
Deep Learning Embeddings for Data Series Similarity Search
Qitong Wang

Université de Paris, LIPADE
qitong.wang@etu.u-paris.fr

Themis Palpanas
Université de Paris, LIPADE &
French University Institute (IUF)
themis@mi.parisdescartes.fr

Abstract

A key operation for the (increasingly large) data series collection
analysis is similarity search. According to recent studies, SAX-based
indexes offer state-of-the-art performance for similarity search
tasks. However, their performance lags under high-frequency, weakly
correlated, excessively noisy, or other dataset-specific properties.
In this work, we propose Deep Embedding Approximation (DEA),
a novel family of data series summarization techniques based on
deep neural networks. Moreover, we describe SEAnet, a novel ar-
chitecture especially designed for learning DEA, that introduces
the Sum of Squares preservation property into the deep network
design. Finally, we propose a new sampling strategy, SEASam, that
allows SEAnet to effectively train on massive datasets. Comprehen-
sive experiments on 7 diverse synthetic and real datasets verify the
advantages of DEA learned using SEAnet, when compared to other
state-of-the-art traditional and DEA solutions, in providing high-
quality data series summarizations and similarity search results.

CCS Concepts

• Information systems→ Data management systems; Tem-
poral data; • Computing methodologies→ Neural networks.

Keywords

data series; similarity search; indexing; neural networks; sampling

ACM Reference Format:
Qitong Wang and Themis Palpanas. 2021. Deep Learning Embeddings for
Data Series Similarity Search. In Proceedings of the 27th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’21), August
14–18, 2021, Virtual Event, Singapore. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3447548.3467317

1 Introduction

With the rapid developments and deployments of modern sensors,
massive data series1 datasets are now being generated, collected and

1A data series, or data sequence, is an ordered sequence of points. The most common
type of data series is time series, where the dimension that imposes the sequence
ordering is time; though, this dimension could also be mass, angle, or position [35].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00
https://doi.org/10.1145/3447548.3467317

(a) PAA works to approximate and reconstruct a RandWalk series

(b) PAA fails to approximate and reconstruct a Deep1B series

Figure 1: Case studies where PAA and DFT work or fail to approxi-
mate and reconstruct series from RandWalk and Deep1B datasets.
In both cases, DEA works to approximate and reconstruct series. All
summarizations use the same memory budget.

analyzed in almost every scientific domain [9, 11, 33, 35]. Typical
data series analysis techniques are querying [14], classification [15],
clustering [36], anomaly detection [4–6], and visualization [14],
for all of which similarity search plays a central role. Data series
similarity search aims to find the closest series in a dataset to a given
query series according to a distance measure, such as Euclidean
distance, which is one of the most widely used [43]. Similarity
search can be divided into exact search and approximate search [13].
Approximate similarity search may not always produce the exact
answers, but in most cases it produces answers that are very close
to the exact ones [14]. Thus, it is very popular in practice, and
widely used on massive series collections to enable interactive data
exploration and other latency-bounded applications [18]. In this
work, we focus on approximate similarity search under Euclidean
distance.

Indexes are widely employed to speed up data series similarity
search [10, 12–14]. Most indexes are based on summarized represen-
tations of the data series [43] of lower dimensionality2. Symbolic
Aggregate approXimation (SAX) [28] is a popular and effective
discretized summarization. SAX-based indexes [34] are the state-
of-the-art (SOTA) data series similarity search methods [13, 14].

Nevertheless, SAX-based indexes suffer from the problem that
SAX fails in hard datasets with specific properties [25]. Since SAX is
the symbolization of Piecewise Aggregate Approximation (PAA) [28],

2In the data-series literature, dimensionality is used interchangeably with length, to
refer to the number of values of a univariate series.

https://doi.org/10.1145/3447548.3467317
https://doi.org/10.1145/3447548.3467317

11

10
01

00Piecewise
aggregate

Symbolize

Series PAA !"#!""

!!

!"

!# !! = 10

!" = 00

!# = 11

(a) PAA-based SAX symbolization

11

10
01

00Encode Symbolize

Series DEA !"#!"#

!! , !" , !#

!! = 11
!" = 10

!# = 00

(b) DEA-based SAX symbolization

Figure 2: Replace PAA by DEA for SAX symbolization.

failure of PAA to correctly represent some data series directly trans-
lates to failure of the PAA-based SAX. Figure 1 illustrates a working
and a failing case. The high frequency of the Deep1B series (Fig-
ure 1b) implies more cycles than the available SAX words: each
PAA segment has to average values over ≥1 cycles, leading to simi-
lar PAA values across different segments, and to indistinguishable
SAX words across different series. Introducing more SAX words
could alleviate the problem, but would lead to an undesirably long
summarization that could not be effectively indexed.

In this work, we propose to build a data series index based on
Deep Embedding Approximations (DEA), i.e., data series summa-
rizations derived from embeddings learned using deep neural net-
works. Embedding techniques, or representation learning [3], is to
learn vectors possessing necessary latent information for classifi-
cation, clustering and other downstream applications. Its success
in data series has also been reported for speech recognition [27],
data series classification [17] and many other applications. Em-
bedding techniques have been proven to be capable of capturing
frequency [41] and other latent properties. However, to the best of
our knowledge, data series embedding has not been adapted to and
evaluated for similarity search.

In the case of data series similarity search, DEA may replace
PAA, and then be symbolized and indexed by an iSAX index as
illustrated in Figure 2. DEA targets to preserve original pairwise
distances in the lower-dimensional DEA space. Thus, it is naturally
capable of being symbolized into SAX, on which an iSAX index can
be built. Our work shows that compared to PAA and (PAA-based)
SAX, DEA better preserves pairwise distances, leading to a more
effective index for data series similarity search.

To effectively learn DEA on massive series collections, we pro-
pose a novel autoencoder architecture SEAnet (SEriesApproximation
network). SEAnet’s basic structure follows a full-preactivation
ResNet [19]. It adopts the idea of exponentially increasing dila-
tions, which has been verified to be efficient for data series appli-
cations [2]. In contrast to existing convolutional autoencoders for
series embedding [17], SEAnet comprises both an encoder and a
decoder. We argue (and experimentally verify) that a decoder is nec-
essary to learn high-quality DEA for similarity search. Moreover,
SEAnet is the first architecture to formally introduce the principle
of Sum of Squares (SoS) preservation, and incorporate it into the
network design. SoS preservation aims to keep the sum of squared
values invariant throughout the transformations. We observe that

defining new axes based on the largest SoS is equivalent to selecting
the largest eigenvalues in eigenvalue-based linear dimensionality
reductions on z-normalized datasets (i.e., mean=0, stddev=1) [45].
They both aim at preserving the largest variances in the dataset
through linear transformations. In this sense, SoS could be regarded
as an indicator of the quality of the transformation to a reduced
dimensionality space performed by SEAnet (or other deep network
architectures). Hence, we introduce SoS as an invariant to regularize
SEAnet and other networks, and demonstrate its benefits.

Finally, we observe that training a deep neural network on very
large sequence collections is prohibitively expensive. Thus, for effi-
cient training, we propose SEA-Sampling (SEASam), a novel sam-
pling strategy based on a sortable data series summarization [23].
SEAsam enables SEAnet (and other networks) to effectively fit a
large dataset, leading to improved performance.

