
Towards a Generic Framework for Mechanism-guided Deep
Learning for Manufacturing Applications

Hanbo Zhang∗
School of Computer Science

Fudan University
Shanghai, China

zhanghb16@fudan.edu.cn

Jiangxin Li
School of Computer Science

Fudan University
Shanghai, China

jiangxinli21@m.fudan.edu.cn

Shen Liang†
Data Intelligence Institute of Paris

Université Paris Cité
Paris, France

shen.liang@u-paris.fr

Peng Wang
Shanghai Key Laboratory of Data

Science, School of Computer Science
Fudan University
Shanghai, China

pengwang5@fudan.edu.cn

Themis Palpanas
LIPADE, Université Paris Cité

& French University Institute (IUF)
Paris, France

themis@mi.parisdescartes.fr

Chen Wang
NELBDS, EIRI, School of Software

Tsinghua University
Beijing, China

wang_chen@tsinghua.edu.cn

Wei Wang
Shanghai Key Laboratory of Data

Science, School of Computer Science
Fudan University
Shanghai, China

weiwang1@fudan.edu.cn

Haoxuan Zhou
School of Mechanical Engineering

Xi’an Jiaotong University
Xi’an, China

Energy Department
Politecnico di Milano

Milano, Italy
hxzhou@stu.xjtu.edu.cn

Jianwei Song
Hudong-Zhonghua Shipbuilding

(Group) Co,Ltd.
Shanghai, China

13611889322@126.com

Wen Lu
Hudong-Zhonghua Shipbuilding

(Group) Co,Ltd.
Shanghai, China
seyluu@163.com

ABSTRACT
Manufacturing data analytics tasks are traditionally undertaken
with Mechanism Models (MMs), which are domain-specific mathe-
matical equations modeling the underlying physical or chemical
processes of the tasks. Recently, Deep Learning (DL) has been in-
creasingly applied to manufacturing. MMs and DL have their indi-
vidual pros and cons, motivating the development of Mechanism-
guided Deep Learning Models (MDLMs) that combine the two. Ex-
isting MDLMs are often tailored to specific tasks or types of MMs,

∗Hanbo Zhang and Jiangxin Li are co-first authors with equal contributions.
†Shen Liang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08. . . $15.00
https://doi.org/10.1145/3580305.3599913

and can fail to effectively 1) utilize interconnections of multiple in-
put examples, 2) adaptively self-correct prediction errors with error
bounding, and 3) ensemble multiple MMs. In this work, we propose
a generic, task-agnostic MDLM framework that can embed one or
more MMs in deep networks, and address the 3 aforementioned
issues. We present 2 diverse use cases where we experimentally
demonstrate the effectiveness and efficiency of our models.

CCS CONCEPTS
• Applied computing → Industry and manufacturing; • Com-
puting methodologies→ Artificial intelligence.

KEYWORDS
manufacturing; mechanism model; deep learning

ACM Reference Format:
Hanbo Zhang, Jiangxin Li, Shen Liang, Peng Wang, Themis Palpanas, Chen
Wang, Wei Wang, Haoxuan Zhou, Jianwei Song, and Wen Lu. 2023. To-
wards a Generic Framework for Mechanism-guided Deep Learning for
Manufacturing Applications . In Proceedings of the 29th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining (KDD ’23), August

https://doi.org/10.1145/3580305.3599913

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Hanbo Zhang et al.

6–10, 2023, Long Beach, CA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3580305.3599913

1 INTRODUCTION
Manufacturing entails numerous data analytics tasks. For instance,
in shipbuilding, the task of Mechanical Operation State Predic-
tion (MOSP) [24] for assembly machinery is critical to safe oper-
ations, while the task of Melt Viscosity Prediction (MVP) [22]
for alloy melts is important to marine grade steel plate production.
Such tasks are traditionally undertaken with Mechanism Models
(MMs) [49], formally defined as follows.

Definition 1. Mechanism Model (MM): For a manufacturing
task with input and output vectors x and y, an MM is an equation

ŷ𝑀 = 𝑓 (x,θ) (1)
which is created by domain experts to model the underlying physical or
chemical processes of the task, with ŷ𝑀 being the MM’s prediction for
y, and θ being unknown parameters to estimate for specific datasets.
The process of estimating θ is called Parameter Identification.

For instance, an MM for MOSP is the Wiener-process MM [24]
(detailed in Section 5), while an MM for MVP is the VFT MM [42]:

�̂� = 𝐴𝑉𝐹𝑇 +
(12 − 𝐴𝑉𝐹𝑇) (𝑇𝑔 − 𝐶𝑉𝐹𝑇)

𝑥 − 𝐶𝑉𝐹𝑇
(2)

where 𝑥 is the temperature, 𝑦 is the base-10 logarithm of the pre-
dicted viscosity, and 𝐴𝑉𝐹𝑇 , 𝐶𝑉𝐹𝑇 , 𝑇𝑔 are parameters to identify.

MMs are highly interpretable and are generally robust against
small data, as they are rooted in domain knowledge and the number
of unknown parameters is usually small. Thus, they remain widely
used to this day [22–24, 44, 49]. However, their performance can be
limited by 2 factors: 1) MMs may not be accurate enough to model
complex real-world processes due to the limitations of the domain
knowledge they are built on. 2) Parameter identification for MMs
traditionally relies on classic numerical optimization methods (e.g.
least squares [49]), which often yield sub-optimal parameters.

Recently, Deep Learning (DL) has been increasingly applied
to manufacturing [12, 25]. Unlike MMs which use explicit domain
knowledge, DL models directly learn from raw data, and are often
more accurate on large datasets. However, they still widely suffer
from low interpretability and sensitivity to small data, despite recent
advances in trying to solve these problems [26, 46].

Faced with both the pros and cons of MMs and DL, researchers
are now bringing them together withMechanism-guided Deep
LearningModels (MDLMs), which embed MMs in deep networks.
Most existing MDLMs follow one of 2 paths: 1) DL for MM pa-
rameter identification [11, 20, 22, 34, 43, 49], replacing traditional
numerical optimization methods. 2) DL for approximation of un-
solvable/undifferentiable MMs [11, 20, 34, 43]. Existing MDLMs
are often tailored to specific tasks or types of MMs. Also, they
are often unable to fulfill the following 3 requirements of accurate
mechanism-guided DL.

R1: Utilization of multi-example interconnections.Manu-
facturing often entails interconnected data examples. For instance,
under the Wiener-process MM [24] (detailed in Section 5), the
MOSP task is formulated as a single-in-single-out problem: the MM
takes in the Operation State Value (OSV) at the current timestamp
and predicts the next OSV, both of which are scalars. However, the

OSVs are not isolated from each other. Rather, they are intercon-
nected data examples that jointly form a high-level data example: a
time series. Existing MDLMs are often restricted by the rigid input-
output format of the MM. In this case, the Wiener-process MM only
considers the pair of input-output scalars, ignoring their connec-
tions with OSVs in their vicinity, which can negatively impact the
performance of the model as potentially vital context information
(e.g. the shape of the OSV time series) is missing. In response, we
need MDLMs that can capture the interconnections of multiple
low-level data examples (e.g. individual OSVs) by learning from the
high-level data example they form (e.g. the OSV time series).

R2: Adaptive and bounded error correction.MMs are often
(over-)simplified approximations of complex processes, thus requir-
ing additional error correction. However, most MMs either do not
have built-in error terms, or make rigid assumptions on the error
distribution (e.g. that being Gaussian [24]), lacking adaptiveness to
real-world data. While there are some efforts to address errors in
MMs [8, 49], existing methods tend to lack the ability to adaptively
bound the error terms so that the users can easily observe or control
the amount of error.

R3: Multi-MM Ensembling. Many manufacturing tasks (e.g.
the MVP task [22]) can be tackled by multiple MMs. Intuitively,
an MM Ensemble (MME) can boost prediction accuracy. While the
idea of MMEs has been explored both in [13] and out of [21, 30, 31]
manufacturing, such studies remain limited in the context of task-
agnostic end-to-end MDLMs. Building an MME is especially chal-
lenging in that unlike in conventional ensembles where the ensem-
ble members are independent of each other, in an MME, multiple
MMs can have shared parameters. Sub-optimal identification of
these shared parameters can negatively affect multiple MMs and
thus the overall accuracy of the MME.

To fulfill these requirements, in this work we propose 3 solutions:
S1: Deep parameter identification with awareness of high-

level data examples. To fulfill R1, we note that while the MMs
themselves have rigid formats, there are no restrictions on how to
identify their parameters. Thus, we follow the path of DL-based
parameter identification. Unlike existing deep parameter identifica-
tion methods [22, 49], we capture interconnections of low-level data
examples from their corresponding high-level examples, which is
done by stratifying both the input examples and theMMparameters,
and mapping the two with a carefully-designed protocol.

S2: Adaptive error correction with error bounding. To fulfill
R2, we design a sub-network for error estimation with no rigid
assumptions on its distribution, and can bound the estimated error
to an interval that is either user-defined or automatically learned.

