Knowl Inf Syst
DOI 10.1007/s10115-012-0606-6

REGULAR PAPER

Beyond one billion time series: indexing and mining very
large time series collections with i SAX2+

Alessandro Camerra - Jin Shieh . Themis Palpanas -
Thanawin Rakthanmanon - Eamonn Keogh

Received: 23 March 2012 / Revised: 23 September 2012 / Accepted: 28 December 2012
© Springer-Verlag London 2013

Abstract Thereis an increasingly pressing need, by several applications in diverse domains,
for developing techniques able to index and mine very large collections of time series. Exam-
ples of such applications come from astronomy, biology, the web, and other domains. It is not
unusual for these applications to involve numbers of time series in the order of hundreds of
millions to billions. However, all relevant techniques that have been proposed in the literature
so far have not considered any data collections much larger than one-million time series. In
this paper, we describe iSAX 2.0 and its improvements, i SAX 2.0 Clustered and i SAX2+,
three methods designed for indexing and mining truly massive collections of time series. We
show that the main bottleneck in mining such massive datasets is the time taken to build the
index, and we thus introduce a novel bulk loading mechanism, the first of this kind specifi-
cally tailored to a time series index. We show how our methods allows mining on datasets that
would otherwise be completely untenable, including the first published experiments to index
one billion time series, and experiments in mining massive data from domains as diverse as
entomology, DNA and web-scale image collections.

Keywords Time series - Data mining - Representations - Indexing - Bulk loading

A. Camerra - T. Palpanas (X))
University of Trento, Trento, Italy
e-mail: themis @disi.unitn.eu

A. Camerra

e-mail: a.camerra@studenti.unitn.it

J. Shieh - E. Keogh
University of California, Riverside, CA, USA
e-mail: shiehj@cs.ucr.edu

E. Keogh
e-mail: eamonn@cs.ucr.edu

T. Rakthanmanon
Kasetsart University, Bangkok, Thailand
e-mail: fengtwr @ku.ac.th

Published online: 16 February 2013 @ Springer

A. Camerra et al.

1 Introduction

The problem of indexing and mining time series has captured the interest of the data mining
and database community for almost two decades [5,7,16,21,23,26,38]. Indeed, several data
mining techniques (e.g., clustering, classification, outlier detection, pattern identification,
motif discovery, and others) have been developed for and applied to time series data. Time
series indexing is relevant to all these techniques, because it allows them to execute fast on
large collections of time series.

However, there remains a huge gap between the scalability of the methods in the current
literature, and the needs of practitioners in many domains, ranging from astronomy [34] to
neuroscience [1]. To illustrate this gap, consider the selection of quotes from unsolicited
emails sent to the current authors, asking for help in indexing massive time series datasets.

e “... wehave about a million samples per minute coming in from 1000 gas turbines around
the world... we need to be able to do similarity search for ...” Lane Desborough, General
Electric.

e ““... an archival rate of 3.6 billion points a day, how can we (do similarity search) in this
data?” Josh Patterson, Tennessee Valley Authority.

Our communication with such companies and research institutions has lead us to the
perhaps surprising conclusion: For all attempts at large-scale mining of time series, it is
the time complexity of building the index that remains the most significant bottleneck, for
example, a state-of-the-art method [21] needs over 6 days to build an index with 100-million
items.

Additionally, there is a pressing need to reduce retrieval times, especially as such data are
clearly doomed to be disk resident. Once a dimensionality-reduced representation (i.e., Dis-
crete Fourier Transform—DFT, Discrete Wavelet Transform—DWT, and Symbolic Aggre-
gate Approximation—SAX) has been decided on, the only way to improve retrieval times is
by optimizing splitting algorithms for tree-based indexes (i.e., R-trees and M-trees), since a
poor splitting policy leads to excessive and useless subdivisions, which create unnecessarily
deep subtrees and cause lengthier traversals.

In this work, we solve both of these problems, by proposing the first bulk loading tech-
nique for a time series index. We achieve this by introducing significant extensions to the
recently introduced multi-resolution symbolic representation indexable Symbolic Aggregate
approXimation (iISAX) [21]. As we will show with the largest (by far) set of time series
indexing experiments ever attempted, we can reduce the index building time by 82 % with a
novel bulk loading scheme, which is the first bulk loading algorithm for a time series index.
Also, our new splitting policy reduces the size of the index by 27 %. The number of disk
page accesses is reduced by more than 70 %, while more than 99.5 % of those accesses are
sequential.

To push the limits of time series data mining, we consider experiments that index
1,000,000,000 (one billion) time series of length 256. To the best of our knowledge, this
is the first time a paper in the literature has reached the one billion mark for similarity search
on multimedia objects of any kind. Previous studies on indexing time series have considered
datasets of 1,000,000 objects [5], 500,000 objects [16], 100,000 objects [23], 6,480 objects
[7], and 27,000 objects [26]. Thus, the 1,000,000,000 objects considered here represent real
progress, beyond the inevitable improvements in hardware performance.

We further show that the scalability achieved by our ideas allows us to consider interesting
data mining problems in entomology, biology, and the web that would otherwise be untenable.
The contributions we make in this paper can be summarized as follows.

@ Springer

Beyond one billion time series

e We present mechanisms that allow iSAX 2.0, a data structure suitable for indexing and
mining time series, to scale to very large datasets.

e We propose a new node splitting algorithm, based on simple statistics that are accurate,
yet efficient to compute. This algorithm leads to an average reduction in the size of the
index by 27 %.

e We introduce the first bulk loading algorithm, specifically designed to operate in the
context of a time series index. The proposed algorithm can dramatically reduce the
number of random disk page accesses (as well as the total number of disk accesses), thus
reducing the time required to build the index by an order of magnitude.

e Furthermore, we describe i SAX 2.0 Clustered and i SAX2+, which improve on our bulk
loading algorithm by optimizing the way the raw time series data are managed. These
new algorithms lead up to a further 40 % reduction in the index build time.

e Finally, we present the first approach that is experimentally validated to scale to data
collections of time series with up to 1 billion objects, giving practitioners in various
domains the opportunity for pain-free analysis and mining of their time series collections
(even on commodity hardware).

We note that this paper is an extension of our previous work on i SAX 2.0 [8]. Apart from
including more details and figures related to the description of iSAX 2.0, as well as of the
experiment based on the DNA data, we also present two new algorithms, namely iSAX 2.0
Clustered and i SAX2+, along with a new set of experiments that evaluate their performance
and show significant improvements over the previous approach.

The rest of the paper is organized as follows. We review some background material in
Sect. 2. Section 3 introduces the basic pillars for our scalable index, iSAX 2.0. In Sect. 4,
we describe iSAX 2.0 Clustered and iSAX2+, which further improve our bulk loading
mechanism. Section 5 discusses the experimental evaluation. Section 6 presents the related
work, and Sect. 7 the conclusions.

2 Preliminaries

As noted previously, there are numerous dimensionality reduction techniques available for
time series. In this section, we review SAX and its recent extension, i SAX, which are at
the heart of our proposed ideas. (For a more detailed discussion, refer to [21].) We note
that recently others have found iSAX useful, for example a group of researchers working
on gesture recognition [27], and another group in order to find time series motifs [9] and
understand their statistical significance [10].

2.1 The SAX representation

In Fig. 1a, we show a time series T of length n = 16. This time series can be represented in
w-dimensional space by a vector of real numbers C = ¢y, ..., ¢y. The ith element of C is
calculated by:

J=E -1+

Fig. 1b shows T converted into this representation (called Piecewise Aggregate Approxima-
tion, or PAA [24]) reducing the dimensionality from 16 to 4.

@ Springer

A. Camerra et al.

(a) (b)

A “raw” time series 7'

PAA(TA) ——
A piecewise constant
approximation of T’
1 |

(0 (d)

iSAX(T,4,4) 00 ISAX(T,4,2) /f
01 ~ 0
10 1
11

LG Lo anme O Ao s

Fig. 1 a A time series 7, of length 16. b A PAA approximation of 7', with 4 segments. A time series 7'
converted into SAX words of cardinality 4 ¢ and cardinality 2 d

Table 1 Converting to a reduced
(by half) cardinality SAX word SAX(T, 4, 16) = T'0 = {1100, 1101, 0110, 0001}

by ignoring trailing bits

Y IBHOTINE [atiing bits SAX(T, 4, 8) = T® = {110, 110, 011, 000}
SAX(T, 4,4) = T4 = {11, 11, 01, 00}
SAX(T, 4,2) =T = {1,1,0, 0}

Note that the PAA coefficients are intrinsically real-valued, and for reasons we will make
clear later, it can be advantageous to have discrete coefficients. We can achieve this dis-
creteness with SAX. The SAX representation takes the PAA representation as an input and
discretizes it into a small alphabet of symbols with cardinality a. The discretization is achieved
by creating a series of breakpoints running parallel to the x-axis and labeling each region
with a discrete label. Any PAA segment that falls in that region can then be mapped to the
appropriate label.