Comprehensive experiments verify that, compared to PAA and
DEA generated by other SOTA architectures, including FDJNet [17],
TimeNet [31] and InceptionTime [15], theDEA generated by SEAnet
is more effective in preserving the original pairwise distances in the
lower-dimensional summarized space. This advantage also trans-
lates to more accurate approximate similarity search across several
synthetic and real data series collections with diverse properties.
[Contributions] Our contributions are summarized as follows.

(1) We propose the use of deep learning embedding techniques
to data series similarity search. We introduce novel Deep Embed-
ding Approximations, and show how these can be used to index
the original data series and then support (approximate) similarity
search queries. Our results can be used as a blueprint to facilitate
further progress in this area.

(2) We propose SEAnet, a novel architecture that is specifically
built to support high-quality DEA and similarity search. SEAnet
incorporates modern architectural elements designed for data series
applications, including a full-preactivation ResNet and exponen-
tially increasing dilations.

(3) We introduce and formalize the principle of Sum of Squares
(SoS) preservation. SoS preservation is a general principle for any
architecture to learn high-quality DEA for dimensionality reduction.
We explain how it can benefit the DEA architectures (including
SEAnet), and how to incorporate it into the architecture designs.

(4) A novel sampling strategy, SEAsam, is proposed to draw rep-
resentative samples from massive data series collections, enabling
effective training for the deep models.

(5) We also describe alternative deep architectures for DEA,
based on the SOTA designs of FDJNet, TimeNet, and InceptionTime.
We explain how our ideas can be applied on these architectures,
and study in detail their performance.

(6) Comprehensive experiments on three synthetic datasets and
four real-world datasets verified the effectiveness of DEA and
SEAnet for data series summarization and approximate similarity
search, outperforming traditional iSAX-based solutions, as well as
three other SOTA RNN and CNN architectures for series embedding.
Datasets, codes and pre-trained models are available online [42].

2 Background and Related Work

A data series, 𝑆 = {𝑝1, ..., 𝑝𝑚}, is a sequence of points, where each
point 𝑝𝑖 = (𝑣𝑖 , 𝑡𝑖), 1 ≤ 𝑖 ≤ 𝑚 is associated to a real value 𝑣𝑖 and a

position 𝑡𝑖 . The position corresponds to the order of this value in
the sequence. We call𝑚 the length of the data series. S denotes a
collection of data series, i.e.,S = {𝑆1, ..., 𝑆𝑛}. We call𝑛 the size of the
data series collection. A summarization 𝐸 = {𝑒1, ..., 𝑒𝑙 } of a series
𝑆 is a lower, 𝑙-dimensional representation, which preserves some
desired properties of S. For similarity search, the target property is
pairwise distance space structure of S, i.e., ∀𝑆𝑖 , 𝑆 𝑗 ∈ S, 𝑑 ′(𝐸𝑖 , 𝐸 𝑗) ≈
𝑑 (𝑆𝑖 , 𝑆 𝑗), where 𝐸𝑖 , 𝐸 𝑗 are summarizations of 𝑆𝑖 , 𝑆 𝑗 , 𝑑 (·, ·), and
𝑑 ′(·, ·) are distance measures in series and summarization spaces,
respectively. The distance measure 𝑑 we use is Euclidean distance,
which is a widely adopted and effective measure for data series
similarity search [43].𝑑 ′ in the summarization space needs not be
the same as 𝑑 , e.g., for PAA, 𝑑 ′(·, ·) =

√
𝑚√
𝑙
×𝑑 (·, ·). 𝑑 ′ for DEA is the

same as PAA if it’s scaled for SoS preservation. Otherwise, 𝑑 ′(·, ·) =
𝑑 (·, ·). Given a query series 𝑆𝑞 of length𝑚, a series collection S of
size𝑛 and length𝑚, a distancemeasure𝑑 , similarity search targets
to identify the series 𝑆𝑐 ∈ S whose distance to 𝑆𝑞 is the smallest, i.e.,
∀𝑆𝑜 ∈ S, 𝑆𝑜 ≠ 𝑆𝑐 , 𝑑 (𝑆𝑐 , 𝑆𝑞) ≤ 𝑑 (𝑆𝑜 , 𝑆𝑞). Instead of finding the exact
closest series 𝑆𝑐 , approximate similarity search targets to find
a series 𝑆 ′𝑐 ∈ S such that 𝑑 (𝑆 ′𝑐 , 𝑆𝑞) ≈ 𝑑 (𝑆𝑐 , 𝑆𝑞).

𝑑 (𝑆𝑐 ,𝑆𝑞)
𝑑 (𝑆′𝑐 ,𝑆𝑞) ∈ (0, 1] is

called 𝑆 ′𝑐 ’s tightness.
The most prominent data series indexing techniques can be

categorized into optimized scans [16], and tree-based indexes [40].
Recent studies [13, 14] have demonstrated that the SAX-based in-
dexes [34] achieve SOTA performance under several conditions. In
this work, we use MESSI as our iSAX index [37, 38], because its
main-memory operation and parallel design lead to SOTA perfor-
mance.
[LearnedData Series Embeddings]Deep representation learning
has been popular and successful in several domains [8, 22, 27]. On
the other hand, few recent works [17, 31] focus on data series
representation learning, none of which targets similarity search.

Autoencoder is a category of deep neural networks to learn
embeddings [3]. The encoder component of an autoencoder maps a
dataset to lower dimensional vectors, i.e., embeddings; the decoder
reverses this procedure. It has been empirically verified in many
domains that embedding learns useful latent information [41].

TimeNet [31] and FDJNet [17] are two SOTA architectures for
data series representation learning. TimeNet deploys a multi-layer
GRU straightforwardly to embed and reconstruct series. FDJNet
is based on Temporal Convolutional Network (TCN) [2] to embed
series. Its core design choices are (1) to increase dilations exponen-
tially in deeper layers; (2) to remove dependence on values from
future positions during convolution. However, neither TimeNet nor
FDJNet has been evaluated for similarity search before.

Aside from representation learning, deep models are exploited
in other data series applications. The SOTA series classification
method, InceptionTime [15] adapts Inception for series classifica-
tion. However, information learned from different scales in the
Inception module might perturb the distance space structure.

In contrast to all the above methods, the proposed SEAnet not
only adopts design choices suitable for distance preservation, but
also introduces a novel and general principle of SoS preservation
for dimensionality reduction.

Calculate DEA-based SAX

SEAsam sample (3.3)

Embed series to DEA

Symbolize DEA

Data Series
Collection

DEA-based
SAXs

Construct index

Answer Query

Query

Approximate
Answer

Train SEAnet (3.1)

DEA-
based

iSAX Index

Indexing and Query Answering

Figure 3: Workflow of DEA-based approximate similarity search.

3 DEA-based Approximate Similarity Search

In this section, we present the proposed DEA-based data series
similarity search framework, including the SEAnet architecture.

The complete workflow is illustrated in Figure 3. Given a se-
ries collection, SEAsam first draws representative samples to train
SEAnet. After SEAnet converges, it embeds all series into DEAs,
which are further discretized into SAXs. Thus, DEA-based SAXs
are structured into an iSAX index, where approximate similarity
search can be efficiently conducted.