S3: Attentional multi-MM ensemble with penalty to sub-
optimal parameter identification. To fulfill R3, we use the atten-
tion mechanism [40, 48] to weight multiple MMs, thus building a
deepMM ensemble (MME).We also introduce a simple-yet-effective
penalty term in the loss function to guard against sub-optimal pa-
rameters, which can play a pivotal role to ensure model accuracy
in the presence of shared parameters.

The main contributions of this work are summarized below.
• We present a generic, task-agnostic framework for mechanism-
guided DL, which is comprised of 1) a Single-Mechanism-guided
Deep Learning Model (S-MDLM) and 2) a Multi-Mechanism-
guided Deep Learning Model (M-MDLM).

https://doi.org/10.1145/3580305.3599913

Towards a Generic Framework for Mechanism-guided Deep Learning for Manufacturing Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 1: Main Abbreviations and Notations

Symbol Meaning

AA Attentional Aggregator
CP Constant Parameter
DL Deep Learning
ECM Error Correction Module
EE Error Estimator
HE/LE High/Low-level Example
HF/LF High/Low-level Feature
HFL/LFL High/Low-level Feature Learner
HPI/LPI High/Low-level Parameter Identifier
HVP/LVP High/Low-level Variable Parameter
MDLM Mechanism-guided Deep Learning Model
MM Mechanism Model
MME Mechanism Model Ensemble
MOSP Mechanical Operation State Prediction
MVP Melt Viscosity Prediction
PIM Parameter Identification Module
RMSE Root Mean Square Error
S/M-MDLM Single/Multi-Mechanism-guided Deep Learning Model
SU Semantic Union
𝑎,𝑏 Parameters to identify in the Wiener-process MM
w Attentional weight vector in an AA
x Model input vector
y Groundtruth of the vector to predict
ŷ Predicted vector by an MDLM
ŷE Uncorrected predicted vector by an MME
ŷM Uncorrected predicted vector by an MM
ŷMi Predicted vector by the 𝑖-th MM in an MME
𝜷 Error bound vector in an EE
θ Parameters to identify in an MM

• Addressing the aforementioned key requirements R1-R3, we im-
plement the aforementioned solutions S1, S2 in both the S-MDLM
and M-MDLM, and S3 in the M-MDLM.

• We instantiate our framework in 2 use cases: Mechanical Opera-
tion State Prediction (MOSP) [24] and Melt Viscosity Prediction
(MVP) [22], where our models can yield significantly more accu-
rate results than their best competitors.

• All our source code is available at https://github.com/sliang11/
MDLM for reproducibility.
In the rest of the paper, Section 2 reviews related work. Sections 3

and 4 introduce S-MDLM and M-MDLM. Sections 5 and 6 present
the use cases of MOSP and MVP. Section 7 concludes the paper.
Table 1 shows the main abbreviations and notations in this paper.

2 RELATEDWORK
Manufacturing analytics tasks (e.g. MOSP [24], MVP [22], power
demand forecasting in smelting [49], state-of-charge estimation
for batteries [47], etc.) traditionally rely on domain-specific MMs.
whose parameters are identified by numerical optimization (e.g.
least squares [49], maximum likelihood estimation [24], etc.). MMs
are generally highly interpretable and robust against small data,
yet they are often inaccurate on complex real-world data, with
traditional parameter identification methods yielding sub-optimal
results. Recently, DL has been increasingly adopted in tasks such as
mechanical fault diagnosis [25] and distortion prediction in laser-
based additive manufacturing [12]. Rather than using explicit do-
main knowledge, DL models directly learn from raw data. While
DL models often perform better on large data, they widely suffer
from limited interpretability and sensitivity to small data.

Bringing together MMs and DL, researchers have now proposed
Mechanism-guided Deep Learning Models (MDLMs) which embed
MMs in deep networks. This is mainly achieved in two ways: 1) DL
for MM parameter identification. For instance, Yang et al. [49] used

a neural network to identify the parameters of an MM that predicts
power demand in smelting. Le Losq et al. [22] used deep multi-task
learning to identify the parameters of MMs that predict melt viscos-
ity. Physics-Informed Neural Networks (PINNs) [8, 11, 20, 34, 43]
can be used to identify parameters in Partial Differential Equations
(PDEs). 2) DL for approximation of unsolvable/undifferentiable
MMs. For instance, PINNs are proposed to provide approximate
solutions to PDEs. Existing MDLMs are often tailored to specific
tasks or types of MMs. Also, they are often unable to fulfill the re-
quirements R1-R3mentioned in Section 1, motivating us to propose
a novel generic MDLM framework.

3 SINGLE-MECHANISM-GUIDED DEEP
LEARNING MODEL (S-MDLM)

We now present our generic MDLM framework, beginning with the
Single-Mechanism-guided Deep Learning Model (S-MDLM)
which entails only one MM. Concretely, we will first discuss the
architecture of an S-MDLM, and then discuss its loss function.

3.1 The S-MDLM Architecture
Shown in Fig. 1, an S-MDLM is an end-to-end network with 1) an
MM as its core, 2) a Parameter Identification Module (PIM)
which identifies the MM parameters, and 3) an Error Correction
Module (ECM) which corrects errors in the MM’s predictions. We
now discuss these 3 parts one by one.
3.1.1 Mechanism Model (MM). As the core module for making
predictions, many MMs are themselves differentiable [22, 24] and
can be directly embedded into an S-MDLM. For an undifferentiable
MM, we can simply approximate each of its undifferentiable terms
z = 𝜏 (q) with a mini-network, generate a set of (q, z) pairs to
train it on, and embed it into the S-MDLM with all its parameters
hard-coded. Besides this simple approach, we can also use more
advanced methods such as PINNs [8, 11, 20, 34, 43].
3.1.2 Parameter Identification Module (PIM). The PIM uses sub-
networks called Feature Learners (FLs) to learn features from the
input, and Parameter Identifiers (PIs) to identify MM parameters
from the features. As was mentioned in Section 1, in the PIM, we
utilize the interconnections of multiple Low-level Examples (LEs)
(i.e. the MM’s raw input x), which are often encoded in the High-
level Examples (HEs) formed by the LEs. Thus, we make the HEs
part of the PIM input to retain the interconnections. For instance,
in the MOSP task mentioned in Section 1, the interconnections of
individual OSVs are encoded in the OSV time series, and can be
captured by having the latter as an input.

Note that it is not trivial to make the HEs part of the PI inputs,
as we need to solve the following 2 problems:
• HE acquisition: How to obtain the HEs from the LEs?
• Example-to-Parameter (E2P) mapping: The parameters in an
MM can often be heterogeneous, and it is thus not advisable to
use all LEs and HEs to identify every parameter. Therefore, for
each MM parameter, which LEs and/or HEs should be used to
identify it?

We now discuss these 2 problems in detail.
1) HE acquisition.We obtain the HEs by a user-defined Semantic

Union (SU) operation that details how LEs form an HE. We now
give our recommended SU definitions for the most common types of

https://github.com/sliang11/MDLM
https://github.com/sliang11/MDLM

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Hanbo Zhang et al.

Figure 1: The architecture of a Single-Mechanism-guided Deep Learning Model (S-MDLM), an end-to-end network with a single
MM as its core, and two modules for parameter identification and error correction. For simplicity, here we only show two levels
of data examples. We can generalize to more than 2 levels of examples by multiple iterative Semantic Union (SU) operations.

LEs in manufacturing, which can be used off the shelf : if the LEs are
data points at individual timestamps or time series subsequences,
SU outputs the time series they form; if the LEs are pixels or image
patches, SU outputs the image they form; if the LEs are video frames
or snippets, SU outputs the video they form; if the LEs are 3D points
or point clusters, SU outputs the point cloud they form. With the
LEs and HEs obtained, we use 2 user-defined FLs, a Low-level FL
(LFL) and a High-level FL (HFL), to learn Low-level Features
(LFs) and High-level Features (HFs) from them.

It is worth noting that the HEs are usually not static. In fact, an
HE can be split when partitioning the training and testing sets, or
grow as more LEs arrive in online prediction. For instance, as will
be shown in Section 5, in the aforementioned MOSP task, the LEs of
a machine are its OSVs from its first operation to total failure. Here
we cannot use all these OSVs to form the OSV time series used as
the HE, as we would need to wait till the machine is totally broken,
which defeats the purpose of MOSP. In reality, the machine may
have already been running for some time when we train the MOSP
model, with some historical OSVs as training LEs. Once the model
is trained, we use it to make online predictions for the machine,
always forecasting the next OSV when a new OSV arrives.

In such cases, we feed into the HFL part of the entire HE formed
by the currently available LEs. For instance, forMOSP, in trainingwe
feed into the HFL the OSV time series with only the historical OSVs;
in online prediction, we extend this time series at each timestamp
by appending the new OSV to its end. Note that this requires the
HFL to support variable-sized input, for the HE will grow as more
LEs arrive. Such HFL architectures exist for the most common
types of HEs in manufacturing. For instance, RNNs [16] can handle
variable-length time series, FCN [27] can handle variable-sized
images, DGCNN [45] can handle variable-sized point clouds, etc.

2) E2P mapping. For E2P mapping, we draw on the parameters’
invariance to the LEs and HEs to stratify them into 3 levels:
• Low-level Variable Parameters (LVPs): parameters whose
values vary for different LEs.

