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Questions This Tutorial Answers

- how important are data series nowadays?

- what does data series analysis involve?
» how can we speed up such an analysis?

- what are the different kinds of similarity search?
- what are the state-of-the-art data series indices for similarity search?
- can such indices help with geolocated data series analysis?

- how can these indices parallelize/distribute their operations?
- can these indexes be used for general high-d vector similarity search?

- what are the open research problems in this area?
- what are the connections to deep learning?
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Introduction, Motivation
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Data series

- Sequence of points ordered along some dimension

value

sequence dimension
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Scientific Monitoring

- meteorology, oceanography, astronomy,
finance, sociology, ...

Wal-Mart Stores

}Vlnd pre,ed N Historical stock quotes
h{g{}%:ﬁf u?: dizzggu?%oigxgienc d.html http://money.cnn.com/2012/04/23/markets/walmart_stock/index.htm
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Neuroscience

- functional Magnetic Resonance Imaging (fMRI) data
» primary experimental tool of neuroscientists
= reveal how different parts of brain respond to stimuli
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Medicine
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Analysis Tasks

- analyze evolution of values across x-dimension
- identify trends

- treat data series as a first class citizen
= analyze each data series as a single object
= process all n-dimensions at once
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Analysis Tasks
Subsequences

- often times the data series are very long
°n>>1
= streaming data series

- we then chop the long sequence in subsequences
= e.g., using sliding window, or shifting window
= pick carefully length of subsequence

+ should contain patterns of interest
- and process each subsequence separately
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Analysis Tasks:
Simple Query Answering

select values select values
1In time 1n some
interval range

select some combinations
data series

of those
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Analysis Tasks:
Complex Analytics

Outlier
Detection

Clustering

Frequent
Classification Pattern
Mining
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Analysis Tasks:
Complex Analytics

Outlier

Ll i Detection

Frequent
Classification Pattern
Mining

Similarity
Search
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Analysis Tasks:
Complex Analytics

Outlier
Detection

Clustering

HARD, because of very high dimensionality:
each data series has 100s-1000s of points!

even HARDER, because of very large size:
millions to billions of data series (multi-TBs)!

.
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Palpanas et al.
ICDE'04

Comparison of Representations

which representation is the best?

depends on data characteristics
» periodic, smooth, spiky, ...

overall (averaged over many diverse datasets, using same
memory budget), when measuring reconstruction error (RMSE)
= no big differences among methods

o DFT, PAA, DWT (Haar), iSAX slightly better

should also take into account other factors
= visualization, indexable, ...
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Data Series Similarity
Problem Variations



Problem Variations

8
6
. 2
Series g 5
Univariate Multivariate

each point represents many
values (e.g., temperature,
humidity, pressure, wind, etc.)

each point represents one
value (e.g., temperature)
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Problem Variations 8

Series 8

Univariate

each point represents one
value (e.g., temperature)
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Problem Variations

PVLDB‘08

Paparrizos-

Distance Measures SIGMOD'20

- similarity search is based on measuring distance between
sequences
- dozens of distance measures have been proposed
= lock-step
- Minkowski, Manhattan, Euclidean, Maximum, DISSIM, ...
= sliding
- Normalized Cross-Correlation, SBD, ...
= elastic
- DTW, LCSS, MSM, EDR, ERP, Swale, ...
= kernel-based
- KDTW, GAK, SINK, ...
= embedding
- GRAIL, RWS, SPIRAL, ...
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Problem Variations

PVLDB‘08

Paparrizos-

Distance Measures SIGMOD'20

- similarity search is based on measuring distance between
sequences

- dozens of distance measures have been proposed
= lock-step
- Minkowski, Manhattan, Euclidean, Maximum, DISSIM, ...
= sliding
- Normalized Cross-Correlation, SBD, ...
= elastic
- DTW, LCSS, MSM, EDR, ERP, Swale, ...
» kernel-based
- KDTW, GAK, SINK, ...
= embedding
. GRAIL, RWS, SPIRAL, ...
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Distance Measures:
LCSS against Euclidean, DTW

\

« Euclidean | |
= rigid

« Dynamic Time Warping (DTW)
= allows local scaling

« Longest Common SubSequence (LCSS)
= allows local scaling
s ignores outliers

d - MDD
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Problem Variations

Queries
N\ S\
Whole matching Subsequence matching
Entire query Entire query

Entire candidate A subsequence of a candidate
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Problem Variations

Queries

/N \p

Whole matching

Entire query
Entire candidate
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Problem Variations

Queries

Nearest Neighbor (1NN)
k-Nearest Neighbor (KNN)
Farthest Neighbor
epsilon-Range

and more...
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Similarity Matching

- given a data series collection D and a query data series q,
return the data series from D that are the most similar to q
o there exist different flavors of this basic operation

- basis for most data series analysis tasks
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Similarity Matching
Nearest Neighbor (NN) Search

- given a data series collection D and a query data series q,
return the data series from D that has the smallest distance to q

» result set contains one data series
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Similarity Matching
k-Nearest Neighbors (KNN) Search

- given a data series collection D and a query data series q,
return the k data series from D that have the k smallest
distances to q

» result set contains k data series
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Problem Variations

Queries
Nearest Neighbor (1NN)
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Nearest Neighbor (NN) Queries... m==
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Nearest Neighbor (NN) Queries... m==
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Nearest Neighbor (NN) Queries...

Prob(d,=min{d})=1

result is exact NN
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Nearest Neighbor (NN) Queries...

Prob(d,=min{d})=1

result is exact NN
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Nearest Neighbor (NN) Queries... pmmm

Prob(d,=min{d})=1

result is exact NN

Prob(d,, <>=7?) =7

result within ? of exact NN
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Nearest Neighbor (NN) Queries... pmmm

Prob(d,<=d, (1+g))=1 / e __ 2 Prob(d,=min{d})=1

result is exact NN

Prob(d,, <>=7?) =7

result within ? of exact NN
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Nearest Neighbor (NN) Queries... pmmm

-~ xet - Prob(d,=min{d})=1

Prob(d,<=d, (1+g)) =1

result is exact NN

Prob(d,, <>=7?) =7

result within ? of exact NN

5-g-approximate

neighbor (1+g)) >= 5

result within (1+ €) of exact NN
with probability at least &
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Nearest Neighbor (NN) Queries... pmmm

e Prob(d,=min{d})=1

Prob(d,<=d, (1+g)) =1

result is exact NN

Prob(d,, <>=7?) =7
result within ? of exact NN
"""" " Pr (1+€)) >=5

result within (1+ €) of exact NN
with probability at least &
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Query answering process
_////////////////////////////////////////////////////@

Data Load/ng Procedure Query Answering Procedure

CH

ﬂ .
Queries
Data Series \, —
Raw data Data Database/
Ind
Gakeli Answers >

_____________________________________________________________________________________________________________________________________

data-to- query time query answermg time

these times are big!
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Query answering process
_////////////////////////////////////////////////////@

Data Load/ng Procedure Query Answering Procedure

CH

ﬂ .
Queries
Data Series \, —
Raw data Data Database/
Ind
G Answers >

_____________________________________________________________________________________________________________________________________

data-to- query time query answermg time

we need solutions

for both problems!
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GEMINI Framework

Faloutsos-
SIGMOD’94

Raw data: original full-dimensional space
Summarization: reduced dimensionality space
Searching in original space costly

Searching in reduced space faster:
— Less data, indexing techniques available, lower bounding

Lower bounding enables us to

— prune search space: throw away data series based on
reduced dimensionality representation

— guarantee correctness of answer
* no false negatives
* false positives filtered out based on raw data
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Generic Search using Lower Bounding

Simplified DB Answer Original DB
Superset Final
Answer
Verify
against
original
No false DB

negatives!!
Remove false

positives!!

:
i
L]

simplified
query
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Publications

GEMINI: contractiveness

e GEMINI works when:

Deeature ( F(X), F(y) ) <= Dyoqi (X, ¥)

 Note that, the closer the feature distance to the actual
one, the better
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Similarity Search
Classes of Methods
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Similarity Search
Classes of Methods

Exact Seareh
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Similarity Matching
Serial Scan

Q
o
Memory
Disk
- o ® SX‘.O. e ®

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan

Answering a similarity search query using different access paths
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Similarity Matching
Serial Scan

bsf = +o0
Q
o
Memory
Disk
- o ® SX‘.O. e ®

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan

Answering a similarity search query using different access paths
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Similarity Matching
Serial Scan

bsf=d(Q, C,)
Q

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan

Answering a similarity search query using different access paths
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Similarity Matching
Serial Scan

bsf=d(Q, C,)
Q

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan

Answering a similarity search query using different access paths
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Similarity Matching
Serial Scan

bsf=d(Q, C,)
Q

?

