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Data series
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• Sequence of points ordered along some dimension
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Scientific Monitoring

• meteorology, oceanography, astronomy, 

finance, sociology, …
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Historical stock quotes
http://money.cnn.com/2012/04/23/markets/walmart_stock/index.htm

Wind speed
From ocean observing node project
http://bml.ucdavis.edu/boon/wind.html

Time



Telecommunications

6

• analysis of call activity patterns

▫ Telecom Italia

clustermap of incoming calls time series
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average number of calls for 5 smallest clusters

call activity for Easter Monday

Time
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Home Networks
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• temporal usage behavior analysis of home networks

▫ Portugal Telecom

clustering based on user activity patterns
(previously unknown) frequent behavior pattern

Time
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Data Centers

• cloud utilization/operation/health monitoring
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Time
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Neuroscience

• functional Resonance Magnetic Imaging (fMRI) data

▫ primary experimental tool of neuroscientists

▫ reveal how different parts of brain respond to stimuli

9
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plant membrane
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Schinnerer et al.
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GTCAATGGCCAGGATATTAGAACAGTACTCTGTGAACCCTATTTATGGTGGCACCCCTTAGACTAA
GATAACACAGGGAGCAAGAGGTTGACAGGAAAGCCAGGGGAGCAGGGAAGCCTCCTGTAAAGAG
AGAAGTGCTAAGTCTCCTTTCTAAGGCACATGATGGATTCAAGGGAAAGCCACATTTGACTAAAGC
CCAAGGGATTGTTGCTTCTAATCCGATTTCTTGGCAGAAGATATTACAAACTAAGAGTCAGATTAA
TATGTGGGTGCCAAAATAAATAAACAAATAATTGAATAATCCCTGGAGGTTTAAGTGAGGAGAAA
CTCCTCCACAGCTTGCTACCGAGGCAGAACCGGTTGAAACTGAAATGCATCCGCCGCCAGAGGATC
TGTAAAAGAGAGGTTGTTACGAAACTGGCAACTGCCAACCAAAGTCCACCAATGGACAAGCAAAA
AAGAGCACTCATCTCATGCTCCCAAGGATCAACCTTCCCAGAGTTTTCACTTAAGTGGCCACCAAG
CCAGTTGTCAATCCAGGGCTTTGGACTGAAATCTAGGGCTTCATCCGCTACCTCAGAGTGTCTTCT
ATTTCTTCCAGCCAGTGACAAATACAACAAACATCTGAGATGTTTTAGCTATAAATCCTTTACAATT
GTTATTTATGTCTTAACTTTTGTTATACCTGGAAAAGTAGGGGAAACAATAAGAACATACTGTCTT
GGCCAAGCATCCAAGGTTAAATGAGTTATGGAAATTCATTTGGGAGCCAAGACATTGCACGTGGT
TATTTATTAGTCACCCAAGCATGTATTTTGCATGTCCATCAGTTGTTCTTGGCCAAAAGAGCAGAAT
CAATGAGCCGCTGCAGATGCAGACATAGCAGCCCCTTGCAGGGACAAGTCTGCAAGATGAGCATT
GAAGAGGATGCACAAGCCCGGTAGCCCGGGAAATGGCAGGCACTTACAAGAGCCCAGGTTGTTGC
CATGTTTGTTTTTGCAACTTGTCTATTTAAAGAGATTTGGGCAATGGCCAGGATATTAGAACAGTA
CTCTGTGAACCCTATTTATGGTAGCACCCCTTAGACTAAGATAACACAGGGAGCAAGAGGTTGACA
GGAAAGCCAGGGGAGCAGGGAAGCCTCCTGTAAAGAGAGAAGTGCTAAGTCTCCTTTCTAAGGCA
CATGATGGATCAAGGGAAAGTCACATTTGACTAAAGCCCAAGGGATTGTTGCTTCTAATCCGATTC
TTGGCAGAAGATATTGCAAACTAAGAGTCAGATTAATATGTGGGTGCCAAAATAAATAAACAAATA
ATTGAATAATCCCTGGAGGTTTAAGTGAGGAGAAACTCCTCCACACTTGCTACCGAGGCAGAACCG
GTTGAAACTGAAATGCACCCGCTGCCAGATTTATTAGTCACCCAAGCATGTATTTTGCATGTCCAT
CAGTTGTTCTTGGCCAAAAGAACAGAATCAATGAGCCGCTGCAGATGCAGACATAGCAGCCCCTTG
CAGGAACAAGTCTGCAAGATGAGCATTGAAGAGGATGCACAAGCCCGGTAGCCCGGGAAATGGCA
GGCACTTACAAGAGCCCAGGTTGTTGCCATGTTTGTTTTTGCAACTTGTCTTTTAAACAGATTTGA
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Medicine

FrequencyMass
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Motivating Examples: 
Monitoring Vehicle Operation
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Data as a Set

Data as a Sequence

• streaming data

▫ window of interest

 landmark window

 sliding window (shifting window)

• may treat streaming data as a set, or as a sequence

▫ depends on whether sequence is important

16
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Data Series (Signal) Processing

Data Series Management

• lots of literature on data series processing
▫ periodicity detection

▫ data series modeling and forecasting

 ARMA, ARIMA

▫ outlier detection

 focuses on next value

• instead, we will focus on 
▫ sequences as first class citizens

▫ very large collections of data series

▫ fast and scalable similarity search

17
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Objectives

• get introduced to the data series data type

▫ characteristics, properties, peculiarities

• learn about 

▫ data series representations

▫ data series similarity matching

▫ data series indexing

▫ systems for data series management

▫ challenges and open problems

18
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Introduction

• lots of work on data series representations

▫ techniques for representing/storing data series

• main goal

▫ summarize data series

▫ render subsequent processing more efficient

20
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Outline

• terminology and definitions

• motivation

• pre-processing tasks

• data series representation techniques

21
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Data series

22

• Sequence of points ordered along some dimension

• terminology: we will use interchangeably
▫ data series, time series, data sequence, sequence
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Data series
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• Sequence of points ordered along some dimension

• number of data series values, n 

▫ length, or dimensionality
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Data series
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• Sequence of points ordered along some dimension

• subsequence
▫ subset of contiguous values
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Data series

25

• Sequence of points ordered along some dimension

• subsequence
▫ subset of contiguous values

▫ eg, subsequence of length (dimensionality) 4
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Outline

• terminology and definitions

• motivation

• pre-processing tasks

• data series representation techniques

26
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Simple Query Answering

27

Simlarity
Search

select some 
data series

select values 
in time 
interval

select values 
in some 

range

combinations 
of those
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Analysis Tasks

28

Similarity 
Search

Classification

Clustering
Outlier 

Detection

Frequent 
Pattern 
Mining
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Analysis Tasks

• analyze evolution of values across x-dimension

• identify trends

• treat data series as a first class citizen

▫ analyze each data series as a single object

▫ process all n-dimensions  at once

29
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Analysis Tasks

Subsequences

• often times the data series are very long

▫ n >> 1

▫ streaming data series

30
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Analysis Tasks

Subsequences

• often times the data series are very long

▫ n >> 1

▫ streaming data series

• we then chop the long sequence in subsequences

▫ e.g., using sliding window, or shifting window

▫ pick carefully length of subsequence 

 should contain patterns of interest

• and process each subsequence separately

31
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Complex Analytics

32

Similarity 
Search

Classification

Clustering
Outlier 

Detection

Frequent 
Pattern 
Mining
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Complex Analytics

33

Similarity 
Search

Classification

Clustering
Outlier 

Detection

Frequent 
Pattern 
Mining

HARD, because of very high dimensionality:
each data series has 100s-1000s of points!

even HARDER, because of very large size:
millions to billions of data series (multi-TBs)!
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Motivation

• effective representation techniques to the rescue!