The SAX representation supports arbitrary breakpoints; however, it has been shown that
an effective choice is a sorted list of numbers Breakpoints = By, ..., Ba—1 such that the area
under a N (0, 1) Gaussian curve from B; to §;+1 = 1/a produces symbols with approximate
equi-probability.

A SAX word is simply a vector of discrete numbers. For example, the SAX word shown
in Fig. 1c can be written as {3, 3, 1, 0} or in binary form as {11, 11, 01, 00}.

We denote this word as T* and assume that it is produced by the function SAX(T ,4,4).
The “T” is written in boldface to distinguish it from the raw data from which it was derived,
and the superscript of “4” denotes the cardinality of the symbols. Under this notation, the
SAX word shown in Fig. 1d can be written as SAX(T, 4,2) = T2 = {1,1, 0, 0}. Note that
once we have T#, we can derive T2 by simply ignoring the trailing bits from each symbol
within the SAX word. Naturally, this is a recursive property. If we converted 7 to SAX with
a cardinality of 8, we have SAX(T, 4, 8) = T3 = {110, 110, 011, 000} ; from this, we can
convert to any lower resolution that differs by a power of two, by ignoring the correct number
of bits. Table 1 makes this clearer.

The ability to change cardinalities on the fly is exploitable by our splitting policies, as we
will demonstrate in Sect. 3.2.

@ Springer

Beyond one billion time series

2.2 The iSAX representation

It is tedious to write out binary strings, so we can use integers to represent SAX symbols.
For example:

SAX(T, 4,8) = T® = {110, 110, 011, 000} = {6, 6, 3, 0}

However, this can make the SAX word ambiguous, since we cannot be sure what the cardinal-
ity is (although we know it is at least 7). We resolve this ambiguity by writing the cardinality
as a superscript. From the above example:

iISAX(T, 4,8) = T® = {68, 68, 3%, 08}
One of the key properties of the i SAX representation is the ability to compare two i SAX words
of different cardinalities, as well as iSAX words where each word has mixed cardinalities
(such as {111, 11, 101, 0} = {78, 3%, 58, 02}) 0.

iSAX support for mixed cardinalities is a feature which allows an index structure to
split along any arbitrary dimension or symbol. It is this flexibility which allows iSAX to
be indexable (as opposed to classic SAX). As we demonstrate in the follow sections, we
can exploit this property to create a novel splitting policy that allows for extremely efficient
indexing of massive datasets.

2.3 Indexing iSAX

iSAX’s variable granularity allows us to index time series. Using the iSAX representation,
and by defining values for the cardinality » and wordlength w, we can produce a set of b¥
different mutually exclusive iSAX words. These can be represented by files on disk, for
example the word (6%, 6%, 3%, 0%} can be mappedto 6.8_6.8_3.8_0.8.txt

A user-defined threshold ¢/ defines the maximum number of time series that a file can
hold.

Imagine that we are in the process of building an index and have chosen th = 100. At some
point, there may be exactly 100 time series mapped to the iSAX word {24, 3%, 3%, 24}. If we
come across another time series that maps in the same place, we have an overflow, so we
need to split the file. The idea is to choose one i SAX symbol, examine an additional bit, and
use its value to create two new files. In this case, the original file: {24, 3, 3%, 24} splits into
(48,34, 3% 24} (child file 1), and {5%, 3%, 3%, 24} (child file 2). For some time series in the
file, the extra bit in their first iSAX symbol was a 1 and for others, it was a 0. In the former
case, they are remapped to child 1, while in the latter to child 2.

The use of the i SAX representation has led to the creation of a hierarchical, but unbalanced,
index structure that contains non-overlapping regions and has a controlled fan-out rate. The
three classes of nodes found in this index structure are described below.

Root Node: The root node is the representative of the complete i SAX space and is similar
in functionality to an internal node. The root node contains no SAX representation, but only
pointers to the children nodes (in the worst case, their number is 2%).

Leaf Node: This is a leaf level node, which contains a pointer to an index file on disk with
the raw time series entries. The node itself stores the highest cardinality i SAX word for each
time series.

Internal Node: An internal node designates a splitin i SAX space and is created when the
number of time series contained by a leaf node exceeds th. The internal node splits the i SAX
space by promotion of cardinal values along one or more dimensions as per the iterative
doubling policy. iSAX employs binary splits along a single dimension, using round robin to

@ Springer

A. Camerra et al.

determine the split dimension. Thus, internal nodes store a SAX representation and pointers
to their two children.

3 The iSAX 2.0 index

As discussed earlier, iSAX is a tree structure that is not balanced. In addition, there is
no special provision for mechanisms that can facilitate the ingestion of large collections
of time series into the index. Through our initial experimentation, we observed that these
characteristics can lead to prohibitively long index creation times. For example, indexing a
dataset with 500 million time series would need 20 days to complete. Even a modest dataset
with 100 million time series requires 2 days in order to be indexed (detailed results are
presented in Sect. 5).

Clearly, having to wait for such an extended amount of time before analysis and mining
is impractical. This becomes even more pronounced in applications where large numbers of
time series are produced on a regular basis and need to be analyzed before proceeding with
additional experiments.

Note that the above criticism of i SAX refers mainly to index construction and not the utility
of the index. Previous work has demonstrated the effectiveness and efficiency of iSAX for
performing various data analysis and mining tasks [21]. The performance of iSAX on these
tasks scales sub-linearly as a function of the number of time series indexed. During index
creation, the primary bottleneck is hard drive performance and the associated I/O costs. As
the amount of indexed data increases, this bottleneck becomes a hard constraint which limits
the overall scalability of the index.

In order to overcome the above problems, we propose the following two complementary
techniques to improve the scalability of iSAX.

e A new algorithm for time series bulk loading that considerably reduces the number of
total disk page accesses, while also minimizing the number of random disk page accesses.

e A new splitting policy for the internal nodes of the index resulting in a significantly more
compact indexing structure, hence further reducing the I/O cost.

In the following sections, we discuss in more detail these extensions of the iSAX index
structure that enables it to efficiently operate with data collections orders of magnitude larger
than previously tested. We will refer to this new i SAX index as iSAX 2.0.

3.1 Bulk loading: main algorithm

Inserting a large collection of time series into the index iteratively is a very expensive opera-
tion, involving a high number of disk I/O operations. This is because for each time series, we
have to store the raw data on disk and insert into the index the corresponding i SAX repre-
sentation. Assuming that the entire index is in main memory, the above procedure translates
to one random disk access for every time series in the dataset in the best case (when there is
no leaf node split), or more random accesses otherwise.

We now describe an algorithm for bulk loading, which can effectively reduce the number
of disk I/O operations. The main idea of the algorithm is that instead of developing the entire
index at once, we are focusing our efforts on building the distinct subtrees of the index one at a
time. This is beneficial, because by growing a specific subtree of the index, we are effectively
minimizing the number of node split operations and streamlining all the disk accesses. Using
the proposed algorithm, we can achieve the following.

@ Springer

Beyond one billion time series

e Minimize the required disk I/O, since we avoid revisiting leaf nodes in order to split
them (which would mean extra disk accesses to read their contents from disk and then
writing back the contents of the new leaf nodes). At the same time, we make sure that
every time we access the disk for writing the contents of a leaf node, we write on disk
all of its contents at once.

e Maximize the number of sequential disk page accesses, in the case where the contents
of a leaf node do not fit in a single disk page.

We note that the algorithm we propose is novel since the existing approaches on bulk loading
are not applicable in our case (we discuss this in detail in Sect. 6).

3.1.1 Algorithm basics

In order to achieve the goals mentioned above, we need to effectively group the time series
that will end up in a particular subtree of the index and process them all together. If we
could fit all time series in main memory, then it would be possible to create such groups after
processing all time series. We could subsequently build each distinct subtree of the index
sequentially, creating all necessary leaf nodes one after the other, without needing to revisit
any of the leaf nodes already created.

In our case, however, we have to develop a solution under the (realistic) assumption that
the entire dataset does not fit in main memory. In the following paragraphs, we discuss the
details of the bulk loading algorithm we propose, which operates under the assumption of
limited main memory (i.e., less than necessary to fit the index and the entire dataset). The
pseudocode of the algorithm is depicted in Fig. 3.

Our algorithm uses two main memory buffer layers, namely First Buffer Layer (FBL) and
Leaf Buffer Layer (LBL). The FBL corresponds to the first level of iSAX 2.0 nodes. This
correspondence remains stable throughout the creation of the index, because unlike nodes in
other indexing structures, iSAX 2.0 nodes are not subject to shifts in the course of repetitive
insertions (since changes in the leaf nodes due to splits are not propagated upwards the iSAX
2.0 tree). The LBL corresponds to leaf nodes. There are no buffers related to the internal (i.e.,
other than the first level) iSAX 2.0 nodes.

These two buffering layers are different in nature. The role of the buffers in FBL is to
cluster together time series that will end up in the same i SAX 2.0 subtree, rooted in one of
the direct children of the root. The buffers in FBL do not have a restriction in their size and
they grow till they occupy all the available main memory. In contrast, the buffers in LBL are
used to gather all the time series of leaf nodes and flush them to disk. These buffers have the
same size as the size of the leaf nodes (on disk), which in general is more than a single disk

page.

