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Abstract

Similarity search lies at the heart of many modern applications,
ranging from databases to deep learning to data series analysis. As
such, a vast effort has been invested in developing algorithms, data
structures and implementations to speed up this crucial subroutine.
To empirically validate these approaches, several benchmarking
efforts have been initiated covering a wide array of datasets. In
this paper, we observe that usually little control is exercised on
the hardness of the workloads with which methods are tested and
compared. To address this issue, we first evaluate several query
hardness measures with respect to their ability to capture the em-
pirical hardness of a query, i.e. the effort invested by an index data
structure to provide an answer. Then, we propose two methods,
deemed Hephaestus-Annealing and Hephaestus-Gradient, for
synthesizing query workloads so that they meet a user-specified
hardness target. Both methods allow to produce workloads with
the desired hardness: we find that Hephaestus-Gradient is faster,
while Hephaestus-Annealing makes fewer assumptions on the
target hardness measure. The resulting workloads can be used to
gain insights into the behavior of similarity search algorithms.

CCS Concepts

• Information systems→ Database performance evaluation;
• Theory of computation→ Nearest neighbor algorithms.
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1 Introduction

High-dimensionality vector similarity search is a fundamental task
in a wide range of applications, from information retrieval and
recommendation systems to computational biology and computer
vision [11, 18, 37]. The goal of similarity search is to identify items
in a dataset that are most similar to a given query, based on some
defined similarity measure. Given the prominence of this task, a
rich ecosystem of algorithms, index data structures, and implemen-
tations has flourished in recent years [19, 20, 36, 55].

Alongside the development of index data structures and algo-
rithms, the necessity of establishing a common testbed to evaluate
different implementations has spurred a variety of benchmarking
efforts [6, 19, 20, 32, 48]. These benchmarks are now in widespread
use and provide the community with a very useful resource to assess
the merits of different algorithms and implementations in a variety
of scenarios, encompassing different datasets and workloads.

The goal of a benchmark is to find, for a given workload, what
is the performance of different implementations under different
parameter settings. Performance can be measured in terms of time
to run queries, or of number of executed distance computations,
or again in terms of the quality of the answer itself, for approxi-
mate index data structures. This allows to study the behavior of
algorithms under different circumstances, as well as the tradeoffs
involved in configuring the implementations, while allowing the
community to find the fastest implementation on a given workload.

In this paper we focus on studying the workloads, i.e. the set of
queries, that are used to evaluate competing algorithms. In fact, the
common practice to prepare a workload follows the tradition set by
machine learning: a dataset is partitioned randomly in two parts, a
larger one to be indexed and smaller one to be used as queries. This
approach is sensible in that it gives a set of readily available queries
that come from the same distribution of the data. However, how
hard are these queries, both intrinsically and for a given index?

As we shall see with our experiments, these workloads do not
exercise the full spectrum of possible behaviors of the index data
structures, and real-world workloads have been found to be consid-
erably harder [4, 9, 13, 28]. Furthermore, these workloads do not
provide focused information about queries with a specific hardness.
Finally, the same query point can be hard or easy depending on the
value of 𝑘 . These considerations are relevant in order to stress-test
index structures, better understand their behavior, and to design
and develop better-performing versions.

The culprit is that the workload selection procedure used so
far does not allow to exercise any control on the hardness of the
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queries. We thus propose a way to generate workloads with a pre-
specified level of hardness. The first step is measuring the hardness
of a workload: empirical hardness measures evaluate the work
performed by actual index structures, explicative measures on the
other hand try to capture geometric properties relating queries
and data. While empirical measures are what a user is ultimately
interested in, explicative measures allow to further interpret the
results: why are some queries doing more work than others? What
are the characteristics that make them easy or hard to answer?

Using these measures, we propose methods to generate query
workloads both in a index-agnostic and a index-aware way. In the
former case, queries should present intrinsic characteristics that
make them easy or hard: different index data structures might then
be able to deal with them with different degrees of efficiency. In
the latter case, queries should be hard (or easy) for a specific index
data structure: this allows to identify bottlenecks and weak spots
during index development and tuning.

Our contributions are articulated as follows: (a)We provide an
overview of different measures to assess the hardness of queries,
both in an index-independent and index-centered way (Section 3);
(b) We propose methods to generate synthetic queries of given
target hardness (Section 4), providing an easy to use Python imple-
mentation1; (c)We experimentally evaluate the relation between
hardness measures and actual query difficulty, and test the effec-
tiveness of the methods we propose in generating query workloads
(Section 5).

2 Related Work

High-dimensional vector nearest neighbor search is a crucial sub-
routine in many different contexts, with a wide array of different
approaches being proposed. For a recent account of the latest de-
velopments see [9, 36, 55] and references therein.

Among the many approaches devised for approximate nearest
neighbor search, we focus on the ones implemented in the Faiss
library [17], including Hierarchical Navigable Small World (HNSW)
graphs [34] and an Inverted File [27, 49]. The Faiss library has been
adopted as a baseline by some recent benchmarking efforts [48].

Another line of work [38, 39, 41, 54] focused on building data
structures providing exact answers to queries. Here we focus on
MESSI [40], which builds a tree-based index on iSAX words [47],
and on DSTree [54].

A popular benchmarking effort is ann-benchmarks [6], which
provides a collection of datasets and query workloads. Since its
inception, over 40 algorithms have been included in the benchmark.
We will use some query workloads of ann-benchmarks as a baseline
in our experimental evaluation. A similar benchmarking effort is
described in [32], focusing on the Euclidean distance case. Other
benchmarking efforts are [19, 20], evaluating both approximate and
exact approaches on a variety of datasets, which we also include
in this paper. Recently, big-ann-benchmarks [48] scaled the bench-
marking effort to billion-scale data, extending the range of tasks to
include filtering further the results based on categorical features,
out-of-distribution queries, and dynamic data updates. VIBE [28]
focuses on datasets derived from embedding models characteristic
of modern applications.

1https://github.com/cecca/hephaestus/

Dimensionality measures such as the Local Intrinsic Dimension-
ality [25], the Relative Contrast [24], the query Expansion [3, 8],
and the 𝜀-hardness [60] capture features of the distribution of dis-
tances from a query that relate to how hard it is to discern nearest
neighbors from the rest of the points. The Steiner-hardness [56] is
specifically designed to investigate the performance of graph-based
indices. The relation between these measures and the actual per-
formance of indices was investigated in [7, 8]: in the present paper
we build upon and expand their conclusions.

The goal of generating query workloads has also been pursued
in Zoumpatianos et al. [60]: given a query, the dataset is modified so
that the query achieves the desired hardness. However, modifying
the dataset may not be desirable. Moreover, this method incurs
significant runtime costs. In the present paper, we take the opposite
approach: while keeping the dataset fixed, we carefully place queries
in the metric space so to achieve the desired hardness level. Given
the fundamentally different scenario that we consider, we will not
compare directly with [60].