Memory
Disk
C
- o ® = ° .' : ® o

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan

Answering a similarity search query using different access paths
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Similarity Matching
Serial Scan

bsf=d(Q, C,)
Q

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan

Answering a similarity search query using different access paths
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Similarity Matching
Serial Scan

O

Memory
Disk
C
- o ® = ° .' : ® o

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan

Answering a similarity search query using different access paths
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Similarity Matching
Serial Scan

Memory
Disk
C
- o ® = ° .. : ® o

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan

Answering a similarity search query using different access paths
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Indexes vs. Scans

O
O

Memory
Disk
.'..SX ...‘.. .'..(’:x‘...‘..
Q is compared to each raw candidate in the
dataset before returning the answer C,
(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans

O
O

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans

bsf =+o0

lbcur = too

O
O

T e ® %o %o *>
lower-bounding (Ib) property:
dip(Q, C?) <=d(Q, C)

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans

bsf =+oo
Ibcur =d,(Q’,C;)

Q

O

The summary gf Q (Q’) is compared to
the sumirary of each candidate

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans

bsf =+00
Ibey, =dp(Q’,Cy°) < bsf

Q

O

The summary gf Q (Q’) is compared to
the sumirary of each candidate

Q is compared to each raw candidate in the
dataset before returning the answer C,

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans

bsf =+00
Ibey, =dp(Q’,Cy°) < bsf

Q

O

The summary gf Q (Q’) is compared to
the sumirary of each candidate

Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned
(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans
bsf =d(Q,C,)
Ibey, =dp(Q’,C°) < bsf

Q

O

The summary gf Q (Q’) is compared to
the sumirary of each candidate

Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned
(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans
bsf =d(Q,C,)
Ibcur =du(Q’,C,’)

Q

O

The summary of/Q (Q’) is compared to
the summafy of each candidate

@»
|

Memory
Disk
C ° C °
.'...X ..)Q.X...D
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans
bsf  =d(Q.Cy)
|bcur = d|b(Q’,C2’) >= psf

Q

O

The summary of/Q (Q’) is compared to
the summafy of each candidate

@»
|

Memory
Disk
C ° C °
.'...X ..)Q.X...D
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans
bsf =d(Q,C,)
d(QCp>= by, =d(Q,C;)>= bsf

Q

O

LB Property

The summary of/Q (Q’) is compared to
the summafy of each candidate

@»
|

Memory
Disk
C ° C °
.'...X ..)Q.X...D
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans
bsf =d(Q,C,)
d(QCp>= by, =d(Q,C;)>= bsf

Q

O

LB Property

The summary of/Q (Q’) is compared to
the summafy of each candidate

@»
|

prune C,
Memory
Disk
C Cx
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned
(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans
bsf =d(Q,C,)
Ibcur =du(Q’,C,’)

Q

O

The summary of Q [(Q’) is compared to
the summary off each candidate

Memory
Disk
C ° C °
.'...X ..)Q.X...D
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans
bsf =d(Q,C,)
Ibey, =dp(Q’,C,) < bsf

Q

O

The summary of Q [(Q’) is compared to
the summary off each candidate

Memory
Disk
C ° C °
.'...X ..)Q.X...D
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans
bsf =d(Q,C,)
Ibey, =dp(Q’,C,) < bsf

Q

O

The summary of Q [(Q’) is compared to
the summary off each candidate

Memory @ ol
Disk
C ° C °
* o °° Jade, o *,° ’o’.ox$'o o *,°
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans
bsf =d(Q,C,)
Ibey, =dp(Q’,C,°) < bsf

Q

O

The summary of Q (Q’) iS\compared to
the summary of each capdidate

Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned
(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths

Echihabi, Palpanas - MDM 2022



e — L) |

Indexes vs. Scans

O

Q

? ?

The summary of Q (Q’) is compared to
the summary of each candidate

Memory @ |
Disk
C ° C °
.0..0X .‘DQ’Xé.’ « .
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned

(a) Serial scan (b) Skip-sequential scan

Answering a similarity search query using different access paths
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Indexes vs. Scans

Q Q Q
? ? 2
The summary of Q (Q’) is compared to
the summary of each candidate
Memory .................................................................................
Disk
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned
(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Answering a similarity search query using different access paths
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Indexes vs. Scans

bsf =+oo
Q Q Q
? ? 2
The summary of Q (Q’) is compared to
the summary of each candidate
Memory .................................................................................
Disk
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned
(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Answering a similarity search query using different access paths
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Indexes vs. Scans

bsf =+o0

O

Q Q

? ?

The summary of Q (Q’) is compared to
the summary of each candidate

Memory |
Disk
C ° C °
.0..0X .’DQ’Xi.’ « .
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Answering a similarity search query using different access paths
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Indexes vs. Scans

bsf  =d(Q,Cy)
Q Q Q
The summary of Q (Q’) is compared to

the summary of each candidate

Memory .................................................................................

Disk
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned
(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Answering a similarity search query using different access paths
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Indexes vs. Scans
Hﬁ bsf =d(Q,C,)
Queue

Q Q

? ?

The summary of Q (Q’) is compared to
the summary of each candidate

O

Memory .................................................................................
Disk
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned
(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Answering a similarity search query using different access paths
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Indexes vs. Scans
E‘ "ﬂ bsf =d(Q,Cs)
% by, = dlb(Q”©)
Q Q

? ?

The summary of Q (Q’) is compared to
the summary of each candidate

O

Memory .................................................................................
Disk
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned
(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Answering a similarity search query using different access paths
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Indexes vs. Scans
bsf =d(Q,C,
e 4 b @@ o
Q Q

? ?

The summary of Q (Q’) is compared to
the summary of each candidate

O

Memory .................................................................................
Disk
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
dataset before returning the answer C, its summary cannot be pruned
(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Answering a similarity search query using different access paths
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Indexes vs. Scans

ﬁ@_@-ﬂ bsf =d(Q,Cy)
=Queue s Ibey = dip(Q@, (D) <bst
Q Q Q
The summary of Q (Q’) is compared to
the summary of each candidate

Memory .................................................................................
Disk
Q is compared to each raw candidate in the Q is compared to a raw candidate only if

dataset before returning the answer C, its summary cannot be pruned

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Answering a similarity search query using different access paths
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Indexes vs. Scans o
E‘ "ﬂ bsf =d(Q,Cs)
% by, = dlb(Q”®)
Q Q

? ?

The summary of Q (Q’) is compared to
the summary of each candidate

O

Memory .................................................................................
Disk
Q is compared to each raw candidate in the Q is compared to a raw candidate only if
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Access Paths

0, Oq

? ?

The summary of Og, {O’) is compared to
the summary of{each candidate

([ ]

Q.O M .OD

EXTENDED

SRR N {
Memory I EXTENDED| = < -IB -
Disk | \
O, is compared to each raw candidate in O, is compared to a raw candidate only if
the dataset before returning the answer O, its summary cannot be pruned

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

Answering a similarity search query using different access paths
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d;,(0g’, 0,7) >= bsf / (1+£)
Then bsf <= d(0,, O,) (1+¢)
bsf <= d, (1+¢)

Extensions: SKkip-Sequential Scans

bsf = d(04,0,)

b

—_—
1b = ’

Oz’) bsf / (1+€)

Result is within

The summary of Og, (O’) is compared to
distance (1+ €) of the summary of each candidate
the exact answer
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Extensions: SKkip-Sequential Scans

bsf =d(04,0,)
If bsf <= (1+e) 1'3(0Q

P{d, <= d, (1+e)} >=©

Result is within
distance (1+ €) of
the exact answer
with probability at
least &

The summary of Og, (O’) is compared to
the summary o each candidate
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Extensions: SKkip-Sequential Scans

bsf =d(04,0,)
If bsf <=(1+¢€) rs(0,
. ’\‘“7 < .' |
jo°

P(d, <= d, (1+€)} >@) i,

. W Result is within The summary of Oq [0 is compared to
\ distance (1+ €) of the summary of each candidate
O« % | theexactanswer

: - ] >
‘ \ + | with probability at S e tae i
exac |

neighbor . least

/ Memory

0 Disk

C ;

(Y /

If bsf <= (1+8) r5(0,)
B, NeIghboRS

ght Given that P{d, > r5(0g)} >= 3, i.e, P{d, <=r15(0q)} < 1-5
And bsf / (1+¢) <=r5(0q) Then P{d, <=Dbsf/(1+€)} <1-5*
So P{d, > bsf/ (1+€)} >=3.,i.e., P{bsf < (1+g) d )} >=35

* We assume the monotonicity of the distribution of nearest neighbors of O,
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Publications
Extensions: Tree Indexes

Echihabi-
PVLDB‘19

bsf

= d(04,0,)
b, = dn,(oQ@ ) < bsf
B Q
ds <= dx (1+£)
. W Result is within
N % \ distance (1+€) of
J O\ % | theexactanswer
' exact ' .
e neighbor i |
‘ 7 A ! Memory
n ,appro - ] A i
% ors Disk
A L °
e °° ) e o, [ - e
6‘-"£iéb'pr6mmate
........ neighbor. -
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Result is within
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the exact answer
with probability at
least &
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If bsf <=(1+¢) r5(0y)

Q
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Echihabi-

PVLDB‘18

Echihabi-

PVLDB‘19
\ 4

Techniques for data Series
Techniques for High-D vectors

Methods

0<6<1e>0

Similarity Search

Methods

0,& gquarantees No guarantees

\ 4

Ca-e-Approxi mate*)

6 <1, ¢ guarantee

(ng—Approximate)
0 =1, € guarantee I

ADS+ M1
CK-Means iSAX2+e]
DSTree [o] NSG

6 =1, ¢ =0 guarantee

C Probabilistic ) (s—Approximate)
I

A 4
I

C Exact ) Flann SFA
ADS+[e] ADS+[e] xac HD-index VA-+filep]
DSTreef] DSTreep] ' HNSW
ISAX2+ [o] ISAX2+ [o] ADS+ RTree
Mtree Mtree DSTree  SFA * PR
——== . : result is within distance