▫ can significantly reduce the processing time

 typically much smaller than original/raw data series

• will learn how to compute and use these representations

• these representations can further be used for indexing

• all guarantee correct, exact results!

34
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Outline

• terminology and definitions

• motivation

• pre-processing tasks

• data series representation techniques

35
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Pre-Processing

z-Normalization

• data series encode trends

• usually interested in identifying similar trends

• but absolute values may mask this similarity

36
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Pre-Processing

z-Normalization

• two data series with similar trends

37

v1

v2

sequence dimension
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Pre-Processing

z-Normalization

• two data series with similar trends

• but large distance…

38

v1

v2
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence

39

v1

v2
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence

40
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence

41
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Pre-Processing

z-Normalization

• zero mean

▫ compute the mean of the sequence

▫ subtract the mean from every value of the sequence

42
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

▫ compute the standard deviation of the sequence

▫ divide every value of the sequence by the stddev

43
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

▫ compute the standard deviation of the sequence

▫ divide every value of the sequence by the stddev

44
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Pre-Processing

z-Normalization

• zero mean

• standard deviation one

▫ compute the standard deviation of the sequence

▫ divide every value of the sequence by the stddev

45

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020



Pre-Processing

z-Normalization

• zero mean

• standard deviation one

46

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020



Pre-Processing

z-Normalization

• when to z-normalize

▫ interested in trends

• when not to z-normalize

▫ interested in absolute values

47
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Outline

• terminology and definitions

• motivation

• pre-processing tasks

• data series representation techniques
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Jean Fourier

1768-1830
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Discrete Fourier 
Transform (DFT)

Excellent free Fourier Primer

Hagit Shatkay, The Fourier Transform - a Primer'', Technical Report CS-
95-37, Department of Computer Science, Brown University, 1995. 

http://www.ncbi.nlm.nih.gov/CBBresearch/Postdocs/Shatkay/

Basic Idea: Represent the time 
series as a linear combination of 
sines and cosines

Transform the data from the time 

domain to the frequency domain

Highlight the periodicities but keep 

only the first n/2 coefficients

Why n/2 coefficients?

✓ Because they are symmetric

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020
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Haar 0

Haar 1

Haar 2

Haar 3
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Haar 5

Haar 6

Haar 7

X
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DWT

Discrete Wavelet 
Transform (DWT)

Basic Idea: Represent the time series as a 
linear combination of Wavelet basis functions, 
but keep only the first N coefficients

Obtained from a single prototype wavelet ψ(t)
called mother wavelet by dilations and shifting:

where a is the scaling parameter and b is the
shifting parameter

)(
1

)(,
a

bt

a
tba

−
= 

Excellent free Wavelets Primer

Stollnitz, E., DeRose, T., & Salesin, D. (1995).
Wavelets for computer graphics A primer: IEEE
Computer Graphics and Applications.
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Piecewise Aggregate 
Approximation (PAA)

0 20 40 60 80 100 120 140

X

X'
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x7

x8

xi =
N
n

x j
j= n
N

(i-1)+1

n
N
i

å

Basic Idea: Represent the time series as a
sequence of box basis functions, each box
being of the same length

Keogh, Chakrabarti, Pazzani & Mehrotra, KAIS 

(2000)

Byoung-Kee Yi, Christos Faloutsos, VLDB (2000)

Computation:

• X: time series of length n

• Can be represented in the N-dimensional 

space as:

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020
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0 20 40 60 80 100 120 140

X

X'

Piecewise Linear 
Approximation (PLA)

Basic Idea: Represent the
time series (size n) as a
sequence of straight lines
(size N)

Lines could be connected
=> N/2 lines allowed

Lines could be disconnected
=> N/3 lines allowed

Empirical evidence on dozens
of datasets suggests that
disconnected is better

Also only disconnected
allows a lower bounding
Euclidean approximation

Each line segment has 
• length 

• left_height

(right_height can 

be inferred by looking 
at the next segment)

Each line segment has 
• length 

• left_height 

• right_height

Karl Friedrich Gauss

1777 - 1855

53
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▪ High quality of APCA noted by many

researchers

▪ Can be indexed*!

Unfortunately, it is non-trivial to understand and
implement and thus has only been re-implemented
once or twice

54

Basic Idea: Represent the time series as a
sequence of box basis functions, each box being
of the different length

Adaptive Piecewise 
Constant 

Approximation (APCA)

0 20 40 60 80 100 120 140

X

X

<cv1,cr1>

<cv2,cr2>

<cv3,cr3>

<cv4,cr4>
*K. Chakrabarti, E. J. Keogh, S. Mehrotra, M. J. Pazzani: 
Locally adaptive dimensionality reduction for indexing 
large time series databases. ACM Trans. Database Syst. 
27(2): 188-228 (2002) 
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SAX Representation

• Symbolic Aggregate approXimation
(SAX) 
▫ (1) Represent data series T of length n

with w segments using Piecewise 
Aggregate Approximation (PAA)
 T typically normalized to μ = 0, σ = 1

 PAA(T,w) =                         

where  

▫ (2) Discretize into a vector of symbols 
 Breakpoints map to small alphabet a

of symbols

wttT ,,1 =


+−=

=

i

ij

jn
w

i

w
n

w
n

Tt
1)1(
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iSAX Representation

• iSAX offers a bit-aware, quantized, multi-resolution 
representation with variable granularity

=    { 6, 6, 3, 0}  =    {110 ,110 ,0111 ,000}

=    { 3, 3, 1, 0}    =    {11  ,11  ,011 ,00 }

=    { 1, 1, 0, 0}    =    {1 ,1 ,0 ,0  }

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020
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Comparison of Representations

57
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• which representation is the best?