3 Preliminaries

Let (X, 𝑑) be a metric space, with 𝑑 being the distance function. In
this paper, in particular, we focus on the 𝐷-dimensional Euclidean
space R𝐷 under the Euclidean distance, and on 𝑆𝐷−1, the unit
sphere in 𝐷 dimensions under the angular distance.

We denote with 𝑆 ⊂ X a dataset, and with ®𝑥 ∈ X we denote
a point in the metric space. Note that in different communities ®𝑥
is referred to with different names: it can be a point, a vector, or
a data series if the order of coordinates is relevant. Given that in
this paper we focus on the Euclidean and angular distances, for
which the order of the coordinates is not relevant, we will refer to
elements of X as points.

For a dataset 𝑆 , a query point ®𝑞 ∈ X and a parameter 𝑘 , the 𝑘-
nearest neighbor problem entails finding the 𝑘 points in 𝑆 that are
closest to ®𝑞 according to the distance function 𝑑 , with ties broken
arbitrarily. We denote with 𝑟1, 𝑟2, . . . , 𝑟𝑘 the distance between ®𝑞 and
its first, second, . . . , 𝑘-th nearest neighbor.

Such queries can be answered exactly in time 𝑂 (𝑛) by simply
evaluating the distance between ®𝑞 and all points ®𝑥 ∈ 𝑆 . However,
for large datasets it is often desirable to have sublinear query time,
often allowing some approximation in the answers.

In the case of approximate approaches, the quality of the answers
is usually measured using the recall, defined as | {1≤𝑖≤𝑘 :𝑟

′
𝑖 ≤𝑟𝑘 } |

𝑘
. In

other words, the recall is the fraction of returned points whose
distance from the query is ≤ 𝑟𝑘 , the distance of the true 𝑘-th nearest
neighbor.

3.1 Hardness Measures

We now survey several established explicative hardness measures
and introduce the empirical hardness. We deem explicative those
measures that are based only on intrinsic properties of a query
in relation to a dataset, like the distribution of distances. Such
measures, which are independent of any index data structure, can
help to explain why a given query can be expected to be hard
or easy. On the other hand, empirical measures reflect the actual
performance of a given index data structure on a given query. In

https://github.com/cecca/hephaestus/
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the following sections we will then study the relationship between
these measures.

3.1.1 Local intrinsic dimensionality. For a given query point ®𝑞 ∈ X
we consider the distribution of distances to ®𝑞 within the metric
space, where the distribution arises by sampling 𝑛 points from the
metric space under a certain probability distribution. Let 𝐹 : R→
[0, 1] be the cumulative distribution function of distances to ®𝑞.

Definition 3.1 ([25]). The local intrinsic dimensionality of 𝐹 at
distance 𝑟 is

𝐼𝐷𝐹 (𝑟 ) = lim
𝜀→0

ln (𝐹 ((1 + 𝜀)𝑟 )/𝐹 (𝑟 ))
ln ((1 + 𝜀)𝑟 )/𝑟 )

whenever the limit exists.

Intuitively, the above measure is related to how quickly the
probability mass (i.e. the fraction of points that are within the ball
of radius 𝑟 and the ball of radius (1 + 𝜀)𝑟 around the query point)
increases around the query point.

A large LID value means that it is hard to distinguish points at
distance 𝑟 from the query from the rest of the dataset. Therefore, a
hard query is expected to have a large LID value.

The LID can be estimated with a Maximum Likelihood Estima-
tor [5, 31]. Let 𝑟1 ≤ · · · ≤ 𝑟𝑘 be the the distances of the 𝑘-NN of a
query ®𝑞. Then, the Maximum Likelihood Estimator for ®𝑞 at distance
𝑟𝑘 is

ˆ𝐿𝐼𝐷𝑘 ( ®𝑞) = −
(
1
𝑘

𝑘∑︁
𝑖=1

ln
𝑟𝑖

𝑟𝑘

)−1
(1)

3.1.2 Relative Contrast. The Relative Contrast (RC) captures the
relationship between the distance of the 𝑘-th nearest neighbor of a
query and the average distance of points from the query.

Definition 3.2 ([24]). For a query point ®𝑞 and a set 𝑆 , let 𝑑𝑚𝑒𝑎𝑛

be the average distance of ®𝑞 to points in 𝑆 . The Relative Contrast
of ®𝑞 at 𝑘 with respect to 𝑆 is

𝑅𝐶𝑘 ( ®𝑞) =
𝑑𝑚𝑒𝑎𝑛

𝑟𝑘

where 𝑟𝑘 is the distance to the 𝑘-th nearest neighbor of ®𝑞 in 𝑆 .

A small relative contrast implies that the distance of the 𝑘-th
nearest neighbor is close to the average distance to the query: as a
consequence, a hard query is expected to have a small RC value.

3.1.3 Query expansion. The concept of Expansion around a query
was first introduced to analyze the properties of LSH-based in-
dices [3]. Here we adopt the extended definition introduced in [8].

Definition 3.3. Given a query ®𝑞 and an integer 𝑘 , the Expansion
of ®𝑞 at 𝑘 with respect to 𝑘′ > 𝑘 is

Expansion𝑘 ′ |𝑘 ( ®𝑞) =
𝑟𝑘 ′

𝑟𝑘

Similarly to the Relative Contrast, a small Expansion around the
query implies that for an index it might be hard to discern between
the 𝑘-th nearest neighbor and the points that are farther away.
Hence, a hard query is expected to have a small Expansion value.

3.1.4 𝜀-hardness. The 𝜀-hardness [60] focuses on measuring the
number of points that sit in the ball of radius (1 + 𝜀)𝑟1, where 𝑟1
is the distance of the 1st nearest neighbor of the query. We extend
the definition to support the 𝑘-th nearest neighbor, and refer to the
metric as 𝛼𝜀,𝑘 following [60].

Definition 3.4. For a query point ®𝑞 and a set 𝑆 , let 𝑟𝑘 be the
distance of the 𝑘-th nearest neighbor of ®𝑞 in 𝑆 . For a parameter
𝜀 > 0 the 𝜀-hardness is

𝛼𝜀,𝑘 ( ®𝑞) =
|{𝑥 ∈ 𝑆 : 𝑑 ( ®𝑞, 𝑥) ≤ (1 + 𝜀)𝑟𝑘 }|

|𝑆 |
A high 𝜀-hardness value implies that a large fraction of the set 𝑆

lies at a distance slightly larger than 𝑟𝑘 . Therefore, a high value of
the 𝜀-hardness is expected for hard queries.