ALSH VA-+file[ ISAXZ2+  Stepwise (1+ ¢€) of the exact answer

VA+ilefs] MASS  VAfile o oo oo oY
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DSTree
Summarization

V=1[-15,-0.5,0.5, 1.5, 2.5, 1.5,2, 2.6]

3.0 + 3.0 L
(8] O 0 O

2.0 + * 2_0 1 *
o O O 0O

10 + — 1.0 + —

o - o -

. O ) _ 0 _

10 1 O_ A floating-point value 1.0 1 O_ A pair of flogting-point values
representing the mean of this representing the mean and
segment . smndarddeﬁadan_ofﬁris

" segment
P) a
APCA(V) = [-1,1,2.15] EAPCA(V) = {[-1,0.4],[1,-0.2],[2.15,0.25]}
(a) APCA (b) EAPCA

Intertwined with indexing
The APCA and EAPCA representations
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DSTree
Indexing

V=][-15,-05,0.5,1.5,2.5,15,2, 2.6]

a 2

SG[1 ] = (8)
| | |

Zll]1=(z)
SG[L ] = (4,8)
Z[L] = (z,z)

I 1
SG[I] = (4,6,8)
Z[L]=(z,z,z)}

1"72"734

O

Wang-
PVLDB13

Each node contains
d # vectors

d segmentation SG
O synopsis Z

Each Leaf node also :
d stores its raw
vectors in a separate
disk file
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Symbolic Fourier Approximation (SFA)
Summarization

a time series T Fourier transform EDBT‘12

DFT 1.89 -473 -4.89 0.56

-------------------- > . . real valued
reali imag: realz imag:

value

approximation

| | 2 Fourier
0 64 128 192 256 coefficients

time

MCB " quantization

lue 4
6 F
5 : E . F
4
c 3¢+ D E -
o 5 1.89 o D
e Iy c €0.56 lookup D A A C
N 0 (o . o di
B - B s > iscrete
g -1 B B SFA word
> I A 4 characters
o 1w i A
] -4.73:-4.89
¥ L 1 1 1 |

reali imag: real; imag:

The SFA representation*
*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx
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SFA
Indexing

Schafer-
EDBT‘12

root
CACD DAAD MBR
internal i il 4
node : \ K4
.‘ :
(c:) C D D) /
CACD CCAD CEBA DaAD DCDA
CADA CCCA CEB-C DACC DCEF
VAN A S
(DC)
(CA) (CC) (CE) (DA)
DCDA DCEA
CACD CCAD CEBA DAAD DCDC DCEF
CACE CCBA CEBB DACA - -
CADA p CCCA CEBC DACC D / E \
A e 3 (DCD) (DCE)
|/ \\ DCDA DCEA
SFA words . DCDB DCEB
Neaf — . —— »{ DCDC DCEF

The SFA Trie*

*https://www?2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx
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Publications

iISAX Family
iISAX Summarization

- based on iSAX representation, which offers a bit-aware, quantized,
multi-resolution representation with variable granularity

> + PAA(T,4)
| \/\f:{no ,110 ,0111 ,000}
\ﬁ/\:{u ,11  ,011 ,00 }
* - iSAX(T,4,4) //\N
: el > _
: “\Wﬁ o Nﬁ‘{l 1,0 ,0 }
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iISAX-Indexing

aN- 111 H

Publications

Shieh-
KDD‘08

1 1 10 1 1 1 11
1 1 10 O 1 1 11
1 1 10 O
\
/\/_/

111
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ainN

Publications

Zoumbatianos-
SIGMOD‘14

Zoumbatianos-
PVLDB‘15

ADS + Zoumbatianos-

VLDBJ‘16

- novel paradigm for building a data series index
> does not build entire index and then answer queries

o starts answering queries by building the part of the index needed
by those queries

- still guarantees correct answers
- intuition for proposed solution
> builds index using only iISAX summaries; uses large leaf size
= postpones leaf materialization to query time
= only materialize (at query time) leaves needed by queries
» parts that are queried more are refined more

= use smaller leaf sizes (reduced leaf materialization and query
answering costs)
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Publications

Raw data

TOO BIG!

<--

PARTIAL

-

PARTIAL

Zoumbatianos-
SIGMOD'14
Zoumbatianos-
PVLDB‘15
Zoumbatianos-
VLDBJ‘16

PARTIAL

PARTIAL

-y

7
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Query #1 7™ -

FBL
Adaptive split
et
I

LpL 13
I
I
I

anN

Publications
Zoumbatianos-
SIGMOD'14
Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16

Raw data

Create a smaller leaf

I I 1 | i

| i |

1 i I

1 | I |

\ 4 \ 4 \ 4
PARTIAL PARTIAL

PARTIAL

PARTIAL

PARTIAL

-y

7
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13

/\

ROOT

anN

Publications
Zoumbatianos-
SIGMOD'14
Zoumbatianos-
PVLDB‘15

Zoumbatianos-
VLDBJ‘16

LBL

Raw data

4_--

<_—_—

I
I
I
|
A 4

4

U

PARTIAL

PARTIAL

I
I
I
|
A 4

DISK

<--

PARTIAL

-y

PARTIAL

7
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Kondylakis-
Coconut

Kondylakis-
SIGMOD’19

- current solution for limited memory devices and streaming
time series

= bottom-up, succinct index construction based on sortable
summarizations
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Kondylakis-

C oconu t PVLDB‘18

Kondylakis-
SIGMOD’19

° qu Segment1->
t. A really simple and extremely fast ordering S g 2585 = -
117

o -H 5 SAX(S1) SAX(S2) SAX(S3) SAX(S4) 000 7 /7 I7 /7

q 1o g : g
101 f \ A
100 f \ ~e\ ,
011 Y \S
010 c I c\

001

010 4n

M
" = AT
w LS UL L

Tlooo - @ =

001

e ¢ (100, 010) ee(100,100) fc(101,010)  ge (110, 100)

< Segment2
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Kondylakis-
Coconut

Kondylakis-
SIGMOD’19

- current solution for limited memory devices and streaming
time series

= bottom-up, succinct index construction based on sortable
summarizations

= outperforms state-of-the-art in terms of index space, index
construction time, and query answering time
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Kondylakis-
Coconut

Kondylakis-
SIGMOD’19

- current solution for limited memory devices and streaming
time series

= bottom-up, succinct index construction based on sortable
summarizations

= outperforms state-of-the-art in terms of index space, index
construction time, and query answering time

» compatible with traditional single-dimensional balanced indexes
* B+-tree, LSM-tree, ...

Echihabi, Palpanas - MDM 2022



)|

Publications

Coconut-LSM ot

Kondylakis-
SIGMOD’19

| en the bufrer 1S full: VLDBJ,ZO

Buffer f |

1]
et | \
= I ) Incoming data series are summarised | ltis sorted, indexed and flushed to |,
o = IVEAX Blaua-al [eun11168) . q / . i wo
% g | -4——— and the summaries along with the / Level 1 forming an “indexed run \
Empty slot F J L’
3 — raw data are pushed into a buffer / \
8 = i~ %, / N\
= T4 X

= %6\_
Indexed Run 1 = I

‘ When Level i reaches capacity: |

] !
1 |
- | : I\ \
— | | . \
% IvEAX |[B9113161:| [aeuuas‘| ‘ [p1168118 ] | : : / Thgr:(l;r}lsugr:gntg izrfeﬂf:ged '\,.‘
— [ | 1 \
- M \
Row dsta | _—r /_.,-\_J N : : // \\‘\
- ] 1

. ) P
Indexed Run B .______l ______

|
. oD e ; :
T | _ S SE— :
s | D € ) J L | ] |
i ~omms Eoem Een | i
] [ | |
rorces (L0 (LD D ©U | | x
. |
Indexed Run "___ N
- l
(] |
[ !
1] o .~ |
= T 1 = B | [ T )
g - L.JL... _J\_J _J_.J ;J;_ [T :
1 | -
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z
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Kondylakis-
Coconut-LSM
Kondylakis-
SIGMOD’19
Kondylakis-
Index
sorted -
Level 1 _
IinvSAX
[ Data Series

~ ~

P I N I

P . P .

a ~
o Built s Coconut | o Built Coconut |

LY .
‘,' when full \ Index ‘,' when full N Index
______________

|
|
|
Level O ||| InvSAX | [ invSAX ]: [ invSAX [ invSAX ]I
!
|
|

|DataSeries [ Data Series ] | [DataSeries [ Data Series ]l

_______

' Window size I

| |
H Window 1 - 1‘ Window 2 -

Echihabi, Palpanas - MDM 2022



N -\ Y |

Publications

Linardi-
ULISSE
Linardi-

PVLDB‘19

Linardi-
VLDBJ20

« ULISSE: current solution for variable-length queries

o single-index support for
* queries of variable lengths
- Z-normalized + non Z-normalized data
» Euclidean + DTW distance measures
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Publications

Linardi-

ULISSE

Linardi-
PVLDB‘19

Linardi-
VLDBJ20

[4

max

E lmin
1

____l'l'_D.El(_.[uENV —isax(U)=1-1-1- 0] 3 step: Update iSax(U) in the
iSax(l) =1-0-0-0 updated leaf path nodes, updating

i

I qst .
'D; . 1% step: the highest symbol values
: 2 min i Find leaf node with the representative iSax(L) g ¥ )

Master series 'gz,lzmax_u I/ /

i o sesss - T EREEK]