SEAnet is a novel autoencoder proposed to learn high-quality
DEA. Unlike FDJNet [17] and other SOTA convolutional architec-
tures for series embedding, SEAnet is composed of both an encoder
and a decoder. The inclusion of the decoder is beneficial, since it can
act as a regularizer to prevent SEAnet from falling into bad local
optima, where DEAs become very similar to each other (and hence,
not suitable for similarity search). The necessity of decoders has
also been observed by other works [44]. SEAnet stacks dilated full-
preactivation ResBlocks [19]. Its dilations increase exponentially
with deeper layers. Moreover, SEAnet introduces the principle of
SoS preservation for lower dimensionality representation learning.
We present the details of SEAnet’s design in Section 3.1, and further
discuss the SoS preservation principle in Section 3.2.

Our SEAsam strategy makes use of the inverse iSAX sortable
summarization [23]. In this scheme, SAX bits are interleaved, such
that all significant bits across SAX words precede less significant
bits, which renders the resulting representation, InvSax, sortable.
This order has been shown to imply the distribution information
of the dataset [23]. Thus, sampling proceeds by drawing series of
equal intervals from dataset sorted in InvSAX order (cf. Section 3.3).

Since DEA acts as a replacement for PAA, the high-level indexing
and query answering procedures remain similar3 to an ordinary
iSAX. Considering the low-latency requirement of approximate
similarity search applications, our design follows MESSI [37, 38],
the SOTA concurrent in-memory iSAX index.

3.1 SEAnet Architecture
The SEAnet architecture is illustrated in Figure 4a. It comprises a
convolutional encoder and a homogeneous decoder. We first give
an overview of the architecture, and then present its details.

The first part of the SEAnet encoder, from ConvLayer1 to Max-
Pool, comprises 𝑘 stacked dilated full-preactivation ResBlocks [19]
3The only difference is that DEA distances cannot lower bound the target distance
measures. Addressing this issue is part of our future work.

1.9,… ,1.72	

𝒌 Stacked
Dilated

ResBlocks

ConvLayer1

M
axPool

Tanh

Linear1

Linear2

LayerN
orm

2
Tanh

Linear1

𝒌′ Stacked
Dilated

ResBlocks

ConvLayer1

Tanh2

Linear2

LayerN
orm

2

Linear3

Decoder

Encoder

LayerN
orm

1

Leaky
ReLU

LayerN
orm

1

Leaky
ReLU

M
axPool

(a) SEAnet Architecture

𝑖-th Layer Dilated ResBlock

LayerNorm1

Leaky ReLU

LayerNorm2

Leaky ReLU

…

…

Up/
Down-
sample

Identity
Link

ConvLayer1 Dilation 2!

ConvLayer2 Dilation 2!

(b) Dilated ResBlock in SEAnet

Figure 4: The SEAnet architecture and the details of a dilated full-preactivation ResBlock.

for nonlinear transformations. The dilated ResBlock is illustrated
separately in Figure 4b. Its dilation increases exponentially with the
depth of the layer. Compared to constant dilations, this has been
verified to effectively broaden the receptive fields for data series
applications [2]. The dimension of latent vectors and number of
channels are the same as the dimension of the input series. Thus, af-
ter MaxPooling within channels and squeezing, the first part could
be regarded as an equi-length nonlinear transformation. The second
part of the SEAnet encoder, from Linear1 to LayerNorm2, comprises
two linear layers for dimensionality reduction. Unlike most exist-
ing encoders with linear final layers [17], the SEAnet encoder is
finalized by LayerNorm2, which is specifically designed using the
SoS preservation principle. We elaborate on this in Section 3.2.

The SEAnet decoder corresponds to the encoder, except for a
preceding Tanh-activated linear layer, introduced to adjust dimen-
sionality. Similar to previous studies [30], we claim that the encoder
and decoder need not be homogeneous. Although encoder-only ar-
chitectures is the popular choice [17], we argue (and experimentally
verify) that the decoder is necessary in similarity search applications
in order to regularize the DEAs, so that they are distinguishable
among each other. This results to a better indexing structure, and
to a more effective and efficient similarity search.
[Training Procedure] We first provide the intuitions behind the
SEAnet training, and then the mathematical formalizations.

SEAnet is trained in a pairwise manner by mini-batched Stochas-
tic Gradient Descent (SGD). Its loss function is a linear combination
of two components: (1) The Compression Error 𝐿𝐶 , i.e., the average
differences between the original distance of data series pairs (𝑆𝑖 , 𝑆 𝑗)
and their DEA distance. 𝐿𝐶 evaluates whether original distances
are well preserved in the DEA space. (2) The Reconstruction Error
𝐿𝑅 , i.e., the average distance between the original series 𝑆𝑖 and
the reconstructed series. 𝐿𝑅 evaluates how well the original series
can be reconstructed using SEAnet. Moreover, we divide both the
series and their DEAs by the square root of their lengths in 𝐿𝐶
and 𝐿𝑅 . Together with the LayerNorm2 in SEAnet, this scaling not
only preserves SoS for better dimensionality reduction, but also
stabilizes the gradient propagation. The rational behind these steps
is further explained in Section 3.2.

During each training epoch, for every series 𝑆𝑖 in the training
set, a random but different series 𝑆 𝑗 is drawn from the training
set to form pairs (𝑆𝑖 , 𝑆 𝑗) for 𝐿𝐶 . Since both 𝑆𝑖 and 𝑆 𝑗 are from the

training set, 𝑆 𝑗 is detached (being treated as constants instead of
input variables) to prevent its gradients from being back-propagated
twice within one epoch.

We now formalize 𝐿𝐶 and 𝐿𝑅 . First, we introduce the formula of
SEAnet encoder as 𝐸𝑖 = 𝜙 (𝑆𝑖 |Θ𝜙) and decoder as 𝑆𝑖 = 𝜓 (𝐸𝑖 |Θ𝜓) =
𝜓 ·𝜙 (𝑆𝑖 |Θ𝜙,𝜓), where𝜙 and𝜓 aremappings with parametersΘ𝜙 and
Θ𝜓 , 𝑆𝑖 is a series, 𝐸𝑖 is 𝑆𝑖 ’s DEA and 𝑆𝑖 is 𝑆𝑖 ’s reconstruction. With-
out scaling, 𝐿𝐶 = 1

𝑁𝑝

∑
(𝑆𝑖 ,𝑆 𝑗) ∈S×S |𝑑 (𝑆𝑖 , 𝑆 𝑗) − 𝑑 (𝜙 (𝑆𝑖), 𝜙 (𝑆 𝑗)) |,

where 𝑁𝑝 is the number of sampled series pairs (𝑆𝑖 , 𝑆 𝑗), and 𝐿𝑅 =
1
𝑁𝑠

∑
𝑆𝑖 ∈S 𝑑 (𝑆𝑖 ,𝜓 ·𝜙 (𝑆𝑖)), where𝑁𝑠 is the number of sampled series

𝑆𝑖 . With scaling, 𝐿𝐶 = 1
𝑁𝑝

∑
(𝑆𝑖 ,𝑆 𝑗) ∈S×S | 1√

𝑚
𝑑 (𝑆𝑖 , 𝑆 𝑗) − 1√

𝑙
𝑑 (𝜙 (𝑆𝑖),

𝜙 (𝑆 𝑗)) |, and 𝐿𝑅 = 1
𝑁𝑠

∑
𝑆𝑖 ∈S

1√
𝑚
𝑑 (𝑆𝑖 ,𝜓 ·𝜙 (𝑆𝑖)). Thus, the loss func-

tion 𝐿 = 𝐿𝐶 +𝛼𝐿𝑅 , where 𝛼 is a hyperparameter to balance between
𝐿𝐶 and 𝐿𝑅 .

