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Abstract

Entity Resolution (ER) is the task of detecting different entity profiles that describe the same real-world objects. To facilitate
its execution, we have developed JedAI, an open-source system that puts together a series of state-of-the-art ER techniques that
have been proposed and examined independently, targeting parts of the ER end-to-end pipeline. This is a unique approach, as
no other ER tool brings together so many established techniques. Instead, most ER tools merely convey a few techniques, those
primarily developed by their creators. In addition to democratizing ER techniques, JedAI goes beyond the other ER tools by
offering a series of unique characteristics: (i) It allows for building and benchmarking millions of ER pipelines. (ii) It is the only
ER system that applies seamlessly to any combination of structured and/or semi-structured data. (iii) It constitutes the only ER
system that runs seamlessly both on stand-alone computers and clusters of computers - through the parallel implementation of all
algorithms in Apache Spark. (iv) It supports two different end-to-end workflows for carrying out batch ER (i.e., budget-agnostic), a
schema-agnostic one based on blocks, and a schema-based one relying on similarity joins. (v) It adapts both end-to-end workflows
to budget-aware (i.e., progressive) ER. We present in detail all features of JedAI, stressing the core characteristics that enhance
its usability, and boost its versatility and effectiveness. We also compare it to the state-of-the-art in the field, qualitatively and
quantitatively, demonstrating its state-of-the-art performance over a variety of large-scale datasets from different domains.

The central repository of the JedAI’s code base is here: https://github.com/scify/JedAIToolkit .
A video demonstrating the JedAI’s Web application is available here: https://www.youtube.com/watch?v=OJY1DUrUAe8.
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1. Introduction

Entity Resolution (ER) constitutes a core data integration
task, with many applications that range from knowledge bases
to question answering [1, 2, 3]. Its goal is to detect duplicate
entity profiles that describe the same real-world objects. Due
to the lack of a unique identifier per real-world object, ER can
only be resolved by overcoming two main challenges: (i) the
inherently quadratic computational cost, O(n2), as in the worst
case, every entity profile should be compared with all others,
and (ii) the noise and/or ambiguity in the attribute names and
values that describe each entity profile, hampering the detec-
tion of duplicates.

Existing ER systems [3, 4, 5, 6] attempt to tackle the above
two challenges in a partial (unidimensional) way. In essence,
the end-to-end pipelines they construct apply a batch, seri-
alized processing that relies heavily on schema and domain
knowledge to optimize two main steps [3]: (i) Blocking, which
groups together similar entity profiles, restricting the computa-
tional cost to the comparison of a subset of the input entities,
and (ii) Matching, which applies complex similarity measures
and rules in order to distinguish between matching and non-
matching entities. Each system, though, typically implements

a few methods (primarily those proposed by its creators), and
requires heavy user involvement. Yet, not all users are capa-
ble of configuring and using these ER systems. As a result, the
potential user base of such systems is restricted to experts, and
even in that case, their capabilities and scope are rather limited.

In this paper, we present the Java gEneric DAta Integration
(JedAI) system, an open-source ER system [7] that goes be-
yond the state-of-the-art in the field by covering a broad range
of the main techniques in the literature and by supporting a large
variety of use cases. In fact, JedAI can create any end-to-end
pipeline that is defined by the following three dimensions:

1. Schema-awareness. JedAI supports both schema-based
and schema-agnostic pipelines. The former rely on sim-
ilarity join techniques, which efficiently detect near du-
plicates based on the noise-free, distinctive values of a
specific attribute name. In contrast, the schema-agnostic
workflows extract overlapping blocks from all attribute
values and refine them through generic, efficient tech-
niques that disregard any schema knowledge.

2. Budget-awareness. JedAI supports both budget-agnostic
and budget-aware pipelines. The former are executed as
a batch process that produces results upon its completion,
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Figure 1: The solution space of the end-to-end ER pipelines that can be con-
structed by JedAI.

whereas the latter operate in a pay-as-you-go manner that
produces results progressively - their goal is to optimize
performance within a specific budget of temporal or com-
putational resources.

3. Execution mode. JedAI supports both the serialized ex-
ecution of an end-to-end pipeline and its massive paral-
lelization through Apache Spark [8].

Essentially, each pipeline category involves methods of two
fundamentally different types. By allowing the methods of each
category to be combined with those of all other dimensions,
JedAI introduces the three-dimensional ER, which covers the
entire solution space that is formed by the three axes in Figure 1.
This is a unique feature, given that all other tools merely cover
the small, two-dimensional part of the solution space that is
highlighted in gray.

Another unique feature of JedAI is its generality. JedAI
supports both Clean-Clean ER, which resolves two individu-
ally duplicate-free, but overlapping data sources, and Dirty ER,
which receives as input a single data source that contains du-
plicates in itself. This goes beyond top tools like Magellan [3],
which exclusively supports Clean-Clean ER. Most importantly,
JedAI applies seamlessly to data of any structuredness, support-
ing input formats that range from structured entities to semi-
structured and un-structured ones (i.e., described by free text).
As a result, its pipelines apply to any domain, as long as its
entity profiles are described by textual values, regardless of the
level of noise in attribute values and names. The only require-
ment is that the matching entities share parts of their attribute
values. This is demonstrated by the experiments in Section 9,
which involve a wide range of large datasets from various do-
mains (e-commerce, bibliographic data, census data etc).

An additional advantage of JedAI is its high usability.
JedAI conveys non-learning methods that require minimal hu-
man intervention, as neither domain knowledge nor training
sets are needed. Users are only required to select the meth-
ods that will form an end-to-end workflow. Optionally, the in-
ternal parameters of each method can be fine-tuned for optimal
performance. In case of no relevant experience, the default con-
figurations can be used, as they have been experimentally ver-
ified to consistently achieve high performance across various,
diverse datasets [9, 10]. In this way, JedAI allows non-experts

to create complex pipelines of high performance with minimal
human intervention, almost in a hands-off manner. This is made
possible through an intuitive user interface that provides hints
for building end-to-end solutions, while facilitating the obser-
vation of the input data as well as the intermediate and the final
results. Notably, the large variety of resulting pipelines can be
easily benchmarked through the GUI with respect to both ef-
fectiveness and time efficiency. This facilitates to identify the
best performing baseline and to assess the impact of a partic-
ular method, workflow step or configuration parameter on the
overall performance.

In summary, this work makes the following contributions:

• We analytically describe all important aspects of JedAI,
delving into the types of solutions it creates and the cor-
responding end-to-end workflows. We explain the role of
every component in its modular architecture, outlining the
functionality of each method it includes. Thus, we facili-
tate not only the use of JedAI, but also its extension with
more methods and modules.

• We perform an extensive experimental evaluation that in-
volves 10 real-world and 7 synthetic datasets, whose sizes
range from few thousand to few million entities. We eval-
uate the relative performance of all types of end-to-end
pipelines created by JedAI (batch, progressive, schema-
based, schema-agnostic, serialized and parallel ones), pro-
viding useful insights into their pros and cons.

• We compare JedAI with the state-of-the-art, qualitatively
and quantitatively, highlighting the limitations of existing
tools and explaining how we go beyond them.

The rest of the paper is structured as follows: Section 2 pro-
vides background knowledge, while Section 3 presents JedAI’s
modular architecture. The back-end is analytically described
in Section 4, the front-end in Section 5 and the data model in
Section 6. Section 7 presents the massively parallel operation
of JedAI, Section 8 discusses applications employing JedAI,
whereas Section 9 is devoted to the thorough experimental anal-
ysis. The paper concludes with a qualitative comparison with
the state-of-the-art in Section 10 and a summary of the key
points in Section 11.

2. Problem Definition

We call the representation of a real-world object an entity
profile, or entity for simplicity. More formally, an entity profile
consists of a unique identifier and a set of textual name-value
pairs. This simple model is versatile enough to accommodate
both structured or semi-structured data. We say that two entities
ei and e j are matching or duplicates, ei≈e j, if they refer to the
same real-world object.

In this context, Entity Resolution (ER) is the task of identi-
fying the matching entities within a given set of entity profiles,
E. When the entities come from two different data sources (i.e.,
E = E1∪E2) and each data source is individually duplicate-free,
we have a Clean-Clean ER problem. When the entities comes
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Figure 2: JedAI’s model-view-controller architecture.

from the same data source, which contains duplicates, we have
a Dirty ER problem.

We call matching function the binary function µ that takes
as input two entities and determines the likelihood that they
are duplicates: µ : E × E → (0, 1). Usually, matching func-
tions require the computation of similarity measures, which are
prohibitively expensive to apply on all possible pairs of enti-
ties—the complexity of this naı̈ve approach is O(|E|2). The goal
of blocking methods is to alleviate this complexity by indexing
similar entities into blocks, so as to restrict the actual compar-
isons to entities co-occurring in at least one block. The indexing
functions employed for blocking are called blocking functions.
A blocking function β(ei) → {k1, .., kn} takes as input an entity
and returns one or more blocking keys, which are used to place
the entity into one or more buckets (i.e., the blocks).

After applying the matching function to all pairs in a set of
blocks B, a clustering algorithm leverages the results of the
matching function to produce the final outcome of ER. This
consists of a set of equivalence clusters, such that every cluster
corresponds to a distinct real-world object and contains all en-
tities that describe it. Note that for Clean-Clean ER, all equiva-
lence clusters have a cardinality up to two.

Let ci, j stand for an individual comparison between entities
ei and e j, CB for the set of pairwise comparisons in the set
of blocks B, D for the set of matching pairs after the cluster-
ing phase, and M for the real set of matching entities (i.e.,
ground-truth). To assess the quality of a set of blocks B, we
employ the blocking recall, which is called Pairs Complete-
ness and is defined as PC = |CB ∩ M|/|M|, and the block-
ing precision, which is called Pairs Quality and is defined as
PQ = |CB ∩ M|/|CB|. To assess the quality of the overall ER
process, we employ recall and precision, which are respectively
defined as Re = |D ∩ M|/|M| and Pr = |D ∩ M|/|D|. We
also consider their harmonic mean, F-Measure (F1). Time ef-
ficiency is measured through the running time (RT ) that inter-
venes between receiving the input entities and producing the
equivalence clusters.

3. JedAI Overview

JedAI aims to address the following goals:
• (G1) Broad data coverage. JedAI should apply seamlessly to
most types of structured and semi-structured data.