1 W

1

: ,

=

Vv Internal node: split

on a segment of

iSax(U): 1-1-0-
representative word -0-

iSax(L): 1-0 )
= v N
iSax(U):1-11-0-0} *°*""
iSax(L): 1-10-0-0

iSax(U)1-11-1-0 @

iSax(L) 1-10-0-0

) T
2n step: .Y
£_step: D Each envelope in a leaf points to
/-:D Insert the UENV the subsequence starting point in
j in the leaf with the a : EP
: . the disk
: same iSax(L),

Aligned Master Series '

iSax(U):1-01-0-0

(a)
isax(L): 1-10-0-0
isax(U) 1-11-1-0 @
(b) isax(L) 1-10-0-0
Containment area \ .

iSax(U):1-11-0-0
iSax(L): 1-00-0-0

o
[ ——————

" e

(c)

computing the new representation

U (Paa word) for the split symbols
—— | (Paa Word)
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Publications

Linardi-
ULISSE
Linardi-

PVLDB‘19

Linardi-
VLDBJ20

« ULISSE: current solution for variable-length queries

o single-index support for
* queries of variable lengths
- Z-normalized + non Z-normalized data
» Euclidean + DTW distance measures

> orders of magnitude faster than competing approaches
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Publications

Chatzigeorgakidis et al.
SIGSPATIAL/GIS’17

Geolocated Data Series

- search both on spatial proximity and data series similarity

e o
T L h.%s
N 2 N
’T4 I— 07‘6
S
lJ\T/\/T3 s 81
OTZ M
‘TI
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Publications

Chatzigeorgakidis et al.
SIGSPATIAL/GIS’17

Geolocated Data Series

- search both on spatial proximity and data series similarity

« BTSR-Tree: hybrid index that combines Minimum Bounding
Rectangles (MBR) and bundled Minimum Bounding Time Series
(MBTS) to prune the search space
= prunes subtrees that cannot contain any results
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Publications

Chatzigeorgakidis et al.
SIGSPATIAL/GIS’17

Geolocated Data Series

- search both on spatial proximity and data series similarity
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Geolocated Data Series

Publications

Chatzigeorgakidis et al.
SIGSPATIAL/GIS’17
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Publications

Chatzigeorgakidis et al.
SIGSPATIAL/GIS’17

Geolocated Data Series

- search both on spatial proximity and data series similarity

« BTSR-Tree: hybrid index that combines Minimum Bounding
Rectangles (MBR) and bundled Minimum Bounding Time Series
(MBTS) to prune the search space

= prunes subtrees that cannot contain any results

- HSJ: hybrid similarity join on geolocated data series using the
BTSR-Tree

» per- and cross-partition search in parallel (adjacent bands/boxes)
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Publications

SIGSPATIAL/GIS’17
Geolocated Data Series

Chatzigeorgakidis et al.
Elsev. Big Data Res. ‘19

- search both on spatial proximity and data series similarity

« BTSR-Tree: hybrid index that combines Minimum Bounding
Rectangles (MBR) and bundled Minimum Bounding Time Series
(MBTS) to prune the search space
= prunes subtrees that cannot contain any results

- HSJ: hybrid similarity join on geolocated data series using the
BTSR-Tree
= per- and cross-partition search in parallel (adjacent bands/boxes)

- VisExp: interactive visual exploration on geolocated data series
using either geo-iISAX or BTSR-Tree
= ge0-1ISAX: iISAX index - nodes augmented with MBR data
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Publications

SIGSPATIAL/GIS’17
Geolocated Data Series

Chatzigeorgakidis et al.
Elsev. Big Data Res. ‘19

search both on spatial proximity and data series similarity

BTSR-Tree: hybrid index that combines Minimum Bounding
Rectangles (MBR) and bundled Minimum Bounding Time Series
(MBTS) to prune the search space

= prunes subtrees that cannot contain any results
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Geolocated Data Series

Publications

Chatzigeorgakidis et al.
SIGSPATIAL/GIS’17

Chatzigeorgakidis et al.
SIGSPATIAL/GIS’18

Chatzigeorgakidis et al.
Elsev. Big Data Res. ‘19
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Publications

Chatzigeorgakidis et al.
SIGSPATIAL/GIS’20

spalScope

- interactive demo application for visual geolocated data series
exploration

= zoom-in/out, pan the map and receive summaries of geolocated data
series and corresponding MBRs
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Publications

Chatzigeorgakidis et al.
SSTD’19

Twin Subsequence Search

- discover subsequences, where distance between points is always < ¢

Ty
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Twin Subsequence Search

Publications

Chatzigeorgakidis et al.
SSTD’19

- discover subsequences, where distance between points is always < ¢

results that are
Chebyshev-similar
to the red queries
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Publications

Chatzigeorgakidis et al.
SSTD’19

Twin Subsequence Search

- discover subsequences, where distance between points is always < ¢

« SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences
of length >0, within large collections of (short) data series
= prunes search space by discretizing values, and using checkpoints

Echihabi, Palpanas - MDM 2022
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SSTD’19

Twin Subsequence Search

- discover subsequences, where distance between points is always < ¢
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Publications

Chatzigeorgakidis et al.
SSTD’19

Twin Subsequence Search

- discover subsequences, where distance between points is always < ¢

« SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences
of length >0, within large collections of (short) data series
= prunes search space by discretizing values, and using checkpoints

- SBTSR-Tree: solution for (x-axis) aligned subsequences within
large collections of (short) data series, which are geolocated

= BTSR-Tree index on segmented data series, with bit-vectors that mark
continuity of same series across segments
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Publications

Chatzigeorgakidis et al.
SSTD’19

Twin Subsequence Search

- discover subsequences, where distance between points is always < ¢

« SL/CP: sc
of length

° Prunes g
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Publications

Chatzigeorgakidis et al.
EDBT’21

Twin Subsequence Search

- discover subsequences, where distance between points is always < ¢

« TS-Index: solution for subsequences of a long data series T that are
similar to a (short) query sequence of length [

= k-ary balanced index, built on per-point min/max envelopes of all [-
length subsequences of T’
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Twin Subsequence Search

Publications

Chatzigeorgakidis et al.
EDBT’21

- discover subsequences, where distance between noints is always < ¢
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Publications

Chatzigeorgakidis et al.
EDBT’21

Twin Subsequence Search

- discover subsequences, where distance between points is always < ¢

« TS-Index: solution for subsequences of a long data series T that are
similar to a (short) query sequence of length [
» k-ary balanced index, built on per-point min/max envelopes of all I-
length subsequences of T’
« TS-Index OPT: memory footprint and bulk-loading optimizations
for TS-Index

> build index bottom-up after sorting and grouping the subsequences
using a z-order space filling curve
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ADS Index creation

down of time consumption

m Read data
m Write data
m CPU

~60% of time spent in CPU: potential for improvement!
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ParlS+
Parallel Indexing of Sequences

« solution for SIMD, multi-core, multi-socket architectures
= completely masks out the CPU cost during index creation

= answers exact queries in the order of few secs on 100GB dataset
- up to 3 orders of magnitude faster then single-core solutions
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ParlS+

Parallel Indexing of Sequences

diN- 149 H

Peng-
BigData’18

Peng-
TKDE’20

« solution for SIMD, multi-core, multi-socket architectures

s comj

o dANSW
[ ] up

Time (Seconds)

10 15 20 25 30

5

0

k-NN Classification

B ADS+ ™ ParlS+

|I|ﬂ

10—NN 50—NN
Number of nearest neighbors

‘10N

B dataset
ons

18x faster
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ParlS+
Parallel Indexing of Sequences

« solution for SIMD, multi-core, multi-socket architectures

= comyj k-NN Classification ion

<

-/

classifying 100K objects using a 100GB dataset
goes down from several days to few hours!

S _
P
o — -_

10—NN 50—NN
Number of nearest neighbors

Time
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ParIS+ exact query answering

/ }\t’eat 5. Calculate LB distance

1. Query q MW

thy. e -
: €y & generate candidate
arrives ROOT sax_ i C
—_— LB_dis®
- LB_dis®
- LB dis®
- LBC
L] L] L] L] L] - ->
= Worker >
2. Run ——D | : LB_dis®
0000 001 approximate === LB dis®
search : A P
Array of iSAX rray or -
00100 00101 Summarizations Candidate List

Main memory

Disk
- 3. Read raw data
RAW File for series in leaf
R 1T =" 4.GetBSF
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query ABOVE candidate \e. query BELOW candidate

Lower-Bound Distance T T \
Calculation in SIMD  rui vecmation ool oo §5 1 \
e ‘o v .

candidate series:
iSAX representation

v

Mask above branch TRUE TRUE

Result below branch | Dist_below[1] | Dist_below[2] | Dist_below[3] | Dist_below[4] |

Mask below branch TRUE
Result in branch | Dist_in[1] | Dist_in[2] | Dist_in[3] | Dist_in[4] |
Mask in branch TRUE
Final Result _ Dist_in[2] _ Dist_below[4] |
l J
|

SIMD register (8 points)
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Lower-Bound Distance
Calculation in SIMD
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SIMD lower bounds are 3.4x faster
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ParIS+ exact query answering

/

1. Query q
arrives

Main memory

2. Run

0000 001 approximate
search
00100 00101

3. Read raw data
for series in leaf

(-

. Calculate LB distance
& generate candidate

[

Array of iSAX
Summarizations

LBC
Worker

- l'""< _—-—

4.Get BSF
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6. Read raw data
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list order

Array of
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7. Update BSK_BSE)
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Publications