3.2 Sum of Squares Preservation
We propose a SoS preservation framework for effective DEA learn-
ing. SoS preservation has been observed before [45], but to the
best of our knowledge, has never been formally introduced to rep-
resentation learning. Given an 𝑛 ×𝑚 matrix 𝑀 , where each row
𝑀𝑖,∗ corresponds to a series and each column𝑀∗, 𝑗 corresponds to
a position, SoS =

∑
𝑖, 𝑗 𝑀

2
𝑖, 𝑗
. Note that defining new axes based on

the largest SoS is equivalent to selecting the largest eigenvalues
in linear dimensionality reductions on z-normalized datasets, with
the purpose of preserving information about the dataset through
linear transformations [45]. Thus, SoS could be regarded as an in-
dicator of the transformation quality. By keeping SoS invariant,
the quality of DEAs are upheld from this perspective, and the net-
works then focus on learning the nonlinear transformations. Given
the (z-normalized) input dataset, the proposed SoS preservation
requires two steps: (1) z-normalizing the output of encoder (DEAs)
and decoder (the reconstructed series); and (2) dividing the series
and their DEAs by the square of their lengths in loss function 𝐿.
Note that step (2) also takes the neural network convergence into
consideration, as it benefits from the stabilization of the latent vari-
ables and variances [1]. We now elaborate on the design of SEAnet
under this principle.

Considering the fact that z-normalizing data series is a very
common operation [7], we constrain SEAnet to keep SoS invariant

Before Scaling Scaled by
√︁
256/𝑚 Scaled by

√︁
1/𝑚

Length𝑚 Mean Var Mean Var Mean Var

256 22.605 0.999 22.605 0.999 1.4128 0.0039
128 15.969 0.998 22.583 1.9961 1.4115 0.0078
96 13.820 0.997 22.569 2.6597 1.4105 0.0104
16 5.5692 0.984 22.277 15.743 1.3923 0.0615
8 3.8772 0.967 21.933 30.944 1.3708 0.1209

Table 1: Mean and Variance of the distribution of pairwise distances
between two ideal series. Scaling by

√︁
256/𝑚 is to preserve SoS by

scaling DEA itself. Scaling by
√︁
1/𝑚 is the case where we scale both

series and DEA in loss functions. (Note that for length 256, scaling
by

√︁
256/𝑚 does not change the original behavior.)

by forcing each DEA to preserve the SoS of its corresponding series.
This is achieved by the following two steps: (1) z-normalizing the
output of encoder, i.e., DEA; and (2) scaling DEA by

√
𝑚√
𝑙
.

[Scaling in Losses] Scaling the DEAs raises another problem: its
values will have a much larger variance. This hinders the conver-
gence of the network, because of the internal covariate shift and
other problems [1]. Latent variables with 𝜇 = 0 and 𝜎 = 1 are
widely considered among the best choices for the gradients’ back-
propagation [1, 19]. Hence, we keep the DEAs z-normalized, and
scale the series by 1√

𝑚
and DEA by 1√

𝑙
in 𝐿𝐶 and 𝐿𝑅 .

Typical examples of scaling are presented in Table 1. We make

three observations: (1) After scaling short series by
√︃

256
𝑚 , the means

of distance distributions are comparable to series of length 256. This
confirms that our design of SoS preservation is indeed helpful to
preserve pairwise distances. (2) However, the variance of distance
distributions increases dramatically after scaling, e.g., 16× from
0.984 to 15.743 for length 16. This introduces extra noise that hin-
ders convergence. (3) By scaling both series and DEAs in the loss
functions, not only are the means of distance distributions kept
roughly the same (≈1.4), but also their variances are suppressed to
a small value. This helps SEAnet focus on learning from the dif-
ferences between series distance and DEA distance, without being
interfered by endogenous noises of the distance distributions.

Finally, we observe that scaling series and DEAwill not only keep
the two distances to the same level, but will also largely stabilize
the distance distributions. Both effects are beneficial to SEAnet’s
learning and convergence. Thus, by z-normalizing DEA, and scaling
series and DEA in 𝐿𝐶 and 𝐿𝑅 , SEAnet succeeds in providing high-
quality DEAs by preserving SoS, and in converging fast to good
optima (thanks to the stable latent variables and gradients).

3.3 Sampling with SEAsam
The representativeness of the training set upper bounds the quality
of the deepmodels. To effectively train SEAnet on very large (≥ 1𝑒8)
series collections, a good sampling strategy is essential for providing
representative subsets. This means that we need our sample to
effectively cover the entire space of a given dataset, and we need to
efficiently select this sample without having to perform expensive
computations on the full dataset. For example, an effective sampling
strategy would be to sample from all leaves of an index built on the
entire dataset, since such an index would cover the entire space, and

1 0 1 0 0 1 0 1 1

0 0 0 0 1 0 1 1 1

1 0 0

1 1 0

…
InvSAX

SAX

[𝟔 𝟎 𝟐 𝟕]

[𝟒 𝟓 𝟏 𝟑]

Most Significant Least Significant

Figure 5: SEAsam transformation and InvSAX [23].

each leaf would gather similar series; this solution though, would
be prohibitively expensive.

To this end, we propose SEAsam (SEA Sampling), a novel data
series sampling strategy based on the sortable data series repre-
sentation, InvSAX [23]. Recall that SAX first transforms the data
series into 𝑙 real values (i.e., the mean values of 𝑙 segments of con-
secutive points of the series), and then quantizes these real values,
representing them using discrete symbols (usually of cardinality
256) [40]. The core observation is that every subsequent bit in a
SAX word contains a decreasing amount of information about the
location of its corresponding data point, and simply increases the
degree of precision. Interleaving SAX’s bits such that all significant
bits across each SAX word precede all less significant bits presents
a value array with descending significance, i.e., InvSAX. The proce-
dure to generate InvSAX is shown in Figure 5. The most significant
bits {1, 1, 0, 0} across the original SAX words are moved to the first 4
bits of InvSAX, making its first and most significant value 6 (shown
in red/bold). The second most significant bits {1, 0, 1, 1} are moved to
InvSAX’s 5-8 bits, making the second value 2. The last bits {0, 1, 1, 0}
are moved to InvSAX’s 9-12 bits, making the last two values 2 and
6. Thus, this series will be order by its InvSAX [6, 2, 2, 6].

SEAsam orders the series collection by their InvSax representa-
tions, and draws samples at equal-intervals (e.g., every 1,000 series)
from this sorted order. Thus, SEAsam samples are expected to pre-
serve the distribution of the series collection by evenly covering its
InvSAX space. Moreover, the time complexity of SEAsam is O(𝑛𝑚),
and the space complexity of SEAsam is O(𝑛𝑙), rendering SEAsam
an efficient strategy.