3.1.5 Empirical hardness. The aforementioned measures where
introduced in the literature to capture different characteristics of
the data that possibly relate to the actual hardness of a query. We
now introduce a measure for the work actually invested by an index
data structure to answer a given query. Rather than focusing on the
running time, which is implementation and platform dependent,
we consider the number of full distance computations carried out
by the index while answering the query. To make the number
comparable across different datasets we normalize it by the total
dataset size. Since different index structures are likely to experience
different performance on the same query and data, the measures is
parameterized by the index structure.

Definition 3.5. Given a data structure D indexing a point set 𝑆 ,
and a recall threshold 𝜌 , the empirical hardnessHD,𝜌 ( ®𝑞) of a query
®𝑞 is the number of full distance computations carried out by D in
order to achieve recall ≥ 𝜌 , divided by |𝑆 |.

For instance, consider the index D =HNSW, indexing a dataset
with one million points. If answering a query ®𝑞 with recall at least
𝜌 = 0.95 requires computing 100 000 distances, then the empirical
hardness of ®𝑞 isH𝐻𝑁𝑆𝑊 ,0.95 ( ®𝑞) = 0.1.

Note that the definition above considers only full distance com-
putations between points in the original space, as this is usually the
most expensive subroutine by far, while answering a query. We thus
do not count the cost of using of sketches, summaries, or similar
estimators that are routinely employed to weed out non-relevant
candidate neighbors.

Clearly, hard queries correspond to high empirical hardness.

Remark. The hardness of a query, for any of the measures dis-
cussed in this section, is crucially related to its position in the metric
space, relative to the other points in the dataset, and to the number of
neighbors 𝑘 we are looking for. Figure 1 reports an example with a
dataset of 30 randomly distributed points in R2. In the figure, the color
encodes the Relative Contrast that a query would have in different
positions of the plane, for both 𝑘 = 1 and 𝑘 = 10.

For 𝑘 = 1, notice how the Relative Contrast increases as we get
closer to any point: in fact, getting closer to a point makes it easier
to distinguish from the others. For 𝑘 = 10, however, the situation is
completely different. The locations of the easiest queries are between
the points and not close to them, because the hardness is dictated by
how similar the 10-th nearest neighbor is to the rest of the points.
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Figure 1: Example dataset of 30 random points in R2
, with

colors encoding the relative contrast of each position for

𝑘 = 1 (left) and 𝑘 = 10 (right). High (resp. low) relative contrast

is denoted with bright (resp. dark) colors. The white paths

mark the trajectories followed by Hephaestus-Gradient

to generate a query in each scenario.

Remarkably, if we consider a query located at the position marked
with the ×, we have two very different situations depending on the
value of 𝑘 . For 𝑘 = 1 the Relative Contrast of the query is ≈ 1.84, for
𝑘 = 10 its Relative Contrast is ≈ 4.01: in the latter case therefore the
same query point is comparatively easier.

4 Generating workloads

We propose two different ways of generating query workloads:
Hephaestus-Annealing and Hephaestus-Gradient2. Both al-
gorithms generate queries tailored for a specific dataset 𝑆 with a
query hardness measured according to a scoring function 𝜍 : for a
point ®𝑥 and a dataset 𝑆 , 𝜍 (𝑆, ®𝑥) is a real number representing how
hard or easy the query is. For instance, 𝜍 could compute the Relative
Contrast of ®𝑥 . The synthesis of each query then aims at reaching a
user-supplied range of desired scores [𝑦𝑙 , 𝑦𝑢 ]. For example, 𝑦𝑙 and
𝑦𝑢 could be bounds on the desired Relative Contrast of the queries.
In general, we will use as scoring functions the hardness measures
defined in the previous section.

We also describe a simpler mechanism to build queries based on
adding Gaussian noise to queries, to be used as a baseline in our
experimental evaluation.

4.1 Hephaestus-Annealing

The first query generation procedure we propose (Algorithm 1)
starts from an arbitrary point ®𝑞, which can be for instance sampled
randomly from the enclosing ball of the dataset. Then, Hephaestus-
Annealing iteratively moves ®𝑞 so that its score 𝜍 (𝑆, ®𝑞) falls within
the target range [𝑦𝑙 , 𝑦𝑢 ].

Making no assumption on 𝜍 , at every iteration we move ®𝑞 in
a random direction, by a random amount. If this move leads to a
position with a hardness score closer to the target, then we continue
to the next iteration. However, the move could of course land into
a position whose score is farther from the target range. In this
case, we adopt the classic simulated annealing strategy: with some
probability we accept the move to a worse position, otherwise we
backtrack to the previous position of ®𝑞. The algorithm terminates
2In Greek mythology, Hephaestus is the god of artisans and blacksmiths.

Algorithm 1: Hephaestus-Annealing
Input: Dataset 𝑆 ; starting point ®𝑞; hardness scoring

function 𝜍 : (X, 𝑆) → R; initial temperature 𝑇 ;
maximum number of iterations𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 ; target
score range (𝑦𝑙 , 𝑦ℎ).

1 𝑦← 𝜍 (𝑆, ®𝑞);
2 for 𝑖 ← 1 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
3 ®𝑞′ ← move ®𝑞 randomly to a nearby location;
4 𝑦′ ← 𝜍 (𝑆, ®𝑞′);
5 if 𝑦𝑙 ≤ 𝑦′ ≤ 𝑦ℎ then return ®𝑞′ ;
6 Δ← min{|𝑦 − 𝑦𝑙 |, |𝑦 − 𝑦ℎ |};
7 Δ′ ← min{|𝑦′ − 𝑦𝑙 |, |𝑦′ − 𝑦ℎ |};
8 if Δ′ < Δ then (the candidate is closer to the target)
9 ®𝑞← ®𝑞′;

10 𝑦← 𝑦′;
11 else (we accept a worse move with some probability)
12 𝑡 ← 𝑇 /𝑖;
13 𝑝 ← exp(−|𝑦 − 𝑦′ |/𝑡);
14 with probability 𝑝 do

15 ®𝑞← ®𝑞′;
16 𝑦← 𝑦′;

17 return ®𝑞;

when either ®𝑞 has a score within the required bounds or a maximum
number of iterations is reached.

In particular, we adopt the fast annealing strategy: at iteration 𝑖
the probability of accepting a bad move is exp(−|𝑦 − 𝑦′ |/𝑡), where
𝑡 = 𝑇 /𝑖 is a linearly decreasing temperature from an initial value
𝑇 , and 𝑦 = 𝜍 (𝑆, ®𝑞) (resp. 𝑦′ = 𝜍 (𝑆, ®𝑞′)) is the score of ®𝑥 (resp. the
moved point ®𝑞′).

The intuition is the following: in the first iterations the algorithm
boldly explores the space, but as it progresses it becomes more and
more conservative, avoiding moves with a worse score.