MESSI
| viomr

Peng-

In-Memory Data Series Index

 in-memory solution for SIMD, multi-core, multi-socket architectures

» index-creation algorithm

- balances workload of different workers, minimizes synchronization cost
o exact query answering algorithm

+ optimizes tree traversal and pruning

+ minimizes number of lower-bound and real distance calculations

= answers exact queries at interactive speeds: ~50msec on 100GB
- up to 11x faster than competing approaches

Echihabi, Palpanas - MDM 2022
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MESSI Query answering - Stage 3

Calculate iSAX repr ion
rawdata —] compute iSAX fill up index Parallel Receiving
summaries Buffers (pRecBufs)

( T query \
~ N

—————
Tree Index Construction|

process iSAX summaries traverse index /
in each pRecBuf build priority queue
growindex subtree caleulate distances /
update priority queue
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MESSI Query answering - Stage 3
4 )

1. Query q MW

arrives

approximate
search

3. Read raw data

Raw Data o
for series in leaf

Lo = »
N e=T= 4 Get BSF
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MESSI Query answering - Stage 3 T
- N S
1. Query q M\ L / \ |

arrives

5. Traverse
tree index

approximate
search

6. Calculate
node distance 7. if node dist<BSF »
insert node in PQ |/
Raw Data 3. Read raw data h g
for series in lea
= Priority Queues
__l----_<
s 4.Get BSF
\ : / shared data structures
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MESSI Query answering - Stage 3

Priority Queues
8. Pop node from /7
a priority queue /|
\~ ExactSearch worker
9. Calculate lower
node bound distances
10. Calculate real
<4="_= | -|« LB dist Real_dist distances for
- - I |« LB_dist -
P »:u < LB_dist » Real_dist non RrEnes
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I
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shared 11. Produce final
0 variable 1-NN answer
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Publications

SING o
ICDE'21

Sequence Indexing Using GPUs

 in-memory solution for SIMD, multi-core, multi-socket architectures
with GPUs (Graphical Processing Units)

s new exact query answering algorithm
* CPU-GPU co-processing framework
- new GPU-friendly lower bound distance calculation algorithm

= answers exact queries at interactive speeds: ~32msec on 100GB dataset
- up to 5x faster than competing approaches
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GPUs for Data Series Similarity Search

 a natural solution
« GPUs typically part of modern hardware
« GPUs offer massive parallelization opportunities
- data series operations are massively parallelizable

 challenges

 Limited GPU memory size (~12GB of RAM for modern GPUSs)
« much smaller than raw data

 Slow interconnect speeds (PCI-Express 3.0 x16 delivers 10GB/sec)
* moving raw data needed by individual queries prohibitively

expensive

* non-sophisticated Streaming Processors (GPU cores)
 not suited for supporting complex data structures/branching
« very limited in-core fast memory

« trade-offs will change as GPU and interconnects technology advances
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SING Query answering (e CPU

Search

perform approximate search, compute BSF

compute LBDs for children of root,
compute contiguous interval with all non-pruned nodes

( GPU

traverse index, insert leaf nodes in priority queue(s)

calculate LBDs only for series under a
node inside the
intervals with all non-pruned nodes

sorted
iSAX array FMapG
— ~
—— =
—_— - LB_dist
-_— LB_dist
— LB_diSt
—= LB_dist
—_— LB_dist
-— LB_dist
-—-—-__ =

N J . J
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SING Query answering

r Lower Bound Distance Computations

114

Breakpoint=breakpoint[Sax]
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SING Query answering

GPU-friendly Lower Bound Distance Computations

118 g

| : NEE >

i i / T10 =

/w\ — S ; >

| | I 101 s break point
VOBJ rOO e ® iSAX break points
! | NG L —BreakPoly curve

Breakpoint=breakpoint[Sax] BreakPoly(Sax)=a*(Sax)3+b*(Sax)
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SING Query answering

Time of Lower Bound Distance Computations

_miSAX breakpoints * BreakPoly breakpoints
<

S 400

< |

<

A |

= 200 I

= |

2 + .

E o

= Seismic SALD Synthetic

Dataset

GPU with BreakPoly() breakpoints is ~10x faster
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SING Query answering (e CPU

Search

perform approximate search, compute BSF

compute LBDs for children of root,
compute contiguous interval with all non-pruned nodes

( GPU

traverse index, insert leaf nodes in priority queue(s)

calculate LBDs only for series under a
node inside the

intervals with all non-pruned nodes
Priority Y ¢
h > ree
sorted Quenes / index
iSAX array FMapG FMapC ) v
= _ L
— | - ] Search
—_— LB_dist LB_dist ..
—— = LB_dist LB dist check priority queue(s), process leaf nodes.
- _ LB_dist LB_dist ﬁ
—— . S
m— LB—_dISt LB—_d'St check LBD values in FmapC or calculate it, >
- ) ) calculate real distances %
—_—— H LB_dist H LB_dist A
. __:_:_ LB_dist LB_dist update BSF, use new BSF to prune better ﬁ
- . J
1-NN answer

Echihabi, Palpanas - MDM 2022



R Sy

Publications

DPiSAX

ICDM‘17

Distributed Partitioned iSAX Togoutr

- solution for distributed processing (Spark)

= balances work of different worker nodes

- partitions series into uniform groups with parallel sampling (for load
balancing)

- creates in parallel an index for each group (in a different node)
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Publications

DPiSAX

Distributed Partitioned iSAX fogoubl

Lavchenko-
KAIS’20

- solution for distributed processing (Spark)
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Publications

DPiSAX

ICDM‘17

Distributed Partitioned iSAX Togoutr

- solution for distributed processing (Spark)

= balances work of different worker nodes

« partitions series into uniform groups with parallel sampling (for load
balancing)

- creates in parallel an index for each group (in a different node)

= speeds-up query answering
- exact queries are answered by all nodes (parallelize query execution)

- approximate queries answered only by a single node (parallelize
workload execution)
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timeline ........ 2008 ..... 2010 2014 ........... 2015 2017 ....... 2018 ............... 2019 ............. 2020

pasic
index 18AX C#

= Eg{';éing iSAX2.0 P iSAX2+ | [ iSAX2+* | c#, C

+ Adaptive ﬁgg J{ ADSFull } ’[ ADS+* ] C

+ Distributed ’{ DPiSAX ] {;;)J:rk)
+ Multi-Core, ;[ ParIS ]—-»[ ParIS+ ]—»[ MESSI ] C

Multi-Socket, SIMD

A 4

SIN C

L Coconut-Trie /
{ Coconut-Tree Coeniile Lol ] C

+ Graphics Processing
Units (GPUs)

+ Sortable Summarizations,
Streaming Data Series

[——————

+ Variable-Length Queries =[ ULISSE ] C

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity

search with deterministic and probabilistic quality guarantees. Echihabi, Palpanas - MDM 2022
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execution time for 1 similarity search query on a 100GB dataset on disk

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity

search with deterministic and probabilistic quality guarantees. Echihabi, Palpanas - MDM 2022
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+ Variable-Length Queries =[ ULISSE ] C

execution time for 1 similarity search query on a 100GB dataset on disk

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity

search with deterministic and probabilistic quality guarantees. Echihabi, Palpanas - MDM 2022



timeline ........ 2008 ..... 2010 2014 ........... 2015 2017 ....... 2018 ............... 2019 ............. 2020

_basic s
index 600 sec

+E(l;€|;ll:jing - iSAX2+ | o_iSAX2+* | c#, C
+ Adaptive

+ Distributed

+ Multi-Core,
Multi-Socket, SIMD

+ Graphics Processing
Units (GPUs)

+ Sortable Summarizations,
Streaming Data Series

[——————

L Coconut-Trie /
{ Coconut-Tree Coeniile Lol ] C

+ Variable-Length Queries =[ ULISSE ] C

execution time for 1 similarity search query on a 100GB dataset in memory

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity

search with deterministic and probabilistic quality guarantees. Echihabi, Palpanas - MDM 2022
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Hercules

Parallel Indexing of Sequences

« Disk-based solution for SIMD, multi-core, multi-socket
architectures

= Exploits the benefits of two different summarization techniques
(iSAX and EAPCA), and novel indexing and query answering
algorithms

= Leads to better query answering performance than all recent
state-of-the-art approaches across all popular query workloads

- only index that outperforms optimized scan on all scenarios (including
hard query workloads on disk-based datasets)

= Performs up to one order of magnitude faster than the best
competitor (which is not always the same)

Echihabi, Palpanas - MDM 2022
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Publications

Hercules

Parallel Indexing of Sequences

« Disk-based solution for SIMD, multi-core, multi-socket

architectures
== == = PSCAN, an Optimized Sequential Scan
3500 e
ree’
©£.400- e .
O [ Hercules> only index always
= 300 better than optimized
— 200- sequentlal scan

g1 kbl

1% 2% 5% 10% ood
Queries

Query Performance with Increased Query Difficulty (Seismiet@@GB) vov zoz-
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Publications

Hercules

Parallel Indexing of Sequences

« Disk-based solution for SIMD, multi-core, multi-socket
architectures

—>— Hercules —x— DSTree* —+— VA+file —<p— ParlS+ —<— PSCAN

M
® 1000- S
L 9,
@
£ 100 E
= £
> 10 % =
5 5
&/ © © b o
O "L D° (N ’J/ h 9 O P
S HEMCC N SNSRI
Dataset Size Series Length

Hercules best overall
Query Performance with Increased Dataset Size and Series Length (Synthetic)