• depends on data characteristics
▫ periodic, smooth, spiky, …

• overall (averaged over many diverse datasets, using same 
memory budget), when measuring reconstruction error (RMSE)
▫ no big differences among methods

▫ DFT, PAA, DWT (Haar), iSAX slightly better

• should also take into account other factors
▫ visualization, indexable, ...

Publications

Palpanas-
TKDE’08
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Problem Variations

Series
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Univariate

each point represents one   
value (e.g., temperature)

Multivariate

each point represents many   
values (e.g., temperature, 

humidity, pressure, wind, etc.)
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8
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Problem Variations

Series
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Univariate

each point represents one   
value (e.g., temperature)

Multivariate

each point represents many   
values (e.g., temperature, 

humidity, pressure, wind, etc.)
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Problem Variations

61

• similarity search is based on measuring distance between 
sequences

• dozens of distance measures have been proposed
▫ lock-step 

 Minkowski, Manhattan, Euclidean, Maximum, DISSIM, …

▫ sliding
 Normalized Cross-Correlation, SBD, …

▫ elastic
 DTW, LCSS, MSM, EDR, ERP, Swale, …

▫ kernel-based
 KDTW, GAK, SINK, …

▫ embedding 
 GRAIL, RWS, SPIRAL, …

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020

Distance Measures

Publications

Ding-
PVLDB‘08

Paparrizos-
SIGMOD’20



Euclidean Distance

62

v1

v2
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Euclidean Distance

63

• Euclidean distance

▫ pair-wise point distance

v1

v2
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Correlation

• measures the degree of relationship between data series
▫ indicates the degree and direction of relationship

• direction of change
▫ positive correlation

 values of two data series change in same direction

▫ negative correlation
 values of two data series change in opposite directions

• linear correlation
▫ amount of change in one data series bears constant ratio of 

change in the other data series

• useful in several applications

64
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Pearson’s Correlation Coefficient

65
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Pearson’s Correlation Coefficient

• used to see linear dependency between values of data series of 
equal length, n

• takes values in [-1,1]
▫ 0 – no correlation
▫ -1, 1 – inverse/direct correlation

• there is a statistical test connected to PC, where null hypothesis 
is the no correlation case (correlation coefficient = 0)
▫ test is used to ensure that the correlation similarity is not caused by 

a random process 

66
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PC and ED

• Euclidean distance: 

• In case of Z-normalized data series (mean = 0, stddev = 1):

and

so the following formula is true:  

• direct connection between ED and PC for Z-normalized data 
series
▫ if ED is calculated for normalized data series, it can be directly 

used to calculate the p-value for statistical test of Pearson’s 
correlation instead of actual PC value.

67

𝐸𝐷2 = 2𝑛 𝑛 − 1 − 2෍
𝑖=1

𝑛

𝑥𝑖𝑦𝑖
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Distance Measures:

LCSS against Euclidean, DTW

• Euclidean
▫ rigid

• Dynamic Time Warping (DTW)
▫ allows local scaling

• Longest Common SubSequence (LCSS)
▫ allows local scaling

▫ ignores outliers

68
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Problem Variations

Queries

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020
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Whole matching

Entire query

Entire candidate

Subsequence matching

Entire query

A subsequence of a candidate



Problem Variations

Queries
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Subsequence matching

Entire query

A subsequence of a candidate

Whole matching

Entire query

Entire candidate



Problem Variations

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020
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Queries

Nearest Neighbor (1NN)

k-Nearest Neighbor (kNN)

Farthest Neighbor

epsilon-Range

and more…



Similarity Matching

• given a data series collection D and a query data series q,  
return the data series from D that are the most similar to q

▫ there exist different flavors of this basic operation

• basis for most data series analysis tasks

72
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Similarity Matching

Nearest Neighbor (NN) Search

• given a data series collection D and a query data series q,  
return the data series from D that has the smallest distance to q

• result set contains one data series

73
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Similarity Matching

Nearest Neighbor (NN) Search

• serial scan

▫ compute the distance between q and every di ∈ D

▫ return di with the smallest distance to q

74
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Similarity Matching

Nearest Neighbor (NN) Search

• serial scan

▫ bsf = Inf // best so far distance

▫ for every di ∈ D

 compute distance, dist, between di and q

 if this dist less than bsf then bsf=dist

▫ return di corresponding to bsf

75
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Similarity Matching

k-Nearest Neighbors (kNN) Search

• given a data series collection D and a query data series q,  
return the k data series from D that have the k smallest 
distances to q

• result set contains k data series

76
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Similarity Matching

k-Nearest Neighbors (kNN) Search

• serial scan

▫ compute the distance between q and every di ∈ D

▫ return the k di with the k smallest distances to q
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Similarity Matching

k-Nearest Neighbors (kNN) Search

• serial scan

▫ kbsf = Null // best so far max-heap of k elements

▫ for every di ∈ D

 compute distance, dist, between di and q

 if this dist less than max of kbsf then insert dist in kbsf

▫ return k di corresponding to k elements in kbsf
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Similarity Matching

𝜀-Range Search

• given a data series collection D and a query data series q,  
return all data series from D that are within distance 𝜀 from q

• result set contains [?] data series
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Similarity Matching

𝜀-Range Search

• serial scan

▫ compute the distance between q and every di ∈ D

▫ return all di with distance less than 𝜀 to q
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Similarity Matching

𝜀-Range Search

• serial scan

▫ res = {} // empty result set

▫ for every di ∈ D

 compute distance, dist, between di and q

 if this dist less than 𝜀 then insert dist in res

▫ return all di corresponding to elements in res
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Problem Variations
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Queries

Nearest Neighbor (1NN)

k-Nearest Neighbor (kNN)

Farthest Neighbor

epsilon-Range

And more…
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dε

Ox

Oδε

OQ

δ-ε-approximate
neighbor

dδεOng

Oε

Prob(dε <= dx (1+ε)) >= δ

result within (1+ ε) of exact NN 

with probability at least δ

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

dng

exact 
NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1

result is exact NN
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Query answering process

data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

Data Series 
Database/
Indexing

DataRaw data

Queries
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these times are big!
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Query answering process

data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

we need solutions 
for both problems!

