
Information Systems 120 (2024) 102307

A
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

GSM: A generalized approach to Supervised Meta-blocking for scalable entity
resolution
Luca Gagliardelli a,∗, George Papadakis b, Giovanni Simonini a, Sonia Bergamaschi a,
Themis Palpanas c

a University of Modena and Reggio Emilia, Modena, Italy
b University of Athens, Athens, Greece
c Université Paris Cité & IUF, Paris, France

A R T I C L E I N F O

Dataset link: https://github.com/Gaglia88/spar
ker

Keywords:
Entity resolution
Data integration
Progressive entity resolution
Meta-blocking

A B S T R A C T

Entity Resolution (ER) constitutes a core data integration task that relies on Blocking in order to tame its
quadratic time complexity. Schema-agnostic blocking achieves very high recall, requires no domain knowledge
and applies to data of any structuredness and schema heterogeneity. This comes at the cost of many irrelevant
candidate pairs (i.e., comparisons), which can be significantly reduced through Meta-blocking techniques, i.e.,
techniques that leverage the co-occurrence patterns of entities inside the blocks: first, a weighting scheme
assigns a score to every pair of candidate entities in proportion to the likelihood that they are matching and
then, a pruning algorithm discards the pairs with the lowest scores. Supervised Meta-blocking goes beyond this
approach by combining multiple scores per comparison into a feature vector that is fed to a binary classifier. By
using probabilistic classifiers, Generalized Supervised Meta-blocking associates every pair of candidates with a
score that can be used: (i) by any pruning algorithm for retaining the set of candidate comparisons; and (ii) by
state-of-the-art progressive ER methods to identify the most promising candidates as early as possible (when
time is a critical component for the downstream applications that consume the data). For higher effectiveness,
new weighting schemes are examined as features. Through an extensive experimental analysis, we identify the
best pruning algorithms, their optimal sets of features as well as the minimum possible size of the training
set. The resulting approaches achieve excellent performance across several established benchmark datasets.
1. Introduction

Entity Resolution (ER) is the task of identifying entities that describe
the same real-world object among different datasets [1]. ER constitutes
a core data integration task with many applications that range from
Data Cleaning in databases to Link Discovery in Semantic Web data
[2,3]. Despite the bulk of works on ER, it remains a challenging task
[1]. One of the main reasons is its quadratic time complexity: in the
worst case, every entity has to be compared with all others, thus scaling
poorly to large volumes of data.

To tame its high complexity, Blocking is typically used [4,5]. Instead
of considering all possible pairs of entities, it restricts the computational
cost to entities that are similar. This is efficiently carried out by
associating every entity with one or more signatures and clustering
together entities that have identical or similar signatures. Extensive
experimental analyses have demonstrated that the schema-agnostic sig-
natures outperform the schema-based ones, without requiring domain

∗ Corresponding author.
E-mail addresses: luca.gagliardelli@unimore.it (L. Gagliardelli), gpapadis@di.uoa.gr (G. Papadakis), giovanni.simonini@unimore.it (G. Simonini),

sonia.bergamaschi@unimore.it (S. Bergamaschi), themis@mi.parisdescartes.fr (T. Palpanas).

or schema knowledge [6,7]. As a result, parts of any attribute value in
each entity can be used as signatures.

Example 1 (Schema-Agnostic Blocking). An example of schema-agnostic
blocking is illustrated in Fig. 1. The profiles in Fig. 1a contain three
duplicate pairs ⟨𝑒1, 𝑒3⟩, ⟨𝑒2, 𝑒4⟩ and ⟨𝑒6, 𝑒7⟩. The profiles are clustered
together by using Token Blocking, i.e., a block is created for every token
that appears in the values of each profile. ER examines all pairs inside
each block and, thus, can detect all duplicate pairs, as they co-occur in
at least one block.

On the downside, the resulting blocks involve high levels of redun-
dancy: every entity is associated with multiple blocks, thus yielding
numerous redundant and superfluous comparisons [8,9]. The former are
pairs of entities that are repeated across different blocks, while the
latter involve non-matching entities. For example, the pair ⟨𝑒1, 𝑒3⟩ is
vailable online 17 October 2023
306-4379/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access a

https://doi.org/10.1016/j.is.2023.102307
Received 20 November 2022; Received in revised form 15 July 2023; Accepted 14
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

October 2023

https://www.elsevier.com/locate/is
http://www.elsevier.com/locate/is
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
https://github.com/Gaglia88/sparker
mailto:luca.gagliardelli@unimore.it
mailto:gpapadis@di.uoa.gr
mailto:giovanni.simonini@unimore.it
mailto:sonia.bergamaschi@unimore.it
mailto:themis@mi.parisdescartes.fr
https://doi.org/10.1016/j.is.2023.102307
https://doi.org/10.1016/j.is.2023.102307
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2023.102307&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Information Systems 120 (2024) 102307L. Gagliardelli et al.

b

𝑒
t
o

w

Fig. 1. (a) The input entities (smartphone models), and (b) the redundancy-positive
locks produced by token blocking.

Fig. 2. Unsupervised Meta-blocking example: (a) The blocking graph of the blocks in
Fig. 1b, using the number of common blocks as edge weights, (b) a possible pruned
blocking graph, and (c) the new blocks.

redundant in 𝑏2, as it is already examined in 𝑏1, while the pair ⟨𝑒2,
6⟩ ∈ 𝑏3 is superfluous, as the two entities are not duplicates. Both
ypes of comparisons can be skipped, reducing the computational cost
f ER without any impact on recall [10,11].

A core approach to this end is Meta-blocking [12], which discards
all redundant comparisons, while reducing significantly the portion of
superfluous ones. It relies on two components to achieve this goal:

1. A weighting scheme is a function that receives as input a pair of
entities along with their associated blocks and returns a score pro-
portional to their matching likelihood. The score is based on the
co-occurrence patterns of the entities into the original set of blocks:
the more blocks they share and the more distinctive (i.e., infrequent)
the corresponding signatures are, the more likely they are to match
and the higher is their score.

2. A pruning algorithm receives as input all weighted pairs and retains
the ones that are more likely to be matching.

Example 2 (Unsupervised Meta-Blocking). Unsupervised Meta-blocking
builds a blocking graph (Fig. 2(a)) from the blocks in Fig. 1b as follows:
each entity profile is represented as a node; two nodes are connected by
an edge if the corresponding profiles co-occur in at least one block; each
edge is weighted according to a weighting scheme — in our example,
the number of blocks shared by the adjacent profiles. Finally, the block-
ing graph is pruned according to a pruning algorithm — in our example,
for each node, we discard the edges with a weight lower than the
average of its edges. The pruned blocking graph appears in Fig. 2(b),
with the dashed lines representing the superfluous comparisons. A new
block is then created for every retained edge. Fig. 1c presents the final
blocks, which involve significantly fewer pairs without missing the
matching ones. This is a schema-agnostic process, just like the original
blocking method.
2

Fig. 3. Supervised Meta-blocking example: (a) a graph where each edge is associated
with a feature vector; (b) the graph pruned by employing a binary classifier (c) the
output contains a new block per remaining edge.

1.1. Supervised meta-blocking

Supervised Meta-blocking models the restructuring of a set of blocks
as a binary classification task [13]. Its goal is to train a model that
learns to classify every comparison as positive (i.e., likely to be match-
ing) and negative (i.e., unlikely to be matching). To this end, every
pair is associated with a feature vector that comprises a combination
of the most distinctive weighting schemes that are used by unsuper-
vised meta-blocking. Thus, Supervised Meta-blocking considers more
comprehensive evidence, outperforming the unsupervised approaches
to a significant extent.

In more detail, the thorough experimental analysis in [13] per-
formed an analytical feature selection that considered all combinations
of 7 features to determine the one achieving the best balance be-
tween effectiveness and efficiency. The resulting vector comprises four
features, yielding high time efficiency and classification accuracy.

Example 3 (Supervised Meta-Blocking). Fig. 3(a) shows the feature vec-
tors generated for every distinct comparison (i.e., edge in the blocking
graph) in the blocks of Fig. 1b. For instance, each pair of entities ⟨𝑒𝑖, 𝑒𝑗⟩
can be represented by a feature vector 𝑣𝑖,𝑗 = {𝐶𝐵(𝑒𝑖, 𝑒𝑗), 𝐽𝑆(𝑒𝑖, 𝑒𝑗)},

here 𝐶𝐵(𝑒𝑖, 𝑒𝑗) is the number of their common blocks and 𝐽𝑆(𝑒𝑖, 𝑒𝑗)
is the Jaccard coefficient of blocks associated with 𝑒𝑖 and 𝑒𝑗 . Then, a
binary classifier is trained with a sample of labelled vectors and is used
to predict whether a pair ⟨𝑒𝑖, 𝑒𝑗⟩ is a match (𝑙𝑖,𝑗 = 1) or not (𝑙𝑖,𝑗 =
0). The results appear in Fig. 3(b), where the dashed lines represent
superfluous comparisons. The comparisons classified as positive are
retained, yielding the new blocks in Fig. 3(c).

Note, though, that ER suffers from intense class imbalance, since
the vast majority of comparisons belongs to the negative class. To
address it, undersampling is used to create a training set that is equally
split between the two classes. Through extensive experiments, the
number of labelled instances per class in the training set was set to
5% of the minority (positive) class in the ground-truth [13]. This size
combined high effectiveness with high efficiency, through the learning
of generic classification models. Additionally, the learned classification
models were empirically verified to be robust with respect to the
configuration of the classification algorithm: minor changes in the
internal parameters of the algorithm yield minor changes in its overall
performance.

Even though Supervised Meta-blocking outperforms its unsuper-
vised counterpart to a significant extent, there is plenty of room for im-
proving its classification accuracy, for reducing its overhead, i.e., run-
ning time, and for minimizing the size of the training set it requires, as
we explain below.

Supervised Meta-blocking requires the effort to provide labelled
edges, but by representing each edge with multiple features, it is
more accurate in discriminating matching and non-matching pairs than
Unsupervised Meta-blocking, which employs a single weight per edge.
Indeed, Supervised Meta-blocking consistently yields better precision
and recall than the unsupervised approach [13]. Yet, the binary classi-
fier that lies at its core acts as a learned, unique, global threshold that is

Information Systems 120 (2024) 102307L. Gagliardelli et al.
Fig. 4. Generalized Supervised Meta-blocking example: (a) a graph weighted with a
probabilistic classifier; (b) the pruned graph; and (c) the new blocks.

then employed to prune the edges. Defining a local threshold for each
node would allow a finer control on which edges to prune. This is the
intuition behind Generalized Supervised Meta-blocking, as illustrated
in the following example.

Example 4 (Generalized Supervised Meta-Blocking). Our new approach
builds a graph where every edge is associated with a feature vector (as
Supervised Meta-blocking does in Fig. 3(a)) and trains a
probabilistic classifier, which assigns a weight (the matching probability)
to each edge (Fig. 4(a)). Then, a wide range of weight- and cardinality-
based algorithms can be applied. For example, Supervised WNP
prunes the graph as follows: for each node, all its adjacent edges with a
weight lower that 0.5 are discarded; for the remaining edges, only those
with a weight greater than the average one are kept. Fig. 4(b) shows
the result of this step: two edges may be assigned the same weight
by the probabilistic classifier, e.g., ⟨𝑒1, 𝑒3⟩ and ⟨𝑒4, 𝑒5⟩, but they may
be kept (e.g., the matching pair ⟨𝑒1, 𝑒3⟩) or discarded (e.g., the non-
matching pair ⟨𝑒4, 𝑒5⟩) depending on their context, i.e., the weights in
their neighbourhood. Note that ⟨𝑒4, 𝑒5⟩ is not discarded by Supervised
Meta-blocking in Fig. 3(b), which thus underperforms Supervised WNP
in terms of precision (for the same recall).

1.2. Progressive ER

For applications that require timely results, performing ER on the
entire data might not be the best choice: if the data is changing fast,
the output of the ER process is outdated as it is produced if ER takes
too long to execute w.r.t. the update frequency of the underlying
data. For instance, in a stock market trading scenario [14], there
might be very limited time to match companies’ records from a news
feed: it is more useful to produce partial-but-timely-resolved entities
than completely-resolved-but-outdated ones. In these settings, a more
suitable approach is to return the result of ER as soon as two pairs
of records are found to be match. Yet, without a proper strategy,
just executing the candidate comparisons of a batch ER method in a
random order is extremely inefficient [14]. For this reason, Progressive
ER methods [14,15] aim to execute candidate comparisons in an order
that maximizes the recall over the execution time, as shown in Fig. 5. In
this work, we use the probabilities generated by Generalized Supervised
Meta-blocking to perform progressive ER with the algorithms proposed
in [16], demonstrating that generated probabilities outperform the
heuristics of individual weighting schemes.

1.3. Our contributions

Our goal is to facilitate real-world ER applications by minimizing
the set of candidate pairs, while restricting human involvement for
the generation of the labelled instances. At the same time, we want
to maximize the throughput of ER applications with limited temporal
and/or computational resources. To this end, we go beyond Supervised
Meta-blocking and in the following ways:
3

Fig. 5. Typical batch execution compared with progressive one.

1. We generalize Supervised Meta-blocking from a binary classification
task to a binary probabilistic classification process. The resulting
probabilities are used as comparison weights, on top of which we
apply new pruning algorithms that are incompatible with the binary
classification approach.

2. Using the original features, we demonstrate that the new pruning
algorithms significantly outperform the existing ones through an
extensive experimental study that involves 9 real-world datasets. We
also specify the top performers among the weight- and cardinality-
based algorithms.

3. To further improve their performance, we use four new weighting
schemes as features for Generalized Supervised Meta-blocking. We
examine the performance of all 255 feature combinations over all
nine datasets for the top-performing algorithms. We identify the top-
10 feature sets per algorithm in terms of effectiveness and then,
we select the optimal one by considering their time efficiency, too,
significantly reducing the overall run-time.

4. For each algorithm, we examine how the size of the training set af-
fects its performance. We experimentally demonstrate that it suffices
to train our approaches over just 50 labelled instances, 25 from each
class.

5. We perform a scalability analysis over 5 synthetic datasets with up
to 300,000 entities, proving that our approaches scale well both with
respect to effectiveness and time-efficiency under versatile settings.

6. We experimentally demonstrate that the probabilities generated by
the probabilistic classifier when using the optimal selected feature
set outperform the existing schema-agnostic progressive ER [16],
which uses a single weighting scheme.

7. We compared the results obtained by our proposed solution with
the state-of-the-art blocking solutions based on pre-trained language
models [17–19] and a recently published one based on TF/IDF [20]
to demonstrate the efficiency and efficacy of our work.

8. We have publicly released our data as well as an implementation (in
Java) of all pruning algorithms and weighting schemes.1

This work is an extension of our previous work [21]. Here, we sig-
nificantly extend the original conference version by showing how our
method can be adapted to support pay-as-you-go execution, i.e., Progres-
sive Entity Resolution, which was not investigated in the original paper.
To this end, we combined our unsupervised progressive algorithm
[16] with the probabilities generated by the probabilistic classifier.
Moreover, we further improve the description of the proposed method
by adding Algorithms 1–5 in Section 3 and providing a deeper and more
formal definition of the new and existing weighting scheme. Finally, in
the experimental evaluation, we explain the behaviour of the algorithm
when the training set size increases, we add considerations regarding
the obtained recall in each employed dataset, and we compare our work
with the state-of-the-art pretrained language model based blocking
solutions [17–19].

