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Context: Efficient Energy Management

Energy markets are undergoing significant change

Decarbonation: COP28 (2023) → “beginning of the end of fossil fuels”

Massive integration of new (renewable) energy sources

Large-scale end-use electrification (Electric Vehicle, Heater, AC)



3

Context: Smart Meter Deployment

Millions of Smart Meters deployed in individual households

Grid network
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Context: Smart Meter Deployment

Grid network

Smart Meter

Millions of Smart Meters deployed in individual households
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Context: Smart Meter Deployment
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Millions of Smart Meters deployed in individual households
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Context: Smart Meter Deployment
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Context: From Passive Energy Consumers to Active Players

Consumers are shifting from passive users to active participants,
increasingly willing to engage in the energy transition.

[1] Martinez et al., Advanced Metering Initiatives and Residential Feedback Programs, 2010                               [2] Allcott et al., Social norms and energy conservation, Journal of Public Economics, 2011

Consumption feedback  
empowering awareness

Active consumption 
shifting usage based on grid needs

Help customers reduce their bill (up to -12 %) [1, 2]



Background: EDF’s monitoring solution (Mon Suivi Conso)

📈 2015 - Launch of Mon Suivi Conso (web + app)

🛠️ 2018 - Annual appliances estimate using a semi-
supervised statistics approach[1]

EDF’s Appliance-Level Feedback Solution

📊 2023 - Deep-Learning based approach → monthly
estimation reduced error by ≈ −𝟕𝟎%

Room for improvement: Monthly estimation is still coarse, and
users recently requested daily appliance-level insights
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[1] L. Bozzi et al., Individual electricity consumption of a given appliance from a set of electrical equipment, French Patent, 2014.
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Non-Intrusive Load Monitoring (NILM): estimates power consumption, operational patterns,
and on/off state of individual appliances using only the total aggregated signal

Background: Non-Intrusive Load Monitoring

Aggregated smart meter signal

Early research (1992) DL Area (2015-now)ML Area (2010’s)

Combinatorial Optimization
G. W. Hart [1]

Sparse Coding, HMM
Andrew Ng [2]

RNN, CNN, Transformer
Jack Kelly [3]

NILM Solution

[1] G. Hart, Nonintrusive appliance load monitoring, 1992                    [2] Andrew Ng, Energy Disaggregation via Discriminative Sparse Coding, NIPS, 2011         [3] Jack Kelly, Neural NILM, ACM BuildSys’, 2015

Individual appliance consumptionKwh

a Time Series
Regression task
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Background: Non-Intrusive Load Monitoring

Aggregated smart meter signal

NILM Solution

Kwh

SotA NILM methods are based on deep-learning

Operates on subsequences of an entire electricity consumption
series: scalability and performance



11

Background: Non-Intrusive Load Monitoring

Household
smart meter

Heater

Sequence-To-Sequence 
Deep Learning Model

The Sequence-To-Sequence paradigm

Aggregated smart meter signal

NILM Solution

Kwh

SotA NILM methods are based on deep-learning

Operates on subsequences of an entire electricity consumption
series: scalability and performance
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Problem

Non-Stationarity Nature of Electricity Consumption Data

0

5

4

3

2

1

0

5

4

3

2

1

kW kW

𝑃𝐷𝐹 𝑃𝐷𝐹

Household
smart meter

Accounting for non-stationarity in deep learning significantly improves 
time series forecasting accuracy ! [1, 2]

[1] T. Kim et al., Reversible Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift, ICLR, 2021
[2] Y. Liu et al., Non-stationary Transformers: Exploring the Stationarity in Time Series Forecasting, NIPS, 2022
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Challenges

Challenges

1. Considering non-stationary
Mitigating the data distribution nature of
smart meter data

2.  Delivering granular, actionable feedback to customers
Per-timestamp, daily, weekly and monthly

How to provide detailed and accurate fine-grained appliance 
consumption feedback to customers?
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Challenges

Challenges

✓ NILMFormer

Solutions

✓ Deployment in “Mon Suivi Conso”

1. Considering non-stationary
Mitigating the data distribution nature of
smart meter data

2.  Delivering granular, actionable feedback to customers
Per-timestamp, daily, weekly and monthly

How to provide detailed and accurate fine-grained appliance 
consumption feedback to customers?
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Proposed Approach: NILMFormer

Entire aggregate consumption series

How to mitigate the subsequence data drift aspect?
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How to mitigate the subsequence data drift aspect?

Proposed Approach: NILMFormer
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NILMFormer: A Non-Stationarity Aware Transformer for
Non-Intrusive Load Monitoring

Input aggregate subsequence
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Proposed Approach: NILMFormer
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NILMFormer: A Non-Stationarity Aware Transformer for
Non-Intrusive Load Monitoring
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Embedding Block
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Subsequence’s
discrete
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NILMFormer: A Non-Stationarity Aware Transformer for
Non-Intrusive Load Monitoring



NILMFormer: A Non-Stationarity Aware Transformer for
Non-Intrusive Load Monitoring

I. Distinct encoding modules (tokenization)

1. Intrinsic statistics

2. Shape

3. Timestamps information
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I. Distinct encoding modules (tokenization)
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Results: Per-timestamp Energy Disaggregation

EDF datasets

Performance comparison with 10 SotA deep-learning NILM baselines

Avg. rank on two metrics (MAE, MR)

NILMFormer BERT4NILM STNILM BiGRU Energformer

better

Averaged across 4 datasets 
(including 2 public benchmarks) and 

14 appliance disaggregation scenarios

≈20% increase

≈ 10% increase
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better

Avg. rank on two metrics (MAE, MR)
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A Straightforward Framework for delivering Per-Period Energy Estimation

Aggregate electricity consumption for a 
household over a one-month period

Tumbling windows (length 𝑤)

NILMFormer
trained for
𝑎 =

… …

Individual appliance consumption

Feedback:
% of electricity

consumed per month

1. Slicing in subsequences 2. Per-subsequences disaggregation

4. Per-period appliance consumption feedback
e.g. daily, weekly, monthly

3.Concatenation

Deployed Solution: NILMFormer for Detailed Appliance Feedback
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Deployed Solution: NILMFormer for Detailed Appliance Feedback

Performance comparison with TSER approaches (previous EDF’s Investigated Solution in Mon
Suivi Conso)
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Deployment of NILMFormer in Mon Suivi Conso

• Scale: Appliance-level insights at daily, weekly, and
monthly granularity for more than 4 million customers.

• Throughput: Runs on the entire customer base (~4 M
meters) in ≈11 hours, demonstrating industrial-grade
scalability.

• Adoption: 8.4 million reported visits on the appliance-
feedback feature in Mon Suivi Conso during Q4 2024 (60%
of the total feed).

Deployed Solution: NILMFormer for Detailed Appliance Feedback
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Conclusion

• Other application (Internal Decisions Making at EDF): recently used to identify the
impact of different off-peak EV charging systems on client’s consumption.

• NILMFormer: a state-of-the-art deep-learning approach that explicitly handles the
non-stationary nature of smart-meter data.

• Results: achieves significantly better performance than prior NILM methods across
diverse datasets and appliances.

• Impact: deployed in EDF’s Mon Suivi Conso, delivering actionable appliance-level
feedback at scale to millions of customers.



Thank you!
Contact: adrien.petralia@edf.fr

Want to learn more about our work?