Data Series 
Database/
Indexing

DataRaw data

Queries
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Similarity Matching

Fast Euclidean Distance

• similarity matching requires many distance computations

▫ can significantly slow down processing

 because of large number of data series in the collection

 because of high dimensionality of each data series

• in case of Euclidean Distance, we can speedup processing by

▫ smart implementation of distance function

▫ early abandoning

• result in considerable performance improvement
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Similarity Matching

Fast Euclidean Distance

• smart implementation of distance function
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𝐸𝐷 𝑋, 𝑌 = ෍

𝑖=1

𝑛

𝑥𝑖 − 𝑦𝑖
2
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Similarity Matching

Fast Euclidean Distance

• smart implementation of distance function

▫ do not compute the square root (of the Euclidean Distance)

• does not alter the results

• saves precious CPU cycles
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Similarity Matching

Fast Euclidean Distance

• early abandoning

▫ stop the distance computation as soon as it exceeds the value of bsf

• does not alter the results

• avoids useless computations
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𝐸𝐷 𝑋, 𝑌 =෍

𝑖=1

𝑚

𝑥𝑖 − 𝑦𝑖
2 , 𝑚 ≤ 𝑛

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020

Publications

Keogh-
DMKD’03



GEMINI Framework
• Raw data: original full-dimensional space 

• Summarization: reduced dimensionality space

• Searching in original space costly

• Searching in reduced space faster:

– Less data, indexing techniques available, lower bounding

• Lower bounding enables us to

– prune search space: throw away data series based on 
reduced dimensionality representation

– guarantee correctness of answer

• no false negatives

• false positives filtered out based on raw data
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GEMINI Framework

GEMINI Solution: Quick filter-and-refine:

• extract m features (numbers, e.g., average)

• map to point in m-dimensional feature space

• organize points

• retrieve the answer using a NN query

• discard false positives
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Generic Search using Lower Bounding

query

simplified

query

Simplified DB Original DBAnswer

Superset

Verify 

against 

original 

DB

Final 

Answer 

set

No false 
negatives!!

Remove false 
positives!!
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GEMINI: contractiveness

• GEMINI works when:

Dfeature(F(x), F(y)) <= D(x, y)

• Note that, the closer the feature distance to the
actual one, the better
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Answering a similarity search query using different access paths

(a) Serial scan
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Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Answering a similarity search query using different access paths

(a) Serial scan

bsf = +ꝏ
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Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, C1)
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Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, C1)
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Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, Cx)
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Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan

bsf = d(Q, Cx)
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Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan
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Similarity Matching

Serial Scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Indexes vs. Scans

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Indexes vs. Scans

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

bsf     = +ꝏ

lbcur = +ꝏ

lower-bounding (lb) property:   
dlb(Q’, Ci’)  <= d(Q, Ci)
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q (Q’) is compared to 

the summary of each candidate

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans
bsf     = +ꝏ

lbcur = dlb(Q’,C1’)
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = +ꝏ

lbcur = dlb(Q’,C1’) < bsf  
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = +ꝏ

lbcur = dlb(Q’,C1’) < bsf  
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C1’) < bsf
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) 
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsf
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsf
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsfd(Q,C2) >= 
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,C2’) >= bsf d(Q,C2) >= 

prune C2
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,Cx’) 
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,C1)

lbcur = dlb(Q’,Cx’) < bsf  
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,Cx)

lbcur = dlb(Q’,Cx’) < bsf  
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate

bsf     = d(Q,Cx)

lbcur = dlb(Q’,Cn’) < bsf  
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3
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Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2
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1 2
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bsf     = +ꝏ
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Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2
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1
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3

bsf     = +ꝏ
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Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2
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bsf     = d(Q,C3)

124

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020



Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2
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bsf     = d(Q,C3)
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Cx

Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2
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bsf     = d(Q,C3)

lbcur =  dlb(Q’, )1   QueueQueue
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Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2
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1   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsfQueueQueue
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Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2
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1   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, ) < bsfQueueQueue
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Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
2

5

1

4

1 2

3

2   
bsf     = d(Q,C3)

lbcur =  dlb(Q’, )Queue
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Q

Q is compared to a raw candidate only if 
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δ-ε-Approximate* ng-Approximate

Probabilistic ε-Approximate

Exact

Similarity Search 
Methods

δ,ε guarantees No guarantees

δ < 1, ε guarantee δ = 1, ε guarantee

δ = 1, ε = 0 guarantee

* result is within distance
(1+ ε) of the exact answer 
with probability δ

extensions

Methods
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ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

VA+file[ ]

ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

QALSH

SRS

VA+file[ ]

0 ⩽ δ ⩽ 1, ε ⩾ 0

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

ADS+           IMI

CK-Means iSAX2+[ ]

DSTree [ ]     NSG

Flann SFA 

HD-index VA+file[ ]

HNSW

Echihabi-
PVLDB‘19

Techniques for data Series
Techniques for High-D vectors

Publications

Echihabi-
PVLDB‘18
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DSTree

Summarization
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Intertwined with indexing

The APCA and EAPCA representations

Publications

Wang-
PVLDB‘13



DSTree

Indexing
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Each node contains
❑ # vectors
❑ segmentation SG
❑ synopsis Z

Each Leaf node also :
❑ stores its raw 
vectors in a separate
disk file

Publications

Wang-
PVLDB‘13



Symbolic Fourier Approximation (SFA)

Summarization
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The SFA representation*
*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx

Publications

Schafer-
EDBT‘12



SFA

Indexing
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The SFA Trie*
*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx

Publications

Schafer-
EDBT‘12



iSAX Family

iSAX Summarization
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• based on iSAX representation, which offers a bit-aware, 
quantized, multi-resolution representation with variable 
granularity

=    { 6, 6, 3, 0}  =    {110 ,110 ,0111 ,000}

=    { 3, 3, 1, 0}    =    {11  ,11  ,011 ,00 }

=    { 1, 1, 0, 0}    =    {1 ,1 ,0 ,0  }

Publications

Shieh-
KDD‘08
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ROOT

. . .
0  0  0  0 1  1  1 0 1  1  1  1

1  1  1  0 1  1  1  0

1  1  1  0

1  1  1  11  1  1  10 1

0 1

0
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FBL
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main memory

disk
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L6L5

a

a

x

y

b
c

z

I3

L8L7

b
c

iSAX2+-Indexing
Publications

Camerra-
KAIS‘14



ADS+

• novel paradigm for building a data series index

▫ does not build entire index and then answer queries

▫ starts answering queries by building the part of the index needed 
by those queries

• still guarantees correct answers

• intuition for proposed solution

▫ builds index using only iSAX summaries; uses large leaf size

▫ postpones leaf materialization to query time

▫ only materialize (at query time) leaves needed by queries

▫ parts that are queried more are refined more

▫ use smaller leaf sizes (reduced leaf materialization and query 
answering costs)
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Publications
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SIGMOD‘14
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Zoumbatianos-
VLDBJ‘16



Raw data

PARTIAL
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DISK

RAML4

PARTIAL

Query #1

TOO BIG!
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PARTIAL

Query #1

PARTIAL
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Adaptive split

Create a smaller leaf
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

156

Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time
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Extensions…
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Publications
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PVLDB‘18

Kondylakis-
SIGMOD’19

Kondylakis-
VLDBJ’20

Coconut-LSM
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Extensions…
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Coconut-LSM
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time

• ULISSE: current solution for variable-length queries

▫ single-index support of queries of variable lengths
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations
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construction time, and query answering time
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Extensions…