• High-level Variable Parameters (HVPs): parameters whose
values are fixed for LEs in a single HE, but vary for different HEs.

• Constant Parameters (CPs): parameters whose values are fixed
for both LEs and HEs.

We will show how to decide the level of each parameter later. For
now, we describe how to map the LEs (LFs) and HEs (HFs) to the 3
levels of parameters as follows:
• For LVPs, we identify them with a user-defined Low-level PI
(LPI), which takes both the LFs and HFs as its input. We include

the HFs to provide the context information on multi-LE intercon-
nections missing in the LFs.

• For HVPs, we identify them with a user-defined High-level PI
(HPI), which takes the HFs as its input1. This is very different
from HVP identification in a traditional MM, where the HVPs
are derived based on a simple aggregation (e.g. summation [24])
of the LEs that treats them as isolated examples, ignoring their
interconnections as encoded in the HEs (and HFs).

• For CPs, as they are independent of both the LEs and HEs, we use
no explicit PI to identify them. Rather, we treat them as learnable
parameters of the entire S-MDLM, directly feeding them to the
MM and fine-tuning them with the rest of the network.
On how to decide the level of a parameter, one can draw on its

physical meaning. For instance, as will be shown in Section 5, a
Wiener-process MM [24] for the aforementioned MOSP task has 2
parameters: 𝑎 which describes the variation of the degradation rates
of different machines, and𝑏 which is a constant value describing the
similarity of their degradation trends. Here the physical meaning
of 𝑏 explicitly specifies that it is a CP; as with 𝑎, note that the
degradation rate of a machine can be derived from its OSV time
series, which is its corresponding HE. From the physical meaning
of 𝑎, we know that it varies for different machines but is fixed for a
single machine. Thus, it is an HVP as it varies only for different HEs.
In the rare case where we cannot derive the level of a parameter,
we treat it as an LVP to maximize adaptiveness to varying LEs. Also
note that if there are multiple parameters on a certain level, rather
than using multiple PIs to identify them individually, we opt to use
a unified PI to identify them all, as this simpler structure can make
the network more robust, especially against small data.

Before moving on, we note that sometimes there are no obvious
interconnections among LEs to justify forming HEs from them. In
this case, there are no HEs, HVPs, HFL, HFs, or HPI. On the other
hand, we can generalize to the (rare) cases where more than 2 levels
of examples exist using multiple iterative SU operations, with an
FL learning features from each level of examples, and a PI taking
in the features from this level and all levels above it to identify the
parameters on this level.

1Note that in the online prediction phase, as we extend the HFL input, the learned
HFs, and thus the identified values of the HVPs, will change for different LEs. This
seems to contradict the definition of the HVPs, which should remain fixed for all LEs
from the same HE. However, note that the identified HVP values are not the same as
the groundtruth HVP values (which are latent values that cannot be known). In fact, as
the HFL input gets extended in online prediction, we are implicitly refining the HFL
and HPI with the additional information, in the hope that the identified HVP values
will converge to the groundtruth ones.

Towards a Generic Framework for Mechanism-guided Deep Learning for Manufacturing Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

3.1.3 Error Correction Module (ECM). The ECM addresses the
inability of MMs to effectively self-correct prediction errors (cf.
Section 1), in which the MM’s uncorrected prediction ŷ𝑀 is passed
on to a sub-network called the Error Estimator (EE) to obtain an
error term vector e with same length as ŷ𝑀 , which is added to ŷ𝑀

to yield the final output ŷ. The EE architecture is

e = 𝜷 ⊙ tanh
(
𝑔(ŷ𝑀)

)
(3)

where ⊙ denotes element-wise multiplication, 𝑔(·) is a Multi-Layer
Perceptron (MLP) that outputs a vector 𝝐 with the same length as e,
the tanh function maps each term in 𝝐 to (−1, 1), and 𝜷 is the error
bound vector that ensures the absolute value of each term in e does
not exceed that of its corresponding term in 𝜷 . 𝜷 can either be pre-
set by the user by domain knowledge, or be a learnable vector. For
an MMwith built-in error terms, we remove them when embedding
the MM into an S-MDLM, substituting them with those estimated
by the EE. This is to avoid the often unrealistic assumptions (e.g.
the error being Gaussian [24]) underlying the built-in error terms.

3.2 The S-MDLM Loss Function
As with the loss function. for each example (LE, to be more specific)
x with groundtruth label y, the loss is written as

LS = ℓ (y, ŷ) + _ℓ (ŷ, ŷ𝑀) (4)

where ℓ (·) is a template loss function chosen by the user (e.g. L2,
Cross Entropy, etc.), and _ is a hyperparameter. In the S-MDLM loss,
the first term is the main loss, while the second is a penalty term
preventing the absolute values of the estimated errors e = ŷ − ŷ𝑀

from being too large. The S-MDLM is trained with standard back-
propagation to minimize the total loss over all training examples.

4 MULTI-MECHANISM-GUIDED DEEP
LEARNING MODEL (M-MDLM)

We now extend the S-MDLM to a Multi-Mechanism-guided Deep
Learning Model (M-MDLM) with a multi-MM ensemble. As far as
we know, this is the first attempt to ensemble multiple MMs. Next,
we will discuss the M-MDLM architecture and its loss function.

4.1 The M-MDLM Architecture
The M-MDLM architecture is shown in Fig. 2, which is an end-to-
end network extended from the S-MDLM architecture in Fig. 1. Like
an S-MDLM, an M-MDLM has 3 parts: 1) an MM Ensemble (MME)
as its core, setting it apart from the single MM in an S-MDLM; 2) a
PIM to identify the MM parameters; 3) an ECM to correct prediction
errors of the MME. We now present the 3 parts one by one.
4.1.1 Mechanism Model Ensemble (MME). The MME entails multi-
ple MMs making individual predictions, which are aggregated by a
sub-network called theAttentional Aggregator (AA). Specifically,
AA adopts the widely-used attention mechanism [40, 48] to weight
the individual MM predictions and obtain their weighted average
as the MME prediction. Formally, from a matrix Ŷ𝑀 where each
column is the prediction by one of𝑚 MME members, we obtain an
𝑚-dimensional weight vector w with

w = softmax(ℎ(Ŷ𝑀)) (5)

Figure 2: The architecture of a Multi-Mechanism-guided
Deep Learning Model (M-MDLM), which is an end-to-end
network extended from the S-MDLM architecture (Fig. 1),
with an MM Ensemble (MME) as its core and two modules
for parameter identification and error correction.

where ℎ(·) is an MLP and the softmax function normalizes the
weights to have a sum of 1. The weighted average ŷ𝐸 of the indi-
vidual predictions is the unified prediction by the MME.
4.1.2 Parameter Identification Module (PIM). The PIM of an M-
MDLM is largely the same as that of an S-MDLM. The only caveat
is that multiple MMs can share some parameters. As we will show
later, this fact is critical to the design of the M-MDLM loss function.
4.1.3 Error Correction Module (ECM). We inherit the ECM of the
S-MDLM, namely use the EE in Eq. 3 to estimate the error, and add
it to the uncorrected MME prediction to obtain the final output.

4.2 The M-MDLM Loss Function
As with the loss function, for each training example x, with 𝑚

individual MMs in the MME, the loss function is written as

LM = ℓ (y, ŷ) + _1ℓ (ŷ, ŷ𝐸) + _2

𝑚∑︁
𝑖=1

ℓ (y, ŷ𝑀𝑖) (6)

where y is the groundtruth, ŷ is the prediction by the M-MDLM,
ŷ𝐸 is the uncorrected prediction by the MME, ŷ𝑀

𝑖
is the individual

prediction made by the 𝑖-th MM in the MME, and ℓ is a template
loss function chosen by the user (e.g. L2, Cross Entropy, etc.).

In the M-MDLM loss, the first 2 terms serve the same purpose
as the 2 terms in the S-MDLM loss (Eq. 4), namely being the main
loss and limiting the error term. What is unique to the M-MDLM
loss is its third term. Inspired by a similar design in a conventional
DL ensemble [14], this term prevents individual MMs in the MME
from being too weak. Specifically, a weak MM can be due to 1) weak
mechanism, that is, the MM is inherently weak even with optimal
parameter identification, or 2) weak parameters, that is, the MM
performs poorly due to sub-optimal parameters. The latter is espe-
cially problematic for an M-MDLM where parameter identification
for multiple MMs is done in an end-to-end fashion, and sub-optimal
parameter settings for one MM can negatively affect those of other
MMs. Critically, as was previously mentioned, some MMs can share
parameters. Sub-optimal settings of such parameters can directly
impact multiple MMs, significantly weakening the entire MME.
While the AA can suppress the problem of weak mechanism by
assigning a small weight to the weak MM, it cannot handle the
problem of weak parameters, as it has no direct influence on the
performance of individual MMs. By contrast, by simply summing
up their prediction errors, the third term in the loss function forces
the individual MMs to perform as well as possible, and the only way
to do so is with better parameter identification. As will be shown
in Section 6.2, this can be the single most important design feature
ensuring an M-MDLM’s accuracy.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Hanbo Zhang et al.