3.1.2 Description of the algorithm

The algorithm operates in two phases, which alternate until the entire dataset is processed
(i.e., indexed).

Phase 1: The algorithm reads time series and inserts them in the corresponding buffer in
FBL (lines 4-16 in Fig. 3). This phase continues until the main memory is almost full. (We
need a small amount of extra memory to allocate new nodes during Phase 2. Yet, this is only
needed for the beginning of the first iteration of the loop at lines 12-16, since each iteration
releases memory.)

@ Springer

A. Camerra et al.

'
f
N\~ insertnewts

H s I

P .=y RS
ltlf, (2} (EY
o - A

main memory
disk

| _,—J"‘I — |"ll [
LBL __;“\:IC_J | J

main memaory
disk

LBL

main memory|

disk % — L —
T B9 B9
P :

Fig. 2 The bulk loading algorithm. (fop) Phase 1 fills the FBL buffers with time series until main memory is
full. (middle) Phase 2, processing subtree rooted at node /1 (subtrees rooted at nodes L1 and L2 have already
been flushed to disk). (bottom) After phase 2

At the end of Phase 1, we have time series collected in the FBL buffers. This situation
is depicted in Figure 2 (fop). Note that even though we have created some FBL buffers
(according to the time series processed so far), the corresponding (leaf) nodes L1, L2, and
L3, of the index are not yet created.

Phase 2: The algorithm proceeds by moving the time series contained in each FBL buffer
to the appropriate LBL buffers. During this phase, the algorithm processes the buffers in
FBL sequentially. For each FBL buffer, the algorithm reads the time series and creates all the

@ Springer

Beyond one billion time series

necessary internal (lines 25—-33) and leaf (lines 36-39) iSAX 2.0 nodes in order to index these
time series. It basically creates the entire subtree (or any missing nodes in case a subtree has
already been constructed) rooted at the node corresponding to that FBL buffer. For example,
in Figure 2 (middle), by emptying the right-most FBL buffer, we create the subtree rooted
at internal node /1. The algorithm also creates for each leaf node a corresponding LBL
buffer (line 38). When all time series of a specific FBL buffer have been moved down to
the corresponding LBL buffers, the algorithm flushes these LBL buffers to disk (line 15).
Notice that in Figure 2 (bottom), the LBL buffers for the subtrees rooted at nodes L1 and L2
have already been flushed to disk, and all the available memory can be dedicated to the LBL
buffers of the /1 subtree.

At the end of Phase 2 of the algorithm, all the time series from the FBL buffers have moved
down the tree to the appropriate leaf nodes (creating new ones if necessary) and LBL buffers,
and then from the LBL buffers to the disk [Fig. 2 (bottom)]. This means that all buffers (both
FBL and LBL) are empty, and we are ready to continue processing the dataset, going back
to Phase 1 of the algorithm. This process continues until the entire dataset has been indexed.

Note that the way the algorithm works (Fig. 3), all LBL buffers are flushed to disk at
the end of Phase 2. An interesting question is whether we would gain in performance by not
flushing the buffers that are almost empty (thus saving disk accesses that do little actual work).
This strategy would certainly be beneficial for the first time around. It turns out however that
overall it would not lead to better performance. This is because it would reduce the available
main memory for the FBL buffers (by reserving memory for the LBL buffers not flushed
to disk) and, consequently, result to processing less time series during the subsequent Phase
1. We experimentally validated this argument; therefore, in the rest of this study, we do not
report detailed results on this variation of the algorithm.

3.2 Node splitting policy

It is evident that the size of an indexing structure affects index creation time: a more compact
structure translates to a smaller number of disk accesses.

Unlike other indexing structures, the iSAX index is not balanced. This was a design
decision that led to a simple node splitting policy that does not take into account the data
contained in the node to be split. In some cases, splitting a node may still result in all the
time series ending up in one of the two new nodes, thus necessitating an additional split. This
design decision may lead to a poor utilization of the leaf nodes and results in a larger and
deeper index structure.

We propose a node splitting policy that makes informed decisions based on the knowledge
of the distribution of the data stored in each node. The intuition behind this algorithm is the
following. When splitting a node, we wish to distribute the time series in this node equally to
the two new nodes. In order to do this exactly, we would have to examine all segments and
for each segment, all possible cardinalities. This approach though would be prohibitively
expensive. Our algorithm is instead examining for each segment the distributions of the
highest cardinality symbols across the relevant time series. Then, it splits the node on the
segment for which the distribution of the symbols indicates there is a high probability to
divide the time series into the two new nodes, therefore avoiding the problem of useless node
splits.

Consider the example depicted in Fig. 4, where we assume an i SAX word of length (i.e.,
number of segments) four, and we would like to split a node whose cardinality is 2 (for all
segments). For each segment, we compute the i + 30 range of the corresponding symbols.

@ Springer

A. Camerra et al.

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

FBL[] // array of FBL buffers
LBL[] // array of LBL buffers
Function Bulk_Insert()
while (more time series to index)
ts_new = next time series to be indexed
iISAX_word = iSAX representation of ts_new
if (main memory still available)
if (no FBL buffer contains iSAX_word)
create new FBL buffer corresponding to iSAX_word
add ts_new to FBL[]
else if (main memory is full)
for each buf in FBL([]
for each ts in buf
call function Insert(ts)
flush LBL buffers created duting insertion (corresponding to buf)
remove from memory those LBL buffers

Function Insert(ts_new)
iSAX_word = iSAX representation of ts_new
if (subtree cotresponding to iISAX_word exists)
// current node has a child node to receive ts_new
n = destination node of ts_new // route ts_new down the tree
if (nis leaf node)
if (n not full) // node does not need to be split
add ts_new into LBL[n] ~ // buffer corresponding to n
else // node n needs to be split
for each tsinn
// read all time seties of n (from disk)
add ts to LBL[n]
n_new = new internal node
for each ts in LBL[n]
n_new.Insert(ts)
n_new.Insert(ts_new)
remove n // all time series moved under n_new
else if (n is internal node)
n.Insert(ts_new)
else // current node does not have a child node to receive ts_new
n_new_leaf = new leaf node
create new LBL buffer corresponding to n_new_leaf
add ts_new to this new LBL buffer

Fig. 3 Pseudocode for the bulk loading algorithm

breakpoint for cardinality 2

1 [3] +30(3]

u [4] +30[4]

segment 1 segment 2 segment 3 segment 4

Fig. 4 Node splitting policy example

breakpoints for cardinality 4

We observe that this range for segment 1 lies entirely below the lowest breakpoint of cardi-
nality 4 (i.e., the cardinality of the two new nodes after the split). Only the ranges of segments
2 and 3 cross some breakpoint of cardinality 4. Between these two, the algorithm will pick
to split on segment 3, because its i value lies closer to a breakpoint than that of segment 2.
This is an indication that with high probability, some of the time series in the node to be split
will end up in the new node representing the area above the breakpoint, while the rest will
move to the second new node, thus achieving a balanced split.

@ Springer

Beyond one billion time series

Function Split
mean| | = ComputeSymbolMean () // using highest iSAX representation .
stdev] | = ComputeSymbolStDev() // already computed during insertions
segmentToSplit = none
for each segment s in the SAX word
b = getBreakPoint(s) // breakpoint of s with increased cardinality
if (b within mean[sj{ + 3stdev[s])
// segment s is candidate for splitting
if (mean[s] closer to b than segmentToSplit)
segmentToSplit = s
segmentToSplit.IncreaseCardinality()

e L N O

Fig. 5 Pseudocode for the node splitting algorithm

The pseudocode for the node splitting algorithm is shown in Fig. 5 (called every time
we have to create new internal node: lines 29 and 37 in Fig. 3). The algorithm starts by
computing for each segment the first two moments (mean p and standard deviation o) of
the distribution of symbols over all the time series in the node to be split (lines 2-3). Note
that this computation does not incur additional cost. Remember that the highest detail iSAX
approximation of each time series is already stored along with the time series themselves,
and we need to read those in order to materialize the node split.

Subsequently, the algorithm has to choose one of the segments for splitting the node.
For each segment, the algorithm examines whether the range generated by n £ 30 crosses
any of the iSAX breakpoints of the immediately higher cardinality (lines 6~10). Among the
segments for which this is true, the algorithm picks the one whose p value lies closer to a
breakpoint (lines 9-10).

4 Efficient handling of raw time series data

In the previous section, we propose mechanisms geared toward the efficient bulk loading of
very large collections of time series. We note though that in the algorithms, we described
there is no distinction between the approximations of the time series (i.e., their iSAX rep-
resentation) and the raw time series (i.e., the detailed sequence of all the values of the time
series).

The above observation is important for the following reason. Every time that we need to
split a leaf node, we have to read the raw time series, as well as the approximations, for all
the time series contained in this node from the disk. Then, we create the two new children
nodes, and we proceed by inserting all these time series in the new nodes, which translates
to writing back to disk the same raw time series and their approximations.