• Coconut: current solution for limited memory devices

and streaming time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time

• ULISSE: current solution for variable-length queries

▫ single-index support of queries of variable lengths

▫ orders of magnitude faster than competing approaches
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes
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• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current solution for modern hardware

▫ completely masks out the CPU cost
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current solution for modern hardware

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 3 orders of magnitude faster then single-core solutions
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k-NN Classification
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current solution for modern hardware

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 3 orders of magnitude faster then single-core solutions
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18x faster

k-NN Classification

classifying 100K objects using a 100GB dataset 
goes down from several days to few hours!
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current single-node parallel solution

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 >1 order of magnitude faster then single-core solutions

• MESSI: current single-node parallel solution + in-memory data

▫ answers exact queries at interactive speeds: ~50msec on 100GB
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Parallelization/Distribution

• DPiSAX: current solution for distributed processing (Spark)

▫ balances work of different worker nodes

▫ performs 2 orders of magnitude faster than centralized solution

• ParIS: current single-node parallel solution

▫ masks out the CPU cost

▫ answers exact queries in the order of a few secs 

 >1 order of magnitude faster then single-core solutions

• MESSI: current single-node parallel solution + in-memory data

▫ answers exact queries at interactive speeds: ~50msec on 100GB

• SING: current single-node parallel solution + GPU + in-memory data

▫ answers exact queries at interactive speeds: ~32msec on 100GB
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iSAX Index Family

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows 
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity 
search with deterministic and probabilistic quality guarantees.

Publications
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index
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timeline

iSAX 2.0

ADS / 
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ADSFull

DPiSAX 

ParIS ParIS+ MESSI

Coconut-Trie / 
Coconut-Tree

ULISSE

Coconut-LSM

iSAX2+*

ADS+*

+ Bulk 

Loading

+ Adaptive

+ Distributed 

+ Multi-Core, 

Multi-Socket, SIMD

+ Sortable Summarizations,

Streaming Data Series

+ Variable-Length Queries

CSING
+ Graphics Processing   

Units (GPUs)
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How do these methods compare?

• several methods proposed in last 3 decades

• never carefully compared to one another

• we now present results of extensive experimental comparison
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Experimental Framework
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• Hardware

▫ HDD and SSD

• Datasets

▫ Synthetic (25GB to 1TB) and 4 real (100 GB)

• Exact Query Workloads

▫ 100 – 10,000 queries 

• Performance measures

▫ Time, #disk accesses, footprint, pruning, Tightness of Lower 
Bound (TLB), etc.

• C/C++ methods (4 methods reimplemented from scratch) 

• Procedure:

▫ Step 1: Parametrization

▫ Step 2: Evaluation of individual methods

▫ Step 3: Comparison of best methods

Publications

Echihabi-
PVLDB‘18



Time for Indexing (Idx) vs. Dataset 

Size
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ADS+ fastest

DSTree slowest 
RAM=75GB



Time for 100 Exact Queries vs. 

Dataset size
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RAM=75GB

disk: 

DSTree fastest

In-memory:

VA+file fastest 



Time for Idx + 10K Exact Queries vs. 

Dataset size
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In-memory:

VA+file fastest

disk: 

DSTree fastest



Time for Idx + 10K Exact Queries vs. 

Series Length
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VA+file and ADS+ get faster 

with increasing length

Steady performance for 

most methods

(Size = 100GB, Dimensions = 16)



Unexpected Results

• Some methods do not scale as expected (or not at all!)

• Brought back to the spotlight two older methods VA+file
and DSTree
▫ Our reimplementations outperform by far the original ones 

• Optimal parameters for some methods are different 
from the ones reported in the original papers

• Tightness of Lower Bound (TLB) does not always 
predict performance
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Publications

Echihabi-
PVLDB‘18



TLB does not always predict 

performance
The TLB measures the quality of a summarization (higher is better)
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TLB =
𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑟𝑒𝑑𝑢𝑐𝑒𝑑 𝑠𝑝𝑎𝑐𝑒

𝑑𝑖𝑠𝑡(𝑄𝑢𝑒𝑟𝑦,𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒) 𝑖𝑛 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑝𝑎𝑐𝑒
0 ≤ ≤ 1

worst best

DSTree and iSAX2+ have similar TLB

No bias, same data and same implementation framework

iSAX2+ 5x slower than 

DSTree

Publications

Echihabi-
PVLDB‘18



Insights

• Results are sensitive to:

▫ Parameter tuning

▫ Hardware setup

▫ Implementation

▫ Workload selection

• Results identify methods that would benefit from modern 
hardware
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Publications

Echihabi-
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Storing Time-Series

File System

RDBMS

Specialized Time-Series DBs

Array DBs

Multiple options. By popularity:
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Storing Time-Series: 
File-System

• FITS

• HDF5

Astronomy

• SEED

• MiniSEED

• ASCII

• GeoCSV

Seismology

• BIDS (EEG)

• WFDB (ECG)

• EDF(ECG)

• FASTA (DNA)

Biology

• CSV

Finance

• HDF5

• NetCDF

Engineering

• HDF5

• NetCDF

Physics

• CSV

• TSV

• XLS

• Parquet

• etc.

Data 
Science

Multiple different formats implemented for various applications
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Storing Time-Series: 
DBMS

Illustra (1993) → IBM Informix (Time-Series DataBlade):         

• Users need to define a time-series sub-type, which have a datetime as the 

first column in the definition

• Can encode both regular and irregular time-series (fixed of variable 

intervals)

• Can describe meta-data

• Supports: running aggregates, prev, next value reasoning, horizontal and 

vertical mathematical operations, lags, etc.

Shore → SEQ

• Custom Time-Series Data Type

• Various time-series operators (order, correlation, etc.)

Oracle:

• Introduced Time-Series functionality in Oracle8

• Now merged into the main product.

• It is in the form of time-series analytics functions (e.g., forecasting)

Commercial System

Commercial System

Academic System
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Publications
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Storing Time-Series: 
DBMS

Illustra (1993) → IBM Informix (Time-Series DataBlade):         

• Users need to define a time-series sub-type, which have a datetime as the 

first column in the definition

• Can encode both regular and irregular time-series (fixed of variable 

intervals)

• Can describe meta-data

• Supports: running aggregates, prev, next value reasoning, horizontal and 

vertical mathematical operations, lags, etc.

Shore → SEQ

• Custom Time-Series Data Type

• Various time-series operators (order, correlation, etc.)

Oracle:

• Introduced Time-Series functionality in Oracle8

• Now merged into the main product.

• It is in the form of time-series analytics functions (e.g., forecasting)

Commercial System

Commercial System

Academic System

Most people use DBMSs merely for storing 

and retrieving time-series.