5 CASE STUDY: MECHANICAL OPERATION
STATE PREDICTION (MOSP)

Having presented our generic S-MDLM and M-MDLM, we now in-
stantiate them in specific analytics tasks.We beginwith an S-MDLM
for MOSP. Specifically, from raw sensor readings (e.g. vibration sig-
nals) of a machine, we can derive a single-variate time series of
Operation State Values (OSVs) quantifying its operation states over
time. We defer discussion on howwe specifically obtain the OSVs to
Section 5.2. For now, it suffices to know that roughly speaking, the
larger the OSV, the closer the machine is to total failure. Our task
at a given timestamp is to predict the OSV at the next timestamp.
Here we use the following Wiener-process MM [24]:

Definition 2. Wiener-process MM: For a machine whose OSV
at the current timestamp is 𝑥 , its next OSV 𝑦 is predicted as

𝑦𝑀 = 𝑥 + 𝜋 (𝑥 ;𝑎, 𝑏) (𝑡𝑘+1 − 𝑡𝑘) + 𝜎𝐵 · 𝐵(𝑡𝑘+1 − 𝑡𝑘) (7)

where 𝜋 (𝑥 ;𝑎, 𝑏) = 𝑎𝑥𝑏 [23] and 𝜎𝐵 · 𝐵(𝑡𝑘+1 − 𝑡𝑘) is a built-in error
term with 𝐵(·) being a standard Brownian motion process and 𝑡𝑘 , 𝑡𝑘+1
being the current and next timestamps. The parameter 𝑎 is the Unit-
to-Unit-Variance (UtUV) parameter describing the variation of the
degradation rates among different units (i.e. machines), while𝑏 and𝜎𝐵
are constant parameters describing the similarity of the degradation
trends among different units.

Next, we will present DeepWiener, our S-MDLM based on the
Wiener-process MM, and experimentally validate its effectiveness.

5.1 DeepWiener: S-MDLM for MOSP
We design DeepWiener by strictly following the generic S-MDLM
framework in Section 3 for both its architecture and loss function.
5.1.1 The DeepWiener Architecture. Following the generic S-MDLM
architecture in Fig. 1, DeepWiener entails an MM, a PIM and an
ECM.

For the MM, following what was mentioned in Section 3.1, we
remove the built-in error term 𝜎𝐵 · 𝐵(𝑡𝑘+1 − 𝑡𝑘) from the original
Wiener-process MM to avoid rigid assumptions about the error (in
this case, the originalWiener-processMMassumes the error follows
the Brownian movement which is Gaussian). We use the remainder
of the MM as the network core, which is fully differentiable and
requires no changes. Note that the removal of the built-in error
term means the parameter 𝜎𝐵 is also removed, leaving only 𝑎 and
𝑏 as the parameters to identify.

For the PIM, each LE is an individual OSV. As with the HEs, as
wasmentioned in Section 3, for eachmachine, we use the time series
of all its historical OSVs as the HE for training, and gradually extend
the time series with newly-arrived OSVs for online prediction. As
for the parameters, as was also mentioned in Section 3, 𝑎 is an
HVP and 𝑏 is a CP. Thus, we use an HFL and an HPI to identify
𝑎 from the HE, and let 𝑏 be a learnable parameter for the entire
network with no explicit sub-network to identify it. Note that the
Wiener-process MM has no LVPs, thus there is no LFL or LPI in
DeepWiener. Despite the absence of LVPs, we note that we are
able to utilize the interconnections of the LEs (i.e. the OSVs) in
our identification of the HVP 𝑎, especially when compared to the
way 𝑎 is identified in the original Wiener-process MM paper [24],
which deduces 𝑎 based on a simple summation of all training OSVs
(with some postprocessing) without using their interconnections.

By contrast, we learn such interconnections from the OSV time
series they form. As for the sub-network architectures, the HFL of
DeepWiener is a Recurrent Neural Network (RNN) with 2 hidden
layers, each with 16 neurons; the HPI is an MLP with a single
16-dimensional hidden layer, followed by a PReLU activation.

For the ECM, the EE is an MLP with the same architecture as
the HPI. We treat the error bound as a learnable parameter.
5.1.2 The DeepWiener Loss Function. The DeepWiener loss instan-
tiates the S-MDLM loss in Eq. 4 with ℓ (·) being the L2 loss.

5.2 Experimental Study
We now experimentally evaluate DeepWiener, presenting the ex-
perimental settings and the results.
5.2.1 Experimental Settings. For experimental settings, we first
present the 3 datasets we use:
• NASA [38]: a simulated dataset of the degradation of 100 turbo-
fan engines, each with readings of multiple sensors that we con-
vert into an OSV time series with the method proposed in [24, 35]
after data cleaning and normalization (detailed in Appendix). We
use the first half of each OSV time series for training and valida-
tion, and the rest for testing, acquiring 6,071 and 6,125 training
and testing OSVs in total.

• XJTU-SY [44]: a real-world dataset of the run-to-failure process
of 15 bearings. For each bearing, the original data entails its hori-
zontal and vertical vibration signals which we treat separately.
To obtain the OSV time series, we follow the advice of a domain
expert and discard all data at the beginning of each signal which
exhibits no obvious degradation (cf. Appendix). Next, a 1,280ms
snippet is sampled every 1min from the remainder of each signal.
The root mean square of the snippet is used as its corresponding
OSV. We use the first half of each OSV time series for training
and validation, and the rest for testing, acquiring 744 training
and 736 testing OSVs from the 15 horizontal signals, as well as
1,488 training and 1,479 testing OSVs from the 15 vertical signals.
We train different models for the horizontal and vertical signals.

• HZ: a private dataset from Hudong-Zhonghua, a world-class
shipbuilder, entailing 4 machines used in its operations. For each
machine, a domain expert manually scored its operation state
once a day, thus obtaining 4 OSV time series. Using the first half
of each time series for training and validation, and the rest for
testing, we end up with 71 training and 70 testing OSVs.

For the rest of this section, we call each of the 100 engines in NASA,
the 30 signals in XJTU-SY and the 4 machines in HZ a unit.

For rival methods, we consider 13 options, divided into 3 groups:
• Wiener [24]: the original Wiener-process MM, whose parame-
ters are identified using the maximum likelihood estimation and
optimal search method proposed by the original authors;

• Support Vector Regression (SVR) [10], Random Forest (RF) [4],
XGBoost [5], Multi-Layer Perceptron (MLP) [36]: 4 general-
purpose, data-driven (i.e. domain knowledge-free) regressors;

• ARIMA [3], ROCKET [9], DeepAR [37], RNN [16], FCN [17,
28], InceptionTime [19], ResNet [15, 18], Informer [50]: 8
data-driven models specialized for time series data.
Concerning input data, as was mentioned previously, Deep-

Wiener uses the time series of all known OSVs as its HE. Specifically,
in training, for each OSV from the 𝜔-th unit used as an LE, we use

Towards a Generic Framework for Mechanism-guided Deep Learning for Manufacturing Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

the time series of all training OSVs from the 𝜔-th unit as the HE;
in testing, for each OSV x from the 𝜔-th unit used as an LE, we use
the time series of all known OSVs up to x (including the training
OSVs) from the 𝜔-th unit as the HE. For Wiener, it can only take a
single OSV as its input to predict the next OSV. For the data-driven
methods, we formulate MOSP as a time series prediction problem.
Specifically, at timestamp 𝑖 , we let the methods use the OSV time
series at timestamps 𝑖 −𝑢 + 1 to 𝑖 to predict the OSVs at timestamps
𝑖 + 𝑣 to 𝑖 + 𝑣 + 𝑤 − 1, where 𝑢 ∈ {1, 2, 4, 8}, 𝑣 ∈ {1, 2, 4, 8} and
𝑤 ∈ {1, 2, 4, 8} is chosen with 5-fold CV.

We implemented DeepWiener with PyTorch [32], with the initial
values of 𝑏 and 𝛽 chosen from {0.1, 0.3, 0.5, 1} and {0.01, 0.1}, and
_ chosen from {0.1, 1, 5, 10} by 5-fold CV, except for on HZ where
we set _ to 0, following the advice of a domain expert to counter
the high complexity of the data which calls for more adaptiveness
introduced by the deep ECM. Using the AdamW optimizer, we set
the initial learning rate to 0.02 with a reduce-on-plateau policy with
a factor of 0.5, a patience of 10, and a minimum learning rate of
0.0001.We train the network for up to 100 epochs with an early-stop
policy with a patience of 10 and delta chosen from {0.01, 0.1}. For
the rival methods, we largely follow the implementations by either
their original authors or third-party packages with these methods
built-in, with minor changes to make them better suited to our data
(see Appendix for details). We ran our experiments on an Ubuntu
18.04.4 server with an Intel Xeon Gold 6326 CPU@2.90GHz, 256GB
RAM and an NVIDIA GeForce RTX 3090 GPU. We ran all neural
network models and XGBoost on GPU, and ran the rest on CPU.
All results were averaged over 10 runs.
5.2.2 Prediction Accuracy. We now assess the accuracy of Deep-
Wiener and its rivals, starting by measuring their Root Mean
Square Errors (RMSEs) on all testing examples. The smaller the
RMSE, the more accurate the method. The results are shown in
Fig. 3, where both Wiener and DeepWiener are far more accurate
than their data-driven rivals, including RNN which is the most com-
parable data-driven method to DeepWiener as it is nearly identical
to the DeepWiener HFL. This highlights the advantage of MMs
in domain-specific use cases. Moreover, on average, DeepWiener
reduces the RMSE of Wiener by a large margin of 10.9% on NASA,
and 8.2% on XJTU-SY. On HZ, this margin is narrowed to 3.4%.
However, note that the size of HZ is very small as compared to
NASA and XJTU-SY, and MMs such as Wiener tend to perform
better on very small data. The fact that DeepWiener still manages
to beat Wiener on HZ highlights the advantage of MDLMs.
5.2.3 Ablation Studies. We now use ablation studies to examine
key design features of DeepWiener (and S-MDLM in general), i.e.
the PIM and ECM. Thus, we devise the following changes to it.
• Na: replacing the identified value of 𝑎 by DeepWiener with the
value identified by the Wiener;