Echihabi, Palpanas - MDM 2022




Hercules
Index Building

(i) Read Phase: coordinator
reads data

(i) Insert Phase: inseriWorkers

Publications

Echihabi-
PVLDB’22

insert series in index tree

coordinator

@ read input data using
double buffer DBuffer

@alert M insetWorker
threads to process data

(2=

insertWorker1

@read series from DBuffer
into region of HBuffer

0 insert series in leaf

(5)point to the series from
leaf"s SBuffer

-

(iii) Flush Phase: If memaory full, insertions halt until flushCoordinator flushes HBuffer

flushCoordinator ¢« insertWorker1

issue flushOrder if ¥ regions of
HBuffer are full

Once all insertWorkers halt

insertions, flush HBuffer to disk and
reset HEBuffer and SBufiers

[flushWorkerN-1 e InsertWorkerN

flushWorker1 & insertWorker2

If flushOrder, halt insertions until
flushCoordinator is done flushing

@When done flushing, lushCoordinator
alerts flushWorkers to resume their role as

Two-level Buffer

e iEn

Hercules Index Building Workflow

Main memory

phase (i) executes in parallel 0
with phases (ii) and (iii) -:l'l;—lll

Disk

Echihabi, Palpanas - MDM 2022
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Hercules
Index Writing

coordinator

@create N workers to
st-process leaves
write raw data to LRDFile and
sax summaries to LSDFile

@wﬁte index tree to disk

writelndexWorker1
@calculate the sax summaries
of the leaf

@update the synopses of the
leaf's ancestors

HSplitSynopsis =
SG(Root) = SG(1,) = SG(L,)

()
3

Z(Root) derived from Z(l,) and Z(L,)

VSplitSynopsis 3 01,23
SG(l,) = SG(L,) # SG(l,) |__-0529
Z(Root) derived from Z(L |
and series of I, 0.1,2.2
-05,1.8 0.1,1.8 02,23
' S —V (1=04.35 1-03,25 |

h— — T -

0.1,1.8 04,23 02,13 02,17
2)H)-0.1,35 -0.2,15 | | 0.1,05 |-0.3,35 |
L, L,

Main memory |
Disk . _ i _
L, raw data M: L, saxdatal| —— /
L, raw data w L, sax data? ::_ —
L, raw data- W L, sax data| —— __

LRDFile '|LSDFile HTree

Publications

Echihabi-
PVLDB’22

Hercules Index
Writing Workflow

Echihabi, Palpanas - MDM 2022
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Hercules

Query Answering

coordinator —
@ﬁnd initial candidate answers CSWorker1

Publications

by visiting at most L,,,,, leaves (2)find candidate series

in LCList, and create worker threads

®5kip-sequen1ial scan RWorker1 | \
of LRDFile compute final answers
——___——-'--____

and store them in SCList
@ﬁnd candidate leaves, store them —@-P__________..--—__

else
—3)>{[scList

else

LCList

if pruning %
< EAPCA_TH

if pruning %
< SAX_TH

e =
SIS Hercules Query
W Answering WOI‘kﬂOW Echihabi, Palpanas - MDM 2022
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Publications
I ARDIS Zhang et al.
ICDE‘19

- solution for distributed processing (Spark)

= based on iISAX-T representation and sigTree index

+ 1SAX Transposition: transposes matrix of iSAX words of same cardinality,
represents as strings

- sigTree: prefix k-ary tree on iSAX-T strings

time series SAX: [1100, 1101, 0110, 0001]

:
2 ~—
b 1100 1100 C
€ 110 1fTransposel 1 1 1 0| Hex | E %
0 0110 C=> |0o01o0lC|2 =
o 0001 0101 5 =
Q )
@ — . o
= SAX iSAX-T =
0 o
= (T.42) = {1, 1, 0, 0 } =C @
2] (T.44) = {11, 11, 01, 00 } =CE

(T.48) = {110, 110, 011, 000} =CE2

(T,4,26)= {1100, 1101, 0110, 0001} =CEZ25
Echihabi, Palpanas - MDM 2022
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Publications
I ARDIS Zhang et al.
ICDE‘19

- solution for distributed processing (Spark)

= based on iISAX-T representation and sigTree index

+ 1SAX Transposition: transposes matrix of iSAX words of same cardinality,
represents as strings

- sigTree: prefix k-ary tree on iSAX-T strings

» centralized global sigTree + distributed local sigTrees with raw data
- global sigTree
+ constructed using statistics from local samples
- serves as partition scheme for data re-distribution

Echihabi, Palpanas - MDM 2022
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Publications
I ARDIS Zhang et al.
ICDE‘19

TARDIS-G
(Global Index)

accessing global index for
best-match partition(s)

partition-level access,

/ utilizing local index

master node

worker nodes

bl by
o L

TARDIS-L
(Local Index) \

Indexed Data

Echihabi, Palpanas - MDM 2022
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Publications
I ARDIS Zhang et al.
ICDE‘19

- solution for distributed processing (Spark)

= based on iISAX-T representation and sigTree index

+ 1SAX Transposition: transposes matrix of iSAX words of same cardinality,
represents as strings

sigTree: prefix k-ary tree on iSAX-T strings

» centralized global sigTree + distributed local sigTrees with raw data
- global sigTree
+ constructed using statistics from local samples
- serves as partition scheme for data re-distribution

5 query answering
ng-approximate k-NN queries
exact-match queries (does the query appear exactly the same in the dataset?)

Echihabi, Palpanas - MDM 2022
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Publications
KV-match

« solution for distributed (HDFS) subsequence similarity search

» similarity search problem
subsequence similarity search: search for a short query inside a long series
e-range queries
exact answers for constrained e-range queries (using cNSM)

= ¢cNSM: constrained Normalized Subsequence Matching
essentially, constrained similarity search

* intuitively, Z-normalization with constraints on degrees of amplitude scaling and

offset shifting (a > 1 and 8 > 0, respectively)
s

aoa 1 aT" S
D(5.Q)<e N —<—m<a n —f<u”—u®<p

- users control extent of amplitude scaling and offset shifting
normalized subsequence matching is a special case of cNSM

Echihabi, Palpanas - MDM 2022
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Publications
KV-match

« solution for distributed (HDFS) subsequence similarity search

= index creation
+ slide window on input series
 produce ordered rows of key-value pairs
* key K. : a range of mean values, K, = [LR,, UR,)
+ value V; : the set of sliding windows whose mean values fall within K;

Index

( 1.7 1000

AP TRe v
24 500 [1.5,2.0) [1000, 1002]
26 | 50 [2.0,3.0)  [49, 50], [500, 500]

L 2.8 49

20 1001 [3:0.4.00 [100,100], [550,550]
3-3 550 ...... YL
¥ i i i i L i - - [6.0,7.5) [150,150], [1100, 1100]
150 100 150 500 550 1000 | 1002 1100 o{ ?é 11150%

49 1001

- key-value table stored in HBase Echihabi, Palpanas - MDM 2022
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Publications
KV-match

« solution for distributed (HDFS) subsequence similarity search

s query answering
« for query Q and corresponding subsequence S

+ segment Q into aligned length-w disjoint windows (requires having several
indexes of different lengths)

« for each window Q, and S;
- filtering condition: S is candidate answer only if all pg, fall within [LR,, UR/]

 Phase 1: Index-probing
- generate set of candidate subsequences CS
+ Phase 2: Post-processing
- verify subsequences in CS by computing actual distance on the raw data

Echihabi, Palpanas - MDM 2022
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Publications

Feng et al.
IEEE Access20

L-match

« solution for distributed (HDFS) subsequence similarity search

= L-match improves on KV-match
- instead of sliding a window to build the index, L-match slides a window on query
* index is more compact
operations are naturally parallelizable (no data-window overlaps among nodes)

LS TAN ' Q Lo
| nlo |
O il s 8L, "
be Lol 101161 T
18 1001
| AV | 24 501
3 | 26 51
| | | | | | | 3 101
| | | | | | | 6.1 151
S A%+ O, AL LA, L9 72101
| 1 | | 1 1 1
b1 101 151 H01 bHhl 1001 1101

Echihabi, Palpanas - MDM 2022
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Publications
Feng et al.
IEEE Access‘20

« solution for distributed (HDFS) subsequence similarity search

L-match

= L-match improves on KV-match
- instead of sliding a window to build the index, L-match slides a window on query
* index is more compact
- operations are naturally parallelizable (no data-window overlaps among nodes)

= compared to KV-match, L-match is slightly slower, but 10x smaller

Echihabi, Palpanas - MDM 2022
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Questions?
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Experimental Comparisonss
exact Query Answering




Experimental Framework

Publications

Echihabi-
PVLDB‘18

Hardware
= HDD and SSD
Datasets
= Synthetic (25GB to 1TB) and 4 real (100 GB)
Exact Query Workloads
100 — 10,000 queries
Performance measures
Time, #disk accesses, footprint, pruning, Tightness of Lower Bound (TLB), etc.
C/C++ methods (4 methods reimplemented from scratch)

Procedure:

= Step 1: Parametrization

= Step 2: Evaluation of individual methods
= Step 3: Comparison of best methods

Echihabi, Palpanas - MDM 2022
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Publications

Echihabi-
PVLDB‘18

Recommendations Dé

Scenario: Indexing and answering 10K exact queries on HDD

In-Memory Long Series Disk-Resident Long Series

VA+file .-~

vA-'-ﬁ IE [ decision depends on dataset size and length J

-=~ DSTree

decision depends on dataset size J
L]

ISAX2+ : DSTree DSTree

In-Memory Short Series Disk-Resident Short Series
DATASET SIZE ——

SERIES LENGTH—

Echihabi, Palpanas - MDM 2022
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Publications

Echihabi-
PVLDB‘18

Unexpected Results

- Some methods do not scale as expected (or not at all!)