Bulk loading the index with a large collection of time series will lead to a large number
of node splits (as the index grows in size), and for each one of these splits, we will have to
pay the price of reading/writing the raw time series from/to disk multiple times. Evidently,
this situation is suboptimal, causing a high number of unnecessary disk I/O.

The main idea for resolving this problem is that the raw time series data are not needed
in order to build the iSAX index: the highest cardinality iSAX approximation of each time
series is enough in order to build the index in its final form. Given that this approximation
is one to two orders of magnitude smaller in size than the raw time series, the potential for
further disk I/O savings is significant. Then, we just need an efficient way to store the raw
time series in the correct leaf nodes of the index.

To this effect, we describe two extensions of the basic bulk loading algorithm proposed
earlier. These extensions are able to reduce the number of unnecessary disk I/O related to the
management of the raw time series data.

@ Springer

A. Camerra et al.

main memory ! i ;
disk = L L

FBL clusters ,_J\(—
Fig. 6 The iSAX 2.0 Clustered index at the end of the first iteration. The FBL Clusters contain the raw time

series data corresponding to each one of the FBL buffers, while the leaf node disk pages only contain the
approximations of the time series in each leaf node

4.1 The iISAX 2.0 clustered index

As mentioned above, even if we just use the approximations in order to build the index, at
the end, we still need to move the raw time series data to the disk pages of the corresponding
leaf nodes (i.e., the leaf nodes to which these raw time series belong to).

The main challenge in this process is to minimize the random disk accesses, by making
sure that the time series that end up in the same leaf node of the index are (temporarily) stored
in the same (or contiguous) disk pages.!

The first approach to address this problem, iSAX 2.0 Clustered, is a simple extension of
the basic algorithm, which uses an extra set of disk pages for clustering together the raw time
series that will potentially end up in the same leaf node. We call these disk pages the FBL
Clusters.

The iSAX 2.0 Clustered approach works as follows. In each iteration, the first phase is
the same as in iSAX 2.0 (Sect. 3): the raw time series and their approximations are stored
in the FBL buffers. During the second phase, we propagate down to the iSAX index, to the
LBL buffers, and to the leaf node disk pages only the approximations of the time series. The
raw time series are flushed to disk directly from the FBL buffers to the FBL Clusters. This
situation is depicted in Fig. 6.

We note that there is a one-to-one mapping between the FBL buffers and the FBL Clusters.
This mapping remains stable throughout the bulk loading process (remember that the iSAX
index is not balanced, and the children of the root node will never change). Therefore, in the
subsequent iterations, the raw time series of the same FBL buffers will be flushed to the same
FBL Clusters.

At the end of the procedure, when all the time series have been processed, we need to
move the raw time series data from the FBL Clusters to the correct leaf node disk pages.

! This temporary storage on disk refers to storing the raw time series data for the period between the time
when the time series is processed in order to be indexed, and the time when the raw time series has to be
moved to the correct leaf node disk page.

@ Springer

Beyond one billion time series

LBL

|
main memory !
disk L

Fig. 7 Moving the raw time series data to their final position for iSAX 2.0 Clustered: the last FBL Cluster
(corresponding to node /1) is being processed. The two leaf node disk pages on the left already contain
the raw time series data, as well as their approximations. The two disk pages on the right only contain the
approximations

This is done by reading the FBL Clusters one by one (each FBL Cluster may be several disk
pages long) and then moving down the raw time series to the corresponding leaf nodes. All
the necessary leaf nodes are already in place and no splits are needed: the iSAX tree has
reached its final form (based on the approximations).

During this process, we once again make use of the LBL buffers in order to ensure that
most of the disk I/O involves sequential accesses. Figure 7 shows the situation where we
have already processed the FBL Clusters corresponding to the first two FBL buffers, L1 and
L2, and we are ready to process the last FBL Cluster, corresponding to node /1.

4.2 The iSax2+ index

The iSAX 2.0 Clustered approach that we presented above is expected to lead to a better
time performance when compared to iSAX 2.0 since it does not require to read from and
write to disk the raw time series data every time that a leaf node splits. Nevertheless, we still
have to do a fair amount of work for processing the raw time series: we need to read from
disk the raw time series for the first time in order to compute the approximation and start the
insertion process to the index; we need to store the raw time series data on disk, in one of
the FBL Clusters; we need to read the same data from disk after the index-growing phase is
complete; and last, we need to write the raw time series data back to disk in the correct leaf
node disk page. The question now becomes whether we can avoid some of this work.

The iSAX2+ approach is giving a positive answer to this question, by taking advantage
of the following observation: during the bulk loading process, several time series end up in
leaf nodes that will not split till the end of the process. This means that for these time series,
there is no need to touch them again (read from, or write to disk), thus saving a considerable
number of disk I/O that iSAX 2.0 Clustered does not avoid.

Intuitively, the above observation on which iSAX2+ is based is true, because the iSAX
index is not balanced and its root has a high fanout. This makes the index grow quite fast in

@ Springer

A. Camerra et al.

LBL
main memory
disk [

Fig. 8 Result of inserting time series x, y, and z to the index shown in Fig. 2 (bottom), according to i SAX2+.
In addition to leaf nodes, internal nodes as well point to pages on disk (shown in bold, dotted lines) that contain
raw time series data

the beginning of the bulk loading process, with its shape stabilizing well before the end of
the process. Indicatively, in our experiment with one billion time series, the index became
almost stable after having inserted a bit more than 500 million time series: after that point,
only a small percentage of the leaf nodes were required to split.

In iSAX2+, the first iteration of a bulk loading process is exactly the same as iSAX
2.0: raw time series together with their approximations are first inserted in the FBL buffers,
then moved to the LBL buffers, and finally flushed to disk. Note that it is at the end of the
first iteration that we write to disk for the first time. From the second iteration onwards,
iSAX2+ differentiates itself only in the way that it handles leaf node splits. In particular, it
implements the following algorithm. When a leaf node needs to be split, i SAX2+ reads from
the corresponding leaf node disk page only the approximations of the time series contained
in that leaf node. It creates the two children nodes and inserts in them the approximations of
the time series coming from the parent (i.e., the old leaf that was split), as well as the raw time
series data and their approximations coming from the LBL buffer (i.e., the new time series that
were processed in the current iteration of the bulk loading process). The raw time series data
of the old leaf remain in the same disk page on disk, pointed at by a node that has now become
an internal node. This is a major difference of iSAX2+ to the previous approaches, where
both internal nodes and leaf nodes may point to disk pages that contain raw time series data.

Figure 8 depicts the result of inserting (during the second iteration) time series x, y, and
7 to the state of the index shown in Fig. 2 (bottom). In the latter figure, node L2 contains
time series a, and node L3 contains time series b and c¢. Assume that when x and y arrive,
we need to split L2. The result (refer to Fig. 8) is the creation of two new leaf nodes, L5
and L6, and the conversion of L2 into the internal node /2. Assume that L5 receives two
of the time series, @ and x: only the approximation of a gets stored in LS5, while both the
raw time series x and its approximation (omitted from the figure for simplicity) are stored in
L5. Even though /2 is an internal node, it points to a page on disk containing the raw time
series data for a. Similarly, after inserting time series z, leaf node L3 becomes internal node
I3 with children L7 and L8. I3 points to a disk page containing the raw time series data
for b and c (i.e., the two time series that L3 used to contain). L7 contains the approximations

@ Springer

Beyond one billion time series

FBL

LBL
main memory
disk

a

Fig. 9 During the final step of i SAX2+, the raw time series in the disk pages pointed to by internal nodes are
read in main memory and moved to the correct leaf node in the index

of b and ¢, and L8 contains the raw time series and the approximation (omitted from the
figure for simplicity) of z.

Following the process described above, we end up with an index, where raw time series
data are scattered among leaf nodes, as well as several internal nodes. Therefore, when all the
time series have been processed, we need to move the raw time series data from all internal
nodes to the correct leaf node disk pages. In order to achieve this, iSAX2+ traverses the
index in depth-first order, reads in memory all the raw time series data pointed to by internal
nodes, and flushes them to disk (making use of the LBL buffers) in the corresponding leaf
nodes (shown in Fig. 9). This step is fast, because it involves moving data down only a
particular subtree of the index. Note that during this step of the algorithm, there is no node
splitting; all the required splits have already taken place, using the approximations of the time
series.

5 Experimental evaluation

We have designed all experiments such that they are reproducible. To this end, we have built
a webpage which contains all datasets used in this work, together with spreadsheets that
contain the raw numbers displayed in all the figures [14].

Experimental evaluation was conducted on an Intel Xeon E5504 with 24 GB of main
memory, 2TB Seagate Barracuda LP hard disk, running Windows Vista Business SP2. All
code is in C#/.NET 3.5 Framework. For the case study in Sect. 5.2, we used an AMD Athlon
64 X2 5600+ with 3 GB of memory, 400 GB Seagate Barracuda 7200.10 hard disk, and
running Windows XP SP2 (with /3 GB switch).