• (G2) Broad literature coverage. JedAI should serve as a li-
brary of the main, established techniques in the literature.
• (G3) Broad scenario coverage. JedAI should support both
academic and commercial applications.
• (G4) High usability. JedAI should accommodate a broad user
base that includes both lay and expert users. The former should
be able to build complex, high performing end-to-end pipelines
for the data at hand without necessarily knowing all details
about the functionality of their methods. The latter should be
able to intervene in all aspects of JedAI’s functionality so as to
tailor it to their special needs.
• (G5) Extensibility. JedAI should facilitate its enrichment with
new techniques or even workflow steps by power users.
• (G6) High time efficiency. JedAI should process large datasets
quickly, not only in commodity, stand-alone systems, but also
in powerful computer clusters.

Goal G1 is accomplished through JedAI’s flat entity model,
which consists of a string-valued entity id (e.g., URI) and a set
of textual name-value pairs. This simple model is capable of
accommodating the main structured and semi-structured data
formats, while supporting noisy attribute names or values, tag-
style values (which are not associated with any attribute name)
and entity links, where the URI of an entity is given as an at-
tribute value to the associated entity. See Section 6 for details.

To meet G2, JedAI comprises numerous methods that sup-
port four different end-to-end ER workflows (cf. Section 4).

For G3, JedAI’s code is released under Apache License V2.0,
which supports both academic and commercial applications.
The former are further facilitated through JedAI’s benchmark-
ing functionality; its intuitive GUI allows every user to easily
evaluate the relative performance of a large variety of end-to-
end pipelines, in case a ground-truth is available (as is common
in academic applications). To additionally support commercial
applications, any workflow built by JedAI can operate indepen-
dently of a ground-truth, producing its own detected matches.

To address G4, JedAI equips novice users with a wizard-like
GUI, with documentation and with default parameters for every
implemented method. In case a ground-truth is available, they
can also use two ways of automatic parameter fine-tuning (see
Section 4.5). For power users, JedAI offers manual configura-
tion for each method as well as a modular architecture, where
every workflow step corresponds to a separate component that
implements a simple and clear interface. Every new class (al-
gorithm) implementing a particular interface can be seamlessly
integrated into the corresponding component, thus facilitating
extensibility (G5), too.

Finally, goal G6 is met for stand-alone systems through GNU
Trove [11], which provides high performance data structures
that operate on primitive data types instead of objects, restrict-
ing their time and space complexity to a large extent [12]. For
cluster systems, JedAI supports massive parallelization of all
methods and workflows through Apache Spark. This is actually
accomplished through the same GUI as the serialized execution.

The above six objectives are accomplished through JedAI’s
model-view-controller architecture, which is depicted in Figure
2. JedAI-gui provides the interfaces for user interaction (view),
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JedAI-core implements the plethora of methods and workflows
(controller), and the Data Model component provides the data
structures that lie at its core (model). We elaborate on these
three parts in the next three sections.

4. Back-end: JedAI-core

This component implements four different end-to-end ER
workflows that are formed by two of JedAI’s dimensions:
budget- and schema-awareness (note that the execution mode
does not alter the form of the end-to-end workflows - only the
way they are carried out). For each workflow, we briefly de-
scribe the role of each step and the functionality of the avail-
able methods so as to facilitate their understanding and use
by researchers and practitioners. Typically, any method in a
workflow step can be combined with any method of the same
or the other steps. Thus, the more steps a workflow involves,
the higher is the number of valid combinations, which raises up
to several millions for the largest workflows. This is a unique
feature among all ER systems.

4.1. Budget- & schema-agnostic workflow

Figure 3 depicts this end-to-end pipeline along with the avail-
able methods per workflow step. All methods are inherently
crafted for highly noisy and heterogeneous data, despite their
learning-free functionality. They rely on a schema-agnostic
functionality that leverages all attribute values in each entity
rather than employing a particular set of attributes. Thus, they
are resilient to errors in attribute values. Excluding the input
and output steps, which are described in Section 6, the process-
ing steps are the following:

1) Schema Clustering (SC). This is an optional step, suit-
able for highly heterogeneous datasets with a schema compris-
ing a large diversity of attribute names. In these settings, it
significantly improves the overall precision at a limited cost on
recall by grouping together attributes that are syntactically sim-
ilar, but are not necessarily semantically equivalent [12, 13]. At-
tribute Name Clustering groups together attributes with similar
names, Attribute Value Clustering does the same for attributes
with similar values, and Holistic Attribute Clustering is a hybrid
method that considers both attribute values and names.

All methods can be combined with any similarity measure
and representation model from the Text Processing compo-
nent (see Section 4.5). They produce a set of attribute clusters,
which lay the ground for improving the next steps in various
ways: Block Building leverages them to break large blocks into
smaller ones, without missing duplicates [12], while Compari-
son Cleaning extracts the entropy per blocking key for a-priori
weighting candidate matches [13].

2) Block Building (BB). This step clusters similar entities
into blocks so as to drastically reduce the candidate match
space, cutting down on the overall ER running time. It includes
most of the state-of-the-art blocking methods [14] using their
schema-agnostic adaptation [9], which extracts multiple block-
ing keys from each entity. In this way, every entity participates
into several blocks, reducing the likelihood of missed matches,

i.e., duplicates having no block in common. In other words,
high recall is achieved by producing overlapping blocks with
high levels of redundancy. This comes, however, at the cost
of low precision, due to the large number of unnecessary com-
parisons [10] - the redundant ones, which are repeated across
different blocks, and the superfluous ones, which involve non-
matching entities.

The core approach is Token Blocking (TB) [15], which uses
as blocking keys every token in any attribute value. It is the only
parameter-free method in the literature, but is inappropriate for
sparse entity profiles with character-level errors.

To cover such cases, Suffix Arrays (SA) [16] extends TB by
converting its blocking keys into their suffixes that consist of
at least lmin characters. Then, it considers only the suffixes
appearing in at most bmax entities, i.e., maximum block size.
Extended Suffix Arrays [14, 9] alters SA by converting TB’s
blocking keys into all substrings (not just suffixes) with more
than lmin characters that occur in less than bmax entities.

A similar approach, independent of frequency thresholds, is
Q-Grams Blocking [14, 17], which transforms every TB block-
ing key into all substrings of q characters, i.e., q-grams. Ex-
tended Q-Grams [14, 9] improves Q-Grams by transforming
every TB blocking key into combinations of N q-grams.

All these hash-based methods create a separate block for ev-
ery distinct key such that two matches co-occur in a block if
they share at least one key. Duplicates with all their keys dif-
fering in at least one character are not placed in any common
block, thus being undetectable. To overcome this issue, other
methods rely on the similarity of keys.

The main similarity-based method is Sorted Neighborhood
(SN) [18], which sorts TB’s keys alphabetically and orders the
corresponding entities accordingly; then, it slides a window of
fixed size w over the sorted list of entities. In every iteration,
the last entity in the current window is compared with all other
entities in the same window. Extended Sorted Neighborhood
[14, 9] improves SN by sliding the window over the sorted list
of blocking keys, rather than the list of entities. This means that
each block combines w TB blocks.

Finally, LSH MinHash [19] and LSH Superbit Blocking [20]
create blocks with entities whose sets of keys exceed a certain
threshold on Jaccard or cosine similarity, respectively.

Note that any combination of the above methods is possible.
Usually, this is necessary for highly noisy datasets, e.g., those
including both character- and token-level errors.

3) Block Cleaning (BC). This is an optional step that cleans
the original blocks from those dominated by the redundant and
the superfluous comparisons. Removing these comparisons im-
proves precision at a minor cost in recall [10].

The core assumption in BC is that the larger a block is,
the less likely it is to contain unique duplicates, i.e., matches
co-occurring in no other block (e.g., a block corresponding
to a stop word). In this context, Size-based Block Purging
[21] discards all blocks exceeding a certain number of entities,
Cardinality-based Block Purging [15] discards all blocks ex-
ceeding a certain number of comparisons, Block Filtering [22]
retains every entity in a subset (r%) of its smallest blocks, and
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Figure 3: JedAI’s budget- & schema-agnostic end-to-end workflow along with the available methods per step. Self-loops indicate steps that can be repeated, whereas
gray rectangles designate optional steps.

Block Clustering [23] ensures that all blocks remain within a
user-specified range of sizes.

These methods are complementary and can be combined for
higher performance gains. The larger the set of input blocks is,
the more BC methods should be applied to it.

4) Comparison Cleaning (CC). This optional step also tar-
gets redundant and superfluous comparisons, but operates at the
level of individual comparisons, achieving higher accuracy than
BC at the cost of a higher time complexity. It includes primarily
Meta-blocking techniques [10], of which only one can be added
in an end-to-end pipeline.

The simplest approach is Comparison Propagation [24],
which eliminates all redundant comparisons from a set of over-
lapping blocks. Instead of hashing all executed comparisons in
memory, an approach that does not scale to large datasets, it
performs a pairwise comparison ci, j in block bk only if k is the
least common block index of ei and e j.

All other methods of this step extend Comparison Propaga-
tion so that it discards superfluous comparisons, as well. To
this end, they rely on block co-occurrence patterns, as they are
captured by the Meta-blocking weighting schemes. These as-
sociate every non-redundant comparison ci, j with a normalized
score that depends on the blocks the entities ei and e j share: the
more blocks they have in common and the smaller these blocks
are, the higher is the overall score.

Based on these schemes, Weighted Edge Pruning [25] dis-
cards all comparisons with a weight lower than the average one
across all distinct comparisons in the input blocks. Cardinality
Edge Pruning [25] retains the overall top-K weighted compar-
isons. Cardinality Node Pruning (CNP) [25] keeps the top-k
weighted comparisons per entity. Reciprocal CNP [22] retains
comparisons that are among the top-k weighted ones for both
involved entities. Weighted Node Pruning (WNP) [25] esti-
mates the average comparison weight for every entity and re-
tains only those comparisons that exceed it. Reciprocal WNP
[22] keeps comparisons that exceed the average weight for both

involved entities. BLAST [13] retains those weighted higher
than the average maximum weight of the two involved entities.

Note that Comparison Cleaning also includes the schema-
agnostic adaptation of Canopy Clustering [26], which itera-
tively selects a random entity from the input blocks and cre-
ates a new block that contains all co-occurring entities with
a comparison weight higher than tin; all entities with a com-
parison weight higher than tex (> tin) are not placed in any
other block. Extended Canopy Clustering [14, 9] replaces the
weight thresholds with cardinality ones: each new block con-
tains the nin co-occurring entities with the highest comparison
weights, while the nex (< nin) most similar entities are excluded
from all other blocks.

5) Entity Matching (EM). This step involves schema-
agnostic methods for assessing the value similarity of all en-
tity pairs in the input blocks. Profile Matcher aggregates all
attribute values in each entity into a representation model and
compares it with the models of the other entities according to a
specific similarity measure. Group Linkage [27] matches a pair
of entities based on bipartite graph matching: every value from
the one entity is linked with its most similar value from the other
entity; if the similarity of these links is high enough and there
is a large fraction of such links, the two entities are considered
duplicates. Both methods can be combined with any similarity
measure and representation model from the Text Processing
component (see Section 4.5). It is also possible to combine dif-
ferent configurations of these methods into a single workflow,
leveraging evidence from multiple representations and similar-
ity measures. In all cases, the resulting similarity scores are
normalized in [0, 1].

6) Entity Clustering (EC). This step partitions the compar-
isons executed by EM into equivalence clusters. Its functional-
ity depends on the type of the ER task at hand.

For Clean-Clean ER, Unique Mapping Clustering [28] is
typically applied. It sorts all pairwise comparisons in decreas-
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ing similarity score and iteratively considers the top one as
a match, if its score exceeds a predetermined threshold and
none of the involved profiles has already been matched. Row-
Column Clustering implements an efficient approximation of
the Hungarian Algorithm [29], while Best Assignment Clus-
tering implements an efficient, heuristic solution to the assign-
ment problem in unbalanced bipartite graphs [30].

For Dirty ER, the simplest approach is Connected Compo-
nents [31, 32], which sets a cut-off threshold t and consid-
ers as matches all comparisons with a similarity score higher
than t; then, it estimates the transitive closure of the matches.
For higher robustness to noise, more advanced algorithms build
clusters around selected entities that operate as centers. Cen-
ter Clustering [33] defines as centers the nodes with the high-
est average similarity score, while Merge-Center Clustering
[31] unites clusters with centers similar to the same node. Ric-
ochet Clustering [34] defines as centers the entities with the
highest number of comparisons and iteratively re-assigns every
entity to its closer cluster center, similar to K-Means. Other
techniques amplify the strength of intra-links, i.e., the simi-
larity scores inside each equivalence cluster, while abating the
strength of inter-cluster links, i.e., the similarity scores across
different equivalence clusters. This approach is treated as an
optimization problem by Correlation Clustering [35], whereas
Markov Clustering [36] relies on random walks and Cut clus-
tering [37] on the minimum cuts of maximum flow paths.

4.2. Budget-agnostic, schema-based workflow
This type of workflows leverages domain knowledge to

achieve both high effectiveness and high efficiency. This is usu-
ally the case in datasets where a single attribute contains values
that are distinctive enough to identify matching entities. As an
example, consider the title attribute in bibliographical data. In
such cases, the user needs to define a matching rule that con-
sists of two parameters: the distinctive attribute, and a similar-
ity threshold, above which two values are considered to indicate
duplicate entities.

The steps of this end-to-end budget-agnostic, schema-based
workflow appear in Figure 4(a). After data reading, JedAI al-
lows users to detect the most reliable attribute in terms of noise
and distinctiveness through the data exploration functionality
(see Section 5). A similarity join algorithm is then used to ac-
celerate the detection of pairs of entities that satisfy the user-
specified matching rule, while a clustering algorithm leverages
the resulting similarity scores to identify implicit matches or
remove wrong ones.

To implement the Similarity Join (SJ) step, JedAI conveys
a library of the state-of-the-art techniques. They are listed in
Figure 5 and can be distinguished in two broad categories ac-
cording to the similarity measures they support.

The token-based methods are crafted for the Overlap, Jac-
card, Cosine and Dice similarity measures [38, 39]. To com-

pute them, these methods transform every textual value into the
set of its tokens. AllPairs [40] sorts the tokens of every attribute
value in increasing order of frequency across all values. Then,
it forms the prefix of each value by selecting the n first tokens,
i.e., the n rarest ones. Subsequently, Prefix Filtering demands
that two values exceed the user-specified similarity threshold if
their prefixes share at least one token. The size of the prefix
depends on this threshold and the selected similarity measure.
In general, the higher the similarity threshold, the shorter the
prefix and the less candidate matches are produced. PPJoin
[41] extends Prefix Filtering with Positional Filtering, which
estimates a tighter upper bound for the overlap between the two
sets of tokens, based on the positions where the common to-
kens in the prefix occur. SilkMoth goes beyond these methods
by enabling fuzzy joins, i.e., allowing slight variations in the
matching tokens.

The character-based methods are crafted for Edit Distance,
which essentially estimates the minimum number of edit oper-
ations (i.e., insertions, deletions and substitutions) that are re-
quired to transform one attribute value to another [38]. For short
textual values, FastSS [42] provides the most efficient filtering
[38]. Every value is associated with the set of substrings that are
produced after deleting a certain number of characters, and ev-
ery other value that shares one or more substrings is considered
a candidate match. PassJoin [43] partitions a value into a set
of non-overlapping character q-grams and, based on the pigeon-
hole principle, it considers as candidate matches the values that
share at least one of these q-grams. The same principle lies at
the core of PartEnum [44], which is however crafted for the
Hamming Distance, i.e., the minimum number of substitutions
required to change one value to the other. Ed-Join [45] adapts
Prefix Filtering to Edit Distance, similar to the character-based
AllPairs, and optimizes it by removing unnecessary q-grams
from the prefix and by adding Position Filtering.

4.3. Budget-aware, Schema-agnostic workflow
This workflow is suitable for applications with limited com-

putational or time resources, which can only be addressed in a
pay-as-you-go way that provides the best possible partial so-
lution in the context of the available resources. To this end, it
applies the workflow in Figure 4(b). Even though it seems iden-
tical to the budget- and schema-agnostic workflow in Figure 3,
there are several key differences: (i) Data Reading also receives
as input the user-specified budget in terms of the maximum run-
ning time or the maximum number of executed comparisons.
(ii) Block Building is now an optional step, as some progres-
sive methods can be applied directly to the input entities. (iii)
Entity Matching executes one comparison at a time. (iv) Eval-
uation primarily focuses on the rate of detected duplicates per
comparison, i.e., the evolution of recall as more comparisons
are executed. The resulting diagram is used for estimating the
area under curve, which is analogous to the effectiveness of the
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Figure 5: The available methods for SJ and Pr.

progressive methods. (v) A new step, called Prioritization (Pr),
is applied before Entity Matching to schedule the processing of
entities, comparisons or blocks.

In more detail, Prioritization consists of two phases. First,
the initialization phase associates all entities, comparisons or
blocks with a weight that is proportional to the likelihood that
they involve duplicates. Then, it orders accordingly part of the
pairwise comparisons in decreasing weight. Second, the emis-
sion phase emits iteratively the next pair of entities to be com-
pared by Entity Matching, stopping when the available budget
runs out. If all prioritized comparisons are emitted before the
end of the budget, the initialization phase is repeated to sched-
ule the processing of the next ones.

Prioritization incorporates the techniques presented in Figure
5. Local Schema-agnostic Progressive SN [46] applies directly
to the input entities, sorting them according to schema-agnostic
Sorted Neighborhood. Then, it slides a window w=1 along the
sorted list of entities to compare all profiles in consecutive po-
sitions. The window size is iteratively incremented (w=2, 3,
. . . ) until reaching the user-defined budget. In each window
size, the initialization phase orders non-redundant comparisons
in decreasing frequency. This approach is extended by Global
Schema-agnostic Progressive SN [46] so that the initialization
phase operates for a predetermined range of windows.

The rest of the methods operate on blocks, leveraging Meta-
blocking weighting schemes to define an ordering of com-
parisons. Progressive Block Scheduling [46] orders the input
blocks in ascending number of comparisons and then priori-
tizes all comparisons in the current block in decreasing match-
ing likelihood. Progressive Entity Scheduling [46] orders en-
tities in decreasing average comparison weight and then prior-
itizes all comparisons involving the current entity by ordering
them in decreasing matching likelihood. Progressive Global
Top Comparisons simply orders all comparisons in the input
blocks in descending matching likelihood. Progressive Local
Top Comparisons extracts the k top-weighted comparisons per
entity from the input blocks and orders all of them in decreasing
matching likelihood.

4.4. Budget-aware, schema-based workflow

This pipeline implements the same workflow as its budget-
agnostic counterpart, which is depicted in Figure 4(a). The only
difference is that it implements a single method, namely the
Top-k Similarity Join [47]. This algorithm is crafted for token-
based joins and applies seamlessly to both Dirty and Clean-
Clean ER. During the initialization phase, it constructs an in-
dex similar to that of Prefix Filtering. During the emission

phase, it iteratively emits pairs of candidate matches in non-
increasing order of estimated similarity (usually Jaccard). This
is carried out in two ways: globally, by considering all com-
parisons across the entire dataset, or locally, by considering the
top-k comparisons per entity.

4.5. Auxiliary Components

We now describe three components that do not implement
any Entity Resolution algorithm, but play a crucial role in all
end-to-end workflows supported by JedAI.

Documentation. This component is crucial for the usabil-
ity of JedAI. It is applied through the IDocumentation inter-
face, which conveys a series of abstract functions, with each
one returning a textual description about a core characteristic
of an algorithm: (i) its name, (ii) a short explanation of its func-
tionality, (iii) the names of its internal parameters, (iv) a brief
description of each parameter, and (v) the configuration of the
current instance of the algorithm, i.e., the specified value for
every internal parameter. Another method facilitates the man-
ual configuration of any implemented technique by providing
all necessary information in JSON format: the type (i.e., Java
class) of each parameter, its default value and, in case of nu-
meric parameters, the range of values that are typically used by
experts in practice. This range is determined through a mini-
mum and a maximum value as well as a step for automatically
searching the best value in this interval. All techniques in JedAI
implement this interface, laying the ground for the how-to guide
that is offered by its various front-ends (cf. Section 5).

Parameter Configuration. A major task when applying
end-to-end ER pipelines is to configure properly the parame-
ters of their methods. This is non-trivial, due to the strong de-
pendency between the successive workflow steps. Given that
the output of each step is the input to the next one, a step mal-
functioning because of poor parameterization has a devastating
effect on the overall performance of the end-to-end workflow.
To address this issue, this component offers four solutions that
apply to every method:

1) Default configuration. Every parameter is a-priori set
to a value that has been verified to achieve high performance
through an extensive experimental analysis over a series of es-
tablished benchmark datasets [9, 10]. This parameterization is
the default choice in JedAI and requires no input by the user,
thus being ideal for lay users.

2) Manual configuration. Expert users are able to leverage
their deep ER knowledge by determining the value of any pa-
rameter with the help of the Documentation component.

3) Grid search. In case a ground-truth is available for the
data at hand, this approach automatically detects the best pa-
rameterization in a brute-force way. For categorical parameters
(e.g., the weighting scheme in Meta-blocking), it considers all
possible values, while for numeric parameters, it considers all
values specified by the Documentation component. The con-
figuration corresponding to the maximum overall effectiveness
is selected as the best one.

4) Random search. To automatically fine-tune a method
when the ground-truth is available, this approach draws random
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values from the domain of every parameter and evaluates their
effectiveness. For numerical parameters, it selects arbitrary val-
ues in the interval [minimum, maximum] that is specified by the
Documentation component, while for categorical parameters,
it simply picks among the available values. The configuration
maximizing effectiveness after a limited number of iterations is
selected as the best one.

In practice, JedAI associates every configuration parame-
ter in every method with two classes: one implementing grid
search and one implementing random search. This allows for
seamlessly applying both approaches to all methods in an end-
to-end pipeline in two different ways:

(i) During holistic configuration, the parameters of all meth-
ods in the selected end-to-end workflow are simultaneously op-
timized. In every iteration, a new value is assigned to at least
one internal parameter and the iteration achieving the highest
F-Measure is selected as optimal.

(ii) In step-by-step configuration, the performance of each
workflow step is optimized with respect to F-Measure indepen-
dently of those following it.

Note that there is a trade-off between the efficiency and the
effectiveness of these two approaches [48]: step-by-step con-
figuration is typically much faster, as it gradually minimizes the
computational cost of every workflow step. In contrast, holistic
configuration might involve a workflow step with high compu-
tational cost, as long as the overall F-Measure is high. However,
step-by-step configuration is prone to confining itself in local
maxima for each workflow step, with the overall effectiveness
lying very far from the optimal one. Instead, holistic configura-
tion is crafted for identifying the global maximum. Combining
it with grid search, though, might lead to an exponential com-
putational cost.

Text Processing. As explained above, JedAI is crafted for
integrating datasets that are dominated by textual values. This
component provides the techniques that are necessary for iden-
tifying similarities between sets of textual values that represent
individual attributes (in Schema Clustering) or individual enti-
ties (in Entity Matching).

In more detail, this component comprises a series of estab-
lished, state-of-the-art representation models, which transform
a set of textual values in a format that is suitable for apply-
ing various similarity measures. The cornerstone approach is
the vector model [49], which converts every value into a set of
character or token n-grams. For character n-grams, n ∈ {2, 3, 4},
while for token n-grams, n ∈ {1, 2, 3}. The resulting vector rep-
resentations are weighted in two ways [49]: TF associates every
n-gram with its frequency in the current set of values, while TF-
IDF multiplies the frequency of every n-gram with its inverse
document frequency IDF = log |N |/|Ni|, where |N | stands for
the total number of sets of values and |Ni| for the number of sets
that contain the current n-gram.

To assess the similarity of two vector representations, sev-
eral established measures are available [49]: the cosine simi-
larity, the Jaccard similarity, which assumes binary weights in
the vectors, variations of the Jaccard similarity that support TF
and TF-IDF weights, the SIGMA similarity [28], and the ARCS

similarity ARCS =
∑

Ni∈NC
1/log|Ni|, where |NC | stands for the

common n-grams between two vectors.
However, the vector model disregards the order of n-grams in

a textual value; e.g., “Bob sues Jim” and “Jim sues Bob” have
identical token unigram representations, despite their signifi-
cantly different meaning. To address this issue, n-gram graphs
[50] enrich the vector model with contextual information: ev-
ery n-gram is connected with an edge with every other n-gram
that co-occurs in the same textual value within a window of size
n; the weight of each edge is inversely proportional to the dis-
tance of the neighboring n-grams. This approach supports both
character and token n-grams, with n ∈ {2, 3, 4} and n ∈ {1, 2, 3},
respectively, as in the vector model.

To asses the similarity between the resulting graphs, several
measures are supported [50, 51]: the containment similarity es-
timates the proportion of edges that are shared by two graphs,
regardless of the associated weights; the value similarity con-
siders the weights of common edges in the graphs such that
higher scores correspond to graphs with more similar weights;
the normalized value similarity enhances value similarity so
that it is insensitive to the relative size of the compared graphs;
the overall similarity computes the average of these 3 measures.

JedAI offers another way of enriching the vector model with
contextual information: the pre-trained embeddings [52, 53,
54], which transform every n-gram into a real-valued vector of
low dimensions (e.g., 50 or 200). Unlike n-gram graphs, which
exclusively consider the internal context in textual values, the
embeddings rely on external context, extracting co-occurrence
patterns from large textual corpora such as Wikipedia. JedAI
actually supports any form of pre-trained word- or character-
level embeddings, like GloVe [53], word2vec [54] and fastText
[52]. The user only needs to provide the path of the file contain-
ing them. To compare the vector models, the cosine similarity
or the Euclidean distance are used in this case.

Note that all similarity measure scores are normalized in
[0, 1], with higher values corresponding to higher similarity.

5. Front-end: JedAI-gui

JedAI offers the following interfaces for user interaction:
1) Web Application. This is the main GUI of JedAI, allow-
ing for constructing any combination of the available meth-
ods in the context of the aforementioned four end-to-end ER
workflows. To facilitate this process, it displays all explanatory
information provided by the Documentation module for each
method and internal parameter. It also facilitates the bench-
marking of different workflows or configurations through the
Workbench window, which summarizes the outcomes of all runs
and maintains details about the effectiveness, the time efficiency
as well as the configuration of every step. Another crucial func-
tionality is Data Exploration, which provides users with a com-
prehensive overview of the input and output data, allowing them
to delve into the peculiarities of their data in order to form more
fitting workflows. This is particularly useful in the case of the
schema-based workflows, where users should select the most
appropriate attribute for applying similarity join. Note that this
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Figure 6: Screenshots of JedAI’s new graphical user interface.

GUI provides a unified access to both serial and parallel pro-
cessing (using Apache Livy [55]) and can be easily deployed
through a Docker image [56].

Part of the screens of this new GUI are depicted in Figure 6.
The left image depicts the screen for selecting among the avail-
able methods in each workflow step (Comparison Cleaning in
this case), the middle one shows the presentation of the effec-
tiveness and time efficiency of a particular workflow, and the
right one illustrates the benchmark screen, which allows for in-
specting the performance per workflow step and for comparing
the performance of different workflows or configurations.

The code of the Web application is available here:
https://github.com/GiorgosMandi/JedAI-WebApp.
2) Command-line Interface. This interface implements the
basic functionalities of JedAI. First, it asks users to select one
of the four end-to-end workflows and then to select one or
more methods per workflow step. This can be repeated mul-
tiple times in the context of benchmarking different workflows,
with a screen summarizing the experimental results so far. It
also provides access to the Documentation component, allow-
ing users to retrieve information about individual methods or
specific parameters.
3) Jyputer Notebook. To integrate JedAI with Python’s data
analysis ecosystem, we augmented JedAI-core with a Python
wrapper based on pyjnius [57]. Thus, JedAI can be seam-
lessly used in a Jupyter Notebook, following the guidelines that
are available in its code repository [7].

6. Data Flow

We now describe the data structures that are used in JedAI’s
workflow steps with the aim of achieving high time effi-
ciency and low memory footprint in then serialized execu-
tion. JedAI leverages the data structures of GNU Trove,
which operate on primitive types, instead of the default ones in
java.util.Collections, which rely on the wrapper classes;
e.g., GNU Trove uses a 4-byte int, rather than a 16-byte
java.lang.Integer. In this way, the memory footprint is
minimized across all operations of JedAI.

Input Data. The first step in all pipelines is Data Reading,
which loads from disk into main memory the dataset(s) to be
processed along with the ground-truth, if available. The cor-
responding entities are converted into a flat model that repre-
sents them as sets of property-literal and relation-URI pairs. In

this way, JedAI supports the main structured data formats (rela-
tional databases and CSV) along with the main semi-structured
data formats, i.e., SPARQL endpoints and RDF, XML, OWL,
HDT and JSON files. Any mixture of those formats is possible
in the case of Clean-Clean ER. No additional contextual or do-
main knowledge (e.g., ontology) is required as part of the input.
Data Reading also assigns to every entity a unique integer id
so that all subsequent steps avoid using its original, textual URI.

Output Data. JedAI allows for storing final or intermediate
results (for debugging purposes) in any of the supported data
formats through the Data Writing workflow step.

Block Building. This step converts the input entities into an
inverted index (hash table), which points from String blocking
keys to int entity ids. Every posting list with more than two
entity ids is transformed into a block, which consists of a unique
int id and an array of the corresponding entity ids. The set of
all blocks is returned as output.

Block Cleaning. This step modifies the contents of the input
block, without creating any sizeable data structure.

Comparison Cleaning. To weight pairs of entities according
to their co-occurrence patterns and detect redundant compar-
isons, an Entity Index [21] is created to associate every entity id
with the block ids that contain it. This information is then used
to modify the input blocks.

Entity Matching. This step converts every input entity into
a representation model that facilitates the computation of sim-
ilarity measures. This model constitutes an n-gram graph, a
dense embeddings vector or a sparse n-gram vector (the last
one is actually a hash table with String n-grams as keys and
int frequencies as values). Using the resulting model, all pair-
wise comparisons in the input blocks are executed. The output
comprises the set of entity id pairs along with the corresponding
similarity scores.

Entity Clustering. This step converts the executed compar-
isons into an undirected similarity graph, where the nodes cor-
respond to entities, and the edges connect the compared enti-
ties. Every edge is weighted in [0, 1] according to the similarity
score of the corresponding entity profiles. A clustering algo-
rithm extracts from the similarity graph the set of equivalence
clusters, with each one containing the array of entity ids that are
deemed as duplicates.

Similarity Join. The structures used in this step depend on
the functionality of each technique. Most of them, though, rely
on signatures, similar to Blocking. Thus, they employ an In-
verted Index that maps every textual signature to the ids of the
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entities that are represented by it.
Prioritization. If the selected method operates on a set of

blocks, this step employs the Entity Index to weight the candi-
date matches. If the selected method applies directly to the in-
put entity profiles, this step employs the array of entity ids that
is formed by schema-agnostic Sorted Neighborhood. In any
case, the initialization phase populates a priority queue with a
small number of the most promising comparisons, sorted in de-
creasing matching likelihood. The emission phase pulls the first
element from this queue; whenever the queue gets empty, it is
repopulated with the next group of promising comparisons.

7. Parallel Execution

We now describe the methods and the data structures we
used for adapting all algorithms implemented by JedAI to the
parallel execution on top of Apache Spark. The implementa-
tion in Scala is available here: https://github.com/scify/
JedAI-Spark.

Budget- and schema-agnostic workflow. Block Building
receives as input an RDD of entity profiles and essentially
builds an inverted index that points from String blocking keys
to int entity ids. The adaptation to the MapReduce paradigm
is straightforward for most methods, like Token Blocking: the
Map phase extracts the blocking keys from each entity, while
the Reduce phase aggregates all entity ids that correspond to
the same blocking key. Each key with more than two associated
entities creates a separate block. For Sorted Neighborhood, we
use the MapReduce algorithm proposed in [58]. Sorting keys
are extracted in parallel from the profiles and then are sorted.
The sorted profiles are split into overlapping partitions, whose
overlap is equal to the selected window size. Blocks are then
generated from each partition using a sliding window, as in seri-
alized SN. For LSH, we employ the algorithm proposed in [59]
to extract MinHash signatures from each profile in parallel.

The Block Cleaning methods are also easy to adapt to
MapReduce, because they simply modify the blocks that are al-
ready distributed on an RDD after Block Building. In fact, they
remove or shrink the largest blocks with the aim of reducing the
unnecessary comparisons they involve [22].

For Comparison Cleaning, we adopt the approach described
in [60]. First, the Entity Index IE is created in the form of an
RDD, mapping each profile id to the ids of the blocks that con-
tain it. Then, an inverted index IB is built, associating each
block id with the ids of the profiles it contains. IB is broad-
casted to all worker nodes so that they can build a profile’s
neighborhood locally in combination with IE . For each block id
contained in IE , it is possible to obtain all the entity (neighbor)
ids contained in that block from IB. The pruning is finally per-
formed inside each profile neighborhood. The main advantage
of this approach is that the blocking graph is not materialized in
its entirety. Only a portion is materialized by each worker, thus
restricting the memory consumption to manageable levels.

Entity Matching receives two RDDs as input: one containing
the input entity profiles and another one containing the candi-
date matches that have been identified by the previous steps.

A core requirement is to re-distribute the entity profiles, such
that the ones needed for carrying out each pairwise comparison
coexist in the same nodes. This is implemented by performing
two left-outer joins. This process places all entity profiles in the
right nodes, allowing for efficiently applying Profile Matching
or Group Linkage.

In more detail, we reduce the set of candidate matches into
an RDD of key-value pairs. The key corresponds to id of an en-
tity, while the value consists of an array of all entity ids that are
likely to match with the key entity. Using a left outer join, the
ids of the keys are replaced with the respective profiles. We re-
peat the same procedure for all value ids, constructing an RDD
that contains entity profiles as keys and arrays of profiles to
compare as values.

JedAI also offers an alternative implementation that is based
on broadcasted variables. First, it forms tuples with entity ids
as keys and values comprising arrays of all ids that are poten-
tial matches of the key id. The resulting RDD is collected and
broadcasted to all executors so that it can be used as an inner
variable to Spark actions and transformations in combination
with the RDD that contains the original profiles. If the RDD
is too large to fit in main memory, it is processed gradually;
smaller parts are sequentially broadcasted to avoid exceeding
the broadcast size limitation.

Entity clustering receives as input an RDD of matches, i.e.,
pairs of entity ids along with a weight that represents their sim-
ilarity score. The corresponding similarity graph is built us-
ing the GraphX library1 of Apache Spark. The same library is
used to split the graph into its connected components in paral-
lel. This is required by most clustering methods for Dirty ER, as
they typically go on to refine the original clusters [31]. Adapt-
ing them to work on top of Apache Spark is straightforward,
because they process each connected component independently
of the others.

Budget-agnostic, schema-based workflow. To execute sim-
ilarity joins in a distributed way, we adapted the algorithm in
[61] to work with Spark. Starting from an RDD of profiles and a
similarity threshold t, each profile is parallelly transformed into
a set of signatures (character n-grams or tokens) that are sorted
by their entity frequency. Then, a Prefix Index [62] is built. For
each entity, we probe the posting lists of the index that con-
tain it, gathering the candidate matches. A series of filters (e.g.,
length filter, prefix filter) removes those candidates that cannot
reach the requested threshold. We optimized this functionality
by using the LeCoBI condition [21] to avoid emitting duplicate
pairs, due to the parallel execution of this step. LeCoBI essen-
tially checks whether the current posting list that contains two
entities is their first common one, i.e., it corresponds to their
least common list id. Only in this case is the pair of candidate
matches emitted. Otherwise it is skipped. Finally, the pairs that
pass the filters are analytically compared with the selected sim-
ilarity function. Only those with a similarity greater or equal
than the desired threshold t are kept.

Budget-aware workflows. The schema-agnostic workflows
of this type rely on the distributed implementation of Sorted

1https://spark.apache.org/graphx
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Neighborhood for the prioritization algorithms that apply di-
rectly to the input entity profiles. The rest of the prioritiza-
tion algorithms, which operate on a set of blocks, employ the
distributed algorithms of Comparison Cleaning. The schema-
based workflows rely on the aforementioned distributed imple-
mentation of similarity joins. For both workflow types, only the
initialization phase is executed in parallel, as the emission phase
simply returns the pre-computed next best pair of entities.

8. Applications

Given that there is no clear winner among the available ER
techniques, extensive experimentation is required to identify the
best end-to-end workflow for each ER task at hand. The main
goal of JedAI is to facilitate this process, offering a library of
the state-of-the-art techniques and a practical GUI for building,
testing and visualizing the results of end-to-end ER pipelines.
In this context, JedAI is ideal for the development phase of ER
solutions, simplifying the identification of the best end-to-end
pipeline for a particular application.

Regarding the production phase, JedAI is currently used in
some commercial data integration projects (e.g., see http:

//www.datariver.it/en/sparker). It is also used in aca-
demic applications that involve data integration tasks, like
the research projects OpenAIRE (https://www.openaire.
eu), Copernicus App Lab [63] and ExtremeEarth (http://
earthanalytics.eu). Even though JedAI’s codebase is in
development for the last 10 years (since [15]), having incorpo-
rated several optimizations (e.g., the use of GNU Trove’s prim-
itive collections for Java), further optimizations are possible,
depending on the industrial use case and the pipeline that is se-
lected during the development phase.

JedAI in practice. Based on our experience with JedAI in
practical data integration tasks, we provide high-level guide-
lines for deciding which optional steps should be included in a
schema-agnostic end-to-end workflow among Schema Cluster-
ing, Block Cleaning and Comparison Cleaning.

The use of the Schema Clustering depends on the input data.
For homogeneous data sources, which involve a limited num-
ber of attributes, there is no need to apply Schema Clustering.
For heterogeneous data sources, though, it is indispensable for
reducing the computational cost of the blocks to a large ex-
tent. By grouping together attributes with similar values and/or
names, it yields a larger number of smaller blocks than apply-
ing a completely schema-agnostic blocking method [21, 13]. It
also provides useful information for comparison weighting in
case Meta-blocking is used in the same pipeline [13].

The use of Block Cleaning depends on the selected Block
Building techniques. If the resulting blocks exhibit little vari-
ation in their sizes, with most blocks involving few entities,
Block Cleaning should be avoided. Such blocks are usually
derived from blocking methods that apply size constraints, like
(Extended) Suffix Arrays Blocking. Instead, Block Cleaning is
indispensable if the resulting blocks exhibit a Zipf distribution,
where the frequency of blocks is inversely proportional to their
size (i.e., most blocks are small and few are excessively large).

Finally, Comparison Cleaning should be used in all cases.
For blocks with low levels of redundancy, such as those pro-
duced by drastic Block Cleaning or proactive Block Building,
Comparison Propagation is necessary to remove all redundant
comparisons at no cost in recall. In most cases, though, the
blocks involve high levels of redundancy, requiring one of the
Meta-blocking approaches to reduce the computational cost of
the pipeline to manageable levels.

In any case, the best method per optional step depends on the
data at hand, as there is no clear winner among them.

9. Experimental Analysis

The goal of our experimental study is manifold: (i) to evalu-
ate the relative performance of the two types of budget-agnostic
(i.e., batch) end-to-end workflows, (ii) to assess the benefits of
the budget-aware (i.e., progressive) end-to-end workflows over
the corresponding budget-agnostic ones, (iii) to demonstrate the
scalability of JedAI’s parallelization of all methods and work-
flows over Apache Spark, and (iv) to quantitatively compare
JedAI with state-of-the-art systems.

Experimental Setup. All methods and experiments are im-
plemented in Java 8. The code for the experiments is publicly
available in JedAI’s code repository [7]. The experiments were
ran on a server with Intel Xeon E5-4603 v2 (2.2GHz, 16 physi-
cal cores), 128 GB RAM, running Ubuntu 14.04.5 LTS. For all
time measurements, we repeated the experiments 10 times and
report the mean values. We also report memory requirements
per experiment and dataset.

Datasets. The technical characteristics of the 17 datasets we
use in our experiments are reported in Tables 1 and 2 for Dirty
ER and Clean-Clean ER, respectively. All of them have been
widely used in the literature [14, 1, 64, 9, 10] and are publicly
available through JedAI’s code repository [7].

The Dirty ER datasets in Table 1 include two real-world col-
lections: Dcddb, which contains entity profiles describing CDs
randomly extracted from freeDB.org, and Dcora, which con-
tains entity profiles with bibliographical information for scien-
tific papers. The rest of the datasets are synthetic, involving
census data artificially generated by Febrl [65] through the fol-
lowing procedure: duplicate-free entity profiles were initially
formed based on frequency tables for real names (given and sur-
name) and addresses. Then, duplicates were randomly gener-
ated based on real error characteristics and modifications (e.g.,
inserting, deleting or substituting characters or words). Each
entity was subject to at most 10 modifications, of which up to 3
modifications for the same attribute value. 40% of the resulting
entities are duplicates, with less than 10 matches per entity.

The Clean-Clean ER datasets in Table 2 exclusively contain
real-world collections. Dc1 includes entity profiles that describe
restaurants from the Fodor’s and Zagat restaurant guides. Dc2
contains product entities from the online retailers Abt.com and
Buy.com. Dc3 matches products from Amazon with those from
Google Base. Dc4 involves publication entities from DBLP
and ACM Digital Library. Dc5 matches products from Wal-
mart and Amazon. Dc6 aligns curated publication entities from
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Dcora Dcddb D10K D50K D100K D200K D300K D1M D2M

|E| 1,295 9,763 10,000 50,000 100,000 200,000 300,000 1,000,000 2,000,000
NVP 7,166 183,072 106,108 530,854 1,061,421 2,123,728 3,184,885 10,617,729 21,238,252
|N | 12 106 12 12 12 12 12 12 12
|p̄| 5.53 18.75 10.61 10.62 10.61 10.62 10.62 10.62 10.62
|D(E)| 17,184 299 8,705 43,071 85,497 172,403 257,034 857,538 1,716,102
||E|| 8.38·105 4.77·107 5.00·107 1.25·109 5.00·109 2.00·1010 4.50·1010 5.00·1011 2.00·1012

Type Real Real Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic Synthetic

Table 1: Technical characteristics of the real and synthetic datasets for Dirty ER. |E| stands for the number of entity profiles, NVP for the total number of name-value
pairs in the dataset, |N| for the number of distinct attributes, |p̄| for the average profile size (in terms of name-value pairs), |D(E)| for the number of duplicate pairs,
and ||E|| for the comparisons executed by the brute-force approach.

Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7 Dc8

Dataset1 Rest.1 Abt Amazon DBLP Walmart DBLP DBPedia DBPedia 3.0rc
Dataset2 Rest.2 Buy Google Pr. ACM Amazon Scholar IMDB DBPedia 3.4
NVP1/NVP2 1,130/7,519 2,568/2,308 5,302/9,110 10,464/9,162 14,143/1.1·105 10,064/2·105 1.6·105/8.2·105 1.69·107/3.50·107

|E1|/|E2| 339/2,256 1,076/1,076 1,354/3,039 2,616/2,294 2,554/22,074 2,516/61,353 27,615/23,182 1.19·106/2.16·106

|N1|/|N2| 7/7 3/3 4/4 4/4 6/6 4/4 4/7 30,688/52,489
| p̄1|/| p̄2| 3.33/3.33 2.39/2.14 3.92/3.00 3.99/4.00 5.54/5.18 3.23/3.26 5.63/35.20 14.19/16.18
|D(E1 ∩ E2)| 89 1,076 1,104 2,224 853 2,308 22,863 892,579
||E1 × E2|| 7.65·105 1.16·106 4.11·106 6.00·106 5.64·107 1.54·108 6.40·108 2.58·1012

Table 2: Technical characteristics of the real datasets for Clean-Clean ER.

DBLP with noisy publication entities from Google Scholar. Dc7
conveys a collection of movie entities shared by DBPedia and
IMDB. Dc8 matches two versions of the DBPedia Infobox Data
Set, which chronologically differ by two years. Dc8 is actually
the only dataset with high schema heterogeneity, as in all other
cases, any discrepancies in the schema can be manually fixed.

Budget- and schema-agnostic workflow. This workflow
consists of the following methods: Block Building, Block
Purging, Block Filtering, CNP, Profile Matcher and Connected
Components or Unique Mapping Clustering in case of Dirty
and Clean-Clean ER, respectively. The first four methods are
exclusively considered with their default configurations, be-
cause the pipeline they form consistently exhibits an excellent
performance across the diverse datasets we have considered, as
shown in Table 4(a): blocking recall (PC) exceeds 90% in most
cases, while blocking precision (PQ) is very high, since the
number of pairwise comparisons is bounded by the number of
input entities. On average, CNP retains at most 11 comparisons
per entity. As a result, this workflow has three degrees of free-
dom, i.e., parameters that need to be fine-tuned: the representa-
tion model and the similarity measure used by Profile Matcher
for executing the pairwise comparisons as well as the similarity
threshold simTh of the Entity Clustering method.

Using grid search, we estimated the configuration that maxi-
mizes the F-Measure for each dataset to yield the corresponding
best configuration. The resulting parameters per dataset appear
in Table 3(a). We also determined the default configuration of
this workflow as the parameter settings that achieve the max-
imum average F-Measure across all datasets. recall that both
schema-agnostic workflows used the default configuration for
the methods in the first three workflow steps, i.e., Token Block-
ing, Block Purging, Block Filtering and CNP. For Entity Match-
ing, we employ character 4-grams with TF-IDF weights with
cosine similarity and simTh=0.15 in the case of Clean-Clean
ER, while for Dirty ER, we use character 2-gram graphs with

graph value similarity and simTh=0.65.
Looking into Table 4(b), we observe that the default config-

uration achieves a very high effectiveness, with an F-Measure
well above 0.8 in 7 out of 10 datasets. Two of the datasets
with low effectiveness, namely Dc3 and Dc5, contain so high
levels of noise that F-Measure remains below 0.8 for all other
approaches we consider. We also observe that most datasets are
processed in few seconds with much less than 1 Gb of main
memory - even Dc6 which contains than 60,000 entities. Over-
all, this workflow combines high effectiveness with high effi-
ciency, despite requiring no parameter fine-tuning. Its high ef-
fectiveness of should be attributed to its consistently high recall,
which stems from its schema-agnostic functionality: by con-
sidering all attribute values during Block Building and Entity
Matching, it successfully overcomes the typical levels of noise.

By optimizing its parameters, the best configuration of this
workflow yields much higher precision, which leads to a sig-
nificantly higher F-Measure, as shown in Table 4(c). The run-
ning time and the memory consumption are also significantly
reduced, in most cases. Even Dc7 is now processed in less than
a minute with less than 1 Gb of main memory.

Budget-agnostic, schema-based workflow. For the join-
based workflow of Figure 4(a), we performed grid search to
identify the best matching rule. We applied Jaccard similarity
in combination with all thresholds in [0.05, 0.95] with a step of
0.05 to all attributes. The only exception is Dc8, where we ex-
clusively considered the attribute “name”, which has the highest
coverage for both individual datasets (43,34%). Note also that
edit distance is not suitable for most datasets, as they involve
a large number of tokens per attribute. For each dataset, we
consider the matching rule that maximizes F-Measure and use
PPJoin to accelerate it. Unique Mapping Clustering or Con-
nected Components is then applied for Clean-Clean or Dirty
ER, respectively, using the same similarity threshold as the
matching rule. The resulting performance is reported in Table
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Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7 Dc8 Dcora Dcddb

Representation C2G C2G T2G T1G T1G C3G T1G T1G T1G C2GG
Model TF TFIDF TFIDF TFIDF TFIDF TFIDF TFIDF TFIDF TFIDF
Sim Measure Cosine Cosine Cosine Sigma Cosine Sigma Cosine Sigma Gen. Jaccard Graph Overall
S imThr 0.90 0.30 0.05 0.55 0.60 0.45 0.10 0.45 0.45 0.75

(a) Best configuration of the schema-agnostic workflow
Attribute phone no. name title title modelno title title name title track08
S imThr 0.90 0.40 0.45 0.8 0.90 0.80 0.45 0.80 0.70 0.80

(b) Configuration of the schema-based workflow

Table 3: Parameter configuration of JedAI’s budget-agnostic workflows. C2GG stands for character big graph graphs, while the suffixes TF and TFIDF denote TF
and TF-IDF weights, resp., and the prefixes C2G, C3G, T1G and T2G stand for character bigrams, character trigrams, token unigrams and token bigrams, resp.

Dc1 Dc2 Dc3 Dc4 Dc5 Dc6 Dc7 Dc8 Dcora Dcddb

PQ 0.372 0.085 0.018 0.120 0.008 0.013 0.025 0.025 0.776 0.002
PC 1.000 0.910 0.882 0.998 0.991 0.987 0.948 0.863 0.498 0.993

(a) Blocks’ performance for the schema-agnostic workflows
Pr 0.473 0.902 0.538 0.975 0.310 0.888 0.908 0.806 0.876 0.874
Re 1.000 0.836 0.645 0.989 0.878 0.952 0.834 0.819 0.816 0.856
F1 0.643 0.867 0.586 0.982 0.458 0.919 0.869 0.813 0.845 0.865
RT 1.1 sec 1.3 sec 12.0 sec 2.0 sec 8.3 sec 23.5 sec 91.0 sec 14.5 hrs 5.5 sec 65 sec
Memory 50 Mb 50 Mb 200 Mb 200 Mb 300 Mb 750 Mb 1.5 Gb 100 Gb 150 Mb 1.4 Gb

(b) Default configuration of the schema-agnostic workflow
Pr 0.788 0.949 0.576 0.993 0.590 0.946 0.905 0.841 0.912 0.858
Re 1.000 0.856 0.641 0.992 0.753 0.949 0.875 0.821 0.819 0.886
F1 0.881 0.900 0.607 0.993 0.662 0.947 0.889 0.831 0.863 0.872
RT 1.0 sec 1.1 sec 4.5 sec 1.3 sec 5.3 sec 30.0 sec 46.0 sec 12.7 hrs 850 ms 65.7 sec
Memory 50 Mb 50 Mb 100 Mb 100 Mb 150 Mb 750 Mb 750 Mb 100 Gb 50 Mb 1.4 Gb

(c) Best configuration of the schema-agnostic workflow
Pr 0.755 0.884 0.663 0.978 0.829 0.953 0.931 0.833 0.751 0.278
Re 0.933 0.438 0.423 0.932 0.552 0.775 0.499 0.370 0.859 0.719
F1 0.834 0.585 0.517 0.954 0.663 0.855 0.649 0.512 0.802 0.401
RT 200 ms 367 ms 499 ms 608 ms 478 ms 14 sec 7.7 sec 15.2 min 328 ms 566 ms
Memory 50 Mb 50 Mb 50 Mb 50 Mb 50 Mb 100 Mb 300 Mb 38 Gb 50 Mb 50 Mb

(d) Best configuration of the schema-based workflow
F1 1.000 0.436 0.491 0.984 0.791 0.923 0.826 - - -

(e) Best configuration of Magellan [3]
F1 1.000 0.628 0.693 0.984 0.693 0.947 0.872 - - -

(f) Best configuration of DeepMatcher [66]
Table 4: Performance of JedAI’s budget-agnostic workflows and the main baseline methods over the real data.

4(d), while the exact matching rules are reported in Table 3(b).
We observe that this workflow underperforms the best

schema-agnostic (blocking-based) one in all cases. Its F-
Measure is also significantly lower than the default blocking-
based workflow for 8 datasets. However, it reduces the memory
footprint up to 50% and the running time even by a whole order
of magnitude. For example, it process the 3.35 million entities
of Dc8 within just 15 minutes. The reason is that it reduces the
search space for duplicates to the values of a single attribute,
unlike the blocking-based workflow that considers all attribute
values per dataset.

Overall, we can conclude that the schema/join-based work-
flow achieves excellent performance in some cases, with its F-
Measure exceeding 0.8 for minimum running time and memory
footprint. However, it is not robust, as its effectiveness often
remains very low, despite making the most of schema knowl-
edge. In contrast, the schema-agnostic workflow consistently

achieves excellent effectiveness after fine-tuning and allows for
a default , parameter-free configuration. This is impossible with
the join-based workflow, as it depends on the schema of the
dataset at hand.

Baseline Systems. We now compare JedAI with the state-
of-the-art in the field, Magellan [3] and DeepMatcher [66].
Neither of them is applicable to Dirty ER, as both require
two duplicate-free datasets as input. For the Clean-Clean ER
datasets Dc1, . . . , Dc6, we consider the top performance that
is reported in [66] among all configurations and dataset ver-
sions (we couldn’t reproduce it ourselves, due to the lack of
necessary details and the human-in-the-loop approach of both
systems). We couldn’t apply either system to Dc8, due to the
extreme schema heterogeneity, but we were able to apply both
of them to Dc7. The resulting performance appears in Tables
4(e) and (f).

We observe that for Dc1, Dc3 and Dc4, at least one of the
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Figure 7: Performance of the default budget-agnostic workflows over the synthetic Dirty ER datasets w.r.t. (a) effectiveness, (b) running time, and (c) speedup.
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Figure 8: Performance of the (a) budget-aware, schema-agnostic workflow, and (b) its budget-agnostic counterpart with respect to progressive recall.

baseline systems outperforms the best configuration of JedAI’s
budget- and schema-agnostic workflow to a significant extent.
In the last two cases, though, the F-Measure remains below
0.8. For the remaining datasets, JedAI outperforms them to
a lesser or a greater extent. This means that there is no clear
winner among the three systems in terms of effectiveness (their
overall difference is statistically insignificant). In terms of
time efficiency, though, JedAI is much faster, since Magellan
and DeepMatcher spend a considerable time for training their
matching models - after performing Blocking with the help of
an expert and after labelling a considerable number of compar-
isons [66], two operations that are quite time consuming. For
Dc7, for instance, they were trained over 16,800 pairs of entities
(1:10 match/non-match), with Magellan requiring 21 seconds
for training and DeepMatcher taking ∼40 minutes per epoch,
i.e., >3.5 hours in total for 10 epochs.

Scalability Analysis. To examine JedAI’s scalability,
we applied the default budget- and schema-agnostic (block-
based) end-to-end workflow to the seven synthetic Dirty ER
datasets in Table 1. We also applied a default matching
rule, JaccarS im(all tokens 1, all tokens 2) > 0.4, executed by
PPJoin and followed by Connected Components with the same
similarity threshold (no other rule achieved reasonable effec-
tiveness across all datasets). The resulting performance appears
in Figure 7. In the legends, the prefixes B and J indicate the
block- and the join-based workflow, respectively.

In Figure 7(a), we observe that the blocking-based workflow
excels in recall, which consistently exceeds 95%. Precision
fluctuates between 84% and 94% and F-Measure between 96%
and 89%. The larger the dataset is, the lower both measures
get, since the ER task becomes harder - the candidate matches
increase quadratically, while the duplicates increase linearly. In
contrast, the join-based workflow consistently achieves perfect
precision, while recall and F-Measure remain practically stable
at 60% and 75%, respectively. These patterns verify the capa-

bilities of the schema-agnostic workflow and the limitations of
the schema-based one.

The corresponding running times appear in Figure 7(b). We
have considered both the serial execution of each pipeline,
which uses a single core, as well as the parallel, Spark-based
execution, which employs all available cores of our server (i.e.,
32 executors). We observe that most approaches exhibit similar
run-times for the smaller datasets, requiring just ∼3 minutes for
processing D300K . The only exception is the serialized schema-
based workflow, whose run-time increases quadratically with
the input data size, due to the low similarity threshold it em-
ploys (the similarity join techniques like PPJoin are crafted for
Jaccard thresholds higher than 0.7 [39, 38]). We can conclude
that the overhead of Apache Spark does not pay-off for lim-
ited workloads. For the larger datasets, though, the parallel im-
plementations take the lead, involving significantly lower run-
times. In particular, the parallel schema-agnostic implemen-
tation scales sublinearly with the increase in input data size,
unlike the serial implementation, which scales superlinearly.

The linear scalability is demonstrated in Figure 7(c), which
depicts speedup s(n) = nmin × RT (nmin)/RT (n) as we vary the
number of cores (i.e., executors) in n ∈ {2, 4, 8, 16} when pro-
cessing the two synthetic largest datasets, D1M and D2M . We
observe that the speedup is very close to the ideal, linear one in
all cases, demonstrating the high scalability of JedAI’s Spark-
based implementation. For both workflows, the speedup is
slightly larger for D2M than for D1M , which implies that it is
affected by the size of the workload.

Budget-awareness Experiments. We now evaluate the ben-
efits of budget-aware end-to-end workflows. To this end, we es-
timate progressive recall, i.e., the rate at which recall increases
(on the vertical axis) as the number of executed comparisons
increases (on the horizontal axis). The larger the resulting area
under curve (AUC), the more duplicates are detected early on
and the better is the progressive functionality.
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We applied Progressive Global Top Comparisons to the
blocks produced by the schema-agnostic workflow that is used
in Section 9, i.e., Token Blocking, Block Purging, Block Fil-
tering and CNP. This approach essentially orders all compar-
isons in the final set of blocks in decreasing Jaccard weight.
Its performance across all real datasets appears in Figure 8(a).
The performance of the corresponding batch process, which ex-
ecutes the pairwise comparisons in arbitrary order appears in
Figure 8(b). As the AUC suggests, the budget-aware work-
flow consistently outperforms its budget-agnostic counterpart
to a large extent. Similar results are obtained when comparing
the schema-based budget-aware workflow, which relies on the
top-k simlarity join algorithm, with its budget-agnostic coun-
terpart, with relies on token-based similarity joins executed by
PPJoin (see Section 9).

The only exceptions are the smallest datasets for Clean-
Clean and Dirty ER, i.e., Dc1 and Dcora, where the budget-
agnostic workflow exhibits a performance equivalent to the
budget-aware one, despite not using prioritization. The reason
is that in both cases, the precision of the final set of blocks (PQ
in Table 4) is so high that most comparisons involve duplicates
without the need to prioritize them. Another reason is that Dcora

involves very large equivalence clusters so the transitive closure
raises recall to a significant extent even with a small number of
identified duplicates.

Overall, the outcomes demonstrate that progressive recall in-
creases significantly faster for the latter ones, as we execute
more comparisons. This applies to both the schema-agnostic
and schema-based end-to-end workflows.

10. Related Work

We now present an overview of the main ER systems, ex-
plaining how JedAI goes beyond the current state-of-the-art. In
Table 5, we report the methods that are implemented by each
ER tool for the two main steps of their end-to-end workflows:
Blocking and Entity Matching. The latter step incorporates fil-
tering methods, which accelerate the execution of similarity
joins, and techniques for estimating similarity measures. The
main technical characteristics per ER tool are presented in Ta-
ble 6. Note that we do not report the supported output formats,
as not all tools facilitate the storage of final or intermediate re-
sults. Some tools merely present their results through their GUI,
while others return custom data structures that require further
processing by the user.

We focus on open code systems, as these fulfill one of the
main challenges arising in data integration [67], namely the de-
velopment of extensible, open-source tools. However, few of
these open code systems fulfill the second challenge [67], which
requires them to process data of any structuredness. In fact, we
can distinguish these systems into two broad categories accord-
ing to the data structuredness they handle.

The first category includes the open-source tools that are
crafted for structured data, namely Magellan [3], Dedupe [68],
DuDe [69], Febrl [65], FRIL [70], OYSTER [71], Record Link-
age [72] and FAMER [32]. All of them apply a budget-agnostic,
schema-based end-to-end workflow that typically consists of

two steps: Blocking and Matching. For Blocking, each tool
provides few custom or established methods, except for Febrl,
which offers the schema-based implementation of the main
hash- and similarity-based techniques. For Matching, each tool
provides various similarity measures, with Magellan offering
the main similarity join techniques, too, to accelerate the exe-
cution of the matching rules it has learned. Unlike JedAI, all
tools disregard Block and Comparison Cleaning, while Dedupe
and FAMER are the only tools that apply Clustering. The for-
mer applies a simple hierarchical method to enhance its entity
matching process, whereas the latter implements various estab-
lished techniques, focusing on Multi-source ER. Note also that
only Febrl and FRIL offer a GUI for ease of use and that only
Dedupe, Febrl and FAMER support parallelization for at least
one workflow step.

The second category includes open-source link discovery
frameworks, which are crafted for semi-structured data. Similar
to the systems of the first group, they all implement a budget-
agnostic, schema-based workflow that consists of Blocking
and Matching. For Blocking, they generally offer custom ap-
proaches: KnoFuss [73] and SERIMI [74] apply Token Block-
ing to the literal values of RDF triples, whereas Silk [6] imple-
ments MultiBlock [75] and LIMES [4] its homonymous tech-
nique that relies on the triangle inequality in metric spaces.
Only Winte.r [76] complements its custom methods with es-
tablished ones, namely Standard Blocking and Sorted Neigh-
borhood. All systems offer the main similarity measures, with
LIMES further providing a set of established and custom simi-
larity join techniques to accelerate their execution. No system
implements Block Cleaning, Comparison Cleaning or Cluster-
ing. Silk and LIMES are the only systems that provide a GUI
and support parallelization.

Unlike these tools, JedAI is capable of processing data of any
structuredness. This is also accomplished by MinoanER [80],
but it offers exclusively a budget- and schema-agnostic end-to-
end workflow that runs on top of Apache Spark. Instead, JedAI
fully realizes the three dimensional Entity Resolution of Figure
1. Another advantage is that JeAI applies seamlessly to both
Clean-Clean and Dirty ER, whereas tools like Magellan and the
link discovery frameworks are restricted to Clean-Clean ER. Fi-
nally, JedAI offers a learning-free functionality that can operate
with default configurations, independently of a ground-truth. It
needs the ground-truth only for fine-tuning the parameters of its
end-to-end pipelines and for benchmarking purposes.

In contrast, the learning-based functionality of systems like
Magellan, Silk and LIMES requires a labelled dataset for its
supervised operation. Without such a dataset, they cannot learn
any blocking or matching model. Note that a labelled dataset is
fundamentally different from the ground-truth: the latter simply
comprises positive instances, i.e., the existing pairs of matches,
while the former should also include a carefully selected sample
of negative instances (i.e., non-matching entities). The relative
number and representativity of positive and negative instances
affects significantly the performance of the learned model. No
such restrictions apply to JedAI’s learning-free functionality.

Note also that heavy human intervention is usually required
in order to define domain and/or dataset-specific features for
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Tool Blocking Entity Matching
Filtering Similarity Measures

Magellan [3] SB, SN (also allows user-specified
blockidng patterns)

Overlap, Size,
Prefix, Position,
Suffix

cosine, Dice, edit distance, Jaccard, overlap and overlap coefficient

Dedupe [68] SB with learning-based techniques - Affine Gap Distance
DuDe [69] SB, SN, Sorted blocks - BlockDistance, Cosine, DiceCoefficient, EuclideanDistance, Jaccard, JaroDis-

tance, JaroWinkler, Levenshtein, MatchingCoefficient, MongeElkan, Needle-
manWunsch, OverlapCoefficient, SmithWaterman

Febrl [65] SB, SN, Sorted blocks, Suffix Arrays,
Extended Q-Grams, Canopy Clustering,
StringMap

- Bag-Dist, Dam-Le-Edit-Distance, EditDist,Editex, Jaro, Long-Common-Seq,
Q-Gram, S-Gram, Smith-Water-Dist, Syll-Align-Dist, Winkler, stringEquality,
Token-Set, TIME, Key-Difference, Numeric

FRIL [70] SB, SN - edit distance, Soundex, Q-gram, Equality(0-1)
OYSTER [71] SB -
Record Linkage [72] SB (with SOUNDEX) - Uses statistics (ML) for different attributes’ equivalence metrics to attain

patterns-probabilities for false match rates
CODI [77] logic-based constraints to exclude com-

parisons
- threshold-based edit-distance

LogMap [78] logic-based constraints to exclude com-
parisons

- ISUB [79]

FAMER [32] SB, SN, Q-Grams - Jaro-Winkler, TruncateBegin, TruncateEnd, EditDistance, MongeElkan, Jac-
card, DICE, Overlap ExtendedJaccard, Longest Common Substring, Numeri-
cal Similarity Max Distance, Numerical Similarity Max Percentage

(a) Systems for structured data
KnoFuss [73] Literal Blocking - edit-distance (DATE, DiceCoefficient, Jaccard, Jaro, JaroWinkler, Overlap,

MongeElkan, SmithWaterman, TokenBased, TokenWise)
SERIMI [74] logic-based constraints to exclude com-

parisons
- n-gram based

Silk [6] Multiblock - jaro, jaroWinkler, qGram, stringEquality, num, date, uriEquality, taxonomic,
maxSet

LIMES [4] Custom methods PPJoin+, EdJoin,
HR3, HYPPO,
ORCHID

Cosine, ExactMatch, Jaccard, Jaro, JaroWinkler, Levenshtein, MongeElkan,
Overlap, QGram, RatcliffObershelp, Soundex, Trigram

Winte.r [76] SB, SN, Custom methods - Jaccard, N-Grams, Levenshtein EditDistance, Levenshtein, Maximum Of To-
ken Containment, Numerical (Absolute-Differences, Deviation , Unadjusted
deviation, percentage), DATE (custom based, user specified)

(b) Systems for semi-structured data
JedAI SB, (Extended) SN, (Extended) Suffix

Arrays, MinHash/Superbit LSH, (Ex-
tended) Q-Grams

AllPairs, PPJoin,
FastSS, PassJoin,
PartEnum, Ed-
Join, SilkMoth

Group Linkage & Profile Matcher in combination with character & token n-
gram graphs and containment, (normalized) value & overall graph similarity,
or character & token n-grams and cosine, (generalized) Jaccard & SIGMA sim-
ilarity, or pretrained embeddings and cosine similarity or Euclidean distance

Minoan-ER [80] SB - Cosine, Jaccard
(c) Systems for both structured and semi-structured data

Table 5: Methods per workflow step for the main open-source ER systems. Minoan-ER and Dedupe are the only systems that offer Block Processing and Clustering
techniques, respectively, together with JedAI. See Figure 3 for the methods implemented by JedAI.

Tool Input Formats Learning GUI Language Parallelization Task Budget-aware ER
Magellan [3] CSV LB Yes Python - C-C ×

Dedupe [68] CSV, SQL LB No Python multi-core C-C, D ×

DuDe [69] CSV, JSON, XML, BibTex,
Database (Oracle, DB2, MySQL
and PostgreSQL)

LF No Java - C-C ×

Febrl [65] CSV, text-based LB, LF Yes Python multi-core C-C, D ×

FRIL [70] CSV, Excel, COL, Database LB, LF Yes Java - D ×

OYSTER [71] text-based LF No Java - D ×

Record Linkage [72] Database LB No R - C-C, D ×

CODI [77] RDF, OWL LF No Java - C-C ×

LogMap [78] RDF, OWL LF Yes Java - C-C ×

FAMER [32] JSON LF No Java Apache Flink C-C ×

(a) Systems for structured data
KnoFuss [73] RDF, SPARQL LB No Java - C-C ×

SERIMI [74] SPARQL LF No Ruby - C-C, D ×

Silk [6] RDF, SPARQL, CSV LB Yes Scala Apache Spark D ×

LIMES [4] RDF, SPARQL, CSV LB Yes Java multi-core C-C ×

Winte.r [76] CSV, JSON, XML LB No Java - C-C, D ×

(b) Systems for semi-structured data
JedAI CSV, RDF/XML, RDF/HDT,

RDF/JSON, OWL, Database
(mySQL, PostgreSQL), SPARQL
endpoint, Java serialized object

LF Yes Java Apache Spark C-C, D D

Minoan-ER [80] RDF LF No Java Apache Spark C-C, D ×

(c) Systems for structured and semi-structured data

Table 6: Technical features of the main open-source ER systems. LB stands for Learning-based, LF for learning-free, C-C for Clean-Clean ER and D for Dirty ER.
The Prioritization methods offered by JedAI for Budget-aware ER are listed in Figure 5.

every supervised method in a learning-based pipeline. This is
especially true for the recent crowd-sourced systems like Cor-
leone [81] and Falcon [82] as well as human-in-the-loop sys-

tems SystemER [5]. This is not the case, though, with the
learning-free approaches, which merely require users to fine-
tune their generic (i.e., domain and/or dataset-agnostic) pa-
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rameters. Generic supervised features are only employed by
Deep Learning-based approaches, i.e., DeepER [83] and Deep-
Matcher [66], which are based on embeddings that are also sup-
ported by JedAI (see Section 4.5).

Overall, JedAI addresses successfully the four main chal-
lenges in building ER systems [3]: it requires no coding from
its users, it provides guidelines for creating effective solutions,
it covers the entire end-to-end pipeline and it exploits a wide
range of techniques. The last two challenges are actually over-
come in a way that allows for building millions of high-end end-
to-end pipelines. Additionally, JedAI can be easily extended
with new methods or even workflow steps and achieves high
time efficiency, both for stand-alone and cluster systems.

Note that JedAI has already been presented in a short jour-
nal paper [48] and as a demo in past conferences [12, 84, 85].
The first releases, i.e., version 1 [84], version 2 [12] and ver-
sion 2.1 [48], cover exclusively the serialized execution of the
budget- and schema-agnostic workflow that is presented in Sec-
tion 4.1, while providing a rather limited experimental analysis
of its performance [48]. The serialized implementation of the
batch schema-based workflow and of the budget- and schema-
agnostic workflow are briefly presented in [85], without eval-
uating their relative performance. In this work, we provide a
comprehensive experimental evaluation of the different types
of workflows supported by JedAI along with a detailed qual-
itative and quantitative comparison with the state-of-the-art in
the literature. We also facilitate the use and extension of JedAI
by describing in more detail the implemented methods (Section
4) and their technical details (Section 6). Technical details are
also provided for the new, parallel implementation of all ap-
proaches on top of Apache Spark (Section 7), while Section 8
offers practical guidelines for putting JedAI into practice.

11. Conclusions

We have presented in detail all important aspects of JedAI
so as to facilitate practitioners, researchers and developers to
integrate it into their own applications, making the most of it.
We have also juxtaposed it with state-of-the-art tools in the field
and performed an extensive experimental analysis of all types
of end-to-end pipelines it produces.

In the future, we will extend JedAI in various ways. We plan
to enrich it with supervised techniques, like Supervised Meta-
blocking [86] and BLOSS [87], taking special care to facilitate
the active learning process that might be required. We also in-
tent to include constraints in a way that accommodates both
generic, schema-agnostic features and rules (e.g., e1 and e2 can
never be the same entity) as well as schema-based ones (e.g.,
entities with identical ASIN number are duplicates). Finally,
we will extent JedAI with a library of techniques for integrat-
ing geospatial entities.
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