom-in or zoom-out. The visualizations that use
heatmaps are using a modified version of the “geoplotlib”2

Python library. Finally, we use the python library ”pyQt4”3

that handles graphic elements, and is useful for visualizing
individual tweets on a geographical map, along with the tweet
text and other metadata.

V. DEMONSTRATION

For the purposes of the demonstration4, we will showcase a
prototype of the TweeLoc system working with both static and
live Twitter data. In what follows, we describe the datasets we
will use, as well as the different ways the participants will be
able to interact with the system. The goal is to demonstrate the
benefits TweeLoc’s fine-grained geolocalization, and its ability
to support location-based applications that would otherwise
not be possible. In order to showcase the significance of our
contribution, we will also compare the results of TweeLoc with
the results of the most prominent alternative solution, namely,
the QL algorithm [9].

In the following paragraphs, we describe the datasets and
scenarios we will use for the demonstration.

Datasets: The first dataset we will use contains Twitter
geotagged posts that were generated in Italy between June 1
and June 20, 2016, which we will play back. The CGLs that
we focus on are the 7 Italian cities with the highest activity,
namely Rome, Milan, Florence, Venice, Naples, Turin and
Bologna. The total number of tweets is 218,572. We will also
use a dataset from Germany, which contains 325,120 tweets,
and a third dataset from the Netherlands, containing 232,454
tweets. The latter two datasets, were both generated between
August 10 and September 11, 2014.

In addition, we will use live data from the Twitter public
API, in order to demonstrate the real-time functionality of
TweeLoc. The live data are going to be streaming tweets

2https://github.com/andrea-cuttone/geoplotlib
3https://pypi.python.org/pypi/PyQt4
4Video available at: https://www.dropbox.com/sh/tjqaipfn71h9ubp/

AADMKSd-EKDkezuzccXCtzJva?dl=0

generated from USA during the days of the conference. We
will also target tweets from New Orleans, where apart from
ICDM, several other events will be taking place, such as Jazz
and Blues music concerts.

1. Hotspot Identification: In our first demonstration
scenario, the participants will experience how TweeLoc allows
for a much more detailed spatial exploration of the data
than previous methods. TweeLoc will first display to users
a geographical map of the selected area, overlayed with a
heatmap of all geolocalized tweets, as shown in Figure 3a (the
black color corresponds to places with low activity, red with
medium activity, and yellow with high activity). Unlike earlier
approaches, the user will be able to zoom in a specific city in
order to create a fine-resolution map (an example is shown in
Figure 3b). At this level of detail, the user will observe the
Twitter activity as it unfolds in the different neighborhoods of
a city, and identify the most popular spots in the city.

In this scenario, the participants will be able to choose
among the different datasets, and also interactively decide on
which city (and for the case of the static datasets, the time
interval, as well) to focus on.

2. Activity Analysis: In the second scenario, the users
will concentrate on the analysis of the activity dynamics of
the tweets. The interface depicted in Figure 4a visualizes a
heatmap based on the number of tweets that were posted from
each individual FGL (i.e., square in the grid). In this view,
when the user hovers with the mouse over a square, a bubble
appears that shows the representative keywords of that square,
corresponding to the content of the tweets of that square. The
user could also switch to an alternative view, visualizing a
differential heatmap (Figure 4b), which visualizes the way that
the activity of each FGL changes (i.e, increases, or decreases)
between two timeslots. In this case, each square shows the
percentage of the activity change, and is colored in green
when the activity increases over time, otherwise in red. In all
heatmap views, the upper right corner of the window displays
the name of the heatmap, the starting time of the window, and
its length in minutes. This scenario will demonstrate the ability
of TweeLoc to reveal the activity of different neighborhoods
in a city and identify hotspots, explain this activity in terms of
the contents of the tweets, and also explore how this activity
evolves over time.

In this scenario, the participants will be able to explore the
Twitter activity dynamics for different cities, and also decide
on the dataset used (including the live stream). They will also
be able to navigate across time (except for the live dataset),
effectively changing the time window (i.e., timeslot) under
consideration.

3. Targeted Statistics: In our third demonstration scenario,
the users will be able to check the location of specific,
individual tweets, as they appear in the live stream. The text of
the tweets will be displayed on the screen, and when clicked
on, the system will display the predicted position of that
tweet on the map, by automatically zooming-in to the FGL
identified as the tweet location (Figure 5a). The system will
additionally display a list of representative keywords for all the

https://www.dropbox.com/sh/tjqaipfn71h9ubp/AADMKSd-EKDkezuzccXCtzJva?dl=0
https://www.dropbox.com/sh/tjqaipfn71h9ubp/AADMKSd-EKDkezuzccXCtzJva?dl=0


TG-TI-CLR1 QL
Perc. of Keywords Time (sec) Precision Recall Time (sec) Precision Recall

10% 28 0.72 0.10 90 0.05 0.03
20% 32 0.76 0.14 90 0.06 0.06
30% 41 0.79 0.20 90 0.06 0.09
40% 50 0.79 0.22 90 0.06 0.10
50% 58 0.79 0.23 90 0.06 0.12
60% 69 0.79 0.23 90 0.06 0.14
70% 79 0.79 0.23 90 0.07 0.15
80% 88 0.78 0.23 90 0.07 0.16
90% 99 0.76 0.23 90 0.07 0.18
100% 123 0.75 0.24 90 0.07 0.20

TABLE I: Average Execution Time per Window (in sec) and Performance Comparisons

(a) Country Activity Heatmap (b) Rome Activity Heatmap

Fig. 3: Country and City Activity Heatmaps

(a) FGL Activity (b) Differential Heatmap

Fig. 4: FGL Activity and Differential Heatmaps

tweets posted from that same FGL. Furthermore, by clicking
on the FGL position, a new window will pop-up, depicting
the volume of tweets over time that were posted from that
FGL (Figure 5b). The interface will also provide a “Locate
all” button, for geolocalizing all the individual tweet posts
currently displayed on the screen.

In this scenario, the participants will be able to choose
individual tweets from the live stream (in case of a network
problem, we will play back one of the recorded datasets).

4. Comparison to State-of-the-Art Solution: In the last

demonstration scenario, the users will have the chance to
compare the performance of TweeLoc to that of the QL
algorithm [9], which is the state-of-the-art solution. In par-
ticular, the users will be able to employ QL for the Targeted
Statistics scenario, and compare its performance both visually
and analytically to that of the TG-TI-CLR1 algorithm: the
system will display on the map the geolocations predicted by
each one of the algorithms, along with the true geolocation, as
well as the cummulative distance (error) for each algorithm.

In this case and for the purposes of the comparison, the



(a) Check Tweet Details Interface (b) FGL Activity

Fig. 5: FGL and Activity Tweet Details

participants will choose individual tweets from one of the
recorded datasets, for which the ground truth (i.e., the true
geolocation) is known.

VI. CONCLUSIONS

In this work, we present TweeLoc, a system that can
effectively and efficiently geolocalize non-geotagged tweets.
Contrary to previous approaches, our framework provides ge-
olocation estimates at a fine grain, thus, supporting a range of
applications that require this detailed knowledge. Our system
provides a variety of visualizations and statistics, which enable
users and analysts to quickly understand how social activity
evolves over space and time.
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