As for the random distance to move each point in each itera-
tion, we have to consider different distributions depending on the
distance metric employed on each particular dataset. For datasets
using the Euclidean distance candidate queries are displaced by
a distance sampled from an exponential distribution Exp(𝜆). The
rate 𝜆 of the exponential distribution is a parameter that we set, by
default, to a 100th of the diameter of the dataset. By doing so we
favor small moves while still allowing the occasional long-distance
jump. For datasets employing the angular distance we apply the
same rationale, with the additional constraint that the angular dis-
tance cannot exceed 2. Therefore we replace the exponential with
the beta distribution with parameters 𝛼 = 0.1 and 𝛽 = 1, whose
probability density function is skewed towards 0, thus favoring
small tweaks to the position of the point ®𝑞.

4.2 Hephaestus-Gradient

The approach we discussed above has the advantage of not making
any assumption on the scoring function 𝜍 . The price we pay for this
flexibility is that the algorithm explores the space quite aimlessly.



Evaluating and GeneratingQuery Workloads
for High Dimensional Vector Similarity Search KDD ’25, August 3–7, 2025, Toronto, ON, Canada

Algorithm 2: Hephaestus-Gradient
Input: Dataset 𝑆 ; starting point ®𝑞; hardness scoring

function 𝜍 : (X, 𝑆) → R; learning rate 𝜂; maximum
number of iterations𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 ; target score range
[𝑦𝑙 , 𝑦ℎ].

1 for 𝑖 ← 1 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
2 𝑦← 𝜍 (𝑆, ®𝑞);
3 if 𝑦𝑙 ≤ 𝑦 ≤ 𝑦ℎ then return ®𝑞 ;
4 else if 𝑦 < 𝑦𝑙 then ®𝑞← ®𝑞 + 𝜂∇𝜍 (𝑆, ®𝑞) ;
5 else ®𝑞← ®𝑞 − 𝜂∇𝜍 (𝑆, ®𝑞) ;
6 return ®𝑞;

If the scoring function 𝜍 is differentiable (as is the case for the
Relative Contrast, for instance) then we can compute its gradient,
which gives the direction of steepest change of score. Therefore, for
any given candidate query point ®𝑞, we can first compute𝑦 = 𝜍 (𝑆, ®𝑞),
its hardness score with respect to the set of points 𝑆 . Then we can
check if 𝑦 ∈ [𝑦𝑙 , 𝑦𝑢 ], that is if ®𝑞 satisfies the required hardness
constraints. If this is not the case, then we compute the gradient
∇𝜍 (𝑆, ®𝑞) and move ®𝑞 along the gradient direction, by a step size
𝜂. Whether the point is moved upwards or downwards along the
gradient depends on whether its score 𝜍 (𝑆, ®𝑞) is above or below the
target score range.

This approach, deemed Hephaestus-Gradient, is summarized
in Algorithm 2. Note that, as in the Gradient Descent procedure
routinely used for training neural networks, the step size 𝜂 is not
required to be constant across all iterations. Furthermore, note that
usually in neural network training the Gradient Descent procedure
is used tominimize a loss function. Hephaestus-Gradient instead
strives to find a ®𝑞 whose score is not necessarily minimal, but rather
falls withing a user-given range. As such it is not strictly a gradient
descent scheme, because the gradient can be followed in either
direction.

Figure 1 reports the trajectories followed by the optimization
process of Hephaestus-Gradient. In the example with 𝑘 = 1
(left pane) the target for the optimization is a query with relative
contrast 8 (an easy query), whereas for 𝑘 = 10 (right pane) the
algorithm seeks to place a query with relative contrast 1.05 (thus a
difficult query).

4.3 Targeting the Empirical hardness

As we shall see in the experimental section, a given fixed value
of an explicative hardness measures (e.g. the Relative Contrast)
might correspond to a different empirical hardness depending on
the dataset and index being used. In some scenarios it might be
desirable to generate queries with a given empirical hardness for a
specific index. For instance, one might be interested in generating a
hard query workload for a specific index to investigate the features
of the data that force it to spend a lot of effort to provide the answers.

To tackle this scenario, we propose to modify Hephaestus-
Gradient to take as a parameter an indexD built on the dataset 𝑆 ,
as well as a range of admissible empirical hardness values [ℎ𝑙 , ℎℎ].
Then, the stopping condition is modified to check whether the em-
pirical hardnessHD,𝜌 ( ®𝑞) is within the requested range. If not, then

the algorithm uses the gradient of a differentiable scoring function 𝜍
to guide the move of ®𝑞 to the next position. In fact the empirical
hardnessHD,𝜌 might be, in general, not differentiable.

As a concrete example, this algorithm can be instantiated with
MESSI as the index data structure for computing the empirical
hardness, and the Relative Contrast to guide the moves of ®𝑞 by
means of its gradient.

Note that the empirical hardness might be employed directly
with Hephaestus-Annealing. As we shall see in the experimental
section, however, Hephaestus-Gradient converges faster.

5 Experimental Evaluation

We aim at answering the following questions:
• How well do explicative hardness measures correlate with
the observed empirical hardness?
• What is the empirical hardness of workloads generated by
Hephaestus-Annealing and Hephaestus-Gradient, com-
pared with the baselines?
• Which algorithm between Hephaestus-Annealing and
Hephaestus-Gradient converges faster?
• How do the algorithms scale with the size of the dataset?
• How effective is Hephaestus-Gradient at generating work-
loads targeting a given empirical hardness range?

Implementation. We implement all the algorithms using Python
3.12, using JAX [12] for automatic differentiation in Hephaestus-
Gradient and Adam [30] as the optimizer (as implemented in
Optax [16]). The learning rate is left as a parameter to be specified
in the following. For the sake of reproducibility, our experimen-
tal pipeline is publicly available3. We also provide an easy to use
standalone Python implementation of our methods4.

We execute our experimental evaluation on a single machine
equipped with a 48-core Intel(R) Xeon(R) CPU E5-2650 v4 processor,
clocked at 2.20GHz, with 251GB of RAM and a 3.7 TB SCSI SSD
disk.

Datasets. We consider the following datasets:
• astro (euclidean) [50]: celestial objects represented by 100
million points of dimension 256.
• deep1b (euclidean) [44]: 100 million Deep1B vectors of di-
mension 96, extracted from the final layers of a convolutional
neural network.
• sald (euclidean) [45]:MRI data, containing 100million points
of dimension 128.
• seismic (euclidean) [26]: recordings from seismic instru-
ments at thousands of stations globally, comprising 100 mil-
lion 256-dimensional points.
• glove (angular) [42]: 1 192 512 word embeddings in 100 di-
mensions derived from 2 billion tweets.
• nytimes (angular) [35]: 300 000 New York Times articles
embedded in 256 dimensions.
• text2image (angular) [1] comprises 10million, 200-dimensional
image embeddings as data, and text embeddings as queries.