Our experiments are divided into three sections: A) tests that measure the classic metrics
of disk accesses, wall clock time, index size, sensitivity to parameters, etc. B) a detailed case
study of a deployed use of our system in an important entomology problem, and C) examples
of higher level data mining algorithms built using our index as a subroutine.

The algorithms that we evaluate are iSAX 2.0, and the original iSAX, where all the
available main memory is used for disk buffer management (i.e., buffers corresponding to

@ Springer

A. Camerra et al.

1 DFT __ PAADWT
B E 081 cpEB
%2 306 SAX
g 5
%g 0.4
s 0.2

0

0 50 100 150 200 250

Cardinality of SAX words

Fig. 10 A comparison of the tightness of lower bound for various time series representations. All approaches
except SAX use a constant eight bytes and therefore have a constant tightness of lower bound. The results for
SAX show the effect of varying the cardinality from 2 to 256 (and hence the number of bits from 2 to 8)

the leaf level nodes). We also compare to i SAX-BufferTree, which is an adaptation of the
Buffered R-Tree bulk loading algorithm [28]. In this case, instead of having buffers only at the
first and leaf levels, we also have some buffers at intermediate levels of the index tree. These
buffers are of equal size, which depends on the size of the index (i.e., the buffer size decreases
as the index grows). An important distinction of iSAX 2.0 is that it is the only bulk loading
strategy of the three specifically designed for a non-balanced index tree. It adaptively resizes
(FBL) and positions (LBL) its memory buffers according to the needs of the incoming time
series. The experiments demonstrate that this choice leads to significant savings in terms of
disk page accesses.

We further make the following observations. First, most of the previous comparisons
of indexing methods for time series simply reduce to claims about the relative merits of a
time series representation method, that is, DWT versus DFT methods. However, there is an
increasing understanding that this is a red-herring. It has been forcedly shown that averaged
over many datasets, the time series representation makes very little difference [11,15,31,35].

Second, a unique property of iSAX is its tiny bit-aware index size. This means that an
iSAX index is very small compared to the data it indexes, and thus we can fit the entire index
in main memory even for the massive datasets we wish to consider. In order to compare to
other methods, we have to consider the case of what to do when the index itself is mostly
disk resident, and in virtually every case the original authors provide no guidance. For com-
pleteness, we show that using the iSAX representation, we obtain the same benefit as other
methods (in terms of tightness of lower bounds), at a fraction of the space cost.

We can measure the tightness of the lower bounds, which is defined as the lower bounding
distance over the true distance. Figure 10 shows this for random walk time series of length
256, with eight PAA/DWT coefficients, eight DFT coefficients (using the complex conjugate
property), eight Chebyshev (CHEB) polynomials coefficients, and a SAX representation also
of length eight. We varied the cardinality of SAX from 2 to 256, whereas the other methods
use a constant eight bytes per coefficient, and thus have a constant value for tightness of
lower bounds in this experiment. We averaged results over 1,000 random pairs of time series.
The results suggest that there is little reason to choose between PAA/DWT/DFT/CHEB, as
has been noted elsewhere [15]. They also show that once the cardinality of iSAX is >50, it
is competitive with the other methods, even though it requires only one-eighth of the space
(one byte per coefficient versus eight bytes per coefficient for PAA/DWT/DFT/CHEB).

5.1 Scalability of iSAX 2.0
In this section, we present experimental results on the scalability of iSAX 2.0. In particular,

we evaluate the effect of the proposed node splitting and bulk loading algorithms on the time
to build and the size of the index.

@ Springer

Beyond one billion time series

5.1.1 Splitting policy evaluation

We ran experiments in order to evaluate the new splitting policy implemented in iSAX
2.0. In these experiments, we compare our results against those obtained by the use of the
iSAX splitting policy. We generated datasets of sizes 1-100 million time series, where each
time series has length of 256, generated as follows. In order to generate the series, we use
a standard normal distribution N(0,1), where each point in the time series is generated as
Xi+1 = N(x;, 1). We report the averages over these 10 runs (their variance was 5 % or less
for all our experiments).

Even if the datasets used in this section are smaller than the other used in this paper, the
results follow the same trends. We note that we obtain similar results to the ones presented
below when instead of varying the number of time series, we vary the threshold th. We
omit these results for brevity. (All experiments in this section were run using the proposed
bulk loading algorithm, as well. Though, this fact does not affect the interpretation of the
results.)

Index Size: In the first set of experiments, we measure the total size of the index (in
number of nodes), after having indexed the entire dataset. Figure 11 (bottom) shows that
there is a quadratic dependency between the number of nodes in the index and the number
of time series indexed.

The results show that the new splitting policy implemented in iSAX 2.0 can effectively
reduce the number of nodes required by the index. On average, iSAX 2.0 needs 34 % less
nodes than the iSAX index. These results validate our premise that using the first moments
of the distributions of the i SAX symbols is a simple, yet effective mechanism for identifying
suitable split segments.

The results also demonstrate the significant impact that the leaf node capacity has on
the index. Evidently, when this capacity is decreased, the index needs to grow many more
internal and leaf nodes in order to accommodate the time series to be indexed.

Index Build Time: In the next set of experiments, we measure the time needed to build
the index as a function of the number of time series [Fig. 11 (top)]. We observe that the curves
in the graph follow the same trends as before, with the time to build the index increasing
quadratically.

This result is not surprising, since the build time is strongly correlated with the number
of nodes of the index. Once again, we observe the benefit of the proposed node splitting
algorithm, which leads to an average reduction of 30 % in the index built time. Therefore,
maintaining a small index size is highly desirable.

Leaf Node Utilization: We now investigate the average utilization (or occupancy) of the
leaf nodes. A bad splitting policy that does not take into account information on the data
contained in the nodes to be split can generate unbalanced splits, leading to low usage of
the leaf nodes and to long insertion times. Remember that having many leaf nodes with
low utilization translates to the need for an increased number of leaf nodes (in order to
accommodate the same number of time series) and, consequently, for an increased number
of disk page accesses.

The graph of Fig. 11 (middle) shows that the new splitting algorithm results in leaf nodes
with an average of 54 % more occupancy than the old splitting algorithm, underlining the
effectiveness of the proposed policy. The experiments also show that there is no variability
in the leaf node utilization as we vary the number of time series in the index.

@ Springer

A. Camerra et al.

Fig. 11 Splitting policy 20 7
comparison between i SAX (old) 18 1
and iSAX 2.0 (new) when
varying the size of the dataset:
construction time (fop), leaf node
occupancy (middle), and number
of nodes (bottom)

Build Time (minutes)
[+:]

67 Old build time
4 1 -
2 1 ~ New build time
0 -7 T T T T J
im 5M 10M 25M 50M 100M
Number of Time Series
B0 New node occupancy
a vt
‘o\: 60
E* sod Old node occupancy
= e ———————
2, 40 4
=
g 304
2 20 -
-g 10 +
z
0 - T T T T]
1M 5M 10M 25M 50M 100M
Number of Time Series
2m-

Old index size B

~New index size

im S.M 1(.JM ZSIM 5(.JM IOIOIVI
Number of Time Series

Index Size (# Nodes)
3

5.1.2 Bulk loading evaluation

In order to test the proposed approach, we index a set of datasets with sizes from 100 million
to 1 billion time series composed by random walks of length 256. Each data point in the
time series is produced as x;+1 = N(x;, 1), where N (0, 1) is a standard normal distribution.
We use a leaf node threshold 2 = 8,000 and wordlength w = 8. We compare the obtained
results with the performance of the iSAX index.

Index Build Time: The first experiment shows the time needed to build the index for the
two different methods [see Fig. 12 (top)]. The results demonstrate the scalability of iSAX 2.0
as the dataset size increases, with a trend that is almost linear. In contrast, the time to build the
iSAX index grows much faster and very quickly becomes prohibitively expensive. It took 12
and 20 days to index the datasets of size 400 and 500 million time series, respectively. At that
point, though, we were forced to discontinue the experiments with i SAX. We estimated that

@ Springer

Beyond one billion time series

iSAX-BufferTree
iISAX

4.E+02 1

iSAX 2.0

2.E+02

Build Time (hours)

0.E+00 -
iSAX-BufferTree

iSAX
2.E+09 A iSAX 2.0

1.E+09 4

Disk Page Accesses

0.E+00 -
1.E+10 q

1LE+08 " iSAX 2.0 (sequential)

1.E+06
1.E+04 4
1.E+02

1.E+00 T T T T T T 1
100M 200M 300M 400M 500M 800M 900M 1B

iSAX 2.0 (random)

Disk Page Accesses

Time series Indexed

Fig. 12 Index metrics as a function of dataset sizes. (fop) Time to build an index. (middle) Disk page accesses
between indexing methods. (bottom) Distribution of sequential and random disk page accesses for iSAX 2.0

it would take around 56 days to index 1 billion time series. The i SAX-BufferTree algorithm
initially performs better than i SAX, but its performance deteriorates as the size of the dataset
increases.

The problem with the above two strategies is that they cannot effectively concentrate the
available memory resources in the areas of the index that are most needed. Instead, they
allocate memory in a more balanced way across the index, which does not result in the best
performance since in our case the index is not a balanced tree.