1 https://sourceforge.net/p/erframework.

https://sourceforge.net/p/erframework

Information Systems 120 (2024) 102307L. Gagliardelli et al.

t
a
s
d

3

4

n
𝐹
t
M

•

•

•

h

d

D
t
{
c
s
𝐵

i
f
m

2

(
a
c
t
0
p
r
r

b

1

2

3

m
s

The rest of the paper is organized as follows: Section 2 provides
background knowledge on the task of Supervised Meta-blocking, Sec-
tion 3 introduces the new pruning algorithms, and Section 4 discusses
the weighing schemes that are used as features. The experimental
analysis is presented in Section 5, the main works in the field are
discussed in Section 6 and the paper concludes in Section 7 along with
directions for future work.

2. Preliminaries

An entity profile 𝑒𝑖 is defined as a set of name-value pairs, i.e., 𝑒𝑖 =
{⟨𝑛𝑗 , 𝑣𝑗⟩}, where both the attribute names and the attribute values are
extual. This simple model is flexible and generic enough to seamlessly
ccommodate a broad range of established data formats — from the
tructured records in relational databases to the semi-structured entity
escriptions in RDF data [6]. Two entities, 𝑒𝑖 and 𝑒𝑗 , that describe

the same real-world object are called duplicates or matches, denoted by
𝑒𝑖 ≡ 𝑒𝑗 . A set of entities is called entity collection and is denoted by 𝐸𝑙.
An entity collection 𝐸𝑙 is clean if it is duplicate-free, i.e., ∄ 𝑒𝑖, 𝑒𝑗 ∈ 𝐸𝑙 ∶
𝑒𝑖 ≡ 𝑒𝑗 .

In this context, we distinguish Entity Resolution into two tasks [4,7]:
(i) Clean-Clean ER or Record Linkage receives as input two clean entity
collections, 𝐸1&𝐸2, and detects the set of duplicates 𝐷 between their
entities, 𝐷 = {(𝑒𝑖, 𝑒𝑗) ⊆ 𝐸1 × 𝐸2 ∶ 𝑒𝑖 ≡ 𝑒𝑗}; (ii) Dirty ER or Deduplication
receives as input a dirty entity collection and detects the duplicates it
contains, 𝐷 = {(𝑒𝑖, 𝑒𝑗) ⊆ 𝐸 × 𝐸 ∶ 𝑖 ≠ 𝑗 ∧ 𝑒𝑖 ≡ 𝑒𝑗}.

In both cases, the time complexity is quadratic with respect to the
input, i.e., 𝑂(|𝐸1| × |𝐸2|) and 𝑂(|𝐸|

2), respectively, as every entity
profile has to be compared with all possible matches. To reduce this
high computational cost, Blocking restricts the search space to similar
entities [5].

Meta-blocking operates on top of Blocking, refining an existing
set of blocks, 𝐵, a.k.a. block collection, as long as it is redundancy-
positive. This means that every entity 𝑒𝑖 participates into multiple
blocks, i.e., |𝐵𝑖| ≥ 1, where 𝐵𝑖 = {𝑏 ∈ 𝐵 ∶ 𝑒𝑖 ∈ 𝑏} denotes the set
of blocks containing 𝑒𝑖, and the more blocks two entities share, the
more likely they are to be matching, because they share a larger portion
of their content. Blocks of this type are generated by methods like
Token Blocking, Suffix Arrays and Q-Grams Blocking and their variants
[10,11].

The redundancy-positive block collections involve a large portion of
redundant comparisons, as the same pairs of entities are repeated across
different blocks [13]. These can be easily removed by aggregating for
every entity 𝑒𝑖 ∈ 𝐸1 the set of all entities from 𝐸2 that share at least one
block with it [22]. The union of these individual sets yields the distinct
set of comparisons, which is called candidate pairs and is denoted by 𝐶.
Every non-redundant comparison between 𝑒𝑖 and 𝑒𝑗 , 𝑐𝑖,𝑗 ∈ 𝐶, belongs
to one of the following types:

• Positive pair if 𝑒𝑖 and 𝑒𝑗 are matching: 𝑒𝑖 ≡ 𝑒𝑗 .
• Negative pair if 𝑒𝑖 and 𝑒𝑗 are not matching: 𝑒𝑖 ≢ 𝑒𝑗 .

The sets of all positive and negative pairs in a block collection 𝐵
are denoted by 𝑃𝐵 and 𝑁𝐵 , respectively. The goal of Meta-blocking is
to transform a given block collection 𝐵 into a new one 𝐵′ such that the
negative pairs are drastically reduced without any significant impact
on the positive ones, i.e., |𝑃𝐵′ | ≈ |𝑃𝐵| and |𝑁𝐵′ | ≪ |𝑁𝐵|.

2.1. Problem definition

Supervised Meta-blocking models every pair 𝑐𝑖,𝑗 ∈ 𝐶 as a feature
vector 𝑓𝑖,𝑗 = [𝑠1(𝑐𝑖,𝑗), 𝑠2(𝑐𝑖,𝑗),… , 𝑠𝑛(𝑐𝑖,𝑗)], where each 𝑠𝑖 is a weighting
scheme that returns a score proportional to the matching likelihood of
𝑐𝑖,𝑗 . The feature vectors for all pairs in 𝐶 are fed to a binary classifier,
which labels them as positive or negative, if their constituent
entities are highly likely to match or not. We assess the performance of
4

this process based on the following measures: y
1. 𝑇𝑃 (𝐶), the true positive pairs, involve matching entities and are
correctly classified as positive.

2. 𝐹𝑃 (𝐶), the false positive pairs, entail non-matching entities, but are
classified as positive.

. 𝑇𝑁(𝐶), the true negative pairs, entail non-matching entities and are
correctly classified as negative.

. 𝐹𝑁(𝐶), the false negative pairs, comprise matching entities, but are
classified as negative.

Supervised Meta-blocking discards all candidate pairs labelled as
egative, i.e., 𝑇𝑁(𝐶)∪𝐹𝑁(𝐶), retaining those belonging to 𝑇𝑃 (𝐶)∪
𝑃 (𝐶). A new block is created for every positive pair, yielding

he new block collection 𝐵′. Thus, the effectiveness of Supervised
eta-blocking is assessed with respect to the following measures:

Recall, a.k.a. Pairs Completeness, expresses the portion of existing du-
plicates that are retained, i.e., 𝑅𝑒 = |𝑇𝑃 (𝐶)|∕|𝐷| = (|𝐷|−𝐹𝑁(𝐶))∕|𝐷|.
Precision, a.k.a. Pairs Quality, expresses the portion of positive candi-
date pairs that are indeed matching, i.e., 𝑃𝑟 = |𝑇𝑃 (𝐶)|∕(|𝑇𝑃 (𝐶)| +
|𝐹𝑃 (𝐶)|).
F-Measure2 is the harmonic mean of recall and precision, i.e., 𝐹1 =
2 ⋅ 𝑅𝑒 ⋅ 𝑃𝑟∕(𝑅𝑒 + 𝑃𝑟).

All measures are defined in [0, 1], with higher values indicating
igher effectiveness.

In this context, the task of Supervised Meta-blocking is formally
efined as follows [13]:

efinition 1. Given the candidate pairs 𝐶 of block collection 𝐵,
he labels 𝐿 = {positive, negative} and a training set 𝑇 =
⟨𝑐𝑖,𝑗 , 𝑙𝑘⟩ ∶ 𝑐𝑖,𝑗 ∈ 𝐶 ∧ 𝑙𝑘 ∈ 𝐿}, Supervised Meta-blocking aims to learn a
lassification model 𝑀 that minimizes the cardinality of 𝐹𝑁(𝐶)∪𝐹𝑃 (𝐶)
o that the new block collection 𝐵′ achieves much higher precision than
, 𝑃𝑟(𝐵′)≫𝑃𝑟(𝐵), but maintains the original recall, 𝑅𝑒(𝐵′)≈𝑅𝑒(𝐵).

The time efficiency of Supervised Meta-blocking is assessed through
ts running time, 𝑅𝑇 . This includes the time required to: (i) generate the
eature vectors for all candidate pairs in 𝐶, (ii) train the classification
odel 𝑀 , and (iii) apply the trained classification model 𝑀 to 𝐶.

.1.1. Generalized supervised meta-blocking
This new task differs from Supervised Meta-blocking in two ways:

i) instead of a binary classifier that assigns class labels, it trains
probabilistic classifier that assigns a weight 𝑤𝑖,𝑗 ∈ [0, 1] to every

andidate pair 𝑐𝑖,𝑗 . This weight expresses how likely it is to belong to
he positive class. (ii) The candidate pairs with a probability lower than
.5 are discarded, but the rest, which are called valid pairs, are further
rocessed by a pruning algorithm. The ones retained after pruning give
aise to the new block collection 𝐵′, i.e., 𝐵′ contains a new block per
etained valid pair.

Hence, the performance evaluation of Generalized Supervised Meta-
locking relies on the following measures:

. 𝑇𝑃 ′(𝐶), the probabilistic true positive pairs, involve matching en-
tities that are assigned a probability ≥0.5 and are retained by the
pruning algorithm.

. 𝐹𝑃 ′(𝐶), the probabilistic false positive pairs, entail non-matching
entities, that are assigned a probability ≥0.5 and are retained by
the pruning algorithm.

. 𝑇𝑁 ′(𝐶), the probabilistic true negative pairs, entail non-matching
entities that are assigned a probability <0.5 and are discarded by
the pruning algorithm.

2 Hand et al. [23] have discussed how F1-score may be an unreliable
easure for comparing different ER algorithms. We report F1-score for the

ake of completeness — it has been used in many related works [13,22,24] –
et we draw conclusions on the basis of precision and recall only.

Information Systems 120 (2024) 102307L. Gagliardelli et al.
4. 𝐹𝑁 ′(𝐶), the probabilistic false negative pairs, comprise matching
entities, that are assigned a probability <0.5 and are discarded by
the pruning algorithm.

The measures of recall, precision and F-Measure are redefined ac-
cordingly. In this context, the task of Generalized Supervised Meta-
blocking is formally defined as follows:

Definition 2. Given the candidate pairs 𝐶 of block collection 𝐵, the
labels 𝐿 = {positive, negative}, and a training set 𝑇 = {⟨𝑐𝑖,𝑗 , 𝑙𝑘⟩ ∶
𝑐𝑖,𝑗 ∈ 𝐶 ∧ 𝑙𝑘 ∈ 𝐿}, the goal of Generalized Supervised Meta-blocking is
to train a probabilistic classification model 𝑀 that assigns a weight
𝑤𝑖,𝑗 ∈ [0, 1] to every candidate pair 𝑐𝑖,𝑗 ∈ 𝐶; these weights are then
processed by a pruning algorithm so as to minimize the cardinality
of 𝐹𝑁 ′(𝐶) ∪ 𝐹𝑃 ′(𝐶), yielding a new block collection 𝐵′ that achieves
much higher precision than 𝐵, 𝑃𝑟(𝐵′) ≫ 𝑃𝑟(𝐵), while maintaining the
original recall, 𝑅𝑒(𝐵′) ≈ 𝑅𝑒(𝐵).

The time efficiency of Generalized Supervised Meta-blocking is
assessed through its run-time, 𝑅𝑇 , which adds to that of Supervised
Meta-blocking the time required to process the assigned probabilities
by a pruning algorithm.

2.2. Progressive ER

Given a block collection 𝐵, batch ER executes the comparisons
in random order, while progressive ER aims to execute them in a
specific order that maximizes throughput, i.e., maximizing recall over
the execution time by processing the most likely match comparisons
first [16]. More formally, Progressive ER is defined as follows [14]:

Definition 3. Given the candidate pairs 𝐶 of block collection 𝐵, let
𝑇𝐸𝑁𝐷 the overall time required to perform batch ER on 𝐶. At time
𝑡 ≪ 𝑇𝐸𝑁𝐷, the recall obtained by progressive ER should be much
higher than those obtained by batch ER, while at the time 𝑇𝐸𝑁𝐷, both
progressive and batch ER should produce the same result.

Progressive methods are composed of two phases:

1. The initialization phase, which computes the data structures
needed to process the comparisons in the best order.

2. The emission phase, which retrieves the next best comparison
from a list of candidate pairs sorted in decreasing order of their
matching likelihood.

The initialization phase is computed only once, while the emission
phase is repeated whenever a new comparison is requested.

The performance of progressive methods is estimated through the
progressive recall, which is the fraction of recall reached after emitting
𝑒𝑐 comparisons. Following [16], we measure the performance by using
the normalized Area Under the Curve, 𝐴𝑈𝐶∗@𝑒𝑐∗, which varies
in the interval [0, 1], with 1 denoting the best progressiveness. 𝑒𝑐∗ is
the normalized number of emitted comparisons 𝑒𝑐 ∗= 𝑒𝑐∕|𝐷|, which
allows for comparing different datasets on an equal basis. For exam-
ple, 𝐴𝑈𝐶∗@10 is the normalized AUC after emitting 𝑒𝑐 = 10 ⋅ |𝐷|

comparisons.
Among the progressive methods, we decided to employ Progressive

Profile Scheduling (PPS), which was experimentally shown in [16] to be
the top performer in terms of progressiveness and time efficiency. In
essence, it associates every input entity with a duplication likelihood,
i.e., the likelihood that it matches with at least one of its candidate
pairs. This likelihood is determined as the average weight of the edges
connecting every entity with its candidate pair. The weights are de-
termined by the same schemes as Meta-blocking (see Section 4). Next,
PPS sorts and processes all entities in decreasing duplication likelihood.
For each entity, it emits its top-𝑘 weighted candidates, in decreasing
weight. In this way, PPS increases the likelihood that the matching
5

candidate pairs are processed before the non-matching ones.
Algorithm 1: Supervised Weighted Edge Pruning
Input: Learned Model 𝑀 , Candidate Pairs 𝐶
Output: New Candidate Pairs 𝐶 ′

1 𝑝̄ ← 0
2 counter = 0
3 foreach 𝑐𝑖,𝑗 ∈ 𝐶 do
4 𝑝𝑖,𝑗 ← 𝑀 .getProbability(𝑐𝑖,𝑗)
5 if 0.5 ≤ 𝑝𝑖,𝑗 then
6 𝑝̄ += 𝑝𝑖,𝑗
7 counter += 1

8 𝑝̄ ← 𝑝̄ / counter
9 𝐶 ′ ← {}
10 foreach 𝑐𝑖,𝑗 ∈ 𝐶 do
11 𝑝𝑖,𝑗 ← 𝑀 .getProbability(𝑐𝑖,𝑗)
12 if 𝑝̄ ≤ 𝑝𝑖,𝑗 then
13 𝐶 ′ ← 𝐶 ′ ∪ {𝑐𝑖,𝑗}

14 return 𝐶 ′

To further increase this likelihood, PPS identifies the top-weighted
candidate per entity during the initialization phase, i.e., while estimat-
ing the duplication likelihood per entity. The resulting pairs are placed
in a priority queue that sorts them in decreasing weight. These are the
first comparisons to be emitted by PPS, which then proceeds with the
entity-centric processing described above.

3. Pruning algorithms

A supervised pruning algorithm operates as follows: given a spe-
cific set of features, it trains a probabilistic classifier on the available
labelled instances. Then, it applies the trained classification model 𝑀 to
each candidate pair, estimating its classification probability. It exceeds
0.5, it is compared with a threshold in order to determine whether the
corresponding pair of entities will be retained or not.