4 Experimental Evaluation

We present our experimental evaluation of SEAnet, DEA-based
data series similarity search, and SEAsam using 7 diverse synthetic
and real datasets. In summary, the results demonstrate that the
SEAnet DEA is robust across various dataset properties and out-
performs its competitors by better preserving original pairwise
distances and nearest neighborhood structure, leading to better
approximate similarity search results than traditional (PAA-based)
and alternative deep learning (DEA-based using FDJNet, TimeNet,
and InceptionTime) approaches.
[Setup] All deep models were trained using Nvidia Tesla V100
SXM2 (16G memory). Sampling, indexing and query answering
were conducted in a server with 2x Intel(R) Xeon(R) Gold 6134
CPU @ 3.20GHz and 320GB RAM. Software environments were
python/3.6.10, pytorch-gpu/py3/1.5.1 and cuda/10.2.
[Datasets] Experiments were conducted on 3 synthetic datasets of
different characteristics and 4 real datasets from diverse domains.

For synthetic datasets, we used RandWalk, F5 and F10. Rand-
Walk [37] was generated as cumulative sums of steps following a
standard Gaussian distribution 𝑁 (0, 1). F5 and F10 were recently in-
troduced to evaluate iSAX on datasets of different frequencies [25].
They were generated through Inverse Discrete Fourier Transform
(IDFT) from a random spectrum with its first 5 or 10 components
being amplified. Four real datasets are Seismic from seismology,
Astro from astronomy, SALD from neuroscience and Deep1B from
image processing [14]. Length of each series is 128 for SALD, 96 for
Deep1B, and 256 for the rest. We note that these datasets are consid-
ered hard for the similarity search task [13, 14]. We experimented
with datasets ranging between 1M to 100M series4.
[Methods] We evaluated the SEAnet-generated DEA and its ap-
plications in data series similarity search against PAA and DEA
generated by SEAnet-nD (a simplified version of SEAnet), and our
adaptations of FDJNet [17], TimeNet [31], and InceptionTime [15].
We describe these methods below. SEAsam was compared to uni-
formly random sampling.

PAA [21] is the baseline method to evaluate DEA’s summariza-
tion quality. PAA-based MESSI iSAX index [37, 38] is the SOTA
baseline method to evaluate DEA-based iSAX on approximate simi-
larity search. When it is clear from the context, we used the term
PAA to denote both the PAA summarization, and the PAA-based
iSAX index in the rest of Section 4. We used the same convention
for other methods, as well, e.g., SEAnet denotes the DEA generated
by SEAnet and the index built on the DEA generated by SEAnet.

SEAnet-nD is an encoder-only version of SEAnet, introduced to
evaluate the contribution of the decoder to the final performance.
The convolution kernel size for SEAnet and SEAnet-nD is 3. For
FDJNet, we adopted the same network setting as SEAnet-nD. For
TimeNet, we used the output of the last position as DEA, instead of
the original concatenation of latent vectors. This enables TimeNet
using longer latent vectors to generate lower-dimensional DEA.
The dropout probability of TimeNet is 0.4, following the original set-
ting [31]. For InceptionTime, we used the same structure as SEAnet,
but replaced ResBlock with InceptionBlock [15]. The convolution
kernel sizes for InceptionTime are {3, 5, 9, 17}. Batch size was set
to 128 for TimeNet (due to our memory limit), and to 256 for the
other architectures. For all architectures, we stacked 7, 6, and 5
building blocks for series of length 256, 128, and 96, respectively.
Latent dimensions and channels were kept the same to series length
following the conventions [2].

All models were trained using SGD and the same loss function
(cf. Section 3.2). Training size was 200,000 series, and validation size
was 20,000. TimeNet was trained for 125 epochs, while the others
for 100 epochs. SEAnet, SEAnet-nD, FDJNet and InceptionTime
were initialized by LSUV [32], while TimeNet was initialized by de-
fault. Hyperparameters were tuned for each model (of specific DEA
length) on 100M datasets. The best hyperparameters for similarity
search were adopted for all other dataset sizes. 𝛼 was searched
from {0.1, 0.25, 0.5, 1, 1.25}. Learning rate was cross searched from
{1𝑒-3, 5𝑒-3, 1𝑒-2, 2.5𝑒-2, 5𝑒-2}, and was either linearly decayed (ev-
ery epoch), or exponentially decayed (by 0.9 every 2 epochs) until
1𝑒-5. Totally, 5,040 deep models were trained to provide a thorough

4100M series of length 256 ≈ 100𝐺𝐵.

Length SEAnet SEAnet-nD FDJNet TimeNet Incept

parameters
(millions)

96 0.585 0.288 0.262 0.746 0.512
128 1.234 0.609 0.563 1.32 0.832
256 5.712 2.823 2.634 5.23 2.126

MACs
(billions)

96 0.053 0.027 0.028 0.07 0.085
128 0.152 0.076 0.082 0.17 0.15
256 1.412 0.706 0.756 1.34 0.49

Seconds
/ Epoch

96 87.8 46.7 19.8 100.8 223.1
128 93.7 52.4 23.5 180.1 365.6
256 312.1 173.4 130.7 1044.8 905.2

Table 2: The complexities of the deep models, in terms of number of
tunable parameters (in millions), Multiply-and-Accumulate (MAC)
(in billions), and training time per epoch (in seconds).

profile of DEA architectures. Other hyperparameters were set to
their default values. For indexing, leaf size ℎ was 8,000 by default.

Architecture complexities are summarized in Table 2, measured
in number of (millions of) tunable parameters, and (billions of)
Multiply-and-Accumulate (MAC) operations. All models converged
with the training speed reported in Table 2.
[Measures] To evaluate summarization quality, we used the fol-
lowing 3 measures, i.e., average distance differences (unscaled 𝐿𝐶),
reconstruction RMS, and NN coverages. Series subsets or series
pairs were SEAsam samples from 100M datasets. PAA is implied as
a special case of DEA if without ambiguity.
(1) Average Distance Differences (𝐿𝐶). Differences between orig-
inal distances andDEAdistances of series pairs, i.e., |𝑑 ′(𝜙 (𝑆𝑖), 𝜙 (𝑆 𝑗))−
𝑑 (𝑆𝑖 , 𝑆 𝑗) |. Reported values were averaged from 20,000 pairs. (Dif-
ferences of 1,000 pairs were illustrated as scatters in Figure 6.)
(2) Reconstruction RMS. Root-Mean-Square errors between orig-
inal series and their reconstructions, i.e.,

√︃
1
𝑚

∑
𝑖 (𝑝𝑖 − 𝑝 ′

𝑖
)2, where

𝑆 ′ = [..., 𝑝 ′
𝑖
, ...] is the reconstruction of series 𝑆 = [..., 𝑝𝑖 , ...]. Re-

ported values were averaged from 20,000 series.
(3) NN Coverages. The coverage of series 𝑆’s nearest neighbors
in DEA space, i.e., |𝑘NN𝑑 (𝑆)∩𝑘NN𝑑′ (𝐸) |

|𝑘NN𝑑 (𝑆) | , where 𝑘NN𝑑 and 𝑘NN𝑑′

return 𝑘 nearest neighbors in original and DEA spaces respectively.
We consider NN coverage as the direct measure of whether the
structure of original distance spaces is preserved or not.We reported
NN coverages for 𝑘 ∈ {1, 5, 10, 50, 100, 500, 1,000} in Section 4.2.
The reported values were averaged from 1,000 series, whose kNN
was searched from 20,000 series.
(4) 1st BSF Tightness. To evaluate the DEA performance on data
series similarity search, we used the tightness of the first Best-So-
Far (1st BSF) [14]. In the context of approximate similarity search,
1st BSF is the best result under the constraint of a fixed number of
leaf nodes, or series allowed to be examined by the query answering
algorithm. In the case where only one leaf node is allowed to be
examined, the 1st BSF is also called the approximate answer. In
our experiments (see Sections 4.1 and 4.3), we report the 1st BSF
tightness as a function of the number of series examined (this
makes for a fair comparison across indices, which may have leaves
containing different number of series). Similar to previous work,
we report the average tightness over 1,000 queries [13, 14].