We consider a random sample of 5 million points from each
dataset (with the exception of smaller datasets), in order to allow
3https://github.com/Cecca/workloads-generation/
4https://github.com/Cecca/hephaestus/

https://github.com/Cecca/workloads-generation/
https://github.com/Cecca/hephaestus/
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running a large number of experiments. Nevertheless, we stress
that our method is able to scale to much larger datasets: Section 5.4
reports scalability experiments.

Baselines. We consider two baselines for comparing our work-
load generators.

Each dataset is complemented by a query workload, which we
refer to as Baseline, that is routinely used to benchmark index
data structures. This query workload, comprising 10 000 queries
for nytimes and glove and 1 000 points for the others, is built by
extracting points from the dataset itself.

Furthermore, we consider a simple method: sample points from
the dataset, and perturb their coordinates using Gaussian noise. In
the following we refer to this approach as GaussianGen.

More in detail, to generate a query we sample a point ®𝑥 uniformly
at random from 𝑆 , addingN(0, 𝜎2) noise on top of each coordinate.
Wewill use different values for𝜎 to control the distance of generated
queries from dataset points.

This approach has been used extensively in the literature in
the past 30 years to generate synthetic workloads [2, 14, 15, 19–
21, 29, 33, 43, 46, 47, 53, 57].

Index data structures. For the sake of generality we consider
four different index data structures: two exact indices and two
approximate indices. As exact indices we consider MESSI [39] and
DSTree [54]. As approximate indices we consider HNSW and IVF
in the implementations provided by the faiss library [17].

Performance Metrics. First, we assess the relative merits of dif-
ferent hardness measures in terms of their correlation with the
empirical hardness. Our main performance measure to evaluate
generated workloads is thus the empirical hardness as defined in
Section 3.1. Here we detail how we compute this hardness measure
for a query ®𝑞, dataset 𝑆 and index data structure D.

Typically, the indexD has several parameters that can be tweaked,
resulting in a different levels of performance, possibly at the expense
of the accuracy (for approximate indices). For instance, HNSW has
parameters controlling the number of neighbors used in the graph,
and the depth of the exploration at query time.

For a query ®𝑞 and an index D on a dataset 𝑆 we perform a grid
search of the parameter space of D. For exact indices (i.e. MESSI
and DSTree), we pick the configuration that attains the smallest
number of distance computations. For approximate indices (i.e.
IVF and HNSW), we select among all configurations with recall
at least 𝜌 = 0.95 the one with the minimum number of distance
computations. For brevity, in what follows we denote the empirical
hardness asHD , omitting the subscript 𝜌 = 0.95. Note that this is
a particularly stringent requirement, on a query level: when 𝑘 = 10
our setup will select the fastest configuration returning the exact
result, even for approximate indices.

It has been observed [8, 28] that different configurations of the
same index data structure can achieve the same average recall with
very different runtime performances, when applied to batches of
queries. Furthermore, the recall of each query can vary widely [8,
Fig 10]. Therefore, in contrast with usual benchmarking setups, we
tune each index on a per query basis when computing the empirical
hardness. While expensive to evaluate, this is to ensure that we get
an accurate assessment of the empirical hardness for each query.

Table 1: Absolute value of the Kendall rank correlation coef-

ficient between different explicative measures and theH𝐼𝑉 𝐹

empirical hardness (best underlined, second-best in bold).

astro deep1b glove nytimes sald seismic text2image

𝐸𝑥𝑝20|10 0.69 0.62 0.86 0.70 0.71 0.35 0.53

𝐿𝐼𝐷10 0.42 0.37 0.71 0.21 0.35 0.04 0.50
𝑅𝐶10 0.75 0.77 0.91 0.91 0.79 0.81 0.74
𝛼0.05,10 0.27 0.08 0.59 0.19 0.13 0.23 0.33
𝛼0.1,10 0.19 0.21 0.51 0.32 0.26 0.30 0.40
𝛼0.5,10 0.19 0.22 0.23 0.66 0.61 0.52 0.45
𝛼1,10 0.22 0.28 0.84 0.21 0.38 0.37 0.29

5.1 Evaluating hardness Measures

The aim of our first set of experiments is to capture how well ex-
plicative hardness measures relate to the empirical hardness. This is
instrumental in deciding which measure is better to use to generate
query workloads. We consider the query sets that are provided with
our benchmark datasets. For each query ®𝑞, we consider the empiri-
cal hardnessH𝐼𝑉 𝐹 ( ®𝑞) for the IVF index implementation provided
by faiss. Then, we compute the other hardness measures and eval-
uate the correlation they exhibit with H𝐼𝑉 𝐹 ( ®𝑞) for each dataset.
Given that the relation is not linear and that we are only interested
in comparing how similar are the rankings induced by the hardness
measures, we consider the Kendall 𝜏 rank correlation coefficient. As
hardness measures we consider 𝐿𝐼𝐷10, 𝑅𝐶10, Expansion20 |10 and
𝜀-hardness with 𝜀 ∈ [0.05, 0.1, 0.5, 1].

Table 1 reports the absolute value of the Kendall rank corre-
lation coefficient for each of the hardness measures with H𝐼𝑉 𝐹 .
The measure that correlates most consistently with the empirical
hardness is the Relative Contrast. In some cases the Expansion
and 𝐿𝐼𝐷 provide comparable results, but in general they have a
lower correlation withH𝐼𝑉 𝐹 . For the 𝐿𝐼𝐷 , this is likely due to its
sensitivity to noise in its estimation, especially in regions where
nearest neighbors are tightly packed. For the Expansion, its lower
correlation can be explained by the fact that it is a very local mea-
sure, in that it considers only the distances of the 𝑘-th and 2𝑘-th
neighbors. In contrast, the 𝑅𝐶 considers both local (the 𝑘-th nearest
neighbor) and more global information (the average distance to all
points). As for the 𝜀-hardness, we note that its highest correlation
with the empirical hardness is achieved for different 𝜀 values for
each dataset, making it hard to adopt for the purpose of generating
workloads. Furthermore, the 𝜀-hardness is rather sensitive to the
setting of 𝜀: small changes to 𝜀 can lead to large differences in the
measure, depending on the data distribution.

Figure 7 in Appendix C gives a more detailed view of the relation
between the empirical hardness and the 𝐿𝐼𝐷 , 𝑅𝐶 and Expansion.
Appendix D reports similar results for the other indices we consider.

Based on these results, we select the Relative Contrast as the
hardness measure to be used going forward to guide the workload
synthesis.

5.2 Generating Workloads

In this section we report on experiments using the workload gen-
erators described in Section 4. Note that we do not consider the
method proposed in [60] as the setup is fundamentally different.
In [60], in fact, for a given fixed query point ®𝑞 the dataset is modified
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Figure 2: Average empirical hardness for different index data structures, over different datasets and easyeasyeasyeasyeasyeasyeasyeasyeasyeasyeasyeasyeasyeasyeasyeasyeasy, mediummediummediummediummediummediummediummediummediummediummediummediummediummediummediummediummedium, and difficultdifficultdifficultdifficultdifficultdifficultdifficultdifficultdifficultdifficultdifficultdifficultdifficultdifficultdifficultdifficultdifficult

workloads, for 𝑘 = 10.

so that ®𝑞 achieves the desired hardness level. In our setting, instead,
we keep the dataset fixed and unmodified while generating query
points anew.