- Brought back to the spotlight two older methods VA+file and
DSTree

= New reimplementations outperform by far the original ones

- Optimal parameters for some methods are different from the ones
reported in the original papers

- Tightness of Lower Bound (TLB) does not always predict
performance

Echihabi, Palpanas - MDM 2022
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Publications

Echihabi-
PVLDB‘18

Insights X

 Results are sensitive to:
= Parameter tuning
» Hardware setup
» Implementation
= 'Workload selection
» Results identify methods that would benefit from modern

hardware

Echihabi, Palpanas - MDM 2022
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Experimental Comparisonss
Approximete Query Answering



Publications

Experimental Framework
Datasets

» In-memory and disk-based datasets

= Synthetic data modeling financial time series

= Four real datasets from deep learning, computer vision, seismology, and
neuroscience (25GB-250GB)

Query Workloads

s 100 — 10,000 kNN queries k in [1,100]

= ng-approximate and 6-e-approximate queries (exact queries used as yardstick)
C/C++ methods (3 methods reimplemented from scratch)

Performance measures
Efficiency: time, throughput, #disk accesses, % of data accessed

Accuracy: average recall, mean average precision, mean relative error
Procedure:
= Step 1: Parametrization
= Step 2: Evaluation of indexing/query answering scalability in-memory
= Step 3: Evaluation of indexing/query answering scalability on-disk
= Step 4: Additional experiments with best-performing methods on disk

Echihabi, Palpanas - MDM 2022



EEEE——————— e

Approximate Methods Covered in Study

Matching Accuracy Representation Implementation
exact | ng-appr. | e-appr. | d-c-appr. | Raw Reduced Original New | Disk-resident Data
Graphs HNSW 99 v C++
NSG 58 v C++

Echihabi, Palpanas - MDM 2022
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Approximate Methods Covered in Study

Matching Accuracy Representation Implementation
exact | ng-appr. | e-appr. | d-e-appr. | Raw Reduced Original New | Disk-resident Data
Graphs HNSW 99 v CH++
NSG 58 v C++
Inv. Indexes IMI [16, 60] OoPQ C++ v
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Approximate Methods Covered in Study

Matching Accuracy Representation Implementation
exact | ng-appr. | e-appr. | d-e-appr. | Raw Reduced Original New | Disk-resident Data
Graphs HNSW 199] v C++
NSG [58] v C++
Inv. Indexes IMI [16, 60] orQ C++ v
I.SH QALSH [69] Signatures C++
SRS [136] Signatures C++
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Approximate Methods Covered in Study

Matching Accuracy Representation Implementation
exact | ng-appr. | e-appr. | d-c-appr. | Raw Reduced Original New | Disk-resident Data

Graphs HNSW 199] v C++
NSG [58] v C++

Inv. Indexes IMI [16, 60] OPQ C++ v
L.SH QALSH [69] Signatures C++
SRS [136] Signatures C++

Scans VA+file [55] . . . DET MATLAB C v

e Qur extensions
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Approximate Methods Covered in Study

Matching Accuracy Representation Implementation
exact | ng-appr. | e-appr. | d-c-appr. | Raw Reduced Original New | Disk-resident Data

Graphs HNSW 199] v C++
NSG [58] v C++

Inv. Indexes IMI [16, 60] OPQ C++ v
L.SH QALSH [69] Signatures C++
SRS [136] Signatures C++

Scans VA+file [55] . . . DET MATLAB C v
Flann 107 v C++

Trees DSTree [146] 146 . . EAPCA Java C v

HD-index 11 Hilbert keys C++ v

iISAX2+ | [30] 30 . . iSAX CH C 7

e Qur extensions

Echihabi, Palpanas - MDM 2022
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Unexpected Results
o New data series extensions are the overall winners even for

general high-d vectors

o perform the best for approximate queries with probabilistic
guarantees (&-e-approximate search)

S~ DSTree - HNSW <> IMI —— iSAX2+ —#8— SRS —— VA+file —<5— QALSH —*%— FLANN

Echihabi, Palpanas - MDM 2022
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Unexpected Results
o New data series extensions are the overall winners even for

general high-d vectors

o perform the best for approximate queries with probabilistic
guarantees (&-e-approximate search)

best
£100.00 ®
E 10.00
& 1.00
S
5 010 %X
0'015'* & 0%
Time o N NS
MAP

» Accuracy

Deep25GB(de)

S~ DSTree - HNSW <> IMI —— iSAX2+ —#8— SRS —— VA+file —<5— QALSH —*%— FLANN

Echihabi, Palpanas - MDM 2022
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Unexpected Results
o New data series extensions are the overall winners even for

general high-d vectors

o perform the best for approximate queries with probabilistic
guarantees (&-e-approximate search), in-memory

DSTree
1ISAX2+
_g100.00-a\E
E 10.00
& 100
> 1.
c 0.10 %X
0.01, | |
N Q o
S S
MAP
Deep25GB(de)

£~ DSTree —— HNSW ~>— IMI —— iSAX2+ —54— SRS —— VA+file —&— QALSH —#%— FLANN

Echihabi, Palpanas - MDM 2022



0ol

Unexpected Results
o New data series extensions are the overall winners even for

general high-d vectors

o perform the best for approximate queries with probabilistic
guarantees (&-e-approximate search), in-memory and on-disk

DSTree DSTree DSTree
E\E 1ISAX2+ 1ISAX2+ 1000 o = 1ISAX2+
£100.00 e S 100 b,
£ £ g 10.
= 10.00 - 5
5 g 1.0
=100 2 & 0.1 B
G 0.10 %X ©
0.01-. | | o5 &
N Q O 2
NN MAP
MAP
Deep25GB(d¢) Rand250G B (d¢) Deep250GB(¢)

£~ DSTree —— HNSW ~>— IMI —— iSAX2+ —54— SRS —— VA+file —&— QALSH —#%— FLANN

Echihabi, Palpanas - MDM 2022
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Unexpected Results
o New data series extensions are the overall winners even for

general high-d vectors

o perform the best for approximate queries with probabilistic
guarantees (&-e-approximate search), in-memory and on-disk

o perform the best for long vectors

£100- <

5 E

8 30 g
MA

(g) Rand25GB (h) Rand25GB
16384 (ng) 16384 (J¢)

A\~ DSTree 6 HNSW <> IMI —— iSAX2+ —54— SRS —— VA +file
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Unexpected Results

o New data series extensions are the overall winners even for
general high-d vectors

o perform the best for approximate queries with probabilistic
guarantees (&-e-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

DSTree
c 1ISAX 2+
£100 =
& 5 DSTree
3 30 o .
g 5 iSAX2+
g 10 VA+ﬁle

MA

(g) Rand25GB (h) Rand25GB
16384 (ng) 16384 (J¢)

A\~ DSTree 6 HNSW <> IMI —— iSAX2+ —54— SRS —— VA +file

Echihabi, Palpanas - MDM 2022
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Unexpected Results
o New data series extensions are the overall winners even for

general high-d vectors

o perform the best for approximate queries with probabilistic
guarantees (&-e-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk
o perform the best for disk-resident vectors

100.00 ©
= c DSTree
£ £ 10.0 :
b — 1 A)(2+
8 S A0 S
2 2
o g 01

MAP

(n)
Deep250GB(ng) Deep250GB(de)

—/\— DSTree @ HNSW <> IMI 5~ iSAX2+ —54— SRS —}— VA+file
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Unexpected Results
o New data series extensions are the overall winners even for

general high-d vectors

o perform the best for approximate queries with probabilistic
guarantees (&-e-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk
o perform the best for disk-resident vectors
o are fastest at indexing and have the lowest footprint

10* o

M i
/ 1ISAX2+
VA-+file

P S ff-’g
Dataset Size (GB)

—_—
o
M

Indexing Time (min
SA

£+ DSTree & HNSW > IMI -5 iSAX2+ —59— SRS —— VA+file —5— QALSH —%— FLANN
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Unexpected Results

o New data series extensions are the overall winners even for
general high-d vectors

o perform the best for approximate queries with probabilistic
guarantees (&-e-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk
o perform the best for disk-resident vectors
o are fastest at indexing and have the lowest footprint

E 10> & e & o 10° o—
£ 102 %% e, 810
— iSAX2+ 2
m =1 =

2 10" VAHfile x 100 &= o0 DSTree
® i 1SAX2+
© : , , , £ : I , ,
= P S ff-’g ® P S &

Dataset Size (GB) Dataset Size (GB)

£+ DSTree & HNSW > IMI -5 iSAX2+ —59— SRS —— VA+file —5— QALSH —%— FLANN
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Unexpected Results
o New data series extensions are the overall winners even for

general high-d vectors

o perform the best for approximate queries with probabilistic
guarantees (0-g-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk
o perform the best for disk-resident vectors
o are fastest at indexing and have the lowest footprint

= 10000 % Only exception is HNSW
s 1000 . winning on in-memory
o 100 i 7 data, with a prebuilt

= 10\ \ S index (no guarantees

for the answers)

\ '
S RSN
MAP

(s) Deep25GB(ng) (t) Deep25GB(de)

