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Context: Efficient Energy Management

Energy markets are undergoing significant change

“%',"gﬂ" BREZB Decarbonation: COP28 (2023) - “beginning of the end of fossil fuels”
1 s
ﬁ ! ‘ B Massive integration of new (renewable) energy sources

P Large-scale end-use electrification (Electric Vehicle, Heater, AC)



Context: Smart Meter Deployment

Millions of Smart Meters deployed in individual households

N
Grid network —===f

-
-—

i




Context: Smart Meter Deployment

Millions of Smart Meters deployed in individual households

N
N

Grid network - 14
>
smart Meter () | L il i) N
________________________________________ . 7
________________________________________ N ;I




Context: Smart Meter Deployment

Millions of Smart Meters deployed in individual households

Smart meter signal

¥ Collected at very low-frequency (i.e., one point every 30min)
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Context: Smart Meter Deployment

Millions of Smart Meters deployed in individual households

Smart meter signal —
¥ /\ Collected at very low-frequency (i.e., one point every 30min)
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Context: From Passive Energy Consumers to Active Players

Consumers are shifting from passive users to active participants, ﬁ‘:
increasingly willing to engage in the energy transition. >

Active consumption
shifting usage based on grid needs

Consumption feedback
empowering awareness

¥
; Help customers reduce their bill (up to -12 %) 1.2




Background: EDF’s monitoring solution (Mon Suivi Conso)

EDF’s Appliance-Level Feedback Solution

Périade B
1 - 15 septernbre 2024

4 2015 - Launch of Mon Suivi Conso (web + app)

$2 2018 - Annual appliances estimate using a semi-
supervised statistics approach!!

2023 - Deep-Learning based approach - monthly
estimation reduced error by = —70 %

Room for improvement: Monthly estimation is still coarse, and 6\
users recently requested daily appliance-level insights e =



Background: Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM): estimates power consumption, operational patterns,
and on/off state of individual appliances using only the total aggregated signal

Aggregated smart meter signal

NILM Solution

|

Kwh Individual appliance consumption

a Time Series
H > Regression task
Early research (1992) ML Area (2010’s) DL Area (2015-now)

Combinatorial Optimization Sparse Coding, HMM RNN, CNN, Transformer
G. W. Hart (1 Andrew Ng 2] Jack Kelly B!
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Background: Non-Intrusive Load Monitoring

SotA NILM methods are based on deep-learning

© Operates on subsequences of an entire electricity consumption
© series: scalability and performance
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Background: Non-Intrusive Load Monitoring

SotA NILM methods are based on deep-learning

© Operates on subsequences of an entire electricity consumption

g © series: scalability and performance

The Sequence-To-Sequence paradigm
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Problem

Non-Stationarity Nature of Electricity Consumption Data
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smart meter
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Accounting for non-stationarity in deep learning significantly improves
time series forecasting accuracy ! (%2
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Challenges

How to provide detailed and accurate fine-grained appliance
consumption feedback to customers?

Challenges

1. Considering non-stationary
Mitigating the data distribution nature of
smart meter data

2. Delivering granular, actionable feedback to customers
Per-timestamp, daily, weekly and monthly
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Challenges

How to provide detailed and accurate fine-grained appliance
consumption feedback to customers?

Challenges Solutions

1. Considering non-stationary v" NILMFormer
Mitigating the data distribution nature of
smart meter data

2. Delivering granular, actionable feedback to customers v' Deployment in “Mon Suivi Conso”
Per-timestamp, daily, weekly and monthly
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Proposed Approach: NILMFormer

How to mitigate the subsequence data drift aspect?

a2

Entire aggregate consumption series

-—
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Proposed Approach: NILMFormer

How to mitigate the subsequence data drift aspect?

Input aggregate subsequence

Power value 7 Timestamps
z-normalization s Wed Sep17th 3.30pm
/ \ Minutes
Hours
U o Day of week
Mean  Std Normalized consumption values Month
1. Intrinsic statistics ,/\/\\,\ 2. Shape 3. Timestamps information
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Proposed Approach: NILMFormer

NILMFormer: A Non-Stationarity Aware Transformer for

Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

/.A/\o\,\ 2. Shape

3. Timestamps information

U o

Mean Std M_vﬂ_l\ J Ty  — T
7 X 4,
z-normalization '
4 Subsequence’s
Y N g Sy discrete
Power values timestamps
I I T
5 ¢ .

Input aggregate subsequence
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Proposed Approach: NILMFormer

NILMFormer: A Non-Stationarity Aware Transformer for
Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

/.A/\o\,\ 2. Shape

3. Timestamps information
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Proposed Approach: NILMFormer

NILMFormer: A Non-Stationarity Aware Transformer for
Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

/'A/\'\«\ 2. Shape

3. Timestamps information
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Proposed Approach: NILMFormer

NILMFormer: A Non-Stationarity Aware Transformer for
Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

/./\f\\A 2. Shape

3. Timestamps information
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Proposed Approach: NILMFormer

NILMForm
Non-Intrus

I. Distinct er
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Input aggregate subsequence
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Proposed Approach: NILMFormer

NILMFormer: A Non-Stationarity Aware Transformer for
Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

/4\/\\« 2. Shape

3. Timestamps information
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Proposed Approach: NILMFormer

NILMFormer: A Non-Stationarity Aware Transformer for

Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

/.Af\\,\ 2. Shape

3. Timestamps information

Il. Embedding parts concatenation

Transformer Block
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Proposed Approach: NILMFormer

NILMFormer: A Non-Stationarity Aware Transformer for
Non-Intrusive Load Monitoring

Proj(u) Proj(c?)

l. Distinct encoding modules (tokenization) 4 4
Linear Head
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Proposed Approach: NILMFormer

NILMFormer: A Non-Stationarity Aware Transformer for
Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

/4\/\\,\ 2. Shape

3. Timestamps information

Il. Embedding parts concatenation

lll. Subsequence’s individual appliance power and
statistics prediction

IV. Output de-normalization

Predicted appliance power
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Results: Per-timestamp Energy Disaggregation

Performance comparison with 10 SotA deep-learning NILM baselines

Avg. rank on two metrics (MAE, MR)
1 10 9 8 7 6 5 4 3 2 1

1 1 , 1 P T T TR I
Averaged across 4 datasets — y
: - - DAResNet?:24] L6267\ MF :
(including 2 public benchmarks) and DifNILM 2200 ] | o
; ; ; ; BiLSTM %22 36933 GTN|LM
14 appliance disaggregation scenarios TolLNet <222 44133 3 GRU
UNet NILM®2222 22233 Energformer
FCN 5.8800
ﬁ
better
NILMFormer BERT4NILM STNILM BiGRU Energformer
[
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Ablation Study

Effects of proposed Non-Stationary Mechanisms on
NILMFormer Performance

Avg. rank on two metrics (MAE, MR)
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Ablation Study

Effects of proposed Non-Stationary Mechanisms on Predicted appliance power
NILMFormer Performance ry
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Deployed Solution: NILMFormer for Detailed Appliance Feedback

A Straightforward Framework for delivering Per-Period Energy Estimation

1. Slicing in subsequences 2. Per-subsequences disaggregation
Tumbling windows (length w)
e M N
ﬁ NILMFormer L
- trained for -,
Aggregate electricity consumption for a bt .

household over a one-month period

Feedback: a,«
% of electricity - T -
consumed per month

Individual appliance consumption

4. Per-period appliance consumption feedback 3.Concatenation
e.g. daily, weekly, monthly
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Deployed Solution: NILMFormer for Detailed Appliance Feedback

Performance comparison with TSER approaches (previous EDF’s Investigated Solution in Mon

Suivi Conso)

Daily Power Appliance Estimation
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Achieves up to 52% lower error
than the 2"9-best baseline(XGBoost)
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Monthly Power Appliance Estimation
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Achieves up to 151% lower error
than the 2"d-best baseline (Inception)
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Deployed Solution: NILMFormer for Detailed Appliance Feedback

Deployment of NILMFormer in Mon Suivi Conso

.

— Electricity consumption feedback @

* Scale: Appliance-level insights at daily, weekly, and
monthly granularity for more than 4 million customers.

 Throughput: Runs on the entire customer base (*4 M |
meters) in =11 hours, demonstrating industrial-grade 435 kWh
SCa Ia bility monthly electricity

consumption
in januar y 2025

* Adoption: 8.4 million reported visits on the appliance-
feedback feature in Mon Suivi Conso during Q4 2024 (60%
of the total feed). (Y Heater

47% of your total electricity
consumption

31



Conclusion

 NILMFormer: a state-of-the-art deep-learning approach that explicitly handles the
non-stationary nature of smart-meter data.

* Results: achieves significantly better performance than prior NILM methods across
diverse datasets and appliances.

* Impact: deployed in EDF's Mon Suivi Conso, delivering actionable appliance-level
feedback at scale to millions of customers.

Other application (Internal Decisions Making at EDF): recently used to identify the
impact of different off-peak EV charging systems on client’s consumption.

QU
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