Using the methods presented in Section 4 we set out to generate
three different workloads for each dataset, deemed easy, medium
and hard: the expectation is that index data structures will have to
spend more distance computations on the hard workload compared
to the easy one.We remark that we consider different data structures
to ensure that our findings are not specific to a single index: we are
not aiming at comparing different indices.

For a given dataset 𝑆 and number of nearest neighbors 𝑘 , let 𝑅𝐶𝑘

be the average 𝑅𝐶 of the dataset. The target range of 𝑅𝐶 for the
generators is 1+ (𝑅𝐶−1) ·𝛾±5% where𝛾 is 0.5, 0.1, 0.01 respectively
for easy, medium and hard queries for Euclidean distance datasets,
and 𝛾 = 1.5 (easy), 0.5 (medium), 0.25 (hard) for Angular distance
datasets.

The difference between the target 𝑅𝐶 values between Euclidean
and Angular metric spaces is due to the fact that the Angular dis-
tance can only take values between 0 and 2, hence very small 𝑅𝐶
values are very hard to attain.

For Hephaestus-Annealing we set the initial temperature to 1
and the maximum number of iterations to 2 000. For Hephaestus-
Gradient we set the learning rate to 1 and the maximum num-
ber of iterations to 1 000 (as we shall see, Hephaestus-Gradient
converges faster, hence a smaller maximum number of iterations

is reasonable). Both Hephaestus-Annealing and Hephaestus-
Gradient, upon reaching the maximum number of iterations, re-
turn the last candidate query, whichever its Relative Contrast. For
each hardness level, we generate 30 queries with each generator.

As for the GaussianGen generator, which does not explicitly
target the Relative Contrast, we consider the diameter Φ of each
dataset, setting the standard deviation 𝜎 of the added noise tto
Φ/105,Φ/104, andΦ/103 for easy,medium, and hard queries, respec-
tively. We generate 100 queries with the GaussianGen generator
to account for the larger variability in quality in this queryset.

Figure 2 reports the results in terms of average number of dis-
tance computations for 𝑘 = 10. Each panel in the figure reports the
results on a particular combination of dataset (arranged in columns)
and index data structure (arranged in rows). Each bar represents
the empirical hardness of a workload generated with the method
reported on the 𝑦 axis, with colors encoding the level of expected
hardness. The Baseline entry reports the average number of dis-
tance computations on the queryset bundled with each dataset. As
such, it is not labelled with any expected hardness, but is included
for reference.

First, we observe that the GaussianGen method is not very
effective at producing workloads of different empirical hardness, as
this measure is comparable between easy and hard workloads on
the same dataset/index pair. In particular, all workloads generated
with GaussianGen have an average empirical hardness comparable
with the Baseline.
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Figure 3: Detailed behavior of the workloads generated by

different methods for the astro dataset, evaluated by means

of HNSW.

As for Hephaestus-Annealing and Hephaestus-Gradient, if
we focus on approximate indices (IVF and HNSW), we observe that
hard queries are indeed harder that easy ones in terms of empirical
hardness, in general. This confirms that generating queries with
different target ranges of Relative Contrast translates in queries
with different empirical hardness. Furthermore, both methods allow
to generate queries that are harder than the Baseline ones, allowing
to put more stress on the index data structures.

There are some exceptions: in some cases (e.g. the IVF index on
the astro dataset), workloads generated with both Hephaestus-
Gradient and Hephaestus-Annealing have comparable empiri-
cal hardness, irrespective of whether they are supposed to be easy
or hard. Another related phenomenon is that in some cases (e.g.
astro and index HNSW), the empirical difficulty of workloads
generated by Hephaestus-Gradient is higher than Hephaestus-
Annealing, although both methods are set to target the same
Relative Contrast ranges. To investigate why this happens, consider
Figure 3 that reports, for the astro dataset and the HNSW index,
the relation between the empirical hardness and the relative con-
trast of workloads generated by the different methods, for 𝑘 = 10.
This figure corresponds to the data reported in the bottom left panel
of Figure 2. Clearly, the relative contrast is higher for the workloads
generated by Hephaestus-Gradient than the ones generated by
Hephaestus-Annealing, resulting in a lower empirical difficulty.
This is because the generation method did not converge to the tar-
get range of RC in the allotted number of iterations. In fact Figure 3
shows that all workloads generated by Hephaestus-Annealing
have the same relative contrast. As we shall see this is due to its
slow convergence.

As for exact indices (MESSI and DSTree) in most cases the work-
loads generated by our methods have a high empirical hardness.
This stresses the challenge of choosing the right RC range if one
wants to generate a query workload with a given empirical hard-
ness for a specific index. We will tackle this issue, and the ones
described in the previous paragraph, in Section 5.5.

5.3 Convergence

In this section we set out to investigate how fast Hephaestus-
Gradient and Hephaestus-Annealing converge. The setup is

Figure 4: Convergence of the Relative Contrast against

the elapsed time for the Hephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-AnnealingHephaestus-Annealing and

Hephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-GradientHephaestus-Gradient generators.

as follows: for each dataset we run 10 instances of Hephaestus-
Annealing and Hephaestus-Gradient for 1 000 and 200 itera-
tions, respectively, with each instance generating a single candidate
query. In each iteration we measure the Relative Contrast of the
candidate query and the elapsed time. In this experiment we set the
algorithms to minimize the 𝑅𝐶 of generated queries. Given that the
smallest possible 𝑅𝐶 is by definition 1, this is achieved by setting
the target 𝑅𝐶 range to [1, 1] in Algorithms 1 and 2 and letting the
algorithms run until the maximum number of allowed iterations is
reached.

Figure 4 reports, for each dataset, the Relative Contrast of each
of the 10 candidate queries on the 𝑦 axis, against the elapsed time
in seconds on the 𝑥 axis using semi-transparent lines. The solid
lines report the average behavior across the 10 instances of each of
the two algorithms.

Clearly, we can observe that Hephaestus-Gradient converges
much faster than Hephaestus-Annealing to values of Relative
Contrast close to 1. Therefore, if the hardness measure is differen-
tiable like the Relative Contrast, we recommend using Hephaestus-
Gradient.

Observing the elapsed times, we can notice that different datasets
require different times to exhaust the allotted number of iterations.
Furthermore, Hephaestus-Annealing completes its 1 000 itera-
tions in about twice the time Hephaestus-Gradient completes
its 200 iterations, suggesting that each iteration of Hephaestus-
Annealing is faster. We will discuss these aspects in the next
section.