4.1 SoS Preservation and SEAsam
In this section, we evaluate the two novel design choices we propose
for DEA methods, i.e., the SoS preservation principle and SEAsam.
Detailed results are omitted for brevity.
[SoS Preservation] First, we evaluate the effect of the scaling
steps we introduced under the SoS preservation. We trained all
five models using SEAsam samples across seven 100M-size datasets
and reported their 1st BSF tightness improvements. 1st BSFs were
reported under the constraint that the query answering algorithm
examines a maximum of 10,000 series in the index before producing
the answer. Improvements are calculated by subtracting the 1st BSF
tightness of the non-scaled models from that of the scaled models.

The results show that the scaled models provided better 1st BSF
in 32 out of the 35 experiments (91%). The only three exceptions
were by small margins. Besides, 14 of 35 (40%) non-scaled models
could not effectively converge. They either converged to bad local
optima of large constant DEAs (cf. Section 3.2), or did not converge
and generate random DEAs (exhibiting similar statistics to Table 1).

These results verify that the proposed SoS preservation is indeed
an effective method for both preserving pairwise distances and
facilitating network convergence. We note that the SoS preserva-
tion idea is applicable to any suitable architecture, and apart from
SEAnet, it also improves the performance of the non-scaled ver-
sions of FDJNet, TimeNet and InceptionTime. In the rest of this
section, we only report results using the scaled models.
[SEAsam] Second, we compare the proposed SEAsam against the
commonly used uniform random sampling. Results are reported
similarly to the previous experiments. Improvements were calcu-
lated by subtracting the 1st BSF tightness of models trained using
random samples from those trained using SEAsam samples.

For 27 out of the 35 experiments (77%), SESASam provided tighter
1st BSFs than random sampling. SEAsam was only surpassed by
random sampling on 8 experiments (23%) with a very small margin.
We observe that for SEAnet, SEAsam was always better.

In order to evaluate the effectiveness of SEAsam, we also mea-
sured the number of distinct leaves (of an index constructed on the
entire dataset) containing a series that is part of the SEAsam sample.
Intuitively, the leaf nodes of the index represent an effective split
of the series space, which corresponds to the underlying distribu-
tion of the collection. The more leaf nodes a sample set covers, the
better it represents the entire collection. In our experiments, for all
samples with sizes between 10K-500K series across our 7 datasets,
SEAsam samples covered more leaf nodes than uniformly random
samples with an average improvement of 8%, and up to 28% for the
challenging synthetic dataset F10.

These results verify that SEAsam provides more representative
samples than uniformly random sampling. In the following, we
report results with SEAsam.

4.2 DEA Quality
[Average Distance Differences] The averaged distance differ-
ences reported in Table 3a, show that SEAnet and SEAnet-nD out-
performed PAA in all 7 datasets. SEAnet and SEAnet-nD also out-
performed all other architectures in 6 out of the 7 datasets. The
averaged distance differences for SEAnet were better than SEAnet-
nD for the 3 synthetic datasets, but worse for the 4 real datasets.

This is because of the regularization effect of the decoder. Synthetic
datasets are less noisy, making models prone to overfitting to the
training sets. In this case, the decoder’s regularization improves the
averaged distance differences. On the other hand, real datasets are
more noisy, where loss 𝐿𝑅 dominates 𝐿𝐶 , making SEAnet worse
than SEAnet-nD in terms of averaged distance differences. However,
as we will explain later on, SEAnet still outperformed SEAnet-nD
in terms of NN coverages and 1st BSF tightness.

Regarding the other models, TimeNet worked better than FDJNet
and InceptionTime only for the F5 dataset, which is of moderate
periodicity, and lagged behind for Deep1B, whose adjacent values
are less correlated. InceptionTime’s best averaged difference on the
Astro dataset is an interesting result. However, after examining the
embedding and reconstructed series of InceptionTime on Astro, we
infer this is due to overfitting (reconstruction RMS, NN coverage,
1st BSF tightness and other results concur to this explanation).
[Distance Scatter] Distance differences are depicted in scatter
plots in Figure 6. Points close to the 𝑦 = 𝑥 diagonal correspond
to series for which the original distances are well preserved in
the DEA space. We observe that scatters of DEAs generated by
SEAnet assembled tighter than PAA around the diagonal for all 7
datasets. Moreover, scatters of DEAs exhibited stronger linearity;
thus, SEAnet preserved the true nearest neighborhoods better than
PAA.
[Reconstruction RMS] The reconstruction RMS results are re-
ported in Table 3b. SEAnet surpassed competitors on 5 out of 7
datasets; it lost to PAA for Seismic and Astro. Upon close exam-
ination, we observe that this happened because of some hard to
summarize series, for which neither SEAnet, nor PAA succeeded to
produce a good summarization.

Given that the data series are z-normalized, an RMS≈ 1might im-
ply useless local optima reached by setting all reconstruction values
to zeroes. This is exactly the case for TimeNet on Deep1B / Astro.
Such decoders cannot contribute at all to better summarizations.
This is even worse than getting higher RMS, where the network
might still learn from data. Such observations prove that SEAnet
is more robust than PAA, FDJNet, TimeNet and InceptionTime for
datasets of different characteristics.
[NNCoverages]TheNN coverages are reported in Figure 7. SEAnet
outperformed PAA and other architectures on all 63 experiments.
This observation confirms SEAnet’s capabilities on well-preserving
original distance space structures in the DEA space.

The advantage of deep models over PAA was not as obvious as
in Table 3a, except for SEAnet, indicating that the target of pre-
serving original distances in DEA distances alone cannot guarantee
to provide high-quality DEAs for similarity search. This observa-
tion, together with the fact that SEAnet outperformed SEAnet-nD,
verifies the need for the decoder.

SEAnet-nD outperformed FDJNet on 56 out of the 63 experi-
ments (89%). This confirms the overall SEAnet design choices over
FDJNet, even after FDJNet was improved by using SoS preservation.
There were clear gaps on Deep1B in Figure 7e between convolu-
tional models and PAA, and between PAA and TimeNet. This is
because Deep1B is from image processing, where adjacent values
are not necessarily correlated. This once again attests to SEAnet’s
versatility in handling datasets with different properties.