• Nb: replacing the identified value of 𝑏 by DeepWiener with the
value identified by the Wiener;

• NE: removing the ECM.
Mixing and matching these changes, we have a total of 2 × 2 × 2 =
8 ablation methods (including DeepWiener itself). Fig. 4 shows
their RMSEs over all testing examples. As is indicated, the most
important contributing factor to DeepWiener’s high accuracy on
NASA and XJTU-SY is deep parameter identification, especially for
𝑏, as is evidenced by the large gap between of DeepWiener and

Figure 3: Root Mean Square Errors (RMSEs) of DeepWiener
and its rivals over all testing examples (mean ± std over 10
runs). Note that the RMSE axes are in log scale.

Figure 4: RMSEs of all ablation methods over all testing ex-
amples (mean ± std over 10 runs).

Figure 5: Identified parameter values by DeepWiener and
Wiener. The parameter value axes are in log scale (not avail-
able for negative parameter values).

DeepWiener-Nb. Also, while DeepWiener-NaNb can have similar
(or even better at times) accuracy than DeepWiener on XJTU-SY, its
performance is less stable than DeepWiener over the 10 runs. Plus,
it performs even worse than DeepWiener-Nb on NASA. Moreover,
comparing DeepWiener with DeepWiener-NE, we find that the
ECM can effectively mitigate prediction errors. Meanwhile, on HZ,
it is the combined effect of of deep parameter identification and
error correction that ensures high accuracy.

5.2.4 An Insight Into Parameter Identification. To explore the rea-
son why DeepWiener can perform well, we note that in the ablation
studies, parameter identification was key to DeepWiener’s high
accuracy. This is intuitive as the effect of error correction should
be secondary to the MM’s own (uncorrected) predictions, which

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Hanbo Zhang et al.

Table 2: Running Time of DeepWiener (s)

Training Time Avg. Prediction Time Per Example

NASA 6.3 × 101 ± 1.5 × 101 8.5 × 10−4 ± 5.6 × 10−5

XJTU-SY (Vertical) 2.7 × 100 ± 3.9 × 10−1 1.1 × 10−3 ± 7.9 × 10−5

XJTU-SY (Horizontal) 2.9 × 100 ± 6.5 × 10−1 9.2 × 10−4 ± 5.8 × 10−5

HZ 8.3×10−1±4.2×10−1 6.6 × 10−4 ± 1.4 × 10−5

Figure 6: Learning curves of DeepWiener.

are solely affected by its parameters. Thus, we take a deeper look at
the parameters 𝑎 and 𝑏 identified by DeepWiener and Wiener. As
is shown in Fig. 51, the identified values of both 𝑎 and 𝑏 are vastly
different for the 2 methods. In particular, we note that theoretically,
𝑎 should have a positive value, which DeepWiener manages to
suffice. By contrast, Wiener occasionally yields negative 𝑎 values
which are sub-optimal. Moreover, as 𝑎 and 𝑏 are jointly identified
in an end-to-end network, the better identification of 𝑎 in training
can boost that of 𝑏, which played the most critical role in ensuring
DeepWiener’s accuracy in the ablation studies.
5.2.5 Efficiency. While we mainly focus on boosting prediction
accuracy in the design of DeepWiener (and S-MDLM in general),
we now show that it also has reasonable efficiency. Specifically,
the training and average prediction time (per testing example) of
DeepWiener is shown in Table. 2. Taking < 100s to train on NASA,
∼ 3s on the 2 subsets of XJTU-SY and ∼ 1s on HZ, and with a per-
example prediction time in the order of 10−4 —10−3s, DeepWiener
can easily fulfill the requirement of real-world applications. Also,
Fig. 6 shows the learning curves (i.e. training losses over the training
epochs) of DeepWiener. As is indicated, DeepWiener converges
very rapidly, and can thus be trained with relatively few epochs.

6 CASE STUDY: MELT VISCOSITY
PREDICTION (MVP)

Having shown the utility of the S-MDLM, we now turn to an M-
MDLM in the task of Melt Viscosity Prediction (MVP), which is
important to many manufacturing processes where melting of ma-
terial is required [22]. The input x of MVP is the mole fractions of
the melt components and the temperature. The output is 𝑦 is the
base-10 logarithm of the predicted viscosity. Next, we will present
DeepMelt, our M-MDLM for MVP, and experimentally evaluate it.

6.1 DeepMelt: M-MDLM for MVP
We design DeepMelt by strictly following the generic M-MDLM
framework in Section 4 for both its architecture and loss function.
6.1.1 The DeepMelt Architecture. DeepMelt follows the generic
M-MDLM architecture in Fig. 2 with an MME, a PIM and an ECM.

1We omitted the identified parameters for HZ as these entail confidential information.

For the MME, we use the 5 MMs mentioned in [22]: AG [1],
MYEGA [29], AM [2], FVT [6, 7], and VFT [42]. We omit their de-
tails for brevity, other than noting that they are all differentiable
and require no modifications. Also note that there are several pa-
rameters shared by multiple MMs. The MLP in the AA, i.e. ℎ(·)
in Eq. 5, has 4 hidden layers, each with 400 neurons and a ReLU
activation.

For the PIM, there are a total of 10 MM parameters, whose details
we omit for brevity. However, we note that all of them are LVPs.
Thus, there are no high-level elements in DeepMelt. The LFL and
LPI are MLPs with the same architecture as that in the AA. Also
note that 6 of the 10 parameters are shared by multiple MMs, which
means we must properly handle the weak parameter problem men-
tioned in Section 4.2, as sub-optimal settings of shared parameters
can directly impact multiple MMs.

For the ECM, the MLP in the EE also shares the architecture of
the MLP in the AA. The error bound is considered to be learnable.
6.1.2 The DeepMelt Loss Function. The DeepMelt loss instantiates
the M-MDLM loss in Eq. 6 with𝑚 = 5 and ℓ (·) being the L2 loss.

6.2 Experimental Study
We now experimentally evaluate DeepMelt, presenting the experi-
mental settings and the results.
6.2.1 Experimental Settings. For the experiments, we use the dataset
in [22] which has already been split into training, validation and
testing sets with 1198, 261 and 522 examples. Each example is 5-
dimensional, comprised of the mole fractions of 4 components and
the temperature. On the rival methods, we use 2 groups of methods:
• iMelt [22]: an MDLM tailored to the MVP task, using the same 5
MMs in our DeepMelt. Unlike our DeepMelt which uses an MME
to make a unified prediction, iMelt only uses a unified network
for parameter identification, after which the 5 MMs make their
predictions individually. This means iMelt can be divided into 5
sub-methods depending on the MM: iMelt-AG, iMelt-MYAGA,
iMelt-AM, iMelt-FVT, and iMelt-VFT.

• Support Vector Regression (SVR) [10], Random Forest (RF) [4],
XGBoost [5], Multi-Layer Perceptron (MLP) [36]: 4 general-
purpose, data-driven regressors.

We implemented DeepMelt with PyTorch [32], with _1 = _2 =

1. Using the Adam optimizer, we set the initial learning rate to
0.0006 with a weight decay of 0.1, and adopt the same policy as
iMelt [22] to decide when to stop the training. For the rival methods,
we largely follow their implementations by either their original
authors or third-party packages with these methods built-in, with
minor changes to make them better suited to our data (detailed
in Appendix). We use the same hardware as we did in Section 5.2,
running neural network methods on the GPU and the rest on the
CPU, averaging all results over 10 runs.
6.2.2 Prediction Accuracy. On prediction accuracy, the RMSEs over
all testing examples are shown in Fig. 7. As is indicated, both the
MDLMs, i.e. DeepMelt and iMelt, yield far better results than the
data-driven methods. Moreover, by building an ensemble of MMs,
DeepMelt has achieved superior average prediction accuracy to
iMelt. In particular, compared to its closes rival (in terms of average
accuracy), iMelt-MYEGA, DeepMelt reduces the RMSE by a large
margin of 14.8% on average.

Towards a Generic Framework for Mechanism-guided Deep Learning for Manufacturing Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 7: Root Mean Square Errors (RM-
SEs) of DeepMelt and its rivals over all
testing examples (mean± std over 10 runs).
Note that the RMSE axis is in log scale.

Figure 8: RMSEs of all ablation methods
over all testing examples (mean ± std over
10 runs).