All analysis is performed externally.
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Storing Time-Series:
Specialized Time-Series DBs

InfluxDB

•Storage: Custom (TSM-Tree)

TimeScaleDB

•Storage: PostgreSQL

Beringei

•Storage: Compressed Arrays on Disk

Druid

•Metadata Storage: DBMS

•Data Storage: HDFS, S3

Prometheus

•Storage: Custom (TSDB Format)

CrateDB

•Storage: Custom (Column-oriented)

IoTDB

•Storage: Custom: (TsFile – compression + 
stats)

OpenTSDB

•Storage: HBase

QuasarDB

•Storage: RocksDB

Amazon TimeStream

•Storage: Unknown
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Storing Time-Series:
ArrayDBs

TileDB Rasdaman SciDB

Custom Log-Structured 

storage

Sits on top of existing 

DBMSs

Custom storage
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varying starts

Start

Start

The Data-Type 

Characteristics

What are the 

properties of data 

series?

Time-Series Characteristics
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varying starts

Start

Start

End

End

and ends

Time-Series Characteristics
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varying lengths

Time-Series Characteristics
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varying sample rates

within and across data series

Time-Series Characteristics
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SEQ 1

SEQ 2

SEQ 3

SEQ 4

SEQ 5

Time-Series Characteristics
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SEQ 1

SEQ 2

SEQ 3

SEQ 4

SEQ 5

Sequential attributes

Position

pressure

Time-Series Characteristics
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SEQ 1

SEQ 2

SEQ 3

SEQ 4

SEQ 5

Position

pressure
temperature

Time-Series Characteristics
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SEQ 1

SEQ 2

SEQ 3

SEQ 4

SEQ 5

seq_id:   1

sensor: Sensor 1

country:  Italy

city:     Asiago

province: Veneto

seq_id:   2

sensor: Sensor 2

country:  Italy

city:     Merate

province: Lombardy

seq_id:   3

sensor: Sensor 3

country:  USA

city:     Cambridge

province: MA

seq_id:   4

sensor: Sensor 4

country:  USA

city:     Delaware

province: OH

seq_id:   5

sensor: Sensor 5

country:  Canada

city:     Toronto

province: Ontario

Non-sequential attributes

Position

pressure

Time-Series Characteristics
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Query Types

Simple

Selection-Projection-Transformation

Complex

Analytical/Mining Queries

The Types of 

Queries
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Query Types

Simple

Selection-Projection-Transformation

SEQ 1

SEQ 3

SEQ 2

SEQ 4

SEQ 5
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Query Types

Simple

Selection-Projection-Transformation

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Select

some series

Project

some points

Apply a function

on them

SEQ 1

SEQ 3

SEQ 2

SEQ 4

SEQ 5

FFT(            )
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sensor_id: 102

country:   Italy

city:      Asiago

province:  Veneto

sensor_id: 104

country:   Italy

city:      Merate

province:  Lombardy

sensor_id: 201

country:   USA

city:      

Cambridge

province:  MA

sensor_id: 202

country:   USA

city:      Delaware

province:  OH

sensor_id: 303

country:   Canada

city:      Toronto

province: Ontario

SEQID COUNTRY CITY PROVINCE

1 Italy Asiago Veneto

2 Italy Merate
Lombard

y

3 USA
Cambridg

e
MA

n

n

m

Meta-Data tuples

SEQ 1

SEQ 2

SEQ 3

SEQ 4

SEQ 5

Storing meta-dataStorage
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sensor_id: 102

country:   Italy

city:      Asiago

province:  Veneto

sensor_id: 104

country:   Italy

city:      Merate

province:  Lombardy

sensor_id: 201

country:   USA

city:      

Cambridge

province:  MA

sensor_id: 202

country:   USA

city:      Delaware

province:  OH

sensor_id: 303

country:   Canada

city:      Toronto

province: Ontario

SEQID COUNTRY CITY PROVINCE

1 Italy Asiago Veneto

2 Italy Merate
Lombard

y

3 USA
Cambridg

e
MA

n

n

m

Meta-Data tuples

SEQ 1

SEQ 2

SEQ 3

SEQ 4

SEQ 5

Storage
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sensor_id: 102

country:   Italy

city:      Asiago

province:  Veneto

sensor_id: 104

country:   Italy

city:      Merate

province:  Lombardy

sensor_id: 201

country:   USA

city:      

Cambridge

province:  MA

sensor_id: 202

country:   USA

city:      Delaware

province:  OH

sensor_id: 303

country:   Canada

city:      Toronto

province: Ontario

SEQID COUNTRY CITY PROVINCE

1 Italy Asiago Veneto

2 Italy Merate
Lombard

y

3 USA
Cambridg

e
MA

n

n

m

Meta-Data tuples

SEQ 1

SEQ 2

SEQ 3

SEQ 4

SEQ 5

Storing meta-dataStorage
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k

VAL1 VAL2SEQID POS

Sequence-Position-Value 

tuples

sensor_id: 102

country:   Italy

city:      Asiago

province:  Veneto

sensor_id: 104

country:   Italy

city:      Merate

province:  Lombardy

sensor_id: 201

country:   USA

city:      

Cambridge

province:  MA

sensor_id: 202

country:   USA

city:      Delaware

province:  OH

sensor_id: 303

country:   Canada

city:      Toronto

province: Ontario

SEQID COUNTRY CITY PROVINCE

1 Italy Asiago Veneto

2 Italy Merate
Lombard

y

3 USA
Cambridg

e
MA

n

n

m

Meta-Data tuples

Schema
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1 1000 13.4 ?

1 1030 15.2 ?

1 1051 12.6 ?

k

VAL1 VAL2SEQID POS

Sequence-Position-Value 

tuples

sensor_id: 102

country:   Italy

city:      Asiago

province:  Veneto

sensor_id: 104

country:   Italy

city:      Merate

province:  Lombardy

sensor_id: 201

country:   USA

city:      

Cambridge

province:  MA

sensor_id: 202

country:   USA

city:      Delaware

province:  OH

sensor_id: 303

country:   Canada

city:      Toronto

province: Ontario

SEQID COUNTRY CITY PROVINCE

1 Italy Asiago Veneto

2 Italy Merate
Lombard

y

3 USA
Cambridg

e
MA

n

n

m

Meta-Data tuples

Schema
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1 1000 13.4 ?

1 1030 15.2 ?

1 1051 12.6 ?

Sequence 2

Sequence 3

.

.

.

k

VAL1 VAL2SEQID POS

Sequence-Position-Value 

tuples

sensor_id: 102

country:   Italy

city:      Asiago

province:  Veneto

sensor_id: 104

country:   Italy

city:      Merate

province:  Lombardy

sensor_id: 201

country:   USA

city:      

Cambridge

province:  MA

sensor_id: 202

country:   USA

city:      Delaware

province:  OH

sensor_id: 303

country:   Canada

city:      Toronto

province: Ontario

SEQID COUNTRY CITY PROVINCE

1 Italy Asiago Veneto

2 Italy Merate
Lombard

y

3 USA
Cambridg

e
MA

n

n

m

Meta-Data tuples

Sequence 1

Order by sequence id
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1 1000 13.4 ?