(a) Averaged Distance Differences (b) Reconstruction Root-Mean-Square Error

Dataset PAA FDJNet TimeNet InceptionTime SEAnet-nD SEAnet PAA TimeNet InceptionTime SEAnet

RandWalk 1.3701 0.2794 0.4098 0.6285 0.2976 0.2194 0.3061 0.3354 0.3587 0.2604
F5 2.1152 0.1737 0.2103 0.2836 0.1692 0.1629 0.4214 0.2527 0.2708 0.2433
F10 5.0395 1.1943 1.9063 1.3958 1.1859 1.1672 0.6238 0.6799 0.5041 0.2635

SALD 3.2927 0.6247 0.6928 0.858 0.5748 0.6182 0.5586 0.5883 0.6831 0.5023
Deep1B 8.1095 0.9511 7.8478 0.9511 0.9083 0.9484 0.9207 1.0 0.6368 0.5418
Seismic 9.9629 1.3798 1.6577 1.4555 1.306 1.4514 0.7385 0.8211 0.9669 0.7771
Astro 14.622 1.9239 2.4981 1.7983 1.8991 1.9737 0.9267 1.0 1.4096 1.1196

Table 3: (a) Averaged distance differences between pairs of series in the original and the embedded (PAA, DEA) spaces. (b) Root-Mean-Square
error between original and reconstructed series. In both cases, best result (lower is better) is marked in bold, second best is underlined. (Results
calculated using 10,000 series SEAsam sampled from datasets of 10-million series.)

Y axis: DEA Distances X axis: Original Distances PAA DEA

10 20 30

10

20

30

(a) RandWalk

10 20 30

10

20

30

(b) F5

10 20 30
10

15

20

25

30

(c) F10

10 20
5

10

15

20

(d) SALD

5 10 15

5

10

15

(e) Deep1B

0 200

10

20

30

(f) Seismic

10 20 30

10

20

30

(g) Astro

Figure 6: Distance scatters of 1,000 SEAsam sampled series pairs across different datasets for PAA (light gray) and SEAnet (dark red).

Y axis: NN Coverages X axis: Number of Nearest Neighbors PAA SEAnet SEAnet-nD FDJNet TimeNet Incept

1 10 100 10000.20
0.40
0.60
0.80

(a) RandWalk

1 10 100 1000

0.80

0.90

(b) F5

1 10 100 1000

0.20

0.40

0.60

(c) F10

1 10 100 1000
0.25

0.50

0.75

(d) SALD

1 10 100 1000
0.00

0.20

0.40

0.60

(e) Deep1B

1 10 100 1000

0.20

0.40

0.60

(f) Seismic

1 10 100 1000
0.00

0.10

0.20

0.30

(g) Astro

Figure 7: Nearest neighbors’ coverage vs neighborhood size (higher is better).

4.3 DEA for Approximate Search
[1st BSF Tightness Limited by Number of Series to Examine]
We evaluate the benefit of using DEA for similarity search, by
reporting the 1st BSF tightness as a function of the number of
series that the similarity search algorithm examines. The results
on 100M datasets, are shown in Figure 8. SEAnet improved the 1st
BSF tightness, and thus the similarity search results, in 61 out of
the 63 experiments. Its advantage was particularly obvious on the
Deep1B, Seismic, and Astro (hard) datasets.

Besides the 1st BSF tightness, the index’s leaf node compactness
(i.e., the average distances among the series in a leaf node) also
profiles the quality of the index built on DEA or PAA. Smaller
average distance indicates the index is more successful in grouping
similar series into the same leaf node. SEAnet leaded to an average
improvement over PAA in leaf node compactness of 4%, and up
to 14% for the challenging real dataset Deep1B, demonstrating its
effectiveness in producing more compact indexes than the SOTA
competitors. (Detailed results in the full version of the paper.)
[1st BSF Tightness across DEA lengths] We also measured the
1st BSF tightness with varying DEA and PAA representation lengths
between 8-16 values. SEAnet performed better than the competi-
tors across all representation lengths and all datasets (we omit the
detailed results due to lack of space).

To conclude this section, our comprehensive experiments verify
the effectiveness of SEAnet’s ability to provide better DEAs to
facilitate data series similarity search.

5 Discussion and Conclusions

In this paper, we introduce the use of deep learning embeddings,
DEA, for data series similarity search. We propose a novel autoen-
coder, SEAnet, designed under the firstly introduced SoS preser-
vation principle, for effectively learning DEA. A new sampling
strategy, SEAsam, is introduced in order to facilitate SEAnet’s train-
ing onmassive collections.We demonstrate that the DEA learned by
SEAnet more closely approximates the original data series distances,
better preserves the true nearest neighbors in the summarized space,
better reconstructs the original series, and leads to better similarity
search results than the SOTA PAA-based iSAX (when examining
either a small, or a large number of candidates). These prelimi-
nary results are very promising, they set the ground for further
advancements in this area, and have the potential to also improve
the performance of kNN classification, anomaly detection and other
similarity search based applications. In our future work, we will
study the development of lower bounding properties for DEA that
will enable exact similarity search, the adaptation of transfer learn-
ing or incremental learning techniques for quickly fitting new or

Y axis: 1st BSF Tightness X axis: Number of Series Examined PAA SEAnet SEAnet-nD FDJNet TimeNet Incept

100 500 1k 5k 10k
0.80

0.90

(a) RandWalk

100 500 1k 5k 10k
0.90
0.93
0.95
0.97

(b) F5

100 500 1k 5k 10k

0.80

0.90

(c) F10

100 500 1k 5k 10k
0.70

0.80

0.90

(d) SALD

100 500 1k 5k 10k
0.60

0.70

0.80

0.90

(e) Deep1B

100 500 1k 5k 10k

0.85

0.90

(f) Seismic

100 500 1k 5k 10k

0.85

0.90

(g) Astro

Figure 8: Approximate query answers quality: 1st BSF tightness vs number of series visited; 100M series datasets (higher is better)

dynamic datasets, the development of more powerful sampling
strategies, and the careful study of query answering strategies on
top of DEA, including product quantization [20], locality sensitive
hashing [26], and modern data series indexes [24, 29, 39].

[Acknowledgements]Work supported by Investir l’Avenir and
Université de Paris IDEX Emergence en Recherche ANR-18-IDEX-
000, Chinese Scholarship Council, FMJH Program PGMO, EDF,
Thales, HIPEAC 4, GENCI–IDRIS (Grant 2020-101471), and NVIDIA
Corporation for the Titan Xp GPU donation used in this research.

References

[1] Lei Jimmy Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. 2016. Layer Normaliza-
tion. arXiv (2016).

[2] Shaojie Bai, J. Zico Kolter, and Vladlen Koltun. 2018. An Empirical Evaluation of
Generic Convolutional and Recurrent Networks for Sequence Modeling. arXiv
(2018).

[3] Yoshua Bengio, Aaron C. Courville, and Pascal Vincent. 2013. Representation
Learning: A Review and New Perspectives. PAMI (2013).

[4] Paul Boniol, Michele Linardi, Federico Roncallo, Themis Palpanas, Mohammed
Meftah, and Emmanuel Remy. 2021. Unsupervised and Scalable Subsequence
Anomaly Detectionin Large Data Series. VLDBJ (2021).

[5] Paul Boniol and Themis Palpanas. 2020. Series2Graph: Graph-based Subsequence
Anomaly Detection for Time Series. PVLDB 13, 11 (2020).

[6] Paul Boniol, John Paparrizos, Themis Palpanas, and Michael J. Franklin. 2021.
SAND: Streaming Subsequence Anomaly Detection. PVLDB (2021).

[7] Hoang Anh Dau, Anthony J. Bagnall, Kaveh Kamgar, Chin-Chia Michael Yeh,
Yan Zhu, Shaghayegh Gharghabi, Chotirat Ann Ratanamahatana, and Eamonn J.
Keogh. 2019. The UCR time series archive. JAS (2019).

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding. In
NAACL-HLT.

[9] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2020. Big Sequence
Management: on Scalability. In IEEE BigData.

[10] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. Big Sequence
Management: Scaling up and Out. In EDBT.

[11] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. High-
Dimensional Similarity Search for Scalable Data Science. In ICDE.

[12] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. New Trends
in High-D Vector Similarity Search: AI-driven, Progressive, and Distributed. In
VLDB.

[13] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2018. The lernaean hydra of data series similarity search: An experimental
evaluation of the state of the art. VLDB (2018).

[14] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2019. Return of the Lernaean Hydra: experimental evaluation of data series
approximate similarity search. VLDB (2019).

[15] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,
Daniel F. Schmidt, JonathanWeber, Geoffrey I. Webb, Lhassane Idoumghar, Pierre-
Alain Muller, and François Petitjean. 2020. InceptionTime: Finding AlexNet for
time series classification. DMKD (2020).

[16] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi.
2000. Vector Approximation based Indexing for Non-uniform High Dimensional
Data Sets. In CIKM.

[17] Jean-Yves Franceschi, Aymeric Dieuleveut, and Martin Jaggi. 2019. Unsupervised
scalable representation learning for multivariate time series. In NeurIPS.

[18] Anna Gogolou, Theophanis Tsandilas, Karima Echihabi, Anastasia Bezerianos,
and Themis Palpanas. 2020. Data Series Progressive Similarity Search with
Probabilistic Quality Guarantees. In SIGMOD.

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Identity Map-
pings in Deep Residual Networks. In ECCV.

[20] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. 2011. Product Quantization
for Nearest Neighbor Search. PAMI (2011).

[21] Eamonn Keogh, Kaushik Chakrabarti, Michael Pazzani, and Sharad Mehrotra.
2001. Locally adaptive dimensionality reduction for indexing large time series
databases. In SIGMOD.

[22] Alexander Kolesnikov, Xiaohua Zhai, and Lucas Beyer. 2019. Revisiting Self-
Supervised Visual Representation Learning. In CVPR.

[23] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.
2018. Coconut: A Scalable Bottom-Up Approach for Building Data Series Indexes.
VLDB (2018).

[24] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.
2019. Coconut: Sortable summarizations for scalable indexes over static and
streaming data series. VLDBJ 28, 6 (2019).

[25] Oleksandra Levchenko, Boyan Kolev, Djamel Edine Yagoubi, Reza Akbarinia,
Florent Masseglia, Themis Palpanas, Dennis Shasha, and Patrick Valduriez.
2020. BestNeighbor: Efficient Evaluation of kNN Queries on Large Time Se-
ries Databases. KAIS (2020).

[26] Mingjie Li, Ying Zhang, Yifang Sun, Wei Wang, Ivor W. Tsang, and Xuemin Lin.
2020. I/O Efficient Approximate Nearest Neighbour Search based on Learned
Functions. In ICDE.

[27] Runnan Li, Zhiyong Wu, Jia Jia, Yaohua Bu, Sheng Zhao, and Helen Meng. 2019.
Towards Discriminative Representation Learning for Speech Emotion Recogni-
tion. In IJCAI.

[28] Jessica Lin, Eamonn Keogh, Stefano Lonardi, and Bill Chiu. 2003. A symbolic
representation of time series, with implications for streaming algorithms. In
SIGMOD.

[29] Michele Linardi and Themis Palpanas. 2020. Scalable Data Series Subsequence
Matching with ULISSE. VLDBJ (2020).

[30] Yukun Ma, Jiu Xu, Björn Stenger, Chen Liu, and Yu Hirate. 2018. Deep Heteroge-
neous Autoencoders for Collaborative Filtering. In ICDM.

[31] Pankaj Malhotra, Vishnu TV, Lovekesh Vig, Puneet Agarwal, and Gautam M.
Shroff. 2017. TimeNet: Pre-trained deep recurrent neural network for time series
classification. In ESANN.

[32] Dmytro Mishkin and Jiri Matas. 2016. All you need is a good init. In ICLR.
[33] Themis Palpanas. 2015. Data series management: The road to big sequence

analytics. SIGMOD Record (2015).
[34] Themis Palpanas. 2019. Evolution of a Data Series Index. In ISIP.
[35] Themis Palpanas and Volker Beckmann. 2019. Report on the first and second

interdisciplinary time series analysis workshop (itisa). SIGMOD Record (2019).
[36] John Paparrizos and Luis Gravano. 2015. k-shape: Efficient and accurate clustering

of time series. In SIGMOD.
[37] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2020. MESSI: In-Memory

Data Series Indexing. ICDE.
[38] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. Fast Data Series

Indexing for In-Memory Data. VLDBJ (2021).
[39] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. SING: Sequence

Indexing Using GPUs. In ICDE.
[40] Jin Shieh and Eamonn Keogh. 2008. iSAX: indexing and mining terabyte sized

time series. In KDD.
[41] Jingyuan Wang, Ze Wang, Jianfeng Li, and Junjie Wu. 2018. Multilevel Wavelet

Decomposition Network for Interpretable Time Series Analysis. In KDD.
[42] Qitong Wang and Themis Palpanas. 2021. SEAnet homepage. https://helios.mi.

parisdescartes.fr/~themisp/seanet/
[43] Xiaoyue Wang, Abdullah Mueen, Hui Ding, Goce Trajcevski, Peter Scheuermann,

and Eamonn J. Keogh. 2013. Experimental comparison of representation methods
and distance measures for time series data. DMKD (2013).

[44] Zbigniew Wojna, Vittorio Ferrari, Sergio Guadarrama, Nathan Silberman, Liang-
Chieh Chen, Alireza Fathi, and Jasper Uijlings. 2019. The devil is in the decoder:
Classification, regression and gans. IJCV (2019).

[45] Svante Wold, Kim Esbensen, and Paul Geladi. 1987. Principal component analysis.
Chemometrics and intelligent laboratory systems (1987).

https://helios.mi.parisdescartes.fr/~themisp/seanet/
https://helios.mi.parisdescartes.fr/~themisp/seanet/

	Abstract
	1 Introduction
	2 Background and Related Work
	3 DEA-based Approximate Similarity Search
	3.1 SEAnet Architecture
	3.2 Sum of Squares Preservation
	3.3 Sampling with SEAsam

	4 Experimental Evaluation
	4.1 SoS Preservation and SEAsam
	4.2 DEA Quality
	4.3 DEA for Approximate Search

	5 Discussion and Conclusions
	References