5.4 Running Time and Scalability

Wenow consider the running time of bothHephaestus-Annealing
and Hephaestus-Gradient in the following setup: we generate 10
queries of hard hardness under the Relative Contrast measure and
record both the time for each iteration and the overall running time.
To test the scalability, we apply the query generation procedures to
samples of the datasets with 5, 10 and 15 million points, omitting
from the experiment datasets which have less than 5 million points.
Table 2 reports the average iteration time and the overall running
time, averaged over the 10 generated queries, in seconds.

Clearly, each iteration of Hephaestus-Annealing is faster than
those Hephaestus-Gradient, on average. The reason is that the
most expensive computation in each iteration of Hephaestus-
Annealing is the computation of the distances from the candidate,
whereas Hephaestus-Gradient also needs to compute the gradi-
ent.
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Table 2: Running time of Hephaestus-Annealing (H-Ann)

andHephaestus-Gradient (H-Grad) to produceworkloads

of hard hardness, both in terms of average time per iteration

and overall time.

Iteration (s) Total (s)

size H-Ann H-Grad H-Ann H-Grad

astro 5m 2.3 8.1 2303.1 16.1
10m 5.7 18.5 5704.5 37.0
15m 9.3 26.4 9333.7 52.7

deep1b 5m 1.9 5.6 1916.5 11.1
10m 4.6 14.2 4633.3 28.5
15m 7.4 19.8 7445.0 39.6

sald 5m 2.3 6.2 2342.7 14.3
10m 4.6 13.2 4550.7 28.9
15m 7.9 21.5 7878.5 47.4

seismic 5m 3.2 8.2 3156.8 18.9
10m 6.1 19.9 6140.9 45.7
15m 9.0 27.6 8988.5 60.7

However, as we saw in Figure 4, Hephaestus-Gradient con-
verges much faster. Hence, the overall running time of Hephaestus-
Gradient is much smaller than that of Hephaestus-Annealing.

As for the scalability, each method’s iteration scales approx-
imately linearly with the dataset size. This is expected: in both
methods the most expensive operation is 𝑂 (𝑛), with 𝑛 being the
number of points in the dataset.

We omitted from Table 2 the running time for GaussianGen,
for the sake of conciseness. From a running time perspective, Gaus-
sianGen is much faster than both other approaches, requiring
only a few milliseconds to generate each query, irrespective of the
dataset size. However, as we have seen in the previous sections, the
GaussianGen generator offers no control over the hardness of the
queries, and typically generates rather easy workloads.

5.5 Generating Workloads With a Target

Empirical hardness

In Section 5.2 we observed that most query workloads are rather
hard for exact indices. It might thus be interesting to generate
easy queries in order to investigate the characteristics of queries
that exact indices find hard. To this end, we apply the variant
of Hephaestus-Gradient described in Algorithm 3 to generate
a workload with empirical hardness between 0.1 and 0.2 for the
MESSI index. We generate 10 queries, using the Relative Contrast
as the hardness scoring function 𝜍 in Algorithm 3, and the empirical
hardness HMESSI for the stopping condition. Hence, the Relative
Contrast is used to guide the placement of the queries by means of
its gradient, and the empirical hardness is used to assess whether
the candidate queries satisfy the requirements. We set a maximum
of 1 000 steps.

Figure 5 reports the empirical hardness of the queries produced
by this process, with each poin representing a single query. Vertical
dotted lines mark the target 𝑅𝐶 range. Almost all generated queries
exhibit an empirical hardness that is within the requested bound,

Figure 5: Empirical hardness of a workloads generated with

Hephaestus-Gradient, targeting empirical hardness for

MESSI in the range [0.1, 0.2]. Each dot represents one of the

10 generated queries for each dataset.

on all dataset. There are couple of exceptions: queries that after
the allotted 1 000 optimization steps still do not fall in the required
HMESSI range. We report them for completeness: in practice such
queries can be discarded and possibly replaced with other queries
generated with another run of Hephaestus-Gradient.

This experiment shows that Hephaestus-Gradient can be used
to target a specific hardness for a given index, without requiring
prior knowledge of the corresponding range of Relative Contrast
values. In Appendix A we will use the queries we just generated to
further investigate the behavior of MESSI.

6 Conclusions

In this paper, we considered the problem of evaluating and syn-
thesizing query workloads for benchmarking similarity search ap-
proaches, for any kind of similarity search data structure, and for
both exact and approximate search. First, we investigated the re-
lation between explicative hardness measures with the empirical
hardness encountered by index data structures. We found that the
Relative Contrast is the most consistent metric at characterizing
the hardness of a query. Its correlation with the empirical hard-
ness is the highest among the tested measures, but is not perfect.
Devising a new measure that is both more accurate and easy to
compute remains an open problem. We then proposed different
methods for generating query workloads. In particular, we found
that to generate workloads whose Relative Contrast falls in a given
range, our method Hephaestus-Gradient converges rapidly to a
solution. The same method can be used to generate queries that are
by construction hard or easy for a given index. In future work, we
plan to study our method in the context of additional index types
and variations [10, 22, 51, 52, 55, 58, 59].

We note that Hephaestus-Gradient is independent of the hard-
ness measure, and will benefit from new hardness measures devel-
oped in the future.
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Figure 6: Visualization of the local neighborhood of four

different queries on glove, with different empirical hardness

related to MESSI. The top two queries are easy, while the

bottom two queries are hard. Red squares represent queries,

orange triangles are the 10-nearest neighbors, blue circles

are the neighbors of the neighbors.
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A Case Study

To study how the measures and workload generators considered
in this paper can help in investigating the performance of index
data structures, we consider the MESSI index and the glove dataset,
for 𝑘 = 10. In particular, we consider four queries generated by
Hephaestus-Gradient. The first two queries are easy, from the
workload generated in the previous section, with empirical hardness
H𝑀𝐸𝑆𝑆𝐼 ∈ [0.1, 0.2] and Relative Contrast > 3. The other two
queries are hard, generated from the Baseline workload associated
with the dataset, withH𝑀𝐸𝑆𝑆𝐼 ≈ 1 and Relative Contrast < 1.5.

To further characterize the structure of these queries, for each of
them we consider the graph consisting of the query, its 𝑘-nearest
neighbors (which we deem immediate neighbors), and also each

neighbor’s 𝑘-nearest neighbors. In other words, we consider the
subgraph of the 𝑘-nearest neighbor graph comprising the nodes
at hop count at most 2 from the query. The intuition is that by
comparing the immediate neighborhood of the query with the
neighborhood of its 𝑘-nearest neighbors we can reason about the
behavior of the index.

Figure 6 shows this graph for the four aforementioned queries.
In particular, the red square is the query, and the orange triangles
are its 𝑘-nearest neighbors (i.e. the answer to the query). The blue
dots are the neighbors of each one of the 𝑘-nearest neighbors of
the query. The graphs are laid out using the spring layout from the
networkx library [23]. The length of the drawn edge is influenced
by the edge’s weight, which we set to the distance between the
points the nodes represent. Therefore, short edges connect nodes
corresponding to similar points. It is worth reminding that this is
a 2-dimensional visualization of 100-dimensional points: as such
nodes that appear to be close together but are not connected by an
edge are not, in fact, close in the original space.

The top pair of graphs in Figure 6 represents the two easy queries,
whereas the bottom pair is for the two hard queries. The graphs
are remarkably different when comparing hard and easy queries,
and similar when comparing queries of the same hardness.

For easy queries, we notice that the nearest neighbors of the
query are also mostly nearest neighbors of each other. On hard
queries the opposite is true: the query’s neighbors share very little
and their own neighborhoods are quite dissimilar from one another.

Furthermore, on easy queries the immediate neighbors are com-
parably similar to the query and among them, while being rea-
sonably different from the rest of the dataset, as suggested by the
Relative Contrast score above 3.2. Conversely, on hard queries the
immediate neighbors are closer to their own neighbors than they
are to the query, and from the perspective of the query they are sim-
ilar to the other points of the dataset, as suggested by the Relative
Contrast score close to 1.4.

Consider now that MESSI partitions the dataset into a tree data
structure by means of SAX words, i.e. symbolic representations
of reduced dimensionality of the input vectors. Crucially, these
symbolic representations can be used to approximate the distance
of the vectors they represent, allowing to restrict the computation
of the distance to fewer candidates. Considering the examples in
Figure 6, we have that for easy queries the symbolic representa-
tion of the query and its neighbors are very similar, while being at
the same time dissimilar from the others in the dataset. For hard
queries, though, the approximate distance between symbolic repre-
sentations is not accurate enough to allow a meaningful pruning of
the candidates. An interesting avenue of research is then to allow
MESSI to better handle this latter case. A possibility might be to
switch to a different space partitioning scheme for this scenario.

B Additional pseudocode

We report here the pseudocode (Algorithm 3) for the adaptation of
Hephaestus-Gradient targeting the empirical hardness.

C Details on correlations

Figure 7 gives a more detailed view of the relation between the
empirical hardnessH𝐼𝑉 𝐹 and the 𝐿𝐼𝐷 , 𝑅𝐶 and Expansion, which
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Figure 7: Scatterplots of the relation between 𝐿𝐼𝐷 (top row), 𝑅𝐶 (mid row), Expansion (bottom row) and empirical hardness. The

𝜏 reported in each plot is the Kendall rank-correlation coefficient.

Algorithm 3: Hephaestus-Gradient for empirical hard-
ness
Input: Dataset 𝑆 ; starting point ®𝑞; hardness scoring

function 𝜍 : (X, 𝑆) → R; index data structure D for
𝑆 ; learning rate 𝜂; maximum number of iterations
𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 ; target empirical hardness range [ℎ𝑙 , ℎℎ].

1 for 𝑖 ← 1 to𝑚𝑎𝑥_𝑖𝑡𝑒𝑟 do
2 ℎ←HD ( ®𝑞);
3 if ℎ𝑙 ≤ ℎ ≤ ℎℎ then return ®𝑞 ;
4 else if ℎ < ℎ𝑙 then ®𝑞← ®𝑞 + 𝜂∇𝜍 (𝑆, ®𝑞) ;
5 else ®𝑞← ®𝑞 − 𝜂∇𝜍 (𝑆, ®𝑞) ;
6 return ®𝑞;

was discussed in Section 5.1, using a logarithmic scale on both axes.
The plots confirm that the Relative Contrast is the measure with
the strongest association with the empirical hardness in most cases.
Interestingly, the Expansion takes values that are very concentrated
towards 1, making the association with the empirical hardness very
steep. As for the 𝐿𝐼𝐷 , an association with the empirical hardness
H𝐼𝑉 𝐹 can be discerned from the plot, albeit with the presence of
many outliers.

D Other empirical hardness measures

For completeness, Table 3 reports the absolute values of the Kendall
rank-correlation coefficient between the explicative measures and
different empirical hardnessmeasures, respectivelyH𝐻𝑁𝑆𝑊 ,H𝑀𝐸𝑆𝑆𝐼 ,
and H𝐷𝑆𝑇𝑟𝑒𝑒 . The highest correlation is underlined, the second-
highest is in bold. We observe that for both HNSW and MESSI the
explicative hardness measure with the highest correlation is the

Table 3: Absolute value of the Kendall rank correlation co-

efficient between explicative and empirical hardness (best

underlined, second-best in bold).

astro deep1b glove nytimes sald seismic text2image

HHNSW

𝐸𝑥𝑝20|10 0.65 0.68 0.84 0.77 0.75 0.28 0.57

𝐿𝐼𝐷10 0.32 0.45 0.77 0.35 0.37 0.04 0.55
𝑅𝐶10 0.82 0.73 0.88 0.88 0.72 0.79 0.67
𝛼0.05,10 0.26 0.22 0.42 0.15 0.02 0.36 0.19
𝛼0.1,10 0.08 0.17 0.44 0.16 0.26 0.62 0.34
𝛼0.5,10 0.27 0.48 0.16 0.51 0.51 0.30 0.17
𝛼1,10 0.00 0.42 0.79 0.18 0.27 0.30 0.34

HMESSI

𝐸𝑥𝑝20|10 0.49 0.61 0.69 0.15 0.80 0.21 0.40
𝐿𝐼𝐷10 0.38 0.32 0.69 0.20 0.36 0.10 0.37

𝑅𝐶10 0.69 0.92 0.65 0.07 0.92 0.94 0.36
𝛼0.05,10 0.02 0.09 0.49 0.33 0.15 0.12 0.08
𝛼0.1,10 0.02 0.08 0.16 0.01 0.02 0.43 0.10
𝛼0.5,10 0.25 0.53 0.44 0.08 0.90 0.68 0.35
𝛼1,10 0.14 0.62 0.14 0.01 0.65 0.74 0.25

HDSTree

𝐸𝑥𝑝20|10 0.36 0.12 0.11 0.15 0.11 0.20 0.11
𝐿𝐼𝐷10 0.52 0.48 0.01 0.17 0.39 0.56 0.16
𝑅𝐶10 0.22 0.20 0.03 0.10 0.05 0.07 0.04
𝛼0.05,10 0.32 0.34 0.59 0.28 0.26 0.37 0.33
𝛼0.1,10 0.43 0.47 0.52 0.33 0.36 0.28 0.29

𝛼0.5,10 0.10 0.46 0.58 0.08 0.10 0.07 0.17
𝛼1,10 0.05 0.33 0.36 0.02 0.05 0.06 0.14

Relative Contrast. On the other hand, for DSTree the explicative
hardness measure with the highest correlation is the Local Intrinsic
Dimensionality.
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