Using the proposed bulk loading algorithm, iSAX 2.0 manages to index a dataset with
100 million time series in just 16 h. The one billion time series dataset is indexed in <400 h
(about 16 days), which corresponds to an indexing time of 1ms/time series.

Disk Page Accesses: In Fig. 12 (middle), we show the number of disk page accesses
performed by the three indexing methods during the same experiments.

The graph shows that when using the bulk loading algorithm, we need to access the disk
only half the times as before. This is already a significant improvement in the performance
of the algorithm. Though, if we take a closer look at the experimental results, we make
another very interesting observation [refer to Fig. 12 (bottom)]. More than 99.5 % of the
disk page accesses that iSAX 2.0 has to perform are sequential accesses, which means that
random accesses are consistently two orders of magnitude less than the number of sequential
accesses. In contrast, most of the disk accesses that the i SAX and i SAX-BufferTree strategies
perform are much more expensive random accesses (since they involve the flushing of buffers
corresponding to different nodes of the index), leading to an index build time that is an order
of magnitude larger than that of iSAX 2.0.

iSAX 2.0 Clustered and iSAX2+: In Fig. 13, we show the same results for iSAX 2.0
Clustered and iSAX2+. When compared to iSAX 2.0, iSAX 2.0 Clustered exhibits an
improvement of 30 % in the time to build the index and iSAX2+ an improvement of 40 %

@ Springer

A. Camerra et al.

450 -
- 400. iSAX 2.0
§ 350+ -
S =Sy iSAX 2.0 Clustered
= 250 A
a 200 A
£ 150 A
Q
£ 100
F 50

0 - : - : . : - .
100M 200M 300M 400M 500M 800M S00M 1B
Time Series Indexed

3.00E+09 -
@ 2.50E+09 -
3 iSAX 2.0
@ 2.00E+09 - - .
é iSAX 2.0 Clustered
o 1.50E+09
4
2 1.00E+09 -
i ISAX2+
S 5006408 -

0.00E+00 . - r . r r - .

100M 200M 300M 400M 500M 800M 900M 1B
Time Series Indexed

Fig. 13 Index metrics as a function of dataset sizes for iSAX 2.0 Clustered and i SAX2+. (top) Time to build
an index. (bottom) Disk page accesses between indexing methods

[Fig. 13 (top)]. iSAX2+ is able to index one billion time series in just 10 days, in 82 % less
time than i SAX. These trends are explained by the number of disk page accesses required by
iSAX 2.0 Clustered and i SAX2+, which are less than the disk page accesses of iSAX 2.0 by
32 % and 47 % (on the average), respectively. When compared to iSAX, iSAX2+ achieves
a reduction of around 74 %.

These results show that the bulk loading algorithm is extremely effective in reducing the
I/O cost, thus enabling iSAX2+ to index 1,000,000,000 time series.

5.2 A case study in entomology

Many insects such as aphids, thrips, and leathoppers feed on plants by puncturing their
membranes and sucking up the contents. This behavior can spread disease from plant to
plant causing discoloration, deformities, and reduced marketability of the crop. It is dif-
ficult to overstate the damage these insects can do. For example, just one of the many
hundreds of species of Cicadellidae (Commonly known as Sharpshooters or Leathoppers),
Homalodisca coagulate first appeared in California around 1993 and has since done sev-
eral billions of dollars of damage and now threatens California’s $34 billion dollar grape
industry [4].

In order to understand and ultimately control these harmful behaviors, entomologists glue
a thin wire to the insect’s back and then measure fluctuations in voltage level to create an
Electrical Penetration Graph (EPG). Figure 14 (top) shows the basic setup.

This simple apparatus has allowed entomologists to make significant progress on the
problem. As USDA scientist Dr. Elaine Backus recently noted, “Much of what is known
today about hemipteran feeding biology ... has been learned via use of EPG technology” [6].

@ Springer

Beyond one billion time series

5 . Vs conductive glue
input resistor .
to insect fj
gAW 4

to plant
voltage sourc; ﬁ
20deg
10!
09 50 700 200 Stylet / plant membrane

Idealized Template

non-penetration

(arbitrary length) insertion of stylets

penetration of the mandible ingestion of cell contents
repetitive head nodding (arbitrary length)
Five Seconds

Fig. 14 (top) A schematic diagram showing an EPG apparatus used to record insect behavior. (bottom) An
EPG insect behavior derived from subset of Fig. 2 from [19]. An idealized version of the observed behavior
created by us is shown with a bold blue line (color figure online)

However, in spite of the current successes, there is a bottleneck in progress due to the huge
volumes of data produced. For example, a single experiment can last up to 24 h. At 100 Hz
that will produce a time series with approximately eight-million data points. Entomologists
frequently need to search massive archives for known patterns to confirm/refute hypotheses.
For example, a recent paper asks whether the chemical thiamethoxam causes a reduction in
xylem? feeding behavior by a Bird Cherry-Oat Aphid (Rhopalosiphum padi). The obvious
way to test such a hypothesis is to collect EPG data of both a treatment group and a control
group and search for occurrences of the (well known) xylem feeding pattern.

Recently, the Entomology Department at UC Riverside asked us to create an efficient tool
for mining massive EPG collections [17]. We have used the techniques introduced in this
work as a beta version of such a tool, which will eventually be made freely available to the
entomological community. Let us consider a typical scenario in which the tool may be used.
In Fig. 14 (bottom), we see a copy of Fig. 2 from [19]. This time series shows a behavior
observed in a Western Flower Thrip (Frankliniella occidentalis), an insect which is a vector
for more than 20 plant diseases. The Beet Leathopper (Circulifer tenellus) is not particularly
closely related to thrips, but it also feeds on plants by puncturing their membranes and sucking
sap. Does the Beet Leathopper exhibit similar behavior?

To answer this question, we indexed 20,005,622 subsequences of length 176 from the Beet
Leathopper EPG data, which had been collected in 60 individual experiments conducted from
2007 to 2009. We used a th size of 2,000 and w of eight to construct an index on our AMD
machine. Even with fewer resources, it took only 5.1 h to build the index, which occupied a
total of 26.6 gigabyte of disk space. As shownin Fig. 14 (bottom), we used the simple idealized
version as a query to our database. Figure 15 (left) shows the result of an approximate search,
which takes <0.5 s to answer.

This result suggests that although the insect species is different (recall we queried a
Thrip behavior on Beet Leathopper database), the behaviors are similar, differing only in the
insertion of stylet behavior. As a sanity check, we also queried the database with an idealized
version of a Beet Leathopper behavior, the so-called Waveform A; in this case, Fig. 15 (right)
shows that the match is much closer.

2 Xylem is plant sap responsible for the transport of water and soluble mineral nutrients from the roots
throughout the plant.

@ Springer

A. Camerra et al.

Nearest Neighbor

Nearest Neighbor

Idealized version of probing
behavior

Idealized version of
“Waveform AZ__

0 40 80 120 160 0 40 80 120 160

Fig. 15 Query time series and its approximate nearest neighbor

Table 2 An algorithm for
converting DNA to time series T =0;
For i = 1 to length (DNAstring)
If DNAstring; = A, then 7; | = T;+2
If DNAstring; =G, then T; | = T;+ 1
If DNAstring; =C, then T; | =T; — 1
If DNAstring; =T, then T; .| =T; —2
End

5.3 Mining massive DNA sequences

The DNA of the Rhesus Macaque (Macaca mulatta) genome consists of nearly three billion
base pairs (approximately 550,000 pages of text if written out in the format of this paper),
beginning with TAACCCTAACCCTAA... We converted this sequence into a time series
using the simple algorithm shown in Table 2.

Figure 16 (left) shows an example of the time series created from the DNA of monkey
chromosome 3, together with the human chromosome 21. Note that they are not globally
similar, but a subsection of each is locally similar if we flip the direction of one sequence.
This figure suggests what is already known: the most recent common ancestor of the macaque
and humans lived only about 25 million years ago, so we expect their DNA to be relatively
similar. However, since humans have 23 chromosomes and the monkey has only 21, the
mapping of chromosomes cannot be one to one; some chromosomes must be mapped in a
jigsaw fashion. But what is the mapping?

To answer this question, we indexed the entire time series corresponding to the macaque
DNA (non-sex related). We used a subsequence length of 16,000, down-sampled by a factor
of 25 to mitigate “noise.” We then used a sliding window with a step size of five to extract a
total of 21,612,319 subsequences. To index, we used a th size of 1,000 and w of 10. In total,
it took 6.75 h to build the index.

We obtained queries from the human genome in the same manner and queried with both
the original and transposed versions. For each human chromosome, we issued an average of
674 approximate searches (recall that chromosomes have differing lengths) and recorded the
10 nearest neighbors. In Fig. 16 (right), we summarize where the top ten neighbors are found,
by creating a grid and coloring the cell with an appropriate shade of gray. For example, a
pure white cell at location {i, j} means that no query from human chromosome’ mapped to
monkey chromosome’ and a pure black cell at location {i, j} means that all 10 queries from

@ Springer

Beyond one billion time series

Human Chromosome 21 3
(extract) A

“In two cases, macaque2, homologous to human3,
and macaquel 3, homologous to human9,.. "' *

Y 21
v N\ o |1 [
/ . A 19
I gl 18 |
17
16 -
15
14 .

800,000 13 ||

Monkey Chrorrjasume 5

LA [extract)

Human 21

|
=]
1

Monkey 3 (transposed)

. =]
0 200,000

2 34567 89 10111213 14 15 16 17 18 19
Rhesus Macaque

Human
sNUBOBu®

Fig. 16 (left) An example of DNA converted into time series. (right) The cells represent potential mappings
between the Macaque and Human Genomes. The darker the cell, the more often the nearest neighbor of a time
series taken from a particular human chromosome had a nearest neighbor from a particular Macaque chromo-
some. *Quote from An initial genetic linkage map of the rhesus macaque [20]. The smallest chromosomes
including the sex chromosomes are omitted

human chromosome’ mapped to monkey chromosome/ . This figure has some unambiguously
dark cells, telling us for example that Human 2 is homologous (“equivalent”) to Macaque
3. In addition, in some cases, the cells in the figure suggest that two human chromosomes
may match to a single Macaque chromosome. For example, in the column corresponding to
Macaque 7, the two darkest cells are rows 14 and 15.

The first paper to publish a genetic linkage map of the two primates tells us “macaque7
is homologous to human14 and human15” [20]. More generally, this correspondence matrix
is at least 95 % in agreement with the current agreement on homology between these two
primates [20].

Figure 17 is a graphical representation of the chromosome mappings discovered using
iSAX (left), and those that have been experimentally verified by biologists up to now (right).
The figure shows that the true mappings are a subset of those indicated by iSAX, which
demonstrates the potential utility of the proposed approach.

This experiment demonstrates that we can easily index tens of millions of subsequences
in less than a day, answer 13,480 queries in 2.5 h, and produce objectively correct results that
can help scientists make use of the data collections they already have.

5.4 Mining massive image collections

While there are hundreds of possible distance measures proposed for images, a recent paper
has shown that simple Euclidean distance between color histograms is very effective if the
training dataset is very large [22]. More generally, there is an increasing understanding that
having lots of data without a model can often beat smaller datasets, even if they are accom-
panied by a sophisticated model [3,18]. Indeed, Peter Norvig, Google’s research director,
recently noted that “All models are wrong, and increasingly you can succeed without them.”
The ideas introduced in this work offer us a chance to test this theory.

We indexed the color histograms of the famous MIT collection of 80 million low-resolution
images [22]. As shown in Fig. 18, these color histograms can be considered pseudo “time
series.” At indexing time, we omitted very simple images (e.g., those that are comprised of

@ Springer

A. Camerra et al.

Fig. 17 llustration of candidate chromosome mappings discovered using our approach (left), and mappings
verified experimentally by biologists (right). The verified mappings are a subset of those discovered using
iSAX

Query 1

& Query 1
RGB

Match 1
RGB

Query 2

Match 2 M

n " n n

0 0 100 150 00 =0

Fig. 18 (left) A detail of The Son of Man by René Magritte, which we used as a query to our index, finding
“Match 1.” (right) A detail of The Scream by Edvard Munch, which we used as a query that returned “Match
2.” The insets show the similarity of the images in RGB histogram space

only one or two colors, etc.). In total, our index contains the color histograms of 69,161,598
images.

We made color histograms of length 256 and used a 4 size of 2,000 and w of 8. It took
9.8 h to build the index, which is inconsequential compared to the 9 months of 24 h a day
crawling it took to collect it [22]. The data occupy a total of 133 GB of disk space. The latter
figure only includes the space for the time series, the images themselves required an extra of
227 GB.

@ Springer

Beyond one billion time series

Does this random sampling of the webs images contain examples of iconic art images? To
test this, we found examples of two famous images using Google image search and converted
the image to color histograms of length 256. We then used these to search our collection with
an approximate search. Each search took less than a second, and the results can be seen in
Fig. 18. Note that we are not claiming that Euclidean distance between color histograms is
the best measure for image similarity. This experiment simply demonstrates the scalability
and generality of our ideas, as a side effect of demonstrating the unreasonable effectiveness
of (massive amounts of) data 0.

6 Related work

There is an extensive literature on time series indexing; the interested reader should refer to
[5,15,21] and the references therein for useful surveys and empirical comparisons. There are
at least a dozen well-known methods for approximation (i.e., dimensionality reduction) of
time series data, which have been used for a variety of applications, such as indexing motions
[25], amnesic representations [31], streaming time series pattern matching [30], uncertain
time series matching [13], and others. These approximation methods include the Discrete
Fourier Transformation [16], Singular Value Decomposition (SVD), Discrete Cosine Trans-
formation, Discrete Wavelet Transformation [32], Piecewise Aggregate Approximation [24],
Adaptive Piecewise Constant Approximation [23], Chebyshev polynomials [7]. However,
recent extensive empirical evaluations suggest that on average, there is little to differentiate
between these representations in terms of fidelity of approximation, and thus indexing power
[15,31].

The approximation we use in this work is intrinsically different from the techniques listed
above; in that, it is discrete [29], rather than real-valued. This discreteness is advantageous;
in that, the average byte used by discrete representations carries much more information than
its real-valued counterparts. This allows our index to have a much smaller memory footprint,
and it allows us to explore novel, simple, and effective splitting strategies that exploit the
discrete nature of the representation.

Several works have studied the problem of indexing time series datasets [7,5,16,21,24,26].
This is an important problem and serves as the step-stone for enabling the analysis and mining
of time series collections at a large scale. In this work, we are dealing with a complementary
problem: we are not proposing a new time series index, but rather a novel technique that
allows us to build a time series index fast.

The problem of bulk loading has been studied in the context of traditional database indices,
such as B-trees and R-trees, and other multi-dimensional index structures [2,12,28,33,36,37].
For these structures, two main approaches have been proposed. First, we have the merge-
based techniques [12]) that preprocess data into clusters. For each cluster, they proceed with
the creation of a small tree that is finally merged into the overall index. It is not clear how such
techniques could be applied in our problem setting, since the mere task of clustering datasets
of such scale would incur a cost higher than indexing, therefore rendering the merge-based
techniques inapplicable.

Second, there are the buffering-based techniques [28,33,36] that use main memory buffers
to group and route similar time series together down the tree, performing the insertion in a
lazy manner. These techniques are not directly applicable in our setting, since they have been
designed to improve the bulk loading performance of balanced index structures (as shown
in our experiments for an adaptation of [28]. Another interesting technique would be the

@ Springer

A. Camerra et al.

two-step approach of the path-based method [36]). But this one is not applicable either,
because it requires the existence of a balanced index tree in order to produce correct results.

Finally, we note that no previous work has explicitly studied the problem of bulk loading
in the context of an index for time series data.

7 Conclusions

We describe i SAX 2.0, an index structure specifically designed for ultra-large collections of
time series, and propose new mechanisms and algorithms for efficient bulk loading and node
splitting. Furthermore, we propose two extensions of the above approach, namely iSAX 2.0
Clustered and iSAX2+. These extensions focus on the efficient handling of the raw time
series data during the bulk loading process.

We experimentally validate the proposed algorithms, including the first published exper-
iments to consider datasets of size up to one billion time series, showing that we can deliver
a significant improvement in the time required to build the index.

An obvious extension of this work is to consider I/O parallelism (e.g., each subtree of the
root node could be processed in parallel). An in-depth study of this direction in part of our
future work.

Acknowledgments This research was funded by NSF awards 0803410 and 0808770.

References

ADHD (2012) http://www.fcon_1000.projects.nitrc.org/indi/adhd200/
. An N, Kanth R, Kothuri V, Ravada S (2003) Improving performance with bulk-inserts in Oracle R-trees.
VLDB, pp 948-951

3. Anderson C (2008) The end of theory: the data deluge makes the scientific method obsolete. Wired 16(7).
http://www.wired.com//science/discoveries/magazine/16-07/pb_theory

4. Andersen P, Brodbeck B, Mizell R (2009) Assimilation efficiency of free and protein amino acids
by Homalodisca vitripennis (Hemiptera: Cicadellidae: Cicadellinae) feeding on Citrus sinensis and
Vitis vinifera. In: Andersen PC, Brodbeck BV, Mizell RF (eds) Florida entomologist, vol. 92, issue 1,
pp 116-122.