Figure 9: RMSEs of individual MMs,
and the variance of the attentional
weight vector, with and without the
third term of the DeepMelt loss.

6.2.3 Ablation Studies. We now carry out ablation studies to vali-
date the effectiveness of the key design features of DeepMelt (and
M-MDLM in general), which are the MME, the use of the attention
mechanism in the AA, the third term in the loss function (Eq. 6)
that penalizes weak MME members, and the ECM. Thus, we devise
the following changes to DeepMelt.
• S-MDLM: removing the MME by substituting DeepMelt with
an S-MDLM for each of the 5 MMs, which has nearly identi-
cal architectures for the LFL, LPI and ECM to DeepMelt ex-
cept for different input/output dimensions. We refer to these
S-MDLMs as DeepMelt-AG, DeepMelt-MYAGA, DeepMelt-
AM, DeepMelt-FVT, and DeepMelt-VFT.

• AVG: replacing the attention mechanism with simple averaging.
• NP: removing the third term in the loss function (Eq. 6).
• NE: removing the ECM.

The RMSEs of the ablation methods are shown in Fig. 8. As is
indicated, DeepMelt beats all S-MDLMs, highlighting the power
of ensembling multiple MMs. Also, the attention mechanism has
enhanced DeepMelt’s accuracy over DeepMeltAVG, and the ECM
has boosted the accuracy. However, the single most important con-
tributing factor to DeepMelt’s high accuracy is its third loss term,
without which DeepMelt would perform poorer than the S-MDLMs.

6.2.4 An Insight Into the Third Loss Term. In view of its huge con-
tribution to DeepMelt’s accuracy, we now take a deeper look at
how the third loss term works. As was mentioned in Section 4.2,
the problem of sub-optimal parameters is especially damaging to
M-MDLMs such as DeepMelt where there are shared parameters.
While the AA cannot handle this problem, the third loss term can
do so by forcing the individual MMs to perform as well as possible.
We validate this claim in Fig 9, which shows the RMSEs of the indi-
vidual MMs and the MME in DeepMelt-NE-NP and DeepMelt-NE
(we use the methods with NE to avoid interference from the ECM).
Also, it shows the average variance of the 5 values in the AA weight
vector w in Eq. 5 across all testing examples over the 10 runs. The
higher the variance, the more heavily a model relies on the AA
to suppress weak predictions by individual MMs. As can be seen,
compared to DeepMelt-NE-NP where the third loss term is missing,
in DeepMelt-NE, the individual predictions are far better for all 5
MMs, which is only possible with better parameter identification
(as there are no other factors influencing the accuracy of a fixed
MM). By contrast, the weight variance of DeepMelt-NE-NP is much
larger than DeepMelt-NE, which indicates that DeepMelt-NE-NP

Figure 10: Efficiency of DeepMelt. (a) Running time of Deep-
Melt (mean ± std over 10 runs). The time axis is in log scale.
(b) Learning curve of DeepMelt.

tries to make up for the weak individual predictions (due to the
absence of the third loss term) by relying more heavily on the AA.
However, this effect of this is limited, as is evidenced by its inferior
MME predictions to DeepMelt-NE. This highlights the irreplaceable
role the third loss term plays in ensuring the MME’s accuracy.

6.2.5 Efficiency. While we mainly focus on prediction accuracy,
we now show that DeepMelt has reasonable efficiency. As is shown
in Fig. 10 (a), DeepMelt can be trained in < 200s and can make a
prediction in < 0.01s, which is sufficient for real-world deployment.
Also, as is shown in Fig. 10 (b), DeepMelt converges very rapidly
and can thus be trained with relatively few epochs.

7 CONCLUSIONS
In this paper, we proposed a generic, task-agnostic framework
for mechanism-guided DL in manufacturing applications, which
supports the embedding of one or more MMs in deep networks. To
fulfill key requirements R1-R3 listed in Section 1, we presented a
deep PIMwith awareness of high-level data examples, a data-driven
ECM with error bounding, and an attentional MME with a simple-
yet-effective loss term penalizing weak MMs. We instantiated our
genericMDLMs in the 2 use cases ofMOSP andMVP, with extensive
experiments showcasing their effectiveness and efficiency.

ACKNOWLEDGMENTS
The work is supported by the Ministry of Science and Technology
of China, National Key Research and Development Program (No.
2020YFB1710001). Shen Liang is funded by the Data Intelligence
Institute of Paris (diiP), and IdEx Université Paris Cité (ANR-18-
IDEX-0001).

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Hanbo Zhang et al.

REFERENCES
[1] Gerold Adam and Julian H Gibbs. 1965. On the temperature dependence of

cooperative relaxation properties in glass-forming liquids. The journal of chemical
physics 43, 1 (1965), 139–146.

[2] I Avramov and A Milchev. 1988. Effect of disorder on diffusion and viscosity in
condensed systems. Journal of non-crystalline solids 104, 2-3 (1988), 253–260.

[3] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015.
Time series analysis: forecasting and control. John Wiley & Sons.

[4] Leo Breiman. 2001. Random forests. Machine learning 45, 1 (2001), 5–32.
[5] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.

In Proceedings of the 22nd acm sigkdd international conference on knowledge
discovery and data mining. 785–794.

[6] Morrel H Cohen and GS Grest. 1979. Liquid-glass transition, a free-volume
approach. Physical Review B 20, 3 (1979), 1077.

[7] Morrel H Cohen and Gary S Grest. 1984. The nature of the glass transition.
Journal of Non-Crystalline Solids 61 (1984), 749–759.

[8] Arka Daw, M Maruf, and Anuj Karpatne. 2021. PID-GAN: A GAN Framework
based on a Physics-informed Discriminator for Uncertainty Quantification with
Physics. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Dis-
covery & Data Mining. 237–247.

[9] Angus Dempster, François Petitjean, and Geoffrey I Webb. 2020. ROCKET: excep-
tionally fast and accurate time series classification using random convolutional
kernels. Data Mining and Knowledge Discovery 34, 5 (2020), 1454–1495.

[10] Harris Drucker, Christopher J Burges, Linda Kaufman, Alex Smola, and Vladimir
Vapnik. 1996. Support vector regressionmachines. Advances in neural information
processing systems 9 (1996).

[11] Mengge Du, Yuntian Chen, and Dongxiao Zhang. 2022. AutoKE: An automatic
knowledge embedding framework for scientific machine learning. IEEE Transac-
tions on Artificial Intelligence (2022).

[12] Jack Francis and Linkan Bian. 2019. Deep learning for distortion prediction in
laser-based additive manufacturing using big data. Manufacturing Letters 20
(2019), 10–14.

[13] Simon Hagmeyer and Peter Zeiler. 2023. A Comparative Study on Methods for
Fusing Data-Driven and Physics-Based Models for Hybrid Remaining Useful Life
Prediction of Air Filters. IEEE Access (2023).

[14] Shizhong Han, Zibo Meng, Ahmed-Shehab Khan, and Yan Tong. 2016. Incre-
mental boosting convolutional neural network for facial action unit recognition.
Advances in neural information processing systems 29 (2016).

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition. 770–778.

[16] Hansika Hewamalage, Christoph Bergmeir, and Kasun Bandara. 2021. Recurrent
neural networks for time series forecasting: Current status and future directions.
International Journal of Forecasting 37, 1 (2021), 388–427.

[17] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. 2019. Deep learning for time series classification: a
review. Data mining and knowledge discovery 33, 4 (2019), 917–963.

[18] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar,
and Pierre-Alain Muller. 2019. Deep learning for time series classification: a
review. Data mining and knowledge discovery 33, 4 (2019), 917–963.

[19] Hassan Ismail Fawaz, Benjamin Lucas, Germain Forestier, Charlotte Pelletier,
Daniel F Schmidt, Jonathan Weber, Geoffrey I Webb, Lhassane Idoumghar, Pierre-
Alain Muller, and François Petitjean. 2020. Inceptiontime: Finding alexnet for
time series classification. Data Mining and Knowledge Discovery 34, 6 (2020),
1936–1962.

[20] Jungeun Kim, Kookjin Lee, Dongeun Lee, Sheo Yon Jhin, and Noseong Park.
2021. DPM: a novel training method for physics-informed neural networks in
extrapolation. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 35. 8146–8154.

[21] Vladimir M Krasnopolsky and Ying Lin. 2012. A neural network nonlinear
multimodel ensemble to improve precipitation forecasts over continental US.
Advances in Meteorology 2012 (2012).

[22] Charles Le Losq, Andrew P Valentine, Bjorn O Mysen, and Daniel R Neuville.
2021. Structure and properties of alkali aluminosilicate glasses and melts: insights
from deep learning. Geochimica et Cosmochimica Acta 314 (2021), 27–54.

[23] Naipeng Li, Yaguo Lei, Liang Guo, Tao Yan, and Jing Lin. 2017. Remaining useful
life prediction based on a general expression of stochastic process models. IEEE
Transactions on Industrial Electronics 64, 7 (2017), 5709–5718.

[24] Naipeng Li, Yaguo Lei, Tao Yan, Ningbo Li, and Tianyu Han. 2018. A Wiener-
process-model-based method for remaining useful life prediction considering
unit-to-unit variability. IEEE Transactions on Industrial Electronics 66, 3 (2018),
2092–2101.