/s~ DSTree 5 HNSW <> IM| —3— iSAX2+ —54— SRS —— VA+file —— QALSH —#%— FLANN Echihabi, Palpanas - MDM 2022
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Insights Y

Exciting research direction for approximate similarity search in high-d
spaces:
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Insights Y

Exciting research direction for approximate similarity search in high-d
spaces:

Currently two main groups of solutions exist:
approximate search solutions

without guarantees
relatively efficient
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Insights Y

Exciting research direction for approximate similarity search in high-d
spaces:

Currently two main groups of solutions exist:
approximate search solutions  approximate search solutions

without guarantees with guarantees
relatively efficient relatively slow

Echihabi, Palpanas - MDM 2022



Insights Y

Exciting research direction for approximate similarity search in high-d
spaces:

Currently two main groups of solutions exist:
approximate search solutions  approximate search solutions
without guarantees with guarantees

relatively efficient relatively slow

We show that it is possible to have efficient approximate algorithms with
guarantees

Echihabi, Palpanas - MDM 2022
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Insights 'Q'

Approximate state-of-the-art techniques for high-d vectors are not
practical:

Echihabi, Palpanas - MDM 2022



Insights Y

Approximate state-of-the-art techniques for high-d vectors are not
practical:

LSH-based techniques
slow, high-footprint, low accuracy (recall/ MAP)
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Insights Y

Approximate state-of-the-art techniques for high-d vectors are not
practical:

LSH-based techniques
slow, high-footprint, low accuracy (recall/ MAP)

KNNG-based techniques
slow indexing, difficult to tune, in-memory, no guarantees
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Insights Y

Approximate state-of-the-art techniques for high-d vectors are not
practical:

LSH-based techniques
slow, high-footprint, low accuracy (recall/ MAP)

KNNG-based techniques
slow indexing, difficult to tune, in-memory, no guarantees

Quantization-based techniques
slow indexing, difficult to tune, no guarantees
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Approximate state-of-the-art techniques for high-d vectors are not
practical:

LSH-based techniques
slow, high-footprint, low accuracy (recall/ MAP)

KNNG-based techniques
slow indexing, difficult to tune, in-memory, no guarantees

Quantization-based techniques
slow indexing, difficult to tune, no guarantees

All suffer a serious limitation:
accuracy determined during index-building & query answering

Echihabi, Palpanas - MDM 2022
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Recommendations for approx. techniques Dﬁ

& — Data series approaches
[

are the overall winners!

The only exception is HNSW for in-memory
ng-approximate queries using an existing index

Echihabi, Palpanas - MDM 2022
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Recommendations

Scenario: Answering a query workload using an existing index

In-Memory with guarantees On-disk with guarantees

DSTree DSTree

ﬁ-

DSTree

= —-[ decision depends on desired accuracy J_ -

ISAX2+

In-Memory without guarantees On-disk without guarantees
DATASET SIZE ——»

GUARANTEES

Echihabi, Palpanas - MDM 2022



. | G4

Questions?
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Al and Similarity Searcl
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Al and Similarity Search

- Representation Learning
» Learned summarizations for data series
« Search and Indexing
» Learned indexes
» Similarity search on deep network embeddings

Echihabi, Palpanas - MDM 2022
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Al and Similarity Search
Representation Learning for Sequences
. GRAIL

» ]earns representations that preserve a user-defined comparison function

= for a given comparison function:
« extracts landmark series

ITIME-SERIES DATABASE ] l COMPARISON FUNCTION l

. . —
using clustering "y VNS o5
ooo|—, (.
+ optimizes parameters $ W
- exploits approximations
) ¥
for kernel methods to - :
) = 1. Dictionary Learning 2. Parameter Estimation
construct representations | ¢ P
by expressing each series | 5 - 4,-{:*TT
. . (7] Ooo [ )
as a combination of the T
landmark series 1 v g
- 3. Matrix Approximation 4. Representation Learning
2 ceeee —
[T | JOX N X
c eeCee0 - e
< ' X ¥ JoX )
00000 o-i-0
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Al and Similarity Search
Representation Learning for Sequences

- GRAIL

> uses the learned representations for querying, classification, clustering, ...

QUERYING: GRAIL Lower Bound vs. Lower Bounds for DFT & DTW

5 2 3
GRAIL-LB ——— L DFT-LB
Keogh-LB

CLASSIFICATION: GRAIL with SVM vs. other Learned Representations

i 4 5

2 3
GRAIL-SVM T‘ \— SIDL-SVM

RWS-SVM SPIRAL-SVM
EncoderA

CLUSTERING: GRAIL with Spectral Clustering vs. other Learned Representations

1 2 3 4 5
GRAIL-SC J |— SIDL-KM
SPIRAL-KM RWS-KM
k-AVG+ED

. . Echihabi, Pal - MDM 2022
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Al and Similarity Search
Representation Learning for Sequences

- Series Approximation Network (SEAnet)
= novel autoencoder architecture
= learns deep embedding approximations
= uses those for similarity search
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Al and Similarity Search
Representation Learning for Sequences

- Series Approximation Network (SEAnet)
= novel autoencoder architecture
= learns deep embedding approximations
= uses those for similarity search

r—-————— |
| |
| S Ss : Yosi=10 S3 =11
| |— — iSAX
] S, index
Piecewis Sj}mboliz@o S = 00
aggregatr | L
Series L PAA | SAXpaa
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Al and Similarity Search
Representation Learning for Sequences

- Series Approximation Network (SEAnet)
= novel autoencoder architecture

= learns deep embedding approximations
= uses those for similarity search

r—-—— -
| | e =11
| | 1 e, = 10
| | 10
I [81, €2, 83] -|_> o1
Enco(}e SyqlbOhZG 00
|

Series DEA | SAXpEa

Publications

Wang - KDD’21

1ISAX
index
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Al and Similarity Search
Representation Learning for Sequences

- Series Approximation Network (SEAnet)
= is an exponentially dilated ResNet architecture + Sum of Squares regularization
s minimizes
* reconstruction error

- difference between distance of two vectors in embedded space and distance in original
space

Echihabi, Palpanas - MDM 2022
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Al and Similarity Search
Representation Learning for Sequences

- Series Approximation Network (SEAnet)
= is an exponentially dilated ResNet architecture + Sum of Squares regularization
s minimizes
reconstruction error

difference between distance of two vectors in embedded space and distance in original
space

better better
PAA 1111 SEAnet —e— SEAnet SEAnet-nD —4— FDJNet —#— TimeNet —— Incept
0.90-
0.80- &
0.70-
< 10 15 100500 1k 5k 10k 100500 1k 5k 10k 100500 1k 5k 10k
(e) Deep1B (f) Seismic (g) Astro (e) Deep1B (f) Seismic (g) Astro
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Al and Similarity Search
Search and Indexing

 Search and Indexing

= Problem:
 Sequence similarity search is hard
+ Massive datasets and high dimensionality in 100s-1000s
+ Sophisticated indexing structures and search algorithms

= Solutions:
+ Learned Indexes
- Improve search efficiency using deep learning
* Indexing for learned embeddings

Echihabi, Palpanas - MDM 2022
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Al and Similarity Search
Search and Indexing

» Learned Indexes: SIGSPATIAL’20

= Main idea: replace an index with a learned model
» One-dimensional learned indexes
= Seminal work: The Case for Learned Indexes
« Multi-dimensional indexes
= Exhaustive tutorial on this topic at SIGSPATIAL’20:
https://www.cs.purdue.edu/homes/aref/learned-indexes-tutorial.html
- Some initial attempts for similarity search

= Main challenges for multi-dimensional indexes:
- How to sort the data?
- How to correct prediction errors?
* Which ML model to choose?
« How to store the data?
- How to learn indexes specifically for (the high-d) sequences?

Echihabi, Palpanas - MDM 2022
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Al and Similarity Search
Search and Indexing
 Indexing Deep Network Embeddings (DNE)

Input Layer Hidden Layer Output Layer
4-dimensional embedding

sequences
text
images
video
graphs

deep embeddings
high-d vectors learned using a DNN

Sparse Vector Encodings of N items

6660608
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Al and Similarity Search
Search and Indexing
 Indexing Deep Network Embeddings (DNE)

Input Layer Hi dd n La y Output Layer
4-dimensional embedding

sequences 8
text : — €
images : —¢) deep embeddings
video —(> high-d vectors learned using a DNN
graphs g ‘8
O

= Data series techniques provide effective/scalable similarity search over
DNE

= They outperform hashing-based, quantization-based inverted indexes
and kNN graphs on many scenarios

Echihabi, Palpanas - MDM 2022
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Challenges and Open Problems

- we are still far from having solved the problem

- several challenges remain in terms of
» usability, ease of use
= scalability, distribution
> benchmarking

- these challenges derive from modern data series applications

Echihabi, Palpanas - MDM 2022
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NASA’s Solar Observatory

1.5 TB per day

Large Synoptic Survey
Telescope (2019)
~30 TB per night Human Genome project
130 TB
passenger aircrafts data center and
TB per hour services monitoring

—r LY i
a : (BOEING

-apw-

2B data series
4M points/sec
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Challenges and Open Problems
Outline

sequence management system
benchmarking

interactive analytics

general high-dimensional vectors
- deep learning

Echihabi, Palpanas - MDM 2022
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Publications

Zoumbatianos
ICDE’18

Management System i

Palpanas-

SIGREC’15

“enable practitioners and non-expert users to easily and
efficiently manage and analyze massive data series collections”
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Publications

Zoumbatianos
ICