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Abstract—We propose MuMSAD, an AutoML framework for
automatic selection of 10 interpretable multivariate anomaly
detectors. MuMSAD has two main contributions: (i) a system-
atic screening that results in the first curated library of 10
interpretable multivariate detectors, (ii) enabling dimension-level
interpretable anomaly detection. We evaluate MuMSAD in root
cause analysis of problems observed in multi-parameter smart
ocean monitoring systems. The results show that the automatic
model selection improves interpretability by up to 20% and
accuracy by 15% compared to single anomaly detectors, while
maintaining competitive runtime efficiency. Such results realize
the implementation of automatic multi-parameter marine data
quality control.

Index Terms—interpretable multivariate anomaly detection,
model selection, marine data quality control

I. INTRODUCTION

Multivariate time series (MTS) are a core data source for
ensuring the reliable operation of cyber-physical systems [1].
Detecting anomalies in such data is crucial for preventing
critical failures with potentially severe consequences [1], [2].
While existing multivariate anomaly detection (AD) methods
can identify irregularities, most cannot indicate which dimen-
sions are problematic, limiting their usefulness for root-cause
analysis [1], [3].

Recent research has proposed interpretable multivariate AD
methods that provide dimension-level anomaly scores, allow-
ing users to trace anomalies back to their sources [1], [2]. Yet,
there is no one-size-fits-all AD method for heterogeneous time
series: a detector that performs well on one dataset may fail on
another [4], [5]. Ensemble approaches can improve accuracy
but introduce high runtime costs [4]. Automated Machine
Learning (AutoML) solutions such as MSAD [4] address such
problems but for univariate time series only. Consequently,
practitioners lack a general solution that combines accuracy,
interpretability, and efficiency for MTS anomaly detection.

To address this gap, we propose MuMSAD (Multivariate
Model Selection for Anomaly Detectors), an AutoML frame-
work for automatic selection of interpretable multivariate
anomaly detectors. MuMSAD adapts MSAD [4] principles
to MTS, and goes beyond it by supporting interpretability
for ten state-of-the-art anomaly detectors reviewed in [5],
which enables them to produce both overall and dimension-
level anomaly scores for actionable root-cause analysis. We
particularly focus on its application to automatic data quality
control in marine monitoring systems, a domain where reli-

able anomaly detection is both practically and economically
critical [6], [7].

On real-world datasets, MuMSAD improves interpretability
by up to 20% and accuracy by 15% compared to the best
single detector, while maintaining competitive runtime effi-
ciency. These results demonstrate the potential of MuMSAD
as a practical and general solution for interpretable anomaly
detection in large-scale, real-time monitoring systems. The
framework can be found at https://github.com/ntnguyen-
so/MuMSAD_framework.

Outline: Section II details the practical need for automatic
marine data quality control (DQC). Section III introduces
notations and related work. Section IV formulates the problem
of automatic model selection for interpretable multivariate
anomaly detectors. Section V presents our proposed solu-
tion, MuMSAD. Section VI demonstrates its application to
automatic multi-parameter marine DQC. Finally, Section VII
concludes the paper and discusses future directions.

II. MOTIVATION

This section highlights the practical need for automatic data
quality control within the marine domain. We then show how
existing solutions fail to meet the highlighted needs.

A. Practical Need for Automatic Marine Data Quality Control

Ocean industries are projected to contribute at least three
trillion USD annually to the global economy by 2030 [8].
Achieving this growth depends on reliable marine data [7].
However, marine data is notoriously prone to errors. Factors
such as biofouling, sensor drift, extreme environmental con-
ditions, and communication failures frequently contaminate
the data [6], [7], [9]. Marine DQC is therefore critical, but
it remains largely manual. Expert-driven inspection can take
up to six months for a single dataset [7]. The complexity arises
not only from the volume of data collected by observatories,
but also from the interdependence of parameters such as
temperature, salinity, and conductivity.

Figure 1(a) illustrates the aforementioned challenge, with
detailed explanations being included on the figure. Standard
univariate detectors struggle to distinguish these cases. Fig-
ure 1(b) shows how dimensional anomaly scores can be
helpful by highlighting not only when anomalies occur but also
which parameters are responsible. They allow domain experts
to perform root-cause analysis rather than relying solely on
raw signal inspection.

https://github.com/ntnguyen-so/MuMSAD_framework
https://github.com/ntnguyen-so/MuMSAD_framework
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Fig. 1: (a) A three-parameter time series from marine data. (b)
Dimensional anomaly scores of all three parameters. In these
figures, gray subsequences are anomalous, while the purple is
normal, with reasons explained.

B. Open Challenges

Several open problems are related to the above needs:
1) Univariate AD for MTS root cause analysis. Applying
univariate anomaly detectors independently to each dimen-
sion of an MTS is straightforward but suboptimal, as it
ignores interdependencies between variables and leads to false
alarms [1], [10]. Few univariate methods are tailored to marine
data, and they require handcrafted thresholds and domain-
specific rules [11].
2) Limited interpretable MTS detectors. Although inter-
pretable AD methods have emerged [1], [3], only a handful
support dimension-level anomaly scoring. Moreover, the inter-
pretability they provide is often ad hoc and inconsistent across
detectors: some return ranked features, while others produce
attribution scores without clear semantics.
3) Lack of AutoML solutions for interpretable MTS AD.
Recent AutoML frameworks such as MSAD [4] advance
model selection but are limited to univariate series and ignore
interpretability.

III. BACKGROUND AND RELATED WORK

A. Notations

Let T = {x1, x2, . . . , xN} denote a time series of length
N , where each xt is the tth observation. For univariate series,
xt ∈ R; for multivariate series, xt ∈ RM with M ∈ N+

dimensions. We refer to the latter as a MTS. In our marine
context, each dimension corresponds to a parameter such as
seawater temperature, salinity, or conductivity (see Figure 1).

An anomaly is defined as a subsequence Ti,j = {xi, . . . , xj}
that deviates significantly from expected normal behavior.
Most real-world datasets, including our marine data, are
sampled at constant acquisition rates, which is a common
assumption in existing methods [5]. For MTS T , an anomaly
detector D outputs an anomaly score sequence S ∈ RN ;
interpretable detectors further provide per-dimension scores
S(m) for m = 1, . . . ,M .

B. Evaluation of Anomaly Detectors

Interpretable MTS anomaly detectors are evaluated along
two dimensions: (i) Accuracy. Given ground-truth anomaly
labels L ∈ {0, 1}N , accuracy functions measure the alignment
between S and L. Common metrics are AUC-ROC, AUC-PR,
and F-score [5]. However, in domains like ours where degener-
ate cases arise (e.g., entire subsequences labeled as all normal
or all anomalous), these standard metrics are insufficient. In
Section VI, we therefore extend them with a unified definition,
ADacc, that remains valid across all cases. (ii) Interpretability.
Following [1], [2], we use HitRate@K = |Hit@K|

|GTt| , where
GTt is the set of true anomalous dimensions at time t
and Hit@K is the number of those captured in the top-K
predicted dimensions. Ideally, K = |GTt|.

C. Univariate and Multivariate Anomaly Detection

Univariate anomaly detectors analyze each dimension sep-
arately, which is simple but ignores cross-dimensional depen-
dencies, leading to false alarms [1], [2]. Multivariate anomaly
detectors capture correlations across variables and generally
improve accuracy, but they typically lack interpretability, mak-
ing root-cause analysis difficult in practice [1], [2].

D. Interpretable Anomaly Detection

A handful of interpretable MTS anomaly detectors have
been proposed [1], [2]. These methods provide dimension-
level or feature-level anomaly scores, helping users identify the
sources of anomalies. However, their interpretability is often
inconsistent: some provide ranked dimensions, others output
attribution maps without clear semantics. This heterogeneity
complicates their integration into industrial workflows, where
transparent explanations are essential.

E. AutoML and Ensemble Approaches

Several AutoML frameworks have been introduced to auto-
mate anomaly detector selection and tuning. MSAD [4] learns
to select suitable detectors automatically, while TimeEval [12]
leverages metadata for hyperparameter tuning. Classifier-based
selectors [13] improve robustness but rely on handcrafted
features. Importantly, most of the existing AutoML solutions
focus on univariate time series, and none addresses inter-
pretability.

F. Positioning of Our Work

Existing methods either (i) focus on univariate data, (ii)
ignore interpretability, or (iii) trade accuracy for runtime



efficiency. Crucially, no prior AutoML framework has sys-
tematically ensured dimension-level interpretability for multi-
variate anomaly detection — i.e., the ability to explain which
parameter caused an anomaly. MuMSAD is the first to curate
a library of interpretable multivariate detectors and enforce
a consistent interpretability criterion across them, enabling
actionable root-cause analysis; while still ensuring competitive
performance by applying the AutoML principles.

IV. PROBLEM FORMULATION

To reason about automatic model selection for interpretable
multivariate anomaly detection, we first formalize the problem.
The goal is to design a selector that chooses, for each given
multivariate time series (MTS), the detector that yields the best
balance of accuracy and interpretability.

Input. Let S be a set of MTS, with variable lengths |T |.
Let B = {D1, . . . , DK} denote a finite set of K interpretable
multivariate anomaly detectors.

Automatic model selection. We define M as a selector
M : S → B. Given a time series T ∈ S with label L,
M selects the detector maximizing a suitability function F :
M(T ) = argmaxD∈B F(D(T ), L). Here, F can capture
anomaly detection accuracy, interpretability, or a combination
(Section III-B). This setting can be viewed as a classification
task where classes correspond to detectors in B.

For evaluation, we compare M against three reference base-
lines: (i) an Oracle, which selects the detector that maximizes
F with perfect knowledge; (ii) an Averaging Ensemble, which
runs all detectors in B and averages their scores; and (iii)
a Random selector, which chooses uniformly from B. These
baselines respectively provide upper, ensemble, and lower
bounds for M’s performance.

Output. Given T and selected detector D = M(T ),
anomaly detection produces two outputs: (i) a sequence of
point-level anomaly scores S ∈ [0, 1]|T |; and (ii) for inter-
pretable detectors, per-dimension scores St = {S1

t , . . . , S
M
t }

for each observation Tt, with Si
t ∈ [0, 1]. These are aggregated

through

H(St) : [0, 1]
M → [0, 1] (1)

which combines dimension-level scores into a point-level
score. For non-interpretable detectors, only scalar scores St ∈
[0, 1] are produced.

V. PROPOSED SOLUTION: INTERPRETABLE MULTIVARIATE
ANOMALY DETECTOR SELECTION

We introduce MuMSAD, a framework for automatic se-
lection of interpretable multivariate anomaly detectors. MuM-
SAD extends MSAD [4] by (i) supporting heterogeneous
multivariate time series, (ii) incorporating extended feature
extraction and flexible labeling, (iii) enforcing dimension-level
interpretability, and (iv) reducing runtime costs compared to
ensembles. Figure 2 shows the architecture.
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Fig. 2: Pipeline of MuMSAD.

A. Pipeline Overview

MuMSAD consists of four stages:
1) Preprocessing: Segments input MTS into fixed-length

subsequences, enabling robust feature extraction and han-
dling variable-length inputs.

2) Prediction: Each subsequence is encoded into features
and passed to a selector (feature-based classifier or deep
model) that predicts the most suitable detector.

3) Selection: Subsequence-level predictions are aggregated
via majority voting into a single detector. We choose
majority voting for robustness and runtime simplicity
compared to weighted voting.

4) Anomaly Detection: The selected detector is applied to
the full MTS to generate (i) point-level scores S and (ii)
dimension-level scores Si

t , enabling root-cause analysis.
We direct readers to the detailed workflow of MSAD at [4].
Below we outline the novelty of MuMSAD.

B. Extended Feature Extraction and Labeling

Feature extraction is a key bottleneck for model selectors.
MSAD [4] relied on nine simple TSFresh features, mostly
basic statistics (mean, median, variance, min, max), which are
often insufficient for heterogeneous MTS. In MuMSAD, we
expand the feature space along three axes, while also recon-
figuring the preprocessing steps so that classifiers originally
designed for univariate inputs can operate effectively on MTS,
maintaining backward compatibility with univariate series.
(i) Statistical features. We retain the original TSFresh statis-
tics and add two measures of local variation: the mean of
absolute differences between consecutive values, capturing
sudden irregular changes, and the mean of signed differences,
highlighting persistent drifts in stationary parameters such as
temperature. These are relevant in marine data streams, where
short-term turbulence and long-term drift can coexist.
(ii) Shape-based features. We incorporate the number of
peaks in a subsequence, which identifies unusual oscillations.
Such peaks often indicate sensor malfunctions or disturbances



caused by environmental factors such as biofouling or me-
chanical noise during maintenance [6].
(iii) Distributional features. We adopt Benford’s correlation
coefficient, widely used in anomaly detection [14], to capture
deviations in the expected distribution of measurement values.
This measure has shown strong performance in domains such
as fraud detection, and here it helps identify cases where
sensor outputs follow unnatural digit distributions.

Beyond TSFresh, we also evaluate catch22 [15], which com-
putes 22 handcrafted features designed for broad applicability
across time series domains. Catch22 is considerably more
efficient than TSFresh [16], enabling MuMSAD to reduce
feature extraction overhead when runtime is critical.

Normalized vs. raw data. While MSAD operated solely
on normalized data, we observed that normalization can some-
times suppress patterns that are important for root-cause anal-
ysis. For example, absolute shifts in salinity or conductivity
are meaningful in marine data, but these can be attenuated
by normalization. Therefore, MuMSAD extracts features from
both raw and normalized inputs.

C. Integrating Interpretability

Interpretability is central to MuMSAD. We require each
interpretable detector D to satisfy the condition of Eq. 1.
In practice, we adopt H(St) =

∑M
i=1 S

i
t , where Si

t ∈ [0, 1]
is the anomaly score of dimension i at time t. This simple
aggregation ensures that every point-level anomaly score St

is supported by a decomposition across dimensions, enabling
root-cause analysis. While other aggregation strategies are
possible (e.g., max, weighted sum), we adopt the summation
because it is widely supported by existing detectors and yields
consistent semantics across different methods.

From the 71 anomaly detectors reviewed in [5], we sys-
tematically identified the subset of 10 multivariate methods
that meet this interpretability criterion. They can be grouped
by family according to the taxonomy of [17]: Prediction-
based (Torsk, AutoEncoder, DenoisingAutoEncoder, PCC),
Distance-based (CBLOF, COF, LOF), and Density-based
(RandomBlackForest, HBOS, COPOD).

We emphasize that this screening is itself a contribution.
Although prior surveys [5], [17] categorize detectors by al-
gorithmic family, none distinguish which methods produce
dimension-level scores. By applying a consistent interpretabil-
ity criterion, MuMSAD identifies the detectors that can support
root cause analysis.

The functionality of interpretability is critical in practice. In
industrial contexts such as subsea monitoring, operators not
only need to know what an anomaly occurred but also which
parameter (e.g., salinity, pressure) caused it. Dimension-level
scores are therefore essential for isolating faulty sensors and
reducing downtime.

While the replication package of MuMSAD consists of 10
interpretable detectors, the framework remains general and can
still support non-interpretable methods. Specifically, when a
non-interpretable method is selected, only point-level scores
St are produced, without dimension-level explanations.

VI. EXPERIMENTAL EVALUATION

We evaluate MuMSAD as an automatic multi-parameter
marine DQC module for smart ocean observatories.

1) Data Preparation: We use data from the OBSEA cabled
observatory (https://obsea.es), located 4 km off the Barcelona
coast. Two SeaBird CTD nodes, deployed at 20 meters depth,
continuously recorded temperature, conductivity, and salinity
at 10-second intervals between 2020–2021. These parameters
are strongly interdependent (e.g., temperature and conductivity
jointly determine salinity), making the dataset well-suited for
evaluating multivariate anomaly detection.

For near-real-time DQC operations, we segmented the
stream into one-day multivariate time series (MTS), resulting
in 554 labeled series, each of length 8640 and with three
dimensions. Labels of bad data were created using the physics-
informed diagnostic rules of [6].

2) Technical Setup:
a) Detector execution: We ran all ten interpretable mul-

tivariate anomaly detectors identified in Section V-C on every
series in the OBSEA dataset. Hyperparameters were tuned
automatically using the TimeEval framework [12], which
optimizes settings based on meta-information of each MTS.
The computations were carried out on two Linux servers, each
equipped with 48 cores of Intel(R) Xeon(R) Gold 6136 CPUs
at 3.00GHz and 64GB RAM.

b) Model selector training: To build MuMSAD selec-
tors, we split the OBSEA dataset into 85% training and 15%
testing sets, stratified to maintain similar class distributions
of anomalies across both splits. All supported selector ar-
chitectures were evaluated, including both feature-based (e.g.,
Decision Tree, RF, SVM, AdaBoost, MLP, kNN, QDA, Naïve
Bayes) and deep learning–based selectors (ConvNet, ResNet,
InceptionTime, SiT variants).

We tested input window sizes from
{4, 8, 16, 32, 64, 128, 256, 512, 768, 1024}, covering both
short local subsequences and long-range temporal contexts.
For feature-based selectors, we evaluated both TSFresh
and catch22 feature extractors. To understand the effect of
preprocessing, we extracted features from both raw and
normalized data. In total, 390 distinct selector configurations
were trained, giving us a broad empirical basis for comparing
design choices.

c) Evaluation metrics: We evaluated MuMSAD in two
aspects: anomaly detection accuracy and interpretability. Ac-
curacy was assessed with the domain-specific function ADacc:

ADacc(T,L) =


AUC-PR, if {0, 1} ∈ L

1− FPR, if {0} ∈ L

TPR, if {1} ∈ L,

(2)

where T is a multivariate time series and L its label sequence.
This formulation is necessary because many OBSEA series are
degenerate cases: some days contain only normal data, while
others contain only anomalies (e.g., due to sustained commu-
nication failure). In such cases, conventional precision/recall-
based metrics become undefined. Equation 2 ensures compa-
rability across all three scenarios, with outputs always in [0, 1].

https://obsea.es


Interpretability was measured using the HitRate@K metric
(see Section III-B). We set K = 1, corresponding to the
most operationally relevant use case: whether the method
correctly identifies the single most problematic parameter (e.g.,
conductivity vs. temperature).

3) Results:
a) Interpretability: Figure 3 reports interpretability

across all tested detectors and selectors. The variation
among individual detectors is striking: the AutoEncoder (AE)
achieves a score around 0.5, while others such as CBLOF
or Torsk fall much lower. This shows that simply choosing a
single method yields inconsistent interpretability. The Oracle
establishes the upper bound by always picking the optimal
detector. There remains a substantial gap between Oracle and
AE. Conversely, Random collapses performance, confirming
that uninformed choice is close to useless. Interestingly, the
Averaging Ensemble (Avg Ens), which aggregates anomaly
scores across detectors, performs worse than every individual
method. This result contrasts with [4], where score averaging
improved accuracy in the univariate setting.

MuMSAD selectors close much of the gap to the Oracle.
The kNN selector trained on TSFresh features extracted from
raw data, with window size 256, yields the highest gains,
improving interpretability by 10–20% over AE depending on
whether mean or median scores are considered. Among deep
learning selectors, four out of seven are competitive, though
in aggregate the feature-based family remains stronger.