[25] Xiang Li, Wei Zhang, Qian Ding, and Xu Li. 2019. Diagnosing rotating machines
with weakly supervised data using deep transfer learning. IEEE transactions on
industrial informatics 16, 3 (2019), 1688–1697.

[26] Pantelis Linardatos, Vasilis Papastefanopoulos, and Sotiris Kotsiantis. 2020. Ex-
plainable ai: A review of machine learning interpretability methods. Entropy 23,

1 (2020), 18.
[27] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional

networks for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3431–3440.

[28] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3431–3440.

[29] John C Mauro, Yuanzheng Yue, Adam J Ellison, Prabhat K Gupta, and Douglas C
Allan. 2009. Viscosity of glass-forming liquids. Proceedings of the National
Academy of Sciences 106, 47 (2009), 19780–19784.

[30] Scott McQuade and Claire Monteleoni. 2012. Global climate model tracking using
geospatial neighborhoods. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 26. 335–341.

[31] Claire Monteleoni, Gavin A Schmidt, Shailesh Saroha, and Eva Asplund. 2011.
Tracking climate models. Statistical Analysis and Data Mining: The ASA Data
Science Journal 4, 4 (2011), 372–392.

[32] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.
Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019). https://pytorch.org/

[33] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron Weiss,
Vincent Dubourg, et al. 2011. Scikit-learn: Machine learning in Python. the
Journal of machine Learning research 12 (2011), 2825–2830. https://scikit-
learn.org/stable/index.html

[34] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. 2019. Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations. Journal of Computa-
tional physics 378 (2019), 686–707.

[35] Emmanuel Ramasso. 2014. Investigating computational geometry for failure
prognostics. International Journal of prognostics and health management 5, 1
(2014), 005.

[36] Frank Rosenblatt. 1958. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological review 65, 6 (1958), 386.

[37] David Salinas, Valentin Flunkert, Jan Gasthaus, and Tim Januschowski. 2020.
DeepAR: Probabilistic forecasting with autoregressive recurrent networks. Inter-
national Journal of Forecasting 36, 3 (2020), 1181–1191.

[38] Abhinav Saxena and Kai Goebel. 2008. Turbofan engine degradation simulation
data set. NASA Ames Prognostics Data Repository (2008), 1551–3203.

[39] Skipper Seabold and Josef Perktold. 2010. Statsmodels: Econometric and statistical
modeling with python. In Proceedings of the 9th Python in Science Conference,
Vol. 57. Austin, TX, 10–25080. https://www.statsmodels.org/stable/index.html

[40] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi
Zhang. 2018. DiSAN: Directional Self-Attention Network for RNN/CNN-Free
Language Understanding. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence. AAAI Press, 5446–5455.

[41] Chang Wei Tan, Christoph Bergmeir, François Petitjean, and Geoffrey I Webb.
2021. Time series extrinsic regression. Data Mining and Knowledge Discovery 35,
3 (2021), 1032–1060.

[42] Hans Vogel. [n.d.]. Das Temperaturabhangigkeitsgesetz der Viskositat von Flus-
sigkeiten. Physikalische Zeitschrift 22 ([n. d.]), 645–646.

[43] Nils Wandel, Michael Weinmann, Michael Neidlin, and Reinhard Klein. 2022.
Spline-pinn: Approaching pdes without data using fast, physics-informed
hermite-spline cnns. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, Vol. 36. 8529–8538.

[44] Biao Wang, Yaguo Lei, Naipeng Li, and Ningbo Li. 2018. A hybrid prognostics
approach for estimating remaining useful life of rolling element bearings. IEEE
Transactions on Reliability 69, 1 (2018), 401–412.

[45] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and
Justin M Solomon. 2019. Dynamic graph cnn for learning on point clouds. Acm
Transactions On Graphics (tog) 38, 5 (2019), 1–12.

[46] YaqingWang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing
from a few examples: A survey on few-shot learning. ACM computing surveys
(csur) 53, 3 (2020), 1–34.

[47] Zhongbao Wei, Guangzhong Dong, Xinan Zhang, Josep Pou, Zhongyi Quan, and
Hongwen He. 2020. Noise-immune model identification and state-of-charge esti-
mation for lithium-ion battery using bilinear parameterization. IEEE Transactions
on Industrial Electronics 68, 1 (2020), 312–323.

[48] Hongzuo Xu, Yijie Wang, Songlei Jian, Zhenyu Huang, Yongjun Wang, Ning Liu,
and Fei Li. 2021. Beyond Outlier Detection: Outlier Interpretation by Attention-
Guided Triplet Deviation Network. In WWW. ACM / IW3C2, 1328–1339.

[49] Jie Yang, Tianyou Chai, Chaomin Luo, and Wen Yu. 2018. Intelligent demand
forecasting of smelting process using data-driven and mechanism model. IEEE
Transactions on Industrial Electronics 66, 12 (2018), 9745–9755.

[50] Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong,
and Wancai Zhang. 2021. Informer: Beyond efficient transformer for long se-
quence time-series forecasting. In Proceedings of the AAAI Conference on Artificial
Intelligence, Vol. 35. 11106–11115.

https://pytorch.org/
https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://www.statsmodels.org/stable/index.html

Towards a Generic Framework for Mechanism-guided Deep Learning for Manufacturing Applications KDD ’23, August 6–10, 2023, Long Beach, CA, USA

A SUPPLEMENTAL MATERIAL
We now provide supplemental material concerning the reproducibil-
ity of the results of our experiments. Note that this does not involve
the data preprocessing protocols for the HZ dataset in Section
5.2, as it is a proprietary dataset that entails confidential business
information.

A.1 Experimental Details of Mechanical
Operation State Prediction (MOSP)

We now provide additional details about the experiments on our
DeepWiener S-MDLM for the MOSP task in Section 5.2, including
details on data preprocessing, as well as rival method implementa-
tion and hyperparameter settings.

A.1.1 Data Preprocessing. On data preprocessing, recall that in
our experiments, we used 2 datasets: NASA [38] and XJTU-SY [44].
We now separately discuss how we preprocessed these datasets.

1) NASA. Recall that NASA entails simulated sensor readings of
turbofan engines which reflect their degradation process. Therefore,
the main objective of data preprocessing for NASA is to convert the
readings of multiple sensors into a single-variate OSV time series.
To complete this objective, we first remove the sensors where all
the readings are the same. Then, for each of the remaining sensors,
we use min-max normalization to normalize all its readings to the
range [0, 1]. Then, we draw on the method proposed in [24, 35]
to obtain the OSVs. Specifically, suppose there are 𝐷 sensors for a
given engine. At timestamp 𝑡𝑘 , we denote its sensor reading vector
as r𝑘 = 𝑟1

𝑘
, 𝑟2
𝑘
, . . . , 𝑟𝐷

𝑘
, and use a linear model

𝑜𝑘 = l · r + 𝑐 (8)
to obtain the OSV𝑜𝑘 at 𝑡𝑘 , where l is the linear coefficient vector and
𝑐 is the bias. To fit this linear model, we note that apart from the data
we use in our experiments, NASA comes with a separate dataset
(which is NOT used in our experiments in Section 5.2) dedicated to
fitting the linear model. We call this dataset the fitting set. For each
engine in the fitting set, apart from all its sensor readings, the length
of its total lifespan (from first being operational to total failure) 𝑇
is also known, and its groundtruth OSV 𝑜′

𝑘
at a given timestamp 𝑡𝑘

is calculated as [24, 35]

𝑜′
𝑘
=

0 0 ≤ 𝑡𝑘 ≤ 0.05𝑇
exp

(log(0.05)
0.95𝑇 (𝑇 − 𝑡𝑘)

)
0.05𝑇 < 𝑡𝑘 < 0.95𝑇

1 0.95𝑇 ≤ 𝑡𝑘 ≤ 𝑇

(9)

With both the raw sensor readings and groundtruth OSVs known
on the fitting set, we can use them to fit the linear model in Eq. 8 to
obtain the OSVs for the data used in our experiments in Section 5.2.
For the OSV time series of each engine, we use its first half for
training and validation, and its second half for testing.

2) XJTU-SY. For XJTU-SY, recall that the raw data we used is
the raw vibration signals of the bearings. According to our domain
expert, for each raw signal, a large number of data points at its be-
ginning reflect no significant degradation, and should be discarded.
Therefore, there are 2 main objectives of data preprocessing for
XJTU-SY: First, we need to decide at which point the degradation
process begins, so that we can discard all data points prior to it.
Second, we need to convert the remaining data points in the raw
vibration signal into the OSV time series. We now elaborate on how
we complete these 2 objectives one by one.

For the first objective of finding the start of significant degra-
dation, we draw on the 3𝜎 rule as guided by our domain expert.
Specifically, for all data points in each raw vibration signal, we cal-
culate the mean value ` and standard deviation 𝜎 of their absolute
amplitudes. We find the first point in the signal whose absolute
amplitude exceeds ` + 3𝜎 . This is statistically the first outlier in
the signal, and likely indicates the start of significant degradation
as the bearing is now exhibiting excessively violent vibration. We
discard all data before this point, only keeping the rest.