1 1030 15.2 ?

1 1051 12.6 ?

Sequence 2

Sequence 3

.

.

.

k

VAL1 VAL2SEQID POS

Sequence-Position-Value 

tuples

sensor_id: 102

country:   Italy

city:      Asiago

province:  Veneto

sensor_id: 104

country:   Italy

city:      Merate

province:  Lombardy

sensor_id: 201

country:   USA

city:      

Cambridge

province:  MA

sensor_id: 202

country:   USA

city:      Delaware

province:  OH

sensor_id: 303

country:   Canada

city:      Toronto

province: Ontario

SEQID COUNTRY CITY PROVINCE

1 Italy Asiago Veneto

2 Italy Merate
Lombard

y

3 USA
Cambridg

e
MA

n

n

m

Meta-Data tuples

Sequence 2

Order by sequence id

Sequence 1
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1 1000 13.4 ?

1 1030 15.2 ?

1 1051 12.6 ?

Position 1110-1230

Position 1230-1800

.

.

.

k

VAL1 VAL2SEQID POS

Sequence-Position-Value 

tuples

sensor_id: 102

country:   Italy

city:      Asiago

province:  Veneto

sensor_id: 104

country:   Italy

city:      Merate

province:  Lombardy

sensor_id: 201

country:   USA

city:      

Cambridge

province:  MA

sensor_id: 202

country:   USA

city:      Delaware

province:  OH

sensor_id: 303

country:   Canada

city:      Toronto

province: Ontario

SEQID COUNTRY CITY PROVINCE

1 Italy Asiago Veneto

2 Italy Merate
Lombard

y

3 USA
Cambridg

e
MA

n

n

m

Meta-Data tuples

Position 

1000-1110

Order by position
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1 1000 13.4 ?

1 1030 15.2 ?

1 1051 12.6 ?

Position 1110-1230

Position 1230-1800

.

.

.

k

VAL1 VAL2SEQID POS

Sequence-Position-Value 

tuples

sensor_id: 102

country:   Italy

city:      Asiago

province:  Veneto

sensor_id: 104

country:   Italy

city:      Merate

province:  Lombardy

sensor_id: 201

country:   USA

city:      

Cambridge

province:  MA

sensor_id: 202

country:   USA

city:      Delaware

province:  OH

sensor_id: 303

country:   Canada

city:      Toronto

province: Ontario

SEQID COUNTRY CITY PROVINCE

1 Italy Asiago Veneto

2 Italy Merate
Lombard

y

3 USA
Cambridg

e
MA

n

n

m

Meta-Data tuples

Position 1110-1230

Order by position

Position 

1000-1110
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Many positions

(entire series)

Many series

Few series

Few positions

Position-first

Sequence-first

All series

All positions

All series

Many positions
All series

Few positions

Many series

Many positions
Many series

Few positions

Few series

Few positions

Few series

All positions

Few series

Many positions

Many series

All positions

Heavy filtering on positions & 

Accessing lots of series: 

position-first

Heavy filtering on series id & 

accessing lots of positions: 

sequence-first

Simple Conclusion

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020 213



Heavy filtering on positions & 

Accessing lots of series: 

position-first

Heavy filtering on series id & 

accessing lots of positions: 

sequence-first

Simple Conclusion

*DBMS-X
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Heavy filtering on positions & 

Accessing lots of series: 

position-first

Heavy filtering on series id & 

accessing lots of positions: 

sequence-first

Simple Conclusion

*DBMS-X

Most existing systems 

sort data by series
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Query Types

Simple

Selection-Projection-Transformation

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Select

some series

Project

some points

Apply a function

on them
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Query Types

Simple

Selection-Projection-Transformation

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Select

some series

Project

some points

Apply a function

on them

Classic 1/n-dimensional indexes 

& layouts for point and range 

queries:

Point get: Get seq id = 1

Range: Get positions 10 - 100
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Query Types

Simple

Selection-Projection-Transformation

Complex

Analytical/Mining Queries

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Select

some series

Project

some points

Apply a function

on them
Clustering

Classification

Outlier 
Detection

Frequent Pattern 
Mining
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Query Types

Simple

Selection-Projection-Transformation

Complex

Analytical/Mining Queries

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Select

some series

Project

some points

Apply a function

on them
Clustering

Classificat
ion

Outlier 
Detection

Frequent 
Pattern 
Mining

Clustering

Label Classification

Outlier
Outlier

Detection

Frequent Pattern

Mining
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Query Types

Simple

Selection-Projection-Transformation

Complex

Analytical/Mining Queries

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold

Select

some series

Project

some points

Apply a function

on them
Clustering

Classification

Outlier 
Detection

Frequent Pattern 
Mining

Specialized 

Algorithms

Similarity 

Search
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Query Types

Simple

Selection-Projection-Transformation

Complex

Analytical/Mining Queries

Clustering

Classification

Outlier 
Detection

Frequent Pattern 
Mining

Specialized 

Algorithms

Similarity 

Search

Bottleneck

Select

some series

Project

some points

Apply a function

on them

Query Type 1: Find all points of a subset of data series

e.g., Bring me the whole history of “pressure” for “Sensor 1”

Query Type 2: Look at the points at a subset of the positions

e.g., Compute the average pressure for all sensors for the range of 

positions that cover the 2nd to the 12th of March.

Query Type 3: Look at a subset of points based on a value

e.g., Bring me all pressure values above a threshold
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Time-Series Management Systems

a few more details on the 
popular systems:

- InfluxDB
- TimescaleDB
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InfluxDB

• Storage Engine:
• Log Structured Merge Tree: LSM-Tree variant that expects 

data to arrive ordered by time and partitions them by distinct 
sequence. It then stores each series contiguously.

• Schema:
• Tags and fields. Tags are used to describe meta-data and 

fields are used to store quantities that change over time.

• Queries
• It supports group by (only on tags), join (on timestamps and 

fields), selections, projections, and aggregations.

• It also supports continuous queries 
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TimescaleDB

• Storage: Uses PostgreSQL as the backend. 
• It partitions time-series into multiple tables, forming a single 

virtual entity called a hypertable. 

• It allows for the compression of data, something that Postgres 
does not do by default.

• Schema: Tables are normal Postgres tables, where one 
has to specify a time column in order to create a hypertable.

• Queries: Full SQL support, with the addition of custom 
time-series functions. 
• Custom time-series operators: first, last, histogram, 

interpolation, time bucketing, gap filling, etc.

• It also supports continuous queries
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Challenges and Open Problems

• we are still far from having solved the problem

• several challenges remain in terms of 

▫ usability, ease of use

▫ scalability, distribution

▫ benchmarking

• these challenges derive from modern data series applications
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Massive Data Series Collections

Human Genome project

130 TB

NASA’s Solar Observatory 

1.5 TB per day

Large Synoptic Survey 
Telescope (2019)

~30 TB per night

227

data center and
services monitoring

2B data series
4M points/sec

Publications

Palpanas-
SIGREC’19
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Outline

• sequence management system

• benchmarking

• general high-dimensional vectors

• deep learning

228
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Management System

• Big Sequence Management System

▫ general purpose data series management system
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data sequences
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Management System

• Big Sequence Management System
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Management System

• Big Sequence Management System
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Outline

• sequence management system

• benchmarking

• general high-dimensional vectors

• deep learning
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Previous Studies

• chosen from the data (with/without noise)

233

evaluate performance of indexing methods using random queries
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Previous Studies

With or without noise

noise
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Problem with
Random Queries

No control on their characteristics

We cannot properly evaluate summarizations and indexes
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We need queries that cover the entire range 
from easy to hard
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Previous Workloads
Most previous workloads are skewed to easy queries
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Previous Workloads
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Most previous workloads are skewed to easy queries
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Benchmark Workloads

238

If all queries are easy 
all indexes look good

If all queries are hard 
all indexes look bad

need methods for generating queries of varying hardness
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Characterizing Queries

P4

MINDIST

MINDIST

239

Approximating distances using 
Lower Bounding functions on 
summarizations.
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Characterizing Queries

P4

Real Distance from query

MINDIST

Lower Bound Distance from query

MINDIST

Approximating distances using 
Lower Bounding functions on 
summarizations.

Points with lower bounds below MINDIST cannot be pruned

Must be read from disk in order to dismiss false positives
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Hardness

P4

Q

P2

P5

P1

P6

P3

P7

P8
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Hardness

P4

Q

P2

P5

P1

P6

P3

P7

P8

We define an ε-area 

(1+ε) * MINDIST

# of data –series in ε-area 

# all data series

Hardness
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Hardness

Queries with larger hardness tend to have a larger minimum effort 

Significance

data series close 
to the answer 

P4

Q

P2

P5

P1

P6

P3

P7

P8

higher chance that their lower 
bounding distance will be less 

than MINDIST 
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Workload Generation

Random queries have random hardness

P4

Q

?

??

?
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Workload Generation

Can we generate queries of controlled hardness?

P4

Q

245

MIN MAX

Hardness
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3 Step Process

“Densify” 

ε-areas to reach given hardness

Filter 

Subset of queries that have “independent” ε-areas

Sample 

Random queries from a given dataset
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Step 1: Sampling

DATASET

DATASET

SAMPLE QUERIES

Select random data series as queries
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Step 2: Filtering-out
“intersecting” queries

Q
1

Q
2

Q
3

We need to independently control the ε-areas
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Step 2: Filtering-out
“intersecting” queries

Q
1

Q
2

Q
3

The ε-areas of (Q1, Q2) and (Q2, Q3) cannot be independently controlled 
because they intersect 
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Step 2: Filtering-out
“intersecting” queries

Can be formulated as a graph problem

1 node per query

1 edge for each pair that doesn’t intersect

Q1 Q2

Q3
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Step 2: Filtering-out
“intersecting” queries

Can be formulated as a graph problem

1 node per query

1 edge for each pair that doesn’t intersect

Q1 Q2

Q3

We need to find the maximum clique in the graph
(NP-Complete: we find a large enough clique using a heuristic)

Solution
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Step 3: Densifying
Number of data series to add

1. Given a set of hardnesses as input

2. We decide the number of data series to add for each query by 
solving a linear system of equations: 

– αi : hardness,

– Xi : number of data series to add

– Ni : number of data series already in e-area

– N : Total number of data series

ai =
Ni + xi

N + j=1

n x jå
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Distribute points such that:
The worse a summarization
the more data it checks

Equal number of points in every “zone”

Q
1

Densification Method:

Equi-densification

253

New points

Original points
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64 bytes 32 bytes 16 bytes 8 bytes
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Experiments 
Densification Methods

Using all datasets of size 256 (100 queries for each dens. method), we measured the:
• 1-TLB: Summarization Error (0: perfect bound, 1: worst possible bound)
• Minimum Effort for a set of summarizations using 8 – 64 bytes.

Normalized over SAX-64 
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For equi-densification 
normalized Effort is closer to the normalized Summarization Error

The worse a summarization the bigger effort it does

64 bytes 32 bytes 16 bytes 8 bytes
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Experiments 
Densification Methods
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Summary

Theoretical background
Methodology for characterizing 
NN queries for data series indexes

Nearest neighbor query workload generator
Designed to stress-test data series indexes 
at varying levels of difficulty
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Pros:

Time complexity
Need new approach to scale to very large datasets

Cons:
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Outline

• sequence management system

• benchmarking

• general high-dimensional vectors

• deep learning
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Data Series vs. high-d Vectors

• two sides of the same(?) coin

▫ data series as multidimensional points

▫ for a specific ordering of the dimensions

• several techniques for similarity search in high-d vectors

▫ using LSH (SRS), space quantization (IMI), k-NN graphs (HNSW)

• how do these high-d vector techniques compare to data series 
techniques?

▫ conducted extensive experimental comparison
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk

260
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk
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DSTree
iSAX2+
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk
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HNSW (only in-memory, ng-approximate)
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk

▫ perform the best for long vectors, in-memory and on-disk
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DSTree
iSAX2+
VA+file

DSTree
iSAX2+
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

▫ perform the best for approximate queries with probabilistic guarantees 
(δ-ε-approximate search), in-memory and on-disk

▫ perform the best for long vectors, in-memory and on-disk

▫ perform the best for disk-resident vectors
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DSTree
iSAX2+
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Data Series vs. high-d Vectors

• data series techniques are the overall winners, even on 
general high-d vector data

• several new applications (and challenges) for data series similarity 
search techniques!
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Outline

• sequence management system

• benchmarking

• general high-dimensional vectors

• deep learning

266

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020



Connections to Deep Learning

• data series indexing for deep embeddings

Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020
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deep embeddings
high-d vectors learned using a DNN

sequences
text

images
video

graphs
... 



Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing data series

▫ eg, autoencoders can learn efficient data series summaries

• deep learning for designing index data structures

▫ learn an index for similarity search

• deep learning for query optimization

▫ search space is vast

▫ learn optimization function
Echihabi, Zoumpatianos, Palpanas - IEEE BigData 2020
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Conclusions

• data series is a very common data type

▫ across several different domains and applications

• complex data series analytics are challenging

▫ have very high complexity

▫ efficiency comes from data series management/indexing techniques

• need for Sequence Management System

▫ optimize operations based on data/hardware characteristics

▫ transparent to user

• several exciting research opportunities
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