Depending on the type of threshold, the pruning algorithms are
categorized into two types:

1. The weight-based algorithms determine the weight(s), above which a
comparison is retained.

2. The cardinality-based algorithms determine the number 𝑘 of top-
weighted comparisons to be retained.

In both cases, the determined threshold is applied either globally,
on all candidate pairs, or locally, on the candidate pairs associated with
every individual entity. Below, we delve into the supervised algorithms
of each category.

3.1. Weight-based pruning algorithms

This category includes the following four algorithms. None of them
was considered in [13] - only WEP was approximated through the
binary classification task in Definition 1.

Weigted Edge Pruning (WEP). Algorithm 1 iterates over the set of
candidate pairs 𝐶 twice: first, it applies the trained classifier to each
pair in order to estimate the average probability 𝑝̄ of the valid ones
(Lines 1–8). Then, it applies again the trained classifier to each pair and
retains only those pairs with a probability higher than 𝑝̄ (Lines 9–13).

Weighted Node Pruning (WNP). Algorithm 2 iterates twice over 𝐶,
too. Yet, instead of a global average probability, it estimates a local
average probability per entity. To this end, it keeps in memory two
arrays: 𝑝̄[] with the sum of valid probabilities per entity (Line 1) and
𝑐𝑜𝑢𝑛𝑡𝑒𝑟[] with the number of valid candidates per entity (Line 2). These

Information Systems 120 (2024) 102307L. Gagliardelli et al.

3
m
t
o
r
a
(
p

R
C
e
c
c

4

c
[
t
s

Algorithm 2: Supervised Weighted Node Pruning
Input: Learned Model 𝑀 , Candidate Pairs 𝐶
Output: New Candidate Pairs 𝐶 ′

1 𝑝̄[] ← {}
2 𝑐𝑜𝑢𝑛𝑡𝑒𝑟[] ← {}
3 foreach 𝑐𝑖,𝑗 ∈ 𝐶 do
4 𝑝𝑖,𝑗 ← 𝑀 .getProbability(𝑐𝑖,𝑗)
5 if 0.5 ≤ 𝑝𝑖,𝑗 then
6 ̄𝑝[𝑖] += 𝑝𝑖,𝑗
7 𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑖] += 1
8 ̄𝑝[𝑗] += 𝑝𝑖,𝑗
9 𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑗] += 1

10 foreach 𝑖 ∈ |𝑝̄| do
11 ̄𝑝[𝑖] ← ̄𝑝[𝑖] / 𝑐𝑜𝑢𝑛𝑡𝑒𝑟[𝑖]

12 𝐶 ′ ← {}
13 foreach 𝑐𝑖,𝑗 ∈ 𝐶 do
14 𝑝𝑖,𝑗 ← 𝑀 .getProbability(𝑐𝑖,𝑗)
15 if ̄𝑝[𝑖] ≤ 𝑝𝑖,𝑗 ∨ ̄𝑝[𝑗] ≤ 𝑝𝑖,𝑗 then
16 𝐶 ′ ← 𝐶 ′ ∪ {𝑐𝑖,𝑗}

17 return 𝐶 ′

Algorithm 3: Supervised BLAST
Input: Learned Model 𝑀 , Candidate Pairs 𝐶, Pruning Ratio

𝑟 ∈ (0, 1]
Output: New Candidate Pairs 𝐶 ′

1 𝑚𝑎𝑥[] ← {}
2 foreach 𝑐𝑖,𝑗 ∈ 𝐶 do
3 𝑝𝑖,𝑗 ← 𝑀 .getProbability(𝑐𝑖,𝑗)
4 if 0.5 ≤ 𝑝𝑖,𝑗 then
5 if 𝑚𝑎𝑥[𝑖] < 𝑝𝑖,𝑗 then
6 𝑚𝑎𝑥[𝑖] = 𝑝𝑖,𝑗
7 if 𝑚𝑎𝑥[𝑗] < 𝑝𝑖,𝑗 then
8 𝑚𝑎𝑥[𝑗] = 𝑝𝑖,𝑗

9 𝐶 ′ ← {}
10 foreach 𝑐𝑖,𝑗 ∈ 𝐶 do
11 𝑝𝑖,𝑗 ← 𝑀 .getProbability(𝑐𝑖,𝑗)
12 if 0.5 ≤ 𝑝𝑖,𝑗 ∧ 𝑟 ⋅ (𝑚𝑎𝑥[𝑖] + 𝑚𝑎𝑥[𝑗]) ≤ 𝑝𝑖,𝑗 then
13 𝐶 ′ ← 𝐶 ′ ∪ {𝑐𝑖,𝑗}

14 return 𝐶 ′

arrays are populated during the first iteration over 𝐶 (Lines 3–9).
The average probability per entity is then computed in Lines 10–11.
Finally, WNP iterates over 𝐶 and retains every comparison 𝑐𝑖,𝑗 only
if its estimated probability 𝑝𝑖,𝑗 exceeds either of the related average
probabilities (Line 15).

Reciprocal Weighted Node Pruning (RWNP). The only difference
from WNP is that a comparison is retained if its classification prob-
ability exceeds both related average probabilities, i.e., ̄𝑝[𝑖] ≤ 𝑝𝑖,𝑗 ∧ ̄𝑝[𝑗]
≤ 𝑝𝑖,𝑗 . This way, it applies a consistently deeper pruning than WNP.

BLAST. This algorithm is similar to WNP, but uses a fundamentally
different pruning criterion. Instead of the average probability per en-
tity, it relies on the maximum probability per entity 𝑒𝑖. Algorithm 3
stores these probabilities in the array 𝑚𝑎𝑥[] (Line 1), which is populated
during the first iteration over 𝐶 (Lines 2–8). The second iteration over
𝐶 retains a valid pair 𝑐𝑖,𝑗 if it exceeds a certain portion 𝑟 of the sum of
the related maximum probabilities (Line 12).
6

t

3.2. Cardinality-based pruning algorithms

This category includes the three algorithms described below. Only
the first two were considered in [13].

Cardinality Edge Pruning (CEP). This algorithm retains the top-𝐾
weighted comparisons among the candidate pairs, where 𝐾 is set to
half the sum of block sizes in the original block collection 𝐵, i.e., 𝐾 =
∑

𝑏𝑖∈𝐵 |𝑏|∕2, where |𝑏| stands for the number of entities in block 𝑏
[12]. Algorithm 4 essentially maintains a priority queue 𝑄 (Line 1),
which sorts the comparisons in decreasing probability. 𝑄 is populated
through a single iteration over 𝐶 (Lines 3–9). Every valid candidate pair
that exceeds the minimum probability 𝑚𝑖𝑛𝑝 (Line 5), is pushed to the
queue (Line 6). Whenever the size of the queue exceeds 𝐾, the lowest-
weighted comparison is removed from the queue and 𝑚𝑖𝑛𝑝 is updated
accordingly (Lines 7–9). At the end of the iteration, the contents of 𝑄
correspond to the new set of candidates 𝐶 ′.

Algorithm 4: Supervised Cardinality Edge Pruning
Input: Learned Model 𝑀 , Candidate Pairs 𝐶, 𝐾
Output: New Candidate Pairs 𝐶 ′

1 𝑄 ← {}
2 𝑚𝑖𝑛𝑝 ← 0
3 foreach 𝑐𝑖,𝑗 ∈ 𝐶 do
4 𝑝𝑖,𝑗 ← 𝑀 .getProbability(𝑐𝑖,𝑗)
5 if 0.5 ≤ 𝑝𝑖,𝑗 ∧ 𝑚𝑖𝑛𝑝 < 𝑝𝑖,𝑗 then
6 𝑄.push(𝑐𝑖,𝑗)
7 if 𝐾 < |𝑄| then
8 𝑐𝑘,𝑙 ← 𝑄.pop()
9 𝑚𝑖𝑛𝑝 ← 𝑝𝑘,𝑙

10 return 𝑄

Cardinality Node Pruning (CNP). Algorithm 5 adapts CEP to a local
operation, maintaining an array 𝑄[] with a separate priority queue
per entity (Line 1). The maximum size of each queue depends on the
characteristics of the original block collection, as it amounts to the
average number of blocks per entity: 𝑘 = 𝑚𝑎𝑥(1,

∑

𝑏∈𝐵 |𝑏|∕(|𝐸1| + |𝐸2|))
[12]. During the first iteration over 𝐶, CNP populates the priority
queue of every entity following the same procedure as CEP (Lines
–15); if the probability of the current candidate pair exceeds the
inimum probability of one of the relevant queues (Lines 6 and 11),

he pair is pushed into the queue (Lines 7 and 12). Whenever the size
f a queue exceeds 𝑘 (Lines 8 and 13), the least-weighted comparison is
emoved (Lines 9 and 14) and the corresponding threshold is updated
ccordingly (Lines 10 and 15). CNP involves a second iteration over 𝐶
Lines 17–21), which retains a candidate pair 𝑐𝑖,𝑗 if its contained in the
riority queue of 𝑒𝑖 or 𝑒𝑗 (Line 20).

eciprocal Cardinality Node Pruning (RCNP). This algorithm adapts
NP so that it performs a consistently deeper pruning, requiring that
very retained comparison is contained in the priority queue of both
onstituent entities. That is, the condition of Line 20 in Algorithm 5
hanges into a conjunction: 𝑄[𝑖].contains(𝑐𝑖,𝑗) ∧ 𝑄[𝑗].contains(𝑐𝑖,𝑗).

. Weighting schemes

The goal of weighting schemes is to infer the matching likelihood of
andidate pairs from their co-occurrence patterns in the input blocks
12]. All schemes are schema-agnostic, being generic enough to apply
o any redundancy-positive block collection. In [13], four weighting
chemes formed the optimal feature vector in the sense that it achieves

he best balance between effectiveness and time efficiency:

Information Systems 120 (2024) 102307L. Gagliardelli et al.

4

e
o
s
m
m
[
g
m
T
m
[
[

Algorithm 5: Supervised Cardinality Node Pruning
Input: Learned Model 𝑀 , Candidate Pairs 𝐶, 𝑘
Output: New Candidate Pairs 𝐶 ′

1 𝑄[] ← {}
2 𝑚𝑖𝑛𝑝[] ← {}
3 foreach 𝑐𝑖,𝑗 ∈ 𝐶 do
4 𝑝𝑖,𝑗 ← 𝑀 .getProbability(𝑐𝑖,𝑗)
5 if 0.5 ≤ 𝑝𝑖,𝑗 then
6 if 𝑚𝑖𝑛𝑝[𝑖] < 𝑝𝑖,𝑗 then
7 𝑄[𝑖].push(𝑐𝑖,𝑗)
8 if 𝑘 < |𝑄[𝑖]| then
9 𝑐𝑙,𝑚 ← 𝑄[𝑖].pop()
10 𝑚𝑖𝑛𝑝[𝑖] ← 𝑝𝑙,𝑚

11 if 𝑚𝑖𝑛𝑝[𝑗] < 𝑝𝑖,𝑗 then
12 𝑄[𝑗].push(𝑐𝑖,𝑗)
13 if 𝑘 < |𝑄[𝑗]| then
14 𝑐𝑙,𝑚 ← 𝑄[𝑗].pop()
15 𝑚𝑖𝑛𝑝[𝑗] ← 𝑝𝑙,𝑚

16 𝐶 ′ ← {}
17 foreach 𝑐𝑖,𝑗 ∈ 𝐶 do
18 𝑝𝑖,𝑗 ← 𝑀 .getProbability(𝑐𝑖,𝑗)
19 if 0.5 ≤ 𝑝𝑖,𝑗 then
20 if 𝑄[𝑖].contains(𝑐𝑖,𝑗) ∨ 𝑄[𝑗].contains(𝑐𝑖,𝑗) then
21 𝐶 ′ ← 𝐶 ′ ∪ {𝑐𝑖,𝑗}

22 return 𝐶 ′

1. Co-occurrence Frequency-Inverse Block Frequency (CF-IBF). In-
spired from Information Retrieval’s TF-IDF, it assigns high scores
to entities that participate in few blocks, but co-occur in many
of them. More formally:

𝐶𝐹 − 𝐼𝐵𝐹 (𝑐𝑖,𝑗) = |𝐵𝑖 ∩ 𝐵𝑗 | ⋅ log
|𝐵|
|𝐵𝑖|

⋅ log
|𝐵|
|𝐵𝑗 |

.

2. Reciprocal Aggregate Cardinality of Common Blocks (RACCB). The
smaller the blocks shared by a pair of candidates, the more
distinctive information they have in common and, thus, the more
likely they are to be matching. This idea is captured by the
following sum:

𝑅𝐴𝐶𝐶𝐵(𝑐𝑖,𝑗) =
∑

𝑏∈𝐵𝑖∩𝐵𝑗

1
‖𝑏‖

,

where ‖𝑏‖ denotes the total number of candidate pairs in block
𝑏 (including the redundant ones).

3. Jaccard Scheme (JS). It expresses the portion of blocks shared by
a pair of candidates:

𝐽𝑆(𝑐𝑖,𝑗) =
|𝐵𝑖 ∩ 𝐵𝑗 |

|𝐵𝑖| + |𝐵𝑗 | − |𝐵𝑖 ∩ 𝐵𝑗 |

This captures the core characteristic of redundancy-positive
block collections that the more blocks two entities share, the
more likely they are to match.

4. Local Candidate Pairs (LCP). It measures the number of candi-
dates for a particular entity. More formally:

𝐿𝐶𝑃 (𝑒𝑖) = |{𝑒𝑗 ∶ 𝑖 ≠ 𝑗 ∧ |𝐵𝑖 ∩ 𝐵𝑗 | > 0}|.

The rationale is that the less candidate matches correspond to an
entity, the more likely it is to match with one of them. Entities
with many candidates convey no distinctive information, being
unlikely for any match.

The last feature applies to an individual entity. Thus, the feature
7

vector of 𝑐𝑖𝑗 includes both LCP(𝑒𝑖) and LCP(𝑒𝑗) [13].
In this work, we aim to enhance the effectiveness of the resulting
feature vector. To this end, we additionally consider the following new
weighting schemes [25]:

1. Enhanced Jaccard Scheme (EJS). Similar to TF-IDF, it enhances JS
with the inverse frequency of an entity’s candidates in the set of all
candidate pairs:

𝐸𝐽𝑆(𝑐𝑖,𝑗) = 𝐽𝑆(𝑐𝑖,𝑗) ⋅ log
‖𝐵‖
‖𝑒𝑖‖

⋅ log
‖𝐵‖
‖𝑒𝑗‖

,

where ‖𝐵‖ =
∑

𝑏∈𝐵 ‖𝑏‖ and ‖𝑒𝑙‖ =
∑

𝑏∈𝐵𝑙
‖𝑏‖.

2. Weighted Jaccard Scheme (WJS). Its goal is to alter JS so that it con-
siders the size of the blocks containing every entity, promoting the
smallest (and most distinctive) ones in terms of the total number of
candidates. Thus, it multiplies every block in the Jaccard coefficient
with its inverse size:

𝑊 𝐽𝑆(𝑐𝑖,𝑗) =

∑

𝑏∈𝐵𝑖∩𝐵𝑗
1

‖𝑏‖
∑

𝑏∈𝐵𝑖
1

‖𝑏‖ +
∑

𝑏∈𝐵𝑗
1

‖𝑏‖ −
∑

𝑏∈𝐵𝑖∩𝐵𝑗
1

‖𝑏‖

.