For the second objective of transforming each raw vibration sig-
nals to an OSV time series, we note that in the original XJTU-SY
dataset [44], a 1,280ms snippet is already sampled every 1min. We
follow the advice of our domain expert and use the root mean
square of the snippet (which has 32,768 raw data points with an
original sampling rate of 25.6 kHz) as its corresponding OSV. Specif-
ically, let the data points in the 𝑘-th snippet be 𝑟1

𝑘
, 𝑟2
𝑘
, . . . , 𝑟32768

𝑘
, the

corresponding OSV is calculated as

𝑜𝑘 =

√√√
1

32768

32768∑︁
𝑖=1

(𝑟 𝑖
𝑘
)2 (10)

The OSV time series is thus formed by the OSVs of all snippets.
Similar to what was done for NASA, for the OSV time series of each
signal in XJTU-SY, we use its first half for training and validation,
and its second half for testing.

A.1.2 Rival Method Implementation and Hyperparameter Settings.
On the implementation and hyperparameter settings, we note that
for our DeepWiener, these have been presented in Sections 5.1
and 5.2. Here, we focus on the rival methods used in the experiments
in Section 5.2 (more specifically, in Fig. 3).

To be concrete, we implemented Wiener with Python, and im-
plemented MLP and RNN with PyTorch [32]. For SVR and RF, we
adopted their implementations in the Scikit-learn [33] package.
For ARIMA, we adopted its implementation in the Statmodels [39]
package. For FCN, ResNet and InceptionTime, we adopted their
implementations in [41]. For XGBoost, DeepAR and Informer, we
used their implementations by their original authors [5, 37, 50]. As
with hyperparameter settings, except for Wiener, RNN and MLP
which we implemented from scratch, we mostly inherited the de-
fault hyperparameter settings of the other rival methods in either
the implementations by the original authors or the third-party pack-
ages we used in our experiments. Table 3 shows the hyperparameter
settings in detail1. Specifically, for Wiener, the parameter 𝑏 must
be searched from a pre-defined range. We set this range to be both
wide enough to cover a large number of candidate values, and also
be suited to the datasets we used.

As with the hyperparameters for SVR, RF, XGBoost, ARIMA,
ROCKET, FCN, InceptionTime and ResNet, we consider multiple
candidate settings (including the default settings) from which we
choose the best one by 5-fold CV. For MLP, we adopt a commonly-
used MLP architecture than also performs reasonably well on our
data. For RNN, the network architecture is identical to that of the
DeepWiener HFL except for the fully-connected layer to make the
final prediction (which the HFL does not need). Also, the optimizer,
learning rate and the number of epochs are all the same as those
1Note that in Table 3, we only list the settings that differ from the default hyperparam-
eters (except for Wiener, MLP and RNN where we list the full settings).

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Hanbo Zhang et al.

Table 3: Hyperparameter Settings for the Rival Methods
of DeepWiener for Mechanical Operation State Prediction
(MOSP)

Method Model Hyperparameters

Wiener Search range of 𝑏: {0.01,0.02,0.03,...,1}

SVR
Kernel function: {RBF, Sigmoid}
Kernel coefficient: {0.001,0.01,0.1,1, "scale"}
Regularization parameter: {0.01,1,10,100}

RF Number of trees: {100, 500, 1000}

XGBoost Number of trees: {100, 500, 1000, 2000}
Regularization parameter: {0, 0.01,1,10,100}

MLP

Number of hidden layers: 3
Dimensions of each hidden layer (in order of forward propagation): 32,
16, 32
Batch normalization after each hidden layer
Activation after each hidden layer: PReLU
Loss function: L2
Optimizer: Adam
Learning rate: reduce on plateau with factor = 0.5, patience = 50, mini-
mum learning rate = 0.0001
Number of training epochs: 100

ARIMA
Autoregression parameter: {0, 1,2,4}
Differentiation parameter: {0,1,2}
Moving average parameter: {0,1,2}

ROCKET Number of kernels: {100, 1000, 5000, 10000}

RNN

Number of RNN hidden layers: 2
Dimension of each RNN hidden layer: 16
Number of fully-connected hidden layers: 1
Dimension of fully-connected hidden layer: 1
Activation after fully-connected hidden layer: PReLU
Loss function: L2
Optimizer: AdamW
Learning rate: reduce on plateau with factor = 0.5, patience = 10, mini-
mum learning rate = 0.0001
Number of training epochs: 100 (with an early-stop policy with a pa-
tience of 10 and delta ∈ {0.01, 0.1})

DeepAR Number of LSTM units: {32,64,128,256}

FCN Number of filters: {8,16,32}
Kernel size: {1, 2, 4}

InceptionTime Number of filters: {8,16,32}
Kernel size: {1, 2, 4}

ResNet Number of filters: {8,16,32}
Kernel size: {1, 2, 4}

Informer −

Table 4: Hyperparameter Settings for the Rival Methods of
DeepMelt for Melt Viscosity Prediction (MVP)

Method Model Hyperparameters

iMelt −

SVR
Kernel function: {RBF, Sigmoid}
Kernel coefficient: {0.001,0.01,0.1,1, "scale"}
Regularization parameter: {0.01,1,10,100}

RF Number of trees: {100, 500, 1000}

XGBoost Number of trees: {100, 500, 1000, 2000}
Regularization parameter: {0, 0.01,1,10,100}

MLP

Number of hidden layers: 4
Dimensions of each hidden layer: 400
Activation after each hidden layer: ReLU
Loss function: L2
Optimizer: Adam
Learning rate: 0.0006
Weight decay: 0.01
Number of training epochs: 10,000

of DeepWiener in order to maximize the comparability between
DeepWiener and its rival. For DeepAR, we use its settings in the
extended version of the Informer paper [50] (where it is used as
a baseline method), available at https://arxiv.org/abs/2012.07436.
These settings entail multiple candidates from which we choose
the best by 5-fold CV. The reason why we use these settings, rather
than the DeepAR settings by its original authors [37], is that the
latter did not provide concrete advice on the search range for the hy-
perparameters that we can follow. For Informer, we remain faithful
to its hyperparameter settings by the original authors.

A.2 Experimental Details of Melt Viscosity
Prediction (MVP)

We now turn to additional details about the experiments on our
DeepMelt M-MDLM for the MVP task in Section 6.2, which con-
cerns rival method implementation and hyperparameter settings.
Note that unlike in the experiments for the MOSP task where ex-
plicit data preprocessing was required, in the MVP experiments,
we use the same dataset as that in [22], where the authors have
already preprocessed the data and split it into training, validation
and testing sets.

On the implementation and hyperparameter settings, similar to
the case with DeepWiener, for our DeepMelt, these settings have
been presented in Sections 6.1 and 6.2. Here, we focus on the rival
methods used in the experiments in Section 6.2 (more specifically,
in Fig. 7).

To be concrete, for iMelt and XGBoost, we used the implemen-
tations by the original authors of these methods [5, 22]. For the
data-driven methods, we implemented MLP with PyTorch [32]
while adopting the implementations in Scikit-learn [33] for SVR
and RF. Similar to what we did in the MOSP experiments, except for
MLP which we implemented from scratch, we mostly inherited the
default hyperparameter settings of the other rival methods in either
the implementations by their original authors or the third-party
packages we used in our experiments. Table 4 shows the hyperpa-
rameter settings in detail1. Specifically, for iMelt, we remain faithful
to the settings by the original authors, as they have already fine-
tuned them to the dataset used in both their paper [22] and ours.
For SVR, RF and XGBoost, we consider multiple candidate settings
(including the default settings) from which we choose the one with
the lowest RMSE on the validation set. Again, we note that the
validation set was already present in the original dataset [22]. For
MLP, we use the same architecture (i.e. number of hidden layers,
dimensions of each hidden layer, activation function) as the MLP
used as the LFL of our DeepMelt model to maximize comparability
between DeepMelt and its rival. The optimizer, learning rate and
weight decay are also set to be the same as those of both DeepMelt
and iMelt, again to maximize comparability. As with the number of
training epochs, we found that MLP could not obtain near-optimal
accuracy with a small number of epochs, thus we set it to a large
number of 10,000.
1Note that in Table 4, we only list the settings that differ from the default hyperparam-
eters (except for MLP where we list the full settings).

https://arxiv.org/abs/2012.07436

	Abstract
	1 Introduction
	2 Related Work
	3 Single-Mechanism-guided Deep Learning Model (S-MDLM)
	3.1 The S-MDLM Architecture
	3.2 The S-MDLM Loss Function

	4 Multi-Mechanism-guided Deep Learning Model (M-MDLM)
	4.1 The M-MDLM Architecture
	4.2 The M-MDLM Loss Function

	5 Case Study: Mechanical Operation State Prediction (MOSP)
	5.1 DeepWiener: S-MDLM for MOSP
	5.2 Experimental Study

	6 Case Study: Melt Viscosity Prediction (MVP)
	6.1 DeepMelt: M-MDLM for MVP
	6.2 Experimental Study

	7 Conclusions
	References
	A Supplemental Material
	A.1 Experimental Details of Mechanical Operation State Prediction (MOSP)
	A.2 Experimental Details of Melt Viscosity Prediction (MVP)