Two trends emerge. First, raw features outperform normal-
ized. Normalization erases correlations and scale differences
between parameters, which are often diagnostic in marine
sensor data (e.g., conductivity drifting while temperature re-
mains stable). Retaining raw features preserves these cues and
improves interpretability. Second, smaller windows outperform
larger windows. Shorter segments provide more subsequences
for training, which increases the selector’s ability to generalize
across heterogeneous conditions. This is particularly important
in marine data, where anomalies may be short-lived but
repeated across time. These results confirm MuMSAD’s value:
careful selection, rather than naive aggregation or reliance on
a single detector, substantially enhances interpretability.

b) Anomaly detection accuracy: Figure 4 summarizes
anomaly detection accuracy using ADacc (Equation 2). The
trade-off with interpretability becomes clear: AE ranks best for
interpretability but only mid-pack for accuracy (fourth worst
overall). In contrast, detectors like Torsk, CBLOF, and PCC
achieve high accuracy but are among the least interpretable.
This illustrates the central challenge: no single detector pro-
vides strong performance on both dimensions simultaneously.

MuMSAD selectors mitigate this trade-off effectively.
Feature-based selectors such as DT, MLP, RF, kNN, and Ad-
aBoost consistently achieve both higher accuracy and higher
interpretability than any individual detector. This result is
crucial for operational settings, where reliability and explain-
ability must co-exist.

Several patterns are robust across the experiments. First,
catch22 outperforms TSFresh: although TSFresh with our ex-

Fig. 3: Interpretability (HitRate@1). White bars: individual
detectors/baselines; blue/green bars: feature-based selectors
(raw/normalized); red bars: deep learning. Black triangles:
mean interpretability.

Fig. 4: Anomaly detection accuracy (ADacc). Same color
coding as Figure 3.

tensions is strong, the compact and efficient catch22 feature set
appears more suited to small datasets and real-time constraints.
Second, raw data outperforms normalized data, mirroring
the interpretability results. Third, smaller windows outperform
larger ones, again reflecting that more subsequences yield
more training examples for selectors. Finally, the Avg Ens
baseline again underperforms, confirming that aggregation is
not a substitute for selection in multivariate anomaly detection.

c) Runtime efficiency.: Figure 5 summarizes runtime
costs. A key motivation for MuMSAD is that brute-force
strategies such as the Averaging Ensemble require executing
all K detectors on each time series, which quickly becomes
infeasible. The complexity grows linearly with the number of
detectors, O(KT ), where T is the length of the time series.
In contrast, MuMSAD adds only a lightweight selection step
and then runs a single detector, reducing the cost to O(T ).

To provide a concrete example, running all K = 10
detectors on a single one-day series (|T | = 8640) requires on
average 3165 seconds CPU-time on our evaluation hardware.
Across the 554 days of the OBSEA dataset, this corresponds



Fig. 5: Runtime efficiency: total time = selection + detection.
Asterisks = top-3 selectors for accuracy or interpretability.

to roughly 20 days of computation. By comparison, MuMSAD
selectors add only 35–100 seconds for the selection step,
plus the runtime of a single chosen detector, bringing the
per-series cost down by nearly an order of magnitude. Over
the full dataset, this translates into hours rather than days of
computation.

VII. CONCLUSIONS AND FUTURE WORK

We introduced MuMSAD, an AutoML framework for au-
tomatic selection of interpretable multivariate anomaly detec-
tors. By extending prior AutoML solutions such as MSAD,
MuMSAD integrates two advances: (i) support for heteroge-
neous multivariate series rather than only univariate, and (ii)
dimension-level interpretability for root cause analysis.

Our experimental study demonstrated MuMSAD’s value in
a real-world setting where we built an automatic data quality
control module for smart ocean observatories. Here, MuMSAD
improved interpretability by up to 20% while simultaneously
increasing anomaly detection accuracy by 15% compared
to the best single detector, all while maintaining runtime
comparable to the fastest interpretable baseline.

Future work. Several directions follow from this work.
(i) We will improve robustness to out-of-distribution set-
tings by exploring domain-invariant features, meta-learning
strategies, and lightweight calibration to adapt selectors to
new environments. (ii) We plan to expand the library of
interpretable multivariate detectors, in particular incorporating
emerging neural methods that support attention mechanisms.
(iii) We aim to extend MuMSAD to streaming operation,
with incremental feature extraction and rolling model selection
suitable for online data pipelines. (iv) Finally, we are preparing
deployments in offshore infrastructure integrity monitoring,
as requested by our industrial partners, to further validate
scalability and operational impact.
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