WJS can be seen as normalizing RACCB.
3. Reciprocal Sizes Scheme (RS). This scheme is based on the premise

that the more entities the common blocks between 𝑐𝑖,𝑗 contain, the
less likely they are to match because the information forming these
blocks is not distinctive enough to group highly similar entities:

𝑅𝑆(𝑐𝑖,𝑗) =
∑

𝑏∈𝐵𝑖∩𝐵𝑗

1
|𝑏|

.

. Normalized Reciprocal Sizes Scheme (NRS). It normalizes RS, multi-
plying every block in the Jaccard coefficient with its inverse size:

𝑁𝑅𝑆(𝑐𝑖,𝑗) =

∑

𝑏∈𝐵𝑖∩𝐵𝑗
1
|𝑏|

∑

𝑏∈𝐵𝑖
1
|𝑏| +

∑

𝑏∈𝐵𝑗
1
|𝑏| −

∑

𝑏∈𝐵𝑖∩𝐵𝑗
1
|𝑏|

.

5. Experimental evaluation

5.1. Experimental setup

Hardware and Software—All the experiments were performed on
a machine equipped with four Intel Xeon E5-2697 2.40 GHz (72 cores),
216 GB of RAM, running Ubuntu 18.04. We employed the SparkER
library [26] to perform blocking and features generation. Moreover,
we integrated Generalized Supervised Meta-blocking in the SparkER
library; the code is available on the GitHub page of the project.3
Unless stated otherwise, we perform machine learning analysis using
Python 3.7 and the Support Vector Classification (SVC) model of scikit-
learn [27], in particular. We used the default configuration parameters,
enabling the generation of probabilities and fixing the random state
so as to reproduce the probabilities over several runs. We performed
all experiments with logistic regression, too, obtaining almost identical
results, but we omit them for brevity.

Datasets— Table 1a lists the 9 real-world datasets employed in our
xperiments. They have different characteristics and cover a variety
f domains. Each dataset involves two different, but overlapping data
ources, where the ground truth of the real matches is known. AbtBuy
atches products extracted from Abt.com and Buy.com [28]. DblpAcm
atches scientific articles extracted from dblp.org and dl.acm.org

28]. ScholarDblp matches scientific articles extracted from scholar.
oogle.com and dblp.org [28]. ImdbTmdb, ImdbTvdb and TmdbTvdb
atch movies and TV series extracted from IMDB, TheMovieDB and
heTVDB [29], as suggested by their names. Movies matches infor-
ation about films that are extracted from imdb.com and dbpedia.org

6]. WMAmazon matches products from Walmart.com and Amazon.com
30].

3 https://github.com/Gaglia88/sparker.

https://github.com/Gaglia88/sparker

Information Systems 120 (2024) 102307L. Gagliardelli et al.
Table 1
Technical characteristics of the (a) real and (b) synthetic datasets used in the experimental study. |𝐸𝑥| stands for the number of entities in a constituent dataset, |𝐷| for the number
of duplicate pairs, and |𝐶| for the number of distinct candidate pairs generated in the corresponding block collection. The datasets are ordered in increasing |𝐶|. The rightmost
part reports the performance of the original blocks that are given as input to the supervised meta-blocking methods.

Dataset |𝐸1| |𝐸2| |𝐷| |𝐶| Recall Precision 𝐹1

(a)

AbtBuy 1.1k 1.1k 1.1k 36.7k 0.948 2.78 ⋅10−2 5.40 ⋅10−2

DblpAcm 2.6k 2.3k 2.2k 46.2k 0.999 4.81 ⋅10−2 9.18 ⋅10−2

ScholarDblp 2.5k 61.3k 2.3k 832.7k 0.998 2.80 ⋅10−3 5.58 ⋅10−3

AmazonGP 1.4k 3.3k 1.3k 84.4k 0.840 1.29 ⋅10−2 2.54 ⋅10−2

ImdbTmdb 5.1k 6.0k 1.9k 109.4k 0.988 1.78 ⋅10−2 3.50 ⋅10−2

ImdbTvdb 5.1k 7.8k 1.1k 119.1k 0.985 8.90 ⋅10−3 1.76 ⋅10−2

TmdbTvdb 6.0k 7.8k 1.1k 198.6k 0.989 5.50 ⋅10−3 1.09 ⋅10−2

Movies 27.6k 23.1k 22.8k 26.0M 0.976 8.59 ⋅10−4 1.72 ⋅10−3

WalmartAmazon 2.5k 22.1k 1.1k 27.4M 1.000 4.22 ⋅10−5 8.44 ⋅10−5

(b)

𝐷10𝑘 10k 8.7k 2.69 ⋅107 0.999 3.23 ⋅10−4 6.47 ⋅10−4

𝐷50𝑘 50k 43.1k 6.73 ⋅108 0.999 6.40 ⋅10−5 1.28 ⋅10−4

𝐷100𝑘 100k 85.5k 2.69 ⋅109 0.999 3.17 ⋅10−5 6.34 ⋅10−5

𝐷200𝑘 200k 172.4k 1.08 ⋅1010 1.000 1.60 ⋅10−5 3.19 ⋅10−5

𝐷300𝑘 300k 257.0k 2.43 ⋅1010 0.999 1.06 ⋅10−5 2.12 ⋅10−5
Fig. 6. The average performance of all weight-based pruning algorithms over the block
collections of Table 1a.

Blocking—To each dataset, we apply Token Blocking, the only
parameter-free redundancy-positive blocking method [11]. The original
blocks are then processed by Block Purging [6], which discards all
the blocks that contain more than half of all entity profiles in a
parameter-free way. These blocks correspond to highly frequent sig-
natures (e.g., stop-words) that provide no distinguishing information.
Finally, we apply Block Filtering [22], removing each entity 𝑒𝑖 from
the largest 20% blocks in which it appears.

The performance of the resulting block collections is reported in the
rightmost part of Table 1a. We observe that in most cases, the block
collections achieve an almost perfect recall that significantly exceeds
90%. The only exception is AmazonGP, where some duplicate entities
share no infrequent attribute value token — the recall, though, remains
quite satisfactory, even in this case. Yet, the precision is consistently
quite low, as its highest value is lower than 0.003. As a result, F1 is also
quite low, far below 0.1 across all datasets. These settings undoubtedly
call for Supervised Meta-blocking.

To apply Generalized Supervised Meta-blocking to these block col-
lections, we performed 10 runs and averaged the values of precision,
recall, and F1. In each run, a different seed is used to sample the
pairs that compose the training set. Using undersampling, we formed a
balanced training set per dataset that comprises 500 labelled instances.
We choose to use a small fixed training set instead of splitting the
labelled instances 80/20, because in a real use case scenario manually
labelling 80% of the pairs is not feasible in large datasets. Due to
space limitations, we mostly report the average performance of every
approach over the 9 block collections.
8

Fig. 7. The average performance of all cardinality-based pruning algorithms over the
block collections of Table 1a.

5.2. Pruning algorithm selection

We now investigate which are the best-performing weight- and
cardinality-based pruning algorithms for Generalized Supervised Meta-
blocking among those discussed in Section 3. As baseline methods, we
employ the pruning algorithms proposed in [13]: the binary classifier
BCl for weight-based algorithms as well as CEP and CNP for the
cardinality-based ones. We fixed the training set size to 500 pairs and
used the feature vector proposed in [13] as optimal; every candidate
pair 𝑐𝑖,𝑗 is represented by the vector: {𝐶𝐹 − 𝐼𝐵𝐹 (𝑐𝑖,𝑗), 𝑅𝐴𝐶𝐶𝐵(𝑐𝑖,𝑗),
𝐽𝑆(𝑐𝑖,𝑗), 𝐿𝐶𝑃 (𝑒𝑖), 𝐿𝐶𝑃 (𝑒𝑗)}. Based on preliminary experiments, we set
the pruning ratio of BLAST to 𝑟 = 0.35. The average effectiveness
measures of the weight- and cardinality based algorithms across the 9
block collections of Table 1a are reported in Figs. 6 and 7, respectively.

Among the weight-based algorithms, we observe that the new prun-
ing algorithms trade slightly lower recall for significantly higher pre-
cision and F1. Comparing BCl with WEP, recall drops by −5.9%,
while precision raises by 60.8% and F1 by 42.9%. This pattern is
more intense in the case of RWNP, which reduces recall by −7.2%,
increasing precision by 68.5% and F1 by 46.3%. These two algorithms
actually monopolize the highest F1 scores in every case: for ImdbTmdb,
ImdbTvdb and TmdbTvdb, WEP ranks first with RWNP second and
vice versa for the rest of the datasets. Their aggressive pruning, though,
results in very low recall (≪0.8) in four datasets. E.g., in the case of
AbtBuy, BCl’s recall is 0.852, but WEP and RWNP reduce it to 0.755
and 0.699, respectively.

The remaining algorithms are more robust with respect to recall.
Compared to BCl, WNP reduces recall by just −0.2%, while increasing
precision by 26.8% and F1 by 19.7%. Yet, BLAST outperforms WEP

Information Systems 120 (2024) 102307L. Gagliardelli et al.
Fig. 8. Running time of top-10 features sets when applied to BLAST.

Table 2
The 10 feature sets that achieve the highest F1 with BLAST.

ID Feature set Recall Precision 𝐹1

72 {CF-IBF, RACCB, JS, RS} .8816 .1932 .2892
74 {CF-IBF, RACCB, JS, NRS} .8816 .1932 .2892
75 {CF-IBF, RACCB, JS, WJS} .8816 .1932 .2892
78 {CF-IBF, RACCB, RS, NRS} .8816 .1932 .2892
79 {CF-IBF, RACCB, RS, WJS} .8816 .1932 .2892
82 {CF-IBF, RACCB, NRS, WJS} .8816 .1932 .2892
86 {CF-IBF, JS, RS, WJS} .8816 .1932 .2892
89 {CF-IBF, JS, NRS, WJS} .8816 .1932 .2892
96 {CF-IBF, RS, NRS, WJS} .8816 .1932 .2892
190 {CF-IBF, RACCB, JS, RS, NRS, WJS} .8816 .1932 .2892

Table 3
The 10 feature sets that achieve the highest F1 when applied to RCNP.

ID Feature set Recall Precision 𝐹1

184 {CF-IBF, RACCB, JS, LCP, RS} .8489 .2463 .3527
187 {CF-IBF, RACCB, JS, LCP, WJS} .8490 .2464 .3526
193 {CF-IBF, RACCB, LCP, RS, NRS} .8490 .2463 .3526
200 {CF-IBF, JS, LCP, RS, NRS} .8488 .2474 .3526
227 {CF-IBF, RACCB, JS, LCP, RS, NRS} .8493 .2473 .3537
228 {CF-IBF, RACCB, JS, LCP, RS, WJS} .8494 .2473 .3537
231 {CF-IBF, RACCB, JS, LCP, NRS, WJS} .8496 .2473 .3537
235 {CF-IBF, RACCB, LCP, RS, NRS, WJS} .8496 .2473 .3536
239 {CF-IBF, JS, LCP, RS, NRS, WJS} .8494 .2473 .3534

250 {CF-IBF, RACCB, JS, .8502 .2479 .3542LCP, RS, NRS, WJS}

with respect to all effectiveness measures: recall, precision and F1 raise
by 1.3%, 13.8% and 11.5%, respectively. This means that BLAST is
able to discard much more non-matching pairs, while retaining a few
more matching ones, too.

Among the cardinality-based algorithms, we observe that RCNP is
a clear winner, outperforming both CEP and CNP. Compared to the
former, it reduces recall by −1.1%, while increasing precision by 44%
and F1 by 34.4%; compared to the latter, recall drops by −3.5%, but
precision and F1 raise by 37.5% and 29.3%, respectively.

Overall, RCNP constitutes the best choice for cardinality-based pruning
algorithms, which are crafted for applications that promote precision at the
cost of slightly lower recall [12,22]. BLAST is the best among the weight-
based pruning algorithms, which are crafted for applications that promote
recall at the cost of slightly lower precision [12,22].

Note that their F1 is significantly higher than the original ones in
Table 1a, but still far from perfect. The reason is that (Supervised)
Meta-blocking merely produces a new block collection, not the end
result of ER. This block collection is then processed by a Matching
algorithm, whose goal is to raise F1 close to 1.
9

Fig. 9. Running time of top-10 features sets when applied to RCNP.

5.3. Feature selection

We now fine-tune the selected algorithms, BLAST and RCNP, by
identifying the feature sets that optimize their performance in terms of
effectiveness and time-efficiency. We adopted a brute force approach,
trying all the possible combinations of the eight features presented in
Sections 2 and 4. Fixing again the training set size to a random sample
of 500 balanced instances, the top-10 feature vectors with respect to
F1 for BLAST and RCNP are reported in Tables 2 and 3, respectively.

We observe that both algorithms are robust with respect to the top-
10 feature sets, as they all achieve practically identical performance,
on average. For BLAST, we obtain recall = 0.882, precision = 0.193
and F1 = 0.289 when combining 𝐶𝐹 − 𝐼𝐵𝐹 and 𝑅𝐴𝐶𝐶𝐵 with any
two features from 𝑓 = {𝐽𝑆, 𝑅𝑆, 𝑁𝑅𝑆, 𝑊 𝐽𝑆}; even 𝑅𝐴𝐶𝐶𝐵 can be
replaced with a third feature from 𝑓 without any noticeable impact.
For RCNP, we obtain recall = 0.850, precision = 0.248 and F1 = 0.353
when combining 𝐶𝐹−𝐼𝐵𝐹 , 𝑅𝐴𝐶𝐶𝐵 and 𝐿𝐶𝑃 with any pair of features
from {𝐽𝑆, 𝑅𝑆, 𝑁𝑅𝑆, 𝑊 𝐽𝑆}. In this context, we select the best feature
set for each algorithm based on time efficiency.

In more detail, we compare the top-10 feature sets per algorithm
in terms of their running times. This includes the time required for
calculating the features per candidate pair and for retrieving the cor-
responding classification probability (we exclude the time required for
producing the new block collections, because this is a fixed overhead
common to all feature sets of the same algorithm). Due to space
limitations, we consider only the two datasets with the most candidate
pairs, as reported in Table 1a: Movies and WMAmazon. We repeated
every experiment 10 times and took the mean time.

In Fig. 8, we observe that the feature set 78 is consistently the
fastest one for BLAST, exhibiting a clear lead. Compared to the second
fastest feature sets over movies (75) and WMAmazon (96), it reduces
the average run-time by 11.9% and 16.0%, respectively. For RCNP,
the differences are much smaller in Fig. 9, yet the same feature set
(187) achieves the lowest run-time over both datasets. Compared to the
second fastest feature sets over movies (184) and WMAmazon (239),
it reduces the average run-time by 3.3% and 4.8%, respectively.

Overall, BLAST models each candidate pair as the 4-dimensional fea-
ture vector (ID 78 in Table 2): {𝐶𝐹−𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵,𝑅𝑆,𝑁𝑅𝑆}. Compared
to the feature set of [13], recall raises by ∼0.5% and F1 by ∼1.5%, while the
run-time is reduced to a significant extent (>50% as explained below), due
to the absence of the time-consuming 𝐿𝐶𝑃 feature. RCNP represents every
candidate pair with the 5-dimensional feature vector (ID 187 in Table 3):
{𝐶𝐹 −𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵, 𝐽𝑆,𝐿𝐶𝑃 ,𝑊 𝐽𝑆}. This reduces recall by <0.3%, but
raises precision and F-Measure by 1.2%, which is in-line with the desiderata
of cardinality-based algorithms.

Comparison with Supervised Meta-blocking—We now compare
BLAST and RCNP in combination with the features selected above
with BCl and CNP, which use the feature set proposed in [13], {𝐶𝐹 −

Information Systems 120 (2024) 102307L. Gagliardelli et al.
Fig. 10. Comparison of the best algorithms for Supervised (BCl, CNP) and Generalized
Supervised Meta-blocking (BLAST, RCNP).

Fig. 11. Run-time comparison of the best algorithms for Supervised (BCl, CNP) and
Generalized Supervised Meta-blocking (BLAST, RCNP).

𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵, 𝐽𝑆,𝐿𝐶𝑃 }. All algorithms were trained over the same
randomly selected set of 500 labelled instances, 250 from each class,
and were applied to all datasets in Table 1a. Their average performance
is presented in Fig. 10.

We observe that BLAST outperforms BCl with respect to all ef-
fectiveness measures: its recall, precision and F1 are higher by 1.6%,
13.6% and 13%, respectively, on average. Thus, BLAST is much more
accurate in the classification of the candidate pairs and more suitable
than BCl for recall-intensive applications. Among the cardinality-based
algorithms, RCNP trades slightly lower recall than CNP for significantly
higher precision and F1: on average, across all datasets, its recall is
lower by −4.1%, while its precision and F1 are higher by 34.9% and
by 33.6%, respectively. As a result, RCNP is more suitable than CNP for
precision-intensive applications.

Regarding time efficiency, Fig. 11 reports the running times of
these algorithms on the largest datasets, i.e., Movies and Walmar-
tAmazon. We observe that BCl, CNP and RCNP exhibit similar 𝑅𝑇
in both cases, since they all employ more complex feature sets that
include the time-consuming feature 𝐿𝐶𝑃 . BLAST is substantially faster
than these algorithms, reducing 𝑅𝑇 by more than 50%. In particular,
comparing it with its weight-based competitor, we observe that BLAST
is faster than BCl by 2.1 times over Movies and by 3.2 times over
WalmartAmazon.

We can conclude, therefore, that Generalized Supervised Meta-
blocking conveys significant improvements with respect to Supervised
Meta-blocking.

5.4. The effect of training set size

We now explore how the performance of BLAST and RCNP changes
when varying the training set size. We used the features sets selected
10
Fig. 12. The effect of the training set size on BLAST.

Fig. 13. The effect of the training set size on RCNP.

above (ID 78 and 187 in Tables 2 and 3, respectively) and varied the
number of labelled instances starting from 20, then from 50 to 500
with a step of 50. Figs. 12 and 13 report the results in terms of recall,
precision and F1, on average across all datasets, for BLAST and RCNP,
respectively.

Notice that both algorithms exhibit the same behaviour: as the
training set size increases, recall gets higher at the expense of lower
precision and F1. However, the increase in recall is much lower than
the decrease in the other two measures. More specifically, comparing
the largest training set size with the smallest one, the average recall of
BLAST raises by 2.4%, while its average precision drops by 29.7% and
its average F1 by 24.8%. Similar patterns apply to RCNP: recall raises
by 2.1%, but precision and F1 drop by 17.8% and 16.8%, respectively,
when increasing the labelled instances from 50 to 500.

This might seem counter-intuitive, as larger training sets are ex-
pected to improve performance by increasing both recall and precision.
In our cases, only recall raises with higher training sets, unlike pre-
cision. This behaviour should be attributed to the distribution of the
matching probabilities that are produced by the trained probabilis-
tic classifier. In more detail, with larger training sets, the matching
probabilities of duplicate pairs are pushed up, thus raising recall. The
same applies to the probabilities of non-matching pairs, though, thus
decreasing precision.

This is illustrated in Fig. 14, which depicts the density of matching
probabilities of candidate pairs over the AbtBuy dataset for various
training set sizes, when using the Logistic Regression as the clas-
sification algorithm. The duplicate pairs are shown in red and the
non-matching ones in blue. The upper line corresponds to the maxi-
mum pruning threshold and the lower line to the average one, across
all nodes/entities. We observe that for the smallest training set, the
matching probabilities of both types of candidate pairs fluctuate in
[0.5, 0.95], with the density of the matching and the non-matching pairs
being higher in the upper and the lower part, respectively. As we move
to larger training sets, the matching pairs are pushed up, fluctuating
in [0.75, 0.95]. This indicates the higher discriminatory power of the
probabilistic classifier, which increases the number of true positives,
raising recall. However, the probabilities of the non-matching pair
continue to fluctuate in [0.5, 0.85], but are now concentrated around
0.7, while the most pruning thresholds are confined in [0.63, 0.65]. As
a result, the number of false positive increases, too, dropping precision
to lower levels. Similar patterns appear in the rest of the datasets in
combination with other classification algorithms, such as SVC.

Information Systems 120 (2024) 102307L. Gagliardelli et al.
Fig. 14. The matching probabilities for both types of candidate pairs, the duplicate and
the non-matching ones, as the size of the training set increases. (For interpretation of
the references to colour in this figure legend, the reader is referred to the web version
of this article.)

Fig. 15. Recall and precision of BCl and BLAST as the size of the training set increases.

It is worth noting at this point that the same behaviour as BLAST
is exhibited by BCl, the original binary classifier presented in [13],
which simply retains all candidate pairs with a matching probability
above 0.5. As shown in Fig. 15, both algorithms increase their recall
and decrease their precision as more labelled instances as used during
their training.

Given that 20 labelled instances yield very low recall, especially
for RCNP, but with 50 instances, the recall becomes quite satisfactory
for both algorithms (≫0.85, on average, across all datasets), we can
conclude that the optimal training set involves just 50 labelled instances,
equally split among positive and negative ones.

Comparison with Supervised Meta-blocking—Based on the above
experimental results, we now compare the final algorithms of General-
ized Supervised Meta-blocking with their baseline counterparts from
[13].

Table 4a–c reports a full comparison between the main weight-
based algorithms, i.e., BLAST and BCl (note that BCl2 uses the training
set specified in [13], i.e., a random sample involving 5% of the positive
instances in the ground-truth along with an equal number of randomly
selected negative instances).

We observe that on average, BLAST outperforms BCl2 with respect
to all effectiveness measures, increasing the average recall, precision
and F1 by 7.1%, 5.0% and 9.9%, respectively. Compared to BCl1,
BLAST increases the average recall by 3.95%, but lowers the precision
by 5.9% and the F1 by 2.2%. Recall drops below 0.8 in four datasets for
BCl1 (and BCl2), whereas BLAST violates this limit in just two datasets.
This should be attributed to duplicate pairs that share just one block
in the original block collection, due to missing or erroneous values,
as explained in detail in Section 5.4.1. BCl1 outperforms BCl2 in all
respects, demonstrating the effectiveness of the new feature set.
11
In terms of run-time, BLAST is slower than BCl1 by 8.2%, on aver-
age, because it iterates once more over all candidate pairs. Compared to
BCl2, BLAST is 6.7 times faster, on average across all datasets, because
of 𝐿𝐶𝑃 and of the large training sets, which learn complex binary
classifiers with a time-consuming processing.

Similar patterns are observed in the case of cardinality-based algo-
rithms in Table 4d-f, where RCNP with its best features and 50 labelled
instances is compared with CNP, which uses the best feature set from
[13] and two different training sets: the same 50 labelled instances as
RCNP (CNP1) and the training set specified in [13] (CNP2).

In more detail, RCNP typically outperforms both baseline methods
with respect to all effectiveness measures. Compared to CNP1 (CNP2),
RCNP raises the average recall by 5.3% (9.2%), while achieving the
highest precision and F1 across all datasets, except for AbtBuy and
ImdbTmdb (and ScholarDblp in the case of CNP1). The relative
increase in precision in comparison to CNP1 ranges from 7.5% over
TmdbTvdb to 10 and 24 times over Movies and WalmartAma-
zon, respectively. Compared to CNP2, precision raises from 5.0% over
DblpAcm to 49 times over WalmartAmazon. In all cases, F1 increases
to a similar extent. These patterns suggest that RCNP is typically more
accurate in classifying the positive candidate pairs.

In terms of run-time, RCNP is slower than CNP1 by 6.2%, on
average, as it retains the candidate pairs that are among the top-k
weighted ones for both constituent entities (i.e., it searches for pairs
in two lists), whereas CNP1 simply merges the lists of all entities.
CNP2 employs a much larger training set, yielding more complicated
and time-consuming classifiers than RCNP, which is 3 times faster, on
average, across all datasets.

Overall, Generalized Supervised Meta-blocking outperforms Supervised
Meta-blocking to a significant extent, despite using a balanced training set
of just 50 labelled instances.

5.4.1. Considerations regarding the obtained recall
Blocking recall typically sets the upper bound on matching recall,

i.e., on the overall recall of ER. The problem of low recall appears
in cases where 𝑃𝐶 < 0.9 in Table 4a–c, which reports analytically
the performance over all datasets for the weight-based algorithms that
emphasize recall. The rest of the tables report the average recall across
all datasets, which is very close to 0.9 for BLAST in most cases, while
Table 4d–f examines cardinality-based algorithms, which emphasize
precision (e.g., progressive ER applications that by default operate with
lower recall).

Studying Table 4a–c, we observe that the recall of BLAST is lower
than 0.9 in five datasets: AbtBuy, AmazonGP, ImdbTmdb, ImdbTvdb
and TmdbTvdb. Comparing these datasets with the remaining four,
where recall is well above 0.9, we observe that they involve high
levels of noise, which causes a large part of the duplicate entities to
share just one block. Inevitably, these matching pairs lack significant
co-occurrence patterns and receive low probabilities by all weighting
schemes used by our approach. As a result, most of them are pruned
at the cost of lower recall. In other words, BLAST exhibits low recall
in block collections with very low levels of redundancy (due to noisy
and missing values), where the matching pairs have just one block
in common. Note, though, that Generalized Supervised Meta-blocking
outperforms the original Supervised Meta-blocking approach, whose
𝑃𝐶 is lower by ∼5% in these cases; this means that more duplicates
pairs with a single common block are retained by our approach, while
increasing precision, too. This should be attributed to the new features
we have proposed in this work, which normalize the co-occurrence
patterns by considering all blocks containing every entity. In block
collections with high levels of redundancy, where the vast majority of
duplicates co-occurs in multiple blocks, the recall remains high even
after Supervised Meta-blocking.

This is verified in Figs. 17 and 18, which plot the portion of
matching pairs (on the vertical axis) with respect to the number of
common blocks (on the horizontal axis). In every dataset, the bar that

Information Systems 120 (2024) 102307L. Gagliardelli et al.

c
b
i
S
b
1
a

5

d
s
s
o
[

l
f

Table 4
Performance of the main weight- and cardinality-based algorithms across all datasets in a–c and d–f, respectively. 𝑅𝑇 is the mean run-time (in seconds) over 10 repetitions. The
𝜇 column reports the average performance across all the datasets.

AbtBuy DblpAcm ScholarDblp AmazonGP ImdbTmdb ImdbTvdb TmdbTvdb Movies WalmartAmazon 𝜇

(a) BLAST with 50 labelled pairs and {𝐶𝐹 -𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵,𝑅𝑆,𝑁𝑅𝑆}

𝑅𝑒 0.8345 0.9511 0.9638 0.7001 0.8223 0.7483 0.8466 0.9151 0.9587 0.8601
𝑃𝑟 0.2037 0.6509 0.3418 0.1441 0.5756 0.2304 0.2477 0.1300 0.0025 0.2807
𝐹1 0.3265 0.7690 0.4988 0.2385 0.6726 0.3456 0.3770 0.2221 0.0050 0.3839
𝑅𝑇 6.58 5.62 11.90 6.83 6.46 6.36 7.51 96.01 107.82 28.34

(b) BCl1 with 50 labelled pairs and {𝐶𝐹 -𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵,𝑅𝑆,𝑁𝑅𝑆}

𝑅𝑒 0.8345 0.9521 0.9588 0.6265 0.7889 0.6966 0.6972 0.9039 0.9500 0.8232
𝑃𝑟 0.1821 0.5971 0.3595 0.1607 0.6445 0.2616 0.3737 0.0972 0.0020 0.2976
𝐹1 0.2981 0.7303 0.5195 0.2572 0.7086 0.3785 0.4613 0.1735 0.0041 0.3923
𝑅𝑇 5.40 5.66 10.51 6.02 5.79 5.49 6.69 82.71 107.51 26.19

(c) BCl2 with the training set and the features of [13], i.e., {𝐶𝐹 -𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵, 𝐽𝑆,𝐿𝐶𝑃 }

𝑅𝑒 0.8183 0.9513 0.9303 0.7316 0.7872 0.7074 0.8172 0.9100 0.5757 0.8032
𝑃𝑟 0.2039 0.6130 0.3921 0.1131 0.5969 0.2323 0.2312 0.0239 0.0001 0.2674
𝐹1 0.3261 0.7425 0.5401 0.1908 0.6604 0.3395 0.2991 0.0465 0.0001 0.3495
𝑅𝑇 15.07 9.37 27.73 13.22 11.04 9.68 10.86 1328.81 276.19 46.65

(d) RCNP with 50 labelled pairs and {𝐶𝐹 -𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵, 𝐽𝑆,𝐿𝐶𝑃 ,𝑊 𝐽𝑆}

𝑅𝑒 0.8405 0.9759 0.9623 0.7358 0.8395 0.7465 0.8696 0.9275 0.9122 0.8678
𝑃𝑟 0.1764 0.6463 0.3591 0.1264 0.3540 0.2325 0.1848 0.0992 0.0050 0.2426
𝐹1 0.2914 0.7747 0.5190 0.2148 0.4971 0.3498 0.2954 0.1758 0.0100 0.3476
𝑅𝑇 6.20 5.67 11.73 6.83 6.55 6.77 8.32 126.13 107.56 31.75

(e) CNP1 with 50 labelled pairs and {𝐶𝐹 -𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵, 𝐽𝑆,𝐿𝐶𝑃 ,𝑊 𝐽𝑆}

𝑅𝑒 0.8294 0.9613 0.9218 0.7462 0.8045 0.7615 0.8641 0.8200 0.7087 0.8242
𝑃𝑟 0.1797 0.5984 0.3745 0.1031 0.5471 0.1867 0.1720 0.0090 0.0002 0.2412
𝐹1 0.2939 0.7355 0.5095 0.1748 0.6394 0.2847 0.2487 0.0177 0.0004 0.3227
𝑅𝑇 5.95 5.80 11.33 6.40 5.91 6.19 6.89 122.72 107.62 30.98

(f) CNP2 with the training set and the features of [13], i.e., {𝐶𝐹 -𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵, 𝐽𝑆,𝐿𝐶𝑃 }

𝑅𝑒 0.8347 0.9539 0.9581 0.7742 0.8345 0.7641 0.8677 0.9347 0.2332 0.7950
𝑃𝑟 0.1895 0.6158 0.2184 0.0848 0.4132 0.1764 0.1484 0.0291 0.0001 0.2084
𝐹1 0.3081 0.7457 0.3453 0.1514 0.5247 0.2754 0.2363 0.0564 0.0002 0.2937
𝑅𝑇 15.61 9.64 28.51 13.63 11.37 9.99 11.41 1351.54 365.03 58.15
Fig. 16. Scalability over the datasets in Table 1b: (a) the weight-based pruning algorithms, (b) the cardinality-based ones, and (c) speedup.
orresponds to 𝑥 = 0 indicates the portion of duplicates that are missed
y the original block collection. The bar that corresponds to 𝑥 = 1
ndicates the portion of duplicates that are missed by (Generalized)
upervised Meta-blocking. We observe that for all datasets in Fig. 17
oth bars are below 5%, while for all datasets in Fig. 18, more than
0% corresponds to 𝑥 = 1. As a result, 𝑃𝐶 > 0.9 for the former datasets
nd vice versa for the latter ones.

.5. Scalability analysis

We assess the scalability of our approaches as the number of can-
idate pairs |𝐶| increases, verifying their robustness under versatile
ettings: instead of real-world Clean-Clean ER datasets, we now con-
ider the synthetic Dirty ER datasets, and instead of SVC, we train
ur models using Weka’s default implementation of Logistic Regression
31].

The characteristics of the datasets, which are widely used in the
iterature [4,11], appear in Table 1b. To extract a large block collection
12

rom every dataset, we apply Token Blocking. In all cases, the recall is
Fig. 17. The distribution of common blocks (horizontal axis) per portion of duplicate
pairs (vertical axis) in datasets with 𝑃𝐶 > 0.9 for Supervised BLAST.

almost perfect, but precision and F1 are extremely low, as shown in the
rightmost part of Table 1b.

Information Systems 120 (2024) 102307L. Gagliardelli et al.

t
t
i
p

o

e
w
c
a
R
b
c
i
l

l
c
F

5

b
i
L
f
p
s

t
s
w
𝑊
P

c
e
t
r
w

a
a

v
e
t
c
b
f
i
F
l
f
I
i
2
c
t
b
t
v
p

Fig. 18. The distribution of common blocks (horizontal axis) per portion of duplicate
pairs (vertical axis) in datasets with 𝑃𝐶 < 0.9 for Supervised BLAST.

Fig. 19. The speedup of the algorithms used in the scalability analysis of Fig. 16.

We consider four methods: BCl and CNP with the features and the
raining set size specified in [13] as well as BLAST and RCNP with
he features in Table 4a and d, respectively, trained over 50 labelled
nstances (25 per class). In each dataset, we performed three repetitions
er algorithm and considered the average performance.

The effectiveness of the weight- and cardinality-based algorithms
ver all datasets appear in Fig. 16a and b, respectively. BLAST sig-

nificantly outperforms BCl in all cases: on average, it reduces recall
by 3.5%, but consistently maintains it above 0.93, while increasing
precision and F1 by a whole order of magnitude. Note that BLAST’s
precision is much higher than expected over 𝐷100𝐾 , due to the effect
of random sampling: a different training set is used in every one of the
three iterations, with two of them performing a very deep pruning that
decrease recall to a minor extent.

RCNP outperforms CNP to a significant extent: on average, it
reduces recall by 7.9%, but maintains it to very high levels — except for
𝐷200𝐾 , where it drops to 0.77, due to the effect of random sampling;
yet, precision raises by 2.8 times and F1 by 2.3 times. These results
verify the strength of our approaches, even though they require orders
of magnitude less labelled instances than [13].

Most importantly, our approaches scale better to large datasets, as
demonstrated by speedup in Fig. 19. Given two sets of candidate pairs,
|𝐶1| and |𝐶2|, such that |𝐶1| < |𝐶2|, this measure is defined as follows:

𝑠𝑝𝑒𝑒𝑑𝑢𝑝 =
|𝐶2| ×

𝑅𝑇1 ,
13

|𝐶1| 𝑅𝑇2
where 𝑅𝑇1 (𝑅𝑇2) denotes the running time over |𝐶1| (|𝐶2|) – in our case,
𝐶1 corresponds to 𝐷10𝐾 and 𝐶2 to all other datasets. In essence, speedup
xtrapolates the running time of the smallest dataset to the largest one,
ith values close to 1 indicating linear scalability, which is the ideal

ase. We observe that all methods start from very high values, but BCl
nd CNP deteriorate to a significantly larger extent than BLAST and
CNP, respectively, achieving the lowest values for 𝐷300𝐾 . This should
e attributed to their lower accuracy in pruning the non-matching
omparisons, which deteriorates as the number of candidate pairs
ncreases. As a result, they end up retaining and processing a much
arger number of comparisons, which slows down their functionality.
Overall, Generalized Supervised Meta-blocking scales much better to

arge datasets than Supervised Meta-blocking [13] for both weight- and
ardinality-based algorithms. For a bit lower recall, it raises precision and
1 by ≥2 times and maintains a much higher speedup.

.6. Progressive ER

We now assess the performance of Generalized Supervised Meta-
locking on Progressive ER (see Section 2). To this end, we integrate
t with PPS, using as edge weights the probabilities generated by
ogistic Regression in combination with the best feature vector selected
or weight-based algorithms, i.e. {𝐶𝐹 − 𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵,𝑅𝑆,𝑁𝑅𝑆}. The
robabilistic classifier is trained over a balanced training set of 50
amples. For brevity, we call this approach Supervised PPS.

As a baseline method, we consider the average performance of
he original PPS algorithm in combination with each of the weighting
chemes described in Section 4. In particular, the following schemes
ere employed: 𝐶𝐹 − 𝐼𝐵𝐹 (𝑐𝑖,𝑗), 𝑅𝐴𝐶𝐶𝐵(𝑐𝑖,𝑗), 𝐽𝑆(𝑐𝑖,𝑗), 𝐸𝐽𝑆(𝑐𝑖,𝑗),
𝐽𝑆(𝑐𝑖,𝑗), 𝑅𝑆(𝑐𝑖,𝑗), and 𝑁𝑅𝑆(𝑐𝑖,𝑗). We call this approach Unsupervised
PS.

Note that both versions of PPS might produce ties, i.e., edges/
omparisons with identical weights. If these ties pertain to the first 𝑘
dges that should be emitted, the end result is arbitrary. To break these
ies, we run the experiment 10 times and in each iteration, we emit
andomly the required number of edges among those with the same
eight. For example, for 𝐴𝑈𝐶∗

𝑚@1, if for a profile there are three edges
corresponding to the maximum weight, only one of them is randomly
emitted in every repetition of the experiment. The average performance
of the 10 iterations is then taken into account.

To compare Supervised PPS with its unsupervised counterpart, we
consider the normalized area under the curve (𝐴𝑈𝐶∗

𝑚) at an increasing
normalized number of emitted comparisons: 𝑒𝑐 ∗∈ {1, 5, 10, 20}. This
pplies to all Clean-Clean and Dirty ER datasets in Table 1. The results
ppear in Figs. 20 and 21, respectively.

Starting with the Clean-Clean ER datasets, we observe that Super-
ised PPS consistently outperforms Unsupervised PPS to a significant
xtent across all datasets and settings. The lowest difference between
he two approaches with respect to 𝐴𝑈𝐶∗

𝑚@1, 𝐴𝑈𝐶∗
𝑚@5 and 𝐴𝑈𝐶∗

𝑚@10
orresponds to ScholarDBLP, where the former outperforms the latter
y 14.3%, 19.6% and 26%, respectively. For 𝐴𝑈𝐶∗

𝑚@20, the lowest dif-
erence (25.5%) appears in Amazon-GP. Yet, there is a large variation
n the difference between the two methods among the various settings.
or example, the progressive recall of the supervised approach is at
east twice higher than the unsupervised one in many cases: in Movies
or 𝑒𝑐 ∗∈ {1, 5, 10}, in WalmartAmazon for 𝑒𝑐 ∗∈ {5, 10, 20} and in
mdb-Tvdb and Tmdb-Tvdb for 𝑒𝑐 ∗= 1. On average, Supervised PPS
s superior by 76%, 66.6%, 58.8% and 50.6% for 𝑒𝑐 ∗ = 1, 5, 10 and
0, respectively (note that the difference decreases with the increase of
omputational budget, because progressive recall raises proportionally
o 𝑒𝑐, i.e., the more comparisons are executed within the allocated
udget, the higher recall gets). These results indisputably verify that
he probabilities learned by Generalized Supervised Meta-blocking pro-
ide more accurate and comprehensive evidence for scheduling the
rocessing of comparisons than the weights of individual schemes.

Information Systems 120 (2024) 102307L. Gagliardelli et al.

d
i
c
a
m
o
𝑒
P
o
f
(
c
d
p
n
o
r
P
m
t

b
t
g
p
b
4
d

v
d

5

t
e
t
f
p
a

Fig. 20. Progressive recall over the Clean-Clean ER datasets as the number of emitted comparisons increases.
Fig. 21. Progressive recall over the Dirty ER datasets as the number of emitted comparisons increases.
i
t
H
t
r
m
s
[

p
t
r
r
a
T
p
v
h
l

m

The same patterns apply to the Dirty ER: as shown in Fig. 21, which
epicts the evolution of Progressive Recall with the increase of the
nput data, Supervised PPS consistently outperforms its unsupervised
ounterpart to a statistically significant extent (𝑝 = 2.7 ⋅ 10−17) under
ll settings. We actually observe that the deviation between the two
ethods is low for 𝐷10𝐾 , but gets higher and almost stable for the rest

f the datasets. This applies to all settings of Progressive Recall, i.e., for
𝑐 ∗∈ {1, 5, 10, 20}. In more detail, 𝐴𝑈𝐶∗

𝑚@1 is higher for Supervised
PS than for Unsupervised PPS by 66.3% over 𝐷10𝐾 and by 79.1 ± 2.2%
ver 𝐷50𝐾 − 𝐷300𝐾 . For 𝐴𝑈𝐶∗

𝑚@5 (𝐴𝑈𝐶∗
𝑚@10), the superiority of the

ormer approach raises from 34.8% (27.2%) over 𝐷10𝐾 to 49.8 ± 2.2%
44.9 ± 1.5%) over the rest of the datasets. This is caused by the more
hallenging tasks that are posed by the larger datasets: the number of
uplicates increases linearly with the size of the input data, while the
ossible comparisons increase quadratically. As a result, the portion of
on-matching pairs over all comparisons is lower in 𝐷10𝐾 than the rest
f the datasets, thus enabling Unsupervised PPS to provide more accu-
ate weights. In other words, the individual weights of Unsupervised
PS become less capable of distinguishing between matching and non-
atching comparisons than the probabilities of Supervised PPS when

he candidate pairs increase.
The only exception is 𝐴𝑈𝐶∗

𝑚@20, because the higher computational
udget yields higher absolute recall for both methods. As a result,
he difference between Supervised and Unsupervised PPS increases
radually, as the task becomes more challenging, due to a higher
ortion on non-matching comparison. Indeed, the former approach is
etter than the latter by 19.5% over 𝐷10𝐾 , by 37.6% over 𝐷50𝐾 and by
6.6% over 𝐷100𝐾 , while stabilizing to 51.1 ± 0.4% for the two largest
atasets.

Overall, Generalized Supervised Meta-blocking outperforms unsuper-
ised PPS to a statistically significant extent, and avoids the burden of trying
ifferent weighting schemes to identify the best performer.

.7. Comparison with recently published blocking techniques

Comparison with pre-trained language models-based blocking
echniques. Recently, several works use pre-trained language mod-
ls (LMs) to perform blocking [17–19]. The techniques proposed in
hese works first employ the LM to transform the input entity pro-
iles into dense embedding vectors. Then, they generate the candidate
airs by selecting the K nearest neighbours (kNN) of each profile
14

ccording to a similarity measure between these embedding vectors
(e.g., the cosine similarity). The use of LMs aims to produce more
accurate blocking results than using the syntactic similarity of the
textual descriptions (e.g., as in token blocking), since it relies on the
semantic meaning and similarity of these descriptions. To experimen-
tally verify this assumption, we compare our Generalized Supervised
Meta-blocking approaches with three recent works that have publicly
released their implementation: DeepBlocker [17],4 Sudowoodo [18]5

and ContextualBlocker [19].6
DeepBlocker [17] proposes a self-supervised technique to learn the

embeddings per entity profile, without requiring any labelled training
data. As stated in [17], it is crafted for datasets with perfectly aligned
attributes. However, among the datasets in Table 1(a), only Dblp-
Acm, AbtBuy, and Scholar-Dblp satisfy this requirement. We solved this
problem by concatenating all the values of the different attributes in a
single string on which the blocking was performed, i.e., using schema-
agnostic settings just like Generalized Supervised Meta-blocking. For
the generation of tuple embeddings, we used the AutoEncoder, because
t constitutes the most effective module under the schema-aware set-
ings, while ranking second in the schema-agnostic ones [17]. The
ybrid module exhibits slightly higher effectiveness under these set-

ings, but suffers from significantly higher space and time complexity,
aising out-of-memory exceptions in most cases, while being orders of
agnitude slower than the AutoEncoder. For these reasons, we exclu-

ively combine DeepBlocker with the Autoencoder module. Following
17], the LM that lies at the core of this approach is fastText [32].

Sudowoodo [18] starts with a pretraining phase to fine-tune a
re-trained LM using positive/negative pairs of labelled data. Then,
he fine-tuned model is used to generate the embeddings. It does not
equire aligned attributes. We used DistilBERT [33] as LM, since it is
eported in [18] that is the best model for blocking. Moreover, we set
ll the training parameters as reported in the Sudowoodo repository.
o compare it with our approach, we pretrained it with 50 labelled
airs, and then with 500, divided in 80% for training and 20% for
alidation. To ensure that the number of supplied labels is used, we
ave disabled the pseudo-labelling function that generates additional
abels.

ContextualBlocker [19] is an unsupervised and schema-agnostic
ethod: first, it generates the embedding vectors by combining SimCSE

4 https://github.com/qcri/DeepBlocker.
5 https://github.com/megagonlabs/sudowoodo.
6
 https://github.com/boscoj2008/ContextualBlocker-for-EM.

https://github.com/qcri/DeepBlocker
https://github.com/megagonlabs/sudowoodo
https://github.com/boscoj2008/ContextualBlocker-for-EM

Information Systems 120 (2024) 102307L. Gagliardelli et al.

𝑅

𝑅

𝑅

𝑅

𝑅

𝑅

𝑅

n
a
c
d

t
p
T

d
o
R
T
r
b
v
c
g

p
o

Table 5
Performance of our main (a) weight-based and (b) cardinality-based algorithms, compared with the recent, state-of-the-art, pre-trained language models-based blocking solutions
(c–f), and with Sparkly [20] a recent solution based on TF/IDF. 𝑅𝑇 is the mean run-time (in seconds) over 10 repetitions. The 𝜇 column reports the average performance across
all the datasets.

AbtBuy DblpAcm ScholarDblp AmazonGP ImdbTmdb ImdbTvdb TmdbTvdb Movies WalmartAmazon 𝜇

(a) BLAST with 50 labelled pairs and {𝐶𝐹 -𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵,𝑅𝑆,𝑁𝑅𝑆}

𝑅𝑒 0.8345 0.9511 0.9638 0.7001 0.8223 0.7483 0.8466 0.9151 0.9587 0.8601
𝑃𝑟 0.2037 0.6509 0.3418 0.1441 0.5756 0.2304 0.2477 0.1300 0.0025 0.2807
𝐹1 0.3265 0.7690 0.4988 0.2385 0.6726 0.3456 0.3770 0.2221 0.0050 0.3839
𝑇 7 6 12 7 6 6 8 96 108 28

(b) RCNP with 50 labelled pairs and {𝐶𝐹 -𝐼𝐵𝐹 ,𝑅𝐴𝐶𝐶𝐵, 𝐽𝑆,𝐿𝐶𝑃 ,𝑊 𝐽𝑆}

𝑅𝑒 0.8405 0.9759 0.9623 0.7358 0.8395 0.7465 0.8696 0.9275 0.9122 0.8678
𝑃𝑟 0.1764 0.6463 0.3591 0.1264 0.3540 0.2325 0.1848 0.0992 0.0050 0.2426
𝐹1 0.2914 0.7747 0.5190 0.2148 0.4971 0.3498 0.2954 0.1758 0.0100 0.3476
𝑇 6 6 12 7 7 7 8 126 108 32

(c) DeepBlocker

𝑅𝑒 0.8411 0.9987 0.9424 0.7215 0.7907 0.6754 0.9489 0.2754 0.8137 0.7786
𝑃𝑟 0.0168 0.0170 0.0173 0.0138 0.0061 0.0028 0.0034 0.0004 0.0074 0.0094
𝐹1 0.0330 0.0334 0.0340 0.0270 0.0121 0.0056 0.0068 0.0008 0.0146 0.0186
𝑇 5 7 47 8 10 11 13 103 75 31

(d) Sudowoodo with 50 labelled pairs

𝑅𝑒 0.2128 0.9996 0.9788 0.4931 0.1494 0.0653 0.0210 0.0758 0.2132 0.3565
𝑃𝑟 0.0043 0.0194 0.0007 0.0040 0.0010 0.0002 0.0001 0.0015 0.0002 0.0035
𝐹1 0.0084 0.0380 0.0015 0.0079 0.0019 0.0004 0.0001 0.0029 0.0004 0.0068
𝑇 74 80 405 114 243 179 248 399 473 246

(e) Sudowoodo with 500 labelled pairs

𝑅𝑒 0.5994 1.0000 0.9944 0.5608 0.1784 0.1390 0.0292 0.1401 0.8016 0.4936
𝑃𝑟 0.0120 0.0194 0.0007 0.0045 0.0012 0.0004 0.0001 0.0028 0.0008 0.0047
𝐹1 0.0235 0.0380 0.0015 0.0090 0.0023 0.0008 0.0002 0.0054 0.0017 0.0092
𝑇 74 80 406 125 242 181 249 407 493 251

(f) ContextualBlocker

𝑅𝑒 0.8968 0.6515 0.6118 0.6454 0.0295 0.0224 0.5817 0.0047 0.7938 0.4708
𝑃𝑟 0.0038 0.0007 9.33 ⋅10−6 0.0008 1.08 ⋅10−5 2.94 ⋅10−6 0.0001 6.16 ⋅10−7 0.0001 0.0006
𝐹1 0.0075 0.0015 1.87 ⋅10−5 0.0016 2.16 ⋅10−5 5.88 ⋅10−6 0.0001 1.23 ⋅10−6 0.0001 0.0012
𝑅𝑇 5 10 266 19 26 33 40 230 107 82

(g) Sparkly with fine-tuned k

𝑅𝑒 0.8894 0.9883 0.9918 0.6992 0.9050 0.7556 0.9434 0.9033 0.9558 0.8924
𝑃𝑟 0.8894 0.9582 0.0373 0.0704 0.2941 0.1037 0.1323 0.0045 0.0125 0.2780
𝐹1 0.8894 0.9730 0.0719 0.1280 0.4439 0.1824 0.2320 0.0089 0.0247 0.3282
𝑇 7 6 55 17 8 8 11 500 265 97

(h) Sparkly with k = 10

𝑅𝑒 0.9805 0.9991 0.9996 0.7692 0.9705 0.9440 0.9763 0.7884 0.9757 0.9337
𝑃𝑟 0.0980 0.0969 0.0038 0.0310 0.0315 0.0130 0.0137 0.0778 0.0051 0.0412
𝐹1 0.1783 0.1766 0.0075 0.0596 0.0611 0.0256 0.0270 0.1415 0.0101 0.0764
𝑇 7 6 66 9 10 9 14 475 280 97
t

m

B
d
a
a
C

b

[34] with the BERT language model [35] and then, it computes the 𝑘
earest neighbours of each profile. The retrieved candidates construct
graph, where every node corresponds to an entity profile and edges

onnect the candidate pairs. Finally, it applies the Louvain community
etection algorithm [36] on the resulting graph to generate the blocks.

The experimental evaluation was conducted by setting 𝑘 = 50 for
he kNN selection so as to maximize recall. All kNN experiments were
erformed on an NVIDIA GeForce RTX 4090 GPU with 24 GB of RAM.
he obtained results across all the datasets are reported in Table 5.
DeepBlocker exhibits a slightly better recall than BLAST on four

atasets (namely AbtBuy, Dblp-Acm, Amazon-GP, and Tmdb-Tvdb) and
n three (i.e., AbtBuy, Dblp-Acm, and Tmdb-Tvdb) when compared to
CNP. On all of the other datasets, their recall is basically the same.
he only exception is Movies, where DeepBlocker obtains a very low
ecall. That happens because the duplicate films are mostly identified
y the names of the cast rather than the film’s title; yet the embedding
ectors of personal names have low accuracy (even for the fine-grained
haracter-level LM of fastText), given that the training corpora are
eneric, not domain-specific.
Sudowoodo with 50 labelled pairs performs worse that our ap-

roach basically on all the datasets but Dblp-ACM and Scholar-Dblp—
n these two datasets, almost all blocking methods achieve very high
15

l

recall, due to the relatively clean, unambiguous bibliographic records
they contain. Overall, Sudowoodo obtains a very low recall, which is
improved when increasing the number of labelled training data from
50 to 500—even though it does not reach the performance of Gener-
alized Supervised Meta-blocking. This indicates that if more labels are
provided, Sudowoodo raises its effectiveness to a significant extent, at
the expense of a much higher labelling effort by human experts.

ContextualBlocker outperforms our solutions only on AbtBuy, ob-
aining a much lower recall on all the other datasets.

Regarding precision, BLAST and RCNP outperform all the other
ethods on all the datasets by at least two orders of magnitude.

Finally, on average, the execution time is almost the same for
LAST, RCNP, and DeepBlocker, while ContextualBlocker and Su-
owoodo are 2.9 and 8.8 times, respectively, slower than BLAST, on
verage. The differences are significantly higher (in favour of BLAST
nd CNP), when running the semantic-based blocking methods on a
PU core.
Comparison with Sparkly [20]. Sparkly is a recent approach

ased on TF/IDF [37] that has been shown to outperform pre-trained
anguage model-based blocking techniques [20]. Built on top of Apache

Information Systems 120 (2024) 102307L. Gagliardelli et al.

t
a
a
W
t

i
m
p
t
w
w
a
a

l
i
D
i
E
0
S
d
h

a
g

i
f
s
e
s
t

S
e
p
r
l
t
i
i
t
o
h

L
n
t
T
B
m

6

w
t
U
[

p
t
a
d
p
e
l
o
a
b
P
t
a

Lucene7 and Apache Spark,8 it works as follows: given two tables
(datasets) A and B with the same schema, it tokenizes each tuple
(entity) by using n-grams, indexes the smallest table with Lucene (let us
say A) and distributes table B across Spark’ workers; using the resulting
Lucene index, Sparkly searches for each tuple of B the top-𝑘 similar ones
of A according to an appropriately adapted version of the Okapi BM25
similarity function, which relies on the TF/IDF weights.

Sparkly is unsupervised, yet it requires the user to specify (i) the
number of neighbours, 𝑘, to retrieve for each record, and (ii) the
attributes that will be used in blocking. It can also work in an automatic
fashion by selecting the best attributes for blocking, but this is possible
only if datasets have perfectly aligned attributes. However, among
the datasets in Table 1(a), only Dblp-Acm, AbtBuy, and Scholar-Dblp
satisfy this requirement. Thus, we used Sparkly by manually setting
he value of 𝑘, while concatenating all the attribute values per tuple in
single string on which blocking was performed, i.e., we used schema-
gnostic settings, just like with Generalized Supervised Meta-blocking.
e combined these schema-agnostic settings with the 3-gram tokenizer

hat is by default used in [20].
In this context, the performance of Sparkly heavily depends on 𝑘,

.e., the number of candidates per query. We ran preliminary experi-
ents (not reported here) to fine-tune 𝑘, determining the right value
er dataset that allows for achieving a recall that is as close as possible
o the one obtained by Generalized Supervised Meta-blocking—in this
ay, we can compare the two methods on an equal basis. As a result,
e set 𝑘 = 4 for Amazon-GP and Walmart-Amazon, 𝑘 = 200 for Movies,
nd 𝑘 = 1 for the rest of the datasets. The results for this configuration
re reported in Table 5(g).

On average, Sparkly exhibits a better recall at the expense of
ower precision. However, the high precision of Sparkly stems from
ts exceptional performance on two datasets, namely AbtBuy and
blpAcm, where its precision exceeds 0.89 (just like its recall). This

s much higher, though, than its precision in the rest of the datasets.
xcluding these two datasets, Sparkly averages 0.879 for recall and
.094 for precision, compared to 0.850 and 0.239, respectively, for
upervised BLAST. This means that on average, across the seven largest
atasets, our approach trades a considerably higher precision (2.5x
igher) for only a slightly lower recall (3% decrease).

Looking more carefully into the performance of Supervised BLAST
nd Sparkly, we distinguish the nine considered datasets into three
roups:

• The first group includes AbtBuy and DblpAcm, where Sparkly
dominates Supervised BLAST with respect to both recall and
precision. The former is higher by 5% and the latter by 55%, on
average. Note that in both datasets, 𝑘 = 1 for Sparkly.

• The second group includes AmazonGP and Movies, where Super-
vised BLAST dominates Sparkly with respect to both effectiveness
measures. Its recall is higher by just 0.7%, because 𝑘 has been
adjusted to higher values (4 and 200, respectively) in order
to approach that of Supervised BLAST. In terms of precision,
though, Sparkly underperforms Supervised BLAST by 73.8%. The
superiority of the two methods is more intense in Movies, where
BLAST’s precision is 29 times higher than Sparkly. This should be
attributed to the extreme levels of noise and missing values in the
profiles of this dataset.

• The third groups includes the datasets where Supervised BLAST
trades lower recall for much higher precision. These are ScholarD-
blp, ImdbTmdb, ImdbTvdb and TmdbTvdb. On average, BLAST’s
recall is lower by 5.8% than Sparkly, while its precision is higher
by 59.9%. Note that in all four datasets, 𝑘 = 1 for Sparkly,
which means that we cannot lower its recall in order to increase
precision. Note also that all datasets of this group involve much

7 https://lucene.apache.org.
8 https://spark.apache.org.
16
less duplicate pairs than the number of entities in each data
source, i.e., |𝐷| ≪ |𝐸1| and |𝐷| ≪ |𝐸2|, as can be seen in
Table 1. This is in contrast to the datasets of the first group, where
|𝐷| = |𝐸1| = |𝐸2 for AbtBuy and |𝐷| ≈ |𝐸1| ≈ |𝐸2 for DblpAcm.
This means that Sparkly works vey well in cases, where there is an
almost 1-1 mapping between the entities of two data sources, but is not
flexible enough to reduce the number of candidate pairs in datasets
with a low portion of duplicates.

• The last group includes only WalmartAmazon, where the two
methods exhibit practically identical recall, but Sparkly achieves
much higher precision for 𝑘 = 4. The reason for the lower effec-
tiveness of Supervised BLAST is the very large set of candidate
pairs that are generated by Token Blocking, Block Purging and
Block Filtering (see |𝐶| in Table 1). Inevitably, Supervised BLAST
retains a larger portion of false positives in comparison to all
other datasets, which yield fewer candidate pairs.

Finally, we measured the execution time of Sparkly after configuring
t so that it uses a single CPU core — this way, we can perform a
air comparison with Supervised BLAST. With the exception of the two
mallests datasets, AbtBuy and DblpAcm, where the two methods are
qually fast, Sparkly is consistently slower than Supervised BLAST to a
ignificant extent. Tts average run-time, across all nine datasets, is 3.5
imes higher than that of Supervised BLAST.

It is worth stressing at this point that one major limitation of
parkly is that the parameter 𝑘 has to be manually set. This is rarely
asy, but has a significant impact on the final performance. For exam-
le, if we set 𝑘 = 1 on AmazonGP, Movies and WalmartAmazon, its
ecall drops to 0.4908, 0.6559 and 0.8536, respectively, which is much
ower than that of Supervised BLAST. The opposite is true if 𝑘 = 10,
he lowest value that is used in [20], whose performance is reported
n Table 5(h). We observe that on average, across all nine datasets,
ts recall raises by ∼4%, but its precision drops by 6.7 times, being 7
imes lower than Supervised BLAST. This means that expert knowledge
r perhaps a training set is required for fine-tuning 𝑘 on the data at
and.

Overall, we conclude that our techniques are still competitive with
M-based blocking solutions, yielding the same level of recall for a sig-
ificantly better level of precision, while exhibiting a lower execution
ime without requiring GPUs. Compared to Sparkly [20], a recent
F/IDF-based approach that outperforms LM-based ones, Supervised
LAST offers a much better trade-off between recall and precision in
ost cases, while being consistently faster.

. Related work

The unsupervised pruning algorithms WEP, WNP, CEP, and CNP
ere introduced in [12]. WNP and CNP were redefined in [22] so

hat they do not produce block collections with redundant comparisons.
nsupervised Reciprocal WNP and Reciprocal CNP were coined in
22], while unsupervised BLAST was proposed in [38].

Over the years, more unsupervised pruning algorithms have been
roposed in the literature. [39] proposes a variant of CEP that retains
he top-weighted candidate pairs with a cumulative weight higher than
specific portion of the total sum of weights. Crafted for Semantic Web
ata, MinoanER [24] combines meta-blocking evidence from two com-
lementary block collections: the blocks extracted from the names of
ntities and from the attribute values of their neighbours. BLAST2 [8]
everages loose schema information in order to boost the performance
f Meta-blocking’s weighting schemes. Finally, a family of pruning
lgorithms that focuses on the comparison weights inside individual
locks is presented in [40]; for example, Low Entity Co-occurrence
runing removes from every block a specific portion of the entities with
he lowest average weights. Our approaches can be generalized to these
lgorithms, too, but their analytical examination lies out of our scope.

https://lucene.apache.org
https://spark.apache.org

Information Systems 120 (2024) 102307L. Gagliardelli et al.
The above works consider Meta-blocking in a static context that
ignores the outcomes of Matching. A dynamic approach that leverages
Meta-blocking to make the most of the feedback of Matching is pBlock-
ing [41]. After applying Matching to the smallest blocks, intersections
of the initial blocks are formed and scored based on their ratio of
matching and non-matching entities. Meta-blocking is then applied
to produce the next set of candidate pairs that will be processed by
Matching. This process is iteratively applied until convergence. BEER
[42] is an open-source tool that implements pBlocking.

The work closest to ours is BLOSS [43]. It introduces an active
learning approach that reduces significantly the size of the labelled
set required by Supervised Meta-blocking. Initially, it partitions the
unlabelled candidate pairs into similarity levels based on CF-IBF. Then,
it applies rule-based active sampling inside every level in order to select
the unlabelled pairs with the lowest commonalities with the already
labelled ones so as to maximize the captured information. In the final
step, BLOSS cleans the labelled sample from non-matching outliers with
high Jaccard weight.

Note that we tried to use BLOSS [43] as a baseline method, but we
could not reproduce its performance, since our implementation of the
algorithm exclusively selected non-matching candidate pairs — instead
of a balanced training set. (We contacted the authors, but they were not
able to provide us with their own implementation.) Nevertheless, our
experimental results demonstrate that active learning is not necessary
for our approaches, given that they achieve high performance with just
50 labelled instances.

Progressive ER [14] is employed when resources are limited (e.g.,
cloud budget or human time to refine the ER pipeline), or the data is
periodically changing and it has to be consumed within a certain time
to be valuable for downstream applications. Indeed, existing progres-
sive ER methods [14,16,41,44] try to quickly sort candidate matches by
their matching likelihood (typically estimated through a proxy measure
derived from a blocking strategy), so as to discover as many matches as
fast as possible. In particular, PPS [16] is the state-of-the-art schema-
agnostic progressive ER method; in this paper we adapted it to our
proposed weighting strategy and showed the non-negligible benefit of
doing so on benchmark datasets.

7. Conclusions

We have presented Generalized Supervised Meta-blocking, which
casts Meta-blocking as a probabilistic binary classification task and
weights all candidate pairs in a block collection with the probabilities
produced by the trained classifier. These weights are processed by
a pruning algorithm that can be: (i) weight-based, determining the
minimum weight of retained pairs in a way that promotes recall, or
(ii) cardinality-based, determining the maximum number of retained
pairs in a way that promotes precision.

Through a thorough experimental study over 9 established, real-
world datasets, we verified that BLAST and RCNP constitute the
best weight- and cardinality-based pruning algorithms, respectively.
We also demonstrated that four new weighting schemes give rise to
feature sets that outperform the one determined in [13] as optimal. We
showed that a very small, balanced training set with just 50 labelled
instances suffices for consistently achieving high effectiveness, high
time efficiency and high scalability. Finally, we demonstrated that
Generalized Supervised Meta-blocking in combination with PPS can
be used effectively in Progressive Entity Resolution contexts and that
it is still competitive with respect to recently published blocking
techniques.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
17

influence the work reported in this paper.
Data availability

Code and data are available on GitHub as reported in the paper.
Link: https://github.com/Gaglia88/sparker.

Acknowledgments

This work was partially supported by the Horizon Europe project
STELAR (Grant No. 101070122) and the Department of Engineering
‘‘Enzo Ferrari’’ within the FARD-2022 (FAR2022DIP_DIEF) and FARD-
2023 (FAR_DIP_2023_DIEF-SIMONINI - Grant No. E93C23000280005)
projects.

References

[1] V. Christophides, V. Efthymiou, T. Palpanas, G. Papadakis, K. Stefanidis, An
overview of end-to-end entity resolution for big data, ACM Comput. Surv. 53
(6) (2021) 127:1–127:42.

[2] V. Christophides, V. Efthymiou, K. Stefanidis, Entity Resolution in the Web of
Data, Morgan & Claypool, 2015.

[3] X.L. Dong, D. Srivastava, Big Data Integration, Morgan & Claypool Publishers,
2015.

[4] P. Christen, A survey of indexing techniques for scalable record linkage and
deduplication, TKDE 24 (9) (2012) 1537–1555.

[5] G. Papadakis, D. Skoutas, E. Thanos, T. Palpanas, Blocking and filtering
techniques for entity resolution: A survey, ACM Comput. Surv. 53 (2) (2020)
31:1–31:42.

[6] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, W. Nejdl, A blocking
framework for entity resolution in highly heterogeneous information spaces,
TKDE 25 (12) (2012) 2665–2682.

[7] G. Papadakis, E. Ioannou, E. Thanos, T. Palpanas, The Four Generations of Entity
Resolution, Morgan & Claypool Publishers, 2021.

[8] D. Beneventano, S. Bergamaschi, L. Gagliardelli, G. Simonini, BLAST2: An
efficient technique for loose schema information extraction from heterogeneous
big data sources, ACM J. Data Inf. Qual. 12 (4) (2020) 18:1–18:22.

[9] G. Simonini, L. Gagliardelli, S. Bergamaschi, H.V. Jagadish, Scaling entity
resolution: A loosely schema-aware approach, Inf. Syst. 83 (2019) 145–165,
http://dx.doi.org/10.1016/j.is.2019.03.006.

[10] G. Papadakis, G. Alexiou, G. Papastefanatos, G. Koutrika, Schema-agnostic vs
schema-based configurations for blocking methods on homogeneous data, PVLDB
9 (4) (2015) 312–323.

[11] G. Papadakis, J. Svirsky, A. Gal, T. Palpanas, Comparative analysis of ap-
proximate blocking techniques for entity resolution, PVLDB 9 (9) (2016)
684–695.

[12] G. Papadakis, G. Koutrika, T. Palpanas, W. Nejdl, Meta-blocking: Taking entity
resolutionto the next level, TKDE 26 (8) (2014) 1946–1960.

[13] G. Papadakis, G. Papastefanatos, G. Koutrika, Supervised meta-blocking, PVLDB
7 (14) (2014) 1929–1940.

[14] S.E. Whang, D. Marmaros, H. Garcia-Molina, Pay-as-you-go entity resolution,
IEEE Trans. Knowl. Data Eng. 25 (5) (2013) 1111–1124, http://dx.doi.org/10.
1109/TKDE.2012.43.

[15] G. Simonini, L. Zecchini, S. Bergamaschi, F. Naumann, Entity resolution on-
demand, Proc. VLDB Endow. 15 (7) (2022) 1506–1518, URL https://www.vldb.
org/pvldb/vol15/p1506-simonini.pdf.

[16] G. Simonini, G. Papadakis, T. Palpanas, S. Bergamaschi, Schema-agnostic
progressive entity resolution, TKDE 31 (6) (2019) 1208–1221.

[17] S. Thirumuruganathan, H. Li, N. Tang, M. Ouzzani, Y. Govind, D. Paulsen, G.
Fung, A. Doan, Deep learning for blocking in entity matching: a design space
exploration, Proc. VLDB Endow. 14 (11) (2021) 2459–2472.

[18] R. Wang, Y. Li, J. Wang, Sudowoodo: Contrastive self-supervised learning for
multi-purpose data integration and preparation, in: 2023 IEEE 39th International
Conference on Data Engineering (ICDE), 2023.

[19] J.B. Mugeni, T. Amagasa, A graph-based blocking approach for entity matching
using contrastively learned embeddings, SIGAPP Appl. Comput. Rev. 22 (4)
(2023) 37–46.

[20] D. Paulsen, Y. Govind, A. Doan, Sparkly: A simple yet surprisingly strong TF/IDF
blocker for entity matching, Proc. VLDB Endow. 16 (6) (2023) 1507–1519.

[21] L. Gagliardelli, G. Papadakis, G. Simonini, S. Bergamaschi, T. Palpanas,
Generalized supervised meta-blocking, Proc. VLDB Endow. 15 (9) (2022)
1902–1910.

[22] G. Papadakis, G. Papastefanatos, T. Palpanas, M. Koubarakis, Scaling entity
resolution to large, heterogeneous data with enhanced meta-blocking., in: EDBT,
2016, pp. 221–232.

[23] D.J. Hand, P. Christen, A note on using the F-measure for evaluating record
linkage algorithms, Stat. Comput. 28 (3) (2018) 539–547, http://dx.doi.org/10.

1007/s11222-017-9746-6.

https://github.com/Gaglia88/sparker
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb1
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb1
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb1
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb1
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb1
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb2
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb2
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb2
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb3
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb3
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb3
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb4
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb4
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb4
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb5
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb5
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb5
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb5
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb5
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb6
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb6
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb6
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb6
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb6
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb7
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb7
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb7
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb8
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb8
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb8
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb8
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb8
http://dx.doi.org/10.1016/j.is.2019.03.006
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb10
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb10
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb10
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb10
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb10
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb11
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb11
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb11
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb11
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb11
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb12
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb12
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb12
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb13
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb13
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb13
http://dx.doi.org/10.1109/TKDE.2012.43
http://dx.doi.org/10.1109/TKDE.2012.43
http://dx.doi.org/10.1109/TKDE.2012.43
https://www.vldb.org/pvldb/vol15/p1506-simonini.pdf
https://www.vldb.org/pvldb/vol15/p1506-simonini.pdf
https://www.vldb.org/pvldb/vol15/p1506-simonini.pdf
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb16
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb16
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb16
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb17
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb17
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb17
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb17
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb17
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb18
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb18
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb18
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb18
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb18
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb19
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb19
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb19
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb19
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb19
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb20
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb20
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb20
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb21
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb21
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb21
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb21
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb21
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb22
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb22
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb22
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb22
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb22
http://dx.doi.org/10.1007/s11222-017-9746-6
http://dx.doi.org/10.1007/s11222-017-9746-6
http://dx.doi.org/10.1007/s11222-017-9746-6

Information Systems 120 (2024) 102307L. Gagliardelli et al.
[24] V. Efthymiou, G. Papadakis, K. Stefanidis, V. Christophides, MinoanER: Schema-
agnostic, non-iterative, massively parallel resolution of web entities, in: EDBT,
2019, pp. 373–384.

[25] N. Augsten, R. Kwitt, M. Lissandrini, W. Mann, T. Palpanas, G. Papadakis, New
Weighting Schemes for Meta-blocking, Tech. Rep. LIPADE-TR 5, Laboratoire
d’Informatique PAris DEscartes (LIPADE), 2021, Available at http://lipade.mi.
parisdescartes.fr/wp-content/uploads/2021/10/LipadeTR-5.pdf.

[26] L. Gagliardelli, G. Simonini, D. Beneventano, S. Bergamaschi, SparkER: Scaling
entity resolution in spark, in: EDBT, 2019, pp. 602–605.

[27] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, et al., Scikit-learn: Machine
learning in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830.

[28] H. Köpcke, A. Thor, E. Rahm, Evaluation of entity resolution approaches on
real-world match problems, PVLDB 3 (1–2) (2010) 484–493.

[29] D. Obraczka, J. Schuchart, E. Rahm, EAGER: Embedding-assisted entity
resolution for knowledge graphs, 2021, arXiv preprint arXiv:2101.06126.

[30] S. Das, A. Doan, P.S. G. C., C. Gokhale, P. Konda, Y. Govind, D. Paulsen, The
Magellan data repository, https://sites.google.com/site/anhaidgroup/projects/
data.

[31] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, I.H. Witten, The
WEKA data mining software: an update, ACM SIGKDD Explor. Newsl. 11 (1)
(2009) 10–18.

[32] A. Joulin, E. Grave, P. Bojanowski, M. Douze, H. Jégou, T. Mikolov, FastText.zip:
Compressing text classification models, 2016, arXiv preprint arXiv:1612.03651.

[33] V. Sanh, L. Debut, J. Chaumond, T. Wolf, DistilBERT, a distilled version of BERT:
smaller, faster, cheaper and lighter, 2019, CoRR, abs/1910.01108.
18
[34] T. Gao, X. Yao, D. Chen, SimCSE: Simple contrastive learning of sentence
embeddings, in: EMNLP, 2021, pp. 6894–6910.

[35] J. Devlin, M. Chang, K. Lee, K. Toutanova, BERT: Pre-training of deep bidi-
rectional transformers for language understanding, in: NAACL-HLT, 2019, pp.
4171–4186.

[36] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of
communities in large networks, J. Stat. Mech.: Theory Exp. 2008 (10) (2008).

[37] H. Schütze, C.D. Manning, P. Raghavan, Introduction to Information Retrieval,
Vol. 39, Cambridge University Press Cambridge, 2008.

[38] G. Simonini, S. Bergamaschi, H.V. Jagadish, BLAST: a loosely schema-aware
meta-blocking approach for entity resolution, PVLDB 9 (12) (2016) 1173–1184.

[39] F. Zhang, Z. Gao, K. Niu, A pruning algorithm for meta-blocking based on
cumulative weight, in: Journal of Physics, Vol. 887, 2017.

[40] D.C. do Nascimento, C.E.S. Pires, D.G. Mestre, Exploiting block co-occurrence to
control block sizes for entity resolution, Knowl. Inf. Syst. 62 (1) (2020) 359–400.

[41] S. Galhotra, D. Firmani, B. Saha, D. Srivastava, Efficient and effective ER with
progressive blocking, VLDB J. 30 (4) (2021) 537–557.

[42] S. Galhotra, D. Firmani, B. Saha, D. Srivastava, BEER: Blocking for effective
entity resolution, in: SIGMOD, 2021, pp. 2711–2715.

[43] G.D. Bianco, M.A. Gonçalves, D. Duarte, BLOSS: Effective meta-blocking with
almost no effort, Inf. Syst. 75 (2018) 75–89.

[44] T. Papenbrock, A. Heise, F. Naumann, Progressive duplicate detection, IEEE
Trans. Knowl. Data Eng. 27 (5) (2015) 1316–1329, http://dx.doi.org/10.1109/
TKDE.2014.2359666.

http://refhub.elsevier.com/S0306-4379(23)00143-6/sb24
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb24
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb24
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb24
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb24
http://lipade.mi.parisdescartes.fr/wp-content/uploads/2021/10/LipadeTR-5.pdf
http://lipade.mi.parisdescartes.fr/wp-content/uploads/2021/10/LipadeTR-5.pdf
http://lipade.mi.parisdescartes.fr/wp-content/uploads/2021/10/LipadeTR-5.pdf
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb26
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb26
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb26
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb27
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb27
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb27
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb27
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb27
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb28
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb28
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb28
http://arxiv.org/abs/2101.06126
https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data
https://sites.google.com/site/anhaidgroup/projects/data
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb31
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb31
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb31
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb31
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb31
http://arxiv.org/abs/1612.03651
http://arxiv.org/abs/1910.01108
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb34
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb34
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb34
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb35
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb35
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb35
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb35
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb35
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb36
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb36
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb36
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb37
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb37
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb37
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb38
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb38
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb38
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb39
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb39
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb39
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb40
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb40
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb40
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb41
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb41
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb41
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb42
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb42
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb42
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb43
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb43
http://refhub.elsevier.com/S0306-4379(23)00143-6/sb43
http://dx.doi.org/10.1109/TKDE.2014.2359666
http://dx.doi.org/10.1109/TKDE.2014.2359666
http://dx.doi.org/10.1109/TKDE.2014.2359666

	GSM: A generalized approach to Supervised Meta-blocking for scalable entity resolution
	Introduction
	Supervised Meta-blocking
	Progressive ER
	Our Contributions

	Preliminaries
	Problem Definition
	Generalized Supervised Meta-blocking

	Progressive ER

	Pruning algorithms
	Weight-based pruning algorithms
	Cardinality-based pruning algorithms

	Weighting Schemes
	Experimental evaluation
	Experimental setup
	Pruning Algorithm Selection
	Feature selection
	The effect of training set size
	Considerations regarding the obtained recall

	Scalability Analysis
	Progressive ER
	Comparison with recently published blocking techniques

	Related Work
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References