5. Assent I, Krieger R, Afschari F, Seidl T (2008) The TS-tree: efficient time series search and retrieval.
In: Proceedings of the 11th international conference on extending database technology: advances in
database technology (EDBT ‘08). ACM, New York, NY, pp 252-263

6. Backus E, Bennett W (2009) The AC-DC correlation monitor: new EPG design with flexible input
resistors to detect both R and emf components for any piercing-sucking hemipteran. J Insect Physiol
55(10):869-884

7. CaiY,NgR (2004) Indexing spatio-temporal trajectories with Chebyshev polynomials. In: Proc SIGMOD

8. Camerra A, Palpanas T, Shieh J, Keogh EJ (2010) iSAX 2.0 (2010). Indexing and mining one billion time
series. ICDM, pp 58-67

9. Castro N, Azevedo PJ (2010) Multiresolution motif discovery in time series. SDM, pp 665-667

10. Castro N, Azevedo PJ (2011) Time series motifs statistical significance. Proceedings of the eleventh
SIAM international conference on data mining

11. Chakrabarti K, Keogh EJ, Mehrotra S, Pazzani MJ (2002) Locally adaptive dimensionality reduction for
indexing large time series databases. ACM Trans Database Syst 27(2):188-228

12. Choubey R, Chen L, Rundensteiner EA (1999) GBI: a generalized R-tree bulk-insertion strategy. SSD,
pp 91-108

13. Dallachiesa M, Nushi B, Mirylenka K, Palpanas T (2012) Uncertain time-series similarity: return to the
basics. Proc VLDB Endow (PVLDB) J 5(11):1662-1673

14. Data (2012) http://www.disi.unitn.it/themis/isax2plus/

15. Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh E (2008) Querying and mining of time series

data: experimental comparison of representations and distance measures. PVLDB 1(2):1542-1552

o —

@ Springer

http://www.fcon_1000.projects.nitrc.org/indi/adhd200/
http://www.wired.com//science/discoveries/magazine/16-07/pb_theory
http://www.disi.unitn.it/themis/isax2plus/

Beyond one billion time series

16.

17.
18.
19.
20.

21.
22.

23.

24.

25.

26.

217.

28.

29.

30.

31.
32.
33.
34.
35.

36.
37.

38.

Faloutsos C, Ranganathan M, Manolopoulos Y (1994) Fast subsequence matching in time-series data-
bases. In: Snodgrass RT, Winslett M (eds) Proceedings of the 1994 ACM SIGMOD international confer-
ence on managment of data (SIGMOD ‘94). ACM, New York, NY, pp 419-429

Greg W (2009) Personal communication. August 12th

Halevy A, Norvig P, Pereira F (2009) The unreasonable effectiveness of data. IEEE Intell Syst 24(2):8—12
Kindt F, Joosten NN, Peters D, Tjallingii WF (2003) Characterisation of the feeding behaviour of western
flower thrips in terms of EPG waveforms. J Insect Physiol 49:183-191

Rogers J et al (2006) An initial genetic linkage map of the rhesus macaque (Macaca mulatta) genome
using human microsatellite loci. Genomics 87:30-38

Shieh J, Keogh E (2008) iISAX: indexing and mining terabyte sized time series. In: ACM SIGKDD
Torralba A, Fergus R, Freeman WT (2008) 80 million tiny images: a large data set for nonparametric
object and scene recognition. IEEE PAMI 30(11):1958-1970

Keogh EJ, Chakrabarti K, Mehrotra S, Pazzani MJ (2001a) Locally adaptive dimensionality reduction
for indexing large time series databases. In: SIGMOD

Keogh EJ, Chakrabarti K, Pazzani MJ, Mehrotra S (2001b) Dimensionality reduction for fast similarity
search in large time series databases. Knowl Inf Syst 3(3):263-286

Keogh E, Palpanas T, Jordan VB, Gunopulos D, Cardle M (2004) Indexing large human-motion databases.
VLDB, Toronto, ON, Canada, August

Keogh EJ, Smyth P (1997) A probabilistic approach to fast pattern matching in time series databases. In:
Proceedings of the third international conference on knowledge discovery and data mining (KDD-97),
Newport Beach, California, pp 24-30

Kohlsdorf D, Starner T, Ashbrook D (2011) MAGIC 2.0: a web tool for false positive prediction and
prevention for gesture recognition systems. In: FG” 11

Lars A, Klaus H, Vahrenhold J (2002) Efficient bulk operations on dynamic R-trees. Algorithmica
33(1):104-128

Lin J, Keogh EJ, Wei L, Lonardi S (2007) Experiencing SAX: a novel symbolic representation of time
series. Data Min Knowl Discov 15(2):107-144

Marascu A, Khan SA, Palpanas T (2012) Scalable similarity matching in streaming time series. In:
Pacific-Asia conference on knowledge discovery and data mining (PAKDD), Kuala Lumpur, Malaysia,
May

Palpanas T, Vlachos M, Keogh EJ, Gunopulos D (2008) Streaming time series summarization using
user-defined amnesic functions. IEEE Trans Knowl Data Eng 20(7):992-1006

Popivanov I, Miller RJ (2002) Similarity search over time-series data using wavelets. In: Proceedings of
the 18th international conference on data engineering, pp 212-221

Soisalon-Soininen E, Widmayer P (2003) Single and bulk updates in stratified trees: an amortized and
worst-case analysis. Comput Sci Perspect, pp 278-292

TSST (2012) http://www.usvao.org/science-tools-services/time-series-search-tool/

Wu Y-L, Agrawal D, Abbadi AE (2000) A comparison of DFT and DWT based similarity search in
time-series databases. In: Proceedings of the 9th international conference on information and knowledge
management (CIKM ‘00). ACM, New York, NY, pp 488-495

Van den Bercken J, Seeger B (2001) An evaluation of generic bulk loading techniques. VLDB, pp 461-470
Van den Bercken J, Seeger B, Widmayer P (1997) A generic approach to bulk loading multidimensional
index structures. In: Jarke M, Carey MJ, Dittrich KR, Lochovsky FH, Loucopoulos P, Jeusfeld MA (eds)
Proceedings of the 23rd international conference on very large data bases (VLDB ‘97). Morgan Kaufmann
Publishers Inc., San Francisco, CA, pp 406415

Zoumpatianos K, Palpanas T, Mylopoulos J (2012) Strategic management for real-time business intelli-
gence. In: International workshop on business intelligence for the real, time enterprise (BIRTE)

@ Springer

http://www.usvao.org/science-tools-services/time-series-search-tool/

A. Camerra et al.

Author Biographies

@ Springer

Alessandro Camerra is a technical specialist at IBM System and
Technology Group and a student at the Politecnico of Milan, Italy.
Before that, he worked as research assistant at the University of Trento,
Italy, and he was a visiting researcher at the University of California,
Riverside. His publications mainly cover the area of time series index-
ing and wireless sensor network technologies. He has received a best
paper award at PERCOM 2012.

Jin Shieh received a B.S and PhD degree in computer science from the
University of California, Riverside (UCR) in 2005 and 2010, respec-
tively. His research interests at UCR involved data mining with empha-
sis on the analysis and applications of time series. Specifically, this
included work on searching and retrieval of time series. He has been
with Microsoft Corporation, Redmond, WA, since 2010.

Themis Palpanas is a professor of computer science at the Univer-
sity of Trento, Italy. Before that, he worked at the IBM T.J. Watson
Research Center and has also worked for the University of California at
Riverside, Microsoft Research and IBM Almaden Research Center. He
is the author of eight US patents, three of which are part of commercial
products. He has received three Best Paper awards (PERCOM 2012,
ICDE 2010, and ADAPTIVE 2009) and is General Chair for VLDB
2013.

Beyond one billion time series

Thanawin Rakthanmanon is a faculty member of the Department
of Computer Engineering, Kasetsart University, Thailand. He has grad-
vated with a Ph.D. from the Department of Computer Science and
Engineering at the University of California, Riverside, in 2012. His
research interests are Data Mining and Machine Learning, especially in
efficient algorithm developments, motif discovery, time series classi-
fication/clustering, and document analysis. During his Ph.D., he has
published several papers in top-tier data mining conference and jour-
nals, such as KDD, ICDM, SDM, KAIS and TKDD. Moreover, in
2012, his paper won the KDD best paper award.

Eamonn Keogh is a full professor of Computer Science at the Uni-
versity of California, Riverside. His research interests are data min-
ing, machine learning, and information retrieval. Several of his papers
have won best paper awards, including papers at SIGKDD, ICDM, and
SIGMOD. Dr. Keogh is the recipient of a 5-year NSF Career Award
for “Efficient Discovery of Previously Unknown Patterns and Relation-
ships in Massive Time Series Databases.”

@ Springer

	Beyond one billion time series: indexing and mining very large time series collections with iSAX2+
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 The SAX representation
	2.2 The iSAX representation
	2.3 Indexing iSAX

	3 The iSAX 2.0 index
	3.1 Bulk loading: main algorithm
	3.1.1 Algorithm basics
	3.1.2 Description of the algorithm

	3.2 Node splitting policy

	4 Efficient handling of raw time series data
	4.1 The iSAX 2.0 clustered index
	4.2 The iSax2+ index

	5 Experimental evaluation
	5.1 Scalability of iSAX 2.0
	5.1.1 Splitting policy evaluation
	5.1.2 Bulk loading evaluation

	5.2 A case study in entomology
	5.3 Mining massive DNA sequences
	5.4 Mining massive image collections

	6 Related work
	7 Conclusions
	Acknowledgments
	References

