NILMFormer

Non-Intrusive Load Monitoring that Accounts for Non-Stationarity

Adrien PETRALIA¹, Philippe CHARPENTIER¹, Youssef Kadhi¹, Themis PALPANAS²

¹EDF Research Lab, Paris, France

²Université Paris Cité, LIPADE, Paris, France

August 6th, 2025

Context: Efficient Energy Management

Energy markets are undergoing significant change

Decarbonation: COP28 (2023) → "beginning of the end of fossil fuels"

Massive integration of **new** (renewable) **energy sources**

Large-scale end-use electrification (Electric Vehicle, Heater, AC)

Millions of Smart Meters deployed in individual households

Millions of Smart Meters deployed in individual households

Millions of Smart Meters deployed in individual households

Sum of all individual appliances' power consumption

Millions of Smart Meters deployed in individual households

Context: From Passive Energy Consumers to Active Players

Consumers are shifting from passive users to active participants, increasingly willing to engage in the energy transition.

Consumption feedback *empowering awareness*

Help customers reduce their bill (up to -12 %) [1,2]

Background: EDF's monitoring solution (Mon Suivi Conso)

EDF's Appliance-Level Feedback Solution

2015 - Launch of *Mon Suivi Conso* (web + app)

2018 - **Annual appliances estimate** using a **semi-supervised** statistics approach^[1]

2023 - **Deep-Learning based** approach \rightarrow monthly estimation reduced error by $\approx -70~\%$

Room for improvement: Monthly estimation is still coarse, and users recently requested daily appliance-level insights

Background: Non-Intrusive Load Monitoring

Non-Intrusive Load Monitoring (NILM): estimates power consumption, operational patterns, and on/off state of individual appliances using only the total aggregated signal

a Time Series Regression task

Early research (1992)

Combinatorial Optimization G. W. Hart [1] ML Area (2010's)

Sparse Coding, HMM
Andrew Ng [2]

DL Area (2015-now)

RNN, CNN, Transformer Jack Kelly [3]

Background: Non-Intrusive Load Monitoring

SotA NILM methods are based on deep-learning

- Operates on subsequences of an entire electricity consumption
 - series: scalability and performance

Background: Non-Intrusive Load Monitoring

SotA NILM methods are based on deep-learning

- **Operates** on **subsequences** of an entire electricity consumption series: *scalability* and *performance*

The Sequence-To-Sequence paradigm

Problem

Non-Stationarity Nature of Electricity Consumption Data

Accounting for non-stationarity in deep learning significantly improves time series forecasting accuracy ! [1, 2]

Challenges

How to provide detailed and accurate **fine-grained** appliance consumption **feedback** to customers?

Challenges

1. Considering non-stationary

Mitigating the data distribution nature of smart meter data

2. Delivering granular, actionable feedback to customers

Per-timestamp, daily, weekly and monthly

Challenges

How to provide detailed and accurate **fine-grained** appliance consumption **feedback** to customers?

Challenges

Solutions

1. Considering non-stationary

Mitigating the data distribution nature of smart meter data

✓ NILMFormer

- 2. Delivering granular, actionable feedback to customers
 - Per-timestamp, daily, weekly and monthly

✓ Deployment in "Mon Suivi Conso"

How to mitigate the subsequence data drift aspect?

Entire aggregate consumption series

How to mitigate the subsequence data drift aspect?

NILMFormer: A Non-Stationarity Aware Transformer for Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape

NILMFormer: A Non-Stationarity Aware Transformer for Non-Intrusive Load Monitoring

I. Distinct encoding modules (*tokenization*)

1. Intrinsic statistics

2. Shape

NILMFormer: A Non-Stationarity Aware Transformer for Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape

NILMFormer: A Non-Stationarity Aware Transformer for Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape

NILMForm

Non-Intrus

I. Distinct er

TimeRPE

Subsequence's

discrete timestamps

NILMFormer: A Non-Stationarity Aware Transformer for Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape

NILMFormer: A Non-Stationarity Aware Transformer for Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape

3. Timestamps information

II. Embedding parts concatenation

NILMFormer: A Non-Stationarity Aware Transformer for Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape

- II. Embedding parts concatenation
- **III. Subsequence's** individual **appliance power** and **statistics** prediction

NILMFormer: A Non-Stationarity Aware Transformer for Non-Intrusive Load Monitoring

I. Distinct encoding modules (*tokenization*)

1. Intrinsic statistics

2. Shape

- II. Embedding parts concatenation
- III. Subsequence's individual appliance power and statistics prediction
- IV. Output de-normalization

Results: Per-timestamp Energy Disaggregation

Performance comparison with 10 SotA deep-learning NILM baselines

Averaged across 4 datasets (including 2 public benchmarks) and 14 appliance disaggregation scenarios

Ablation Study

Effects of proposed **Non-Stationary Mechanisms** on **NILMFormer Performance**

Averaged results over 4 datasets and 14 appliances disaggregation scenarios

Ablation Study

Effects of proposed **Non-Stationary Mechanisms** on **NILMFormer Performance**

Averaged results over 4 datasets and 14 appliances disaggregation scenarios

Deployed Solution: NILMFormer for Detailed Appliance Feedback

A Straightforward Framework for delivering Per-Period Energy Estimation

Deployed Solution: NILMFormer for Detailed Appliance Feedback

Performance comparison with **TSER approaches** (previous **EDF**'s Investigated Solution in *Mon Suivi Conso*)

Achieves up to 52% lower error than the 2nd-best baseline(XGBoost)

Monthly Power Appliance Estimation

Achieves up to 151% lower error than the 2nd-best baseline (Inception)

Deployed Solution: NILMFormer for Detailed Appliance Feedback

Deployment of **NILMFormer** in *Mon Suivi Conso*

- Scale: Appliance-level insights at daily, weekly, and monthly granularity for more than 4 million customers.
- Throughput: Runs on the entire customer base (~4 M meters) in ≈11 hours, demonstrating industrial-grade scalability.
- Adoption: 8.4 million reported visits on the appliancefeedback feature in Mon Suivi Conso during Q4 2024 (60% of the total feed).

Conclusion

- NILMFormer: a state-of-the-art deep-learning approach that explicitly handles the non-stationary nature of smart-meter data.
- Results: achieves significantly better performance than prior NILM methods across diverse datasets and appliances.
- Impact: deployed in EDF's Mon Suivi Conso, delivering actionable appliance-level feedback at scale to millions of customers.

• Other application (Internal Decisions Making at EDF): recently used to identify the impact of different off-peak EV charging systems on client's consumption.

Thank you!

Contact: adrien.petralia@edf.fr

Want to learn more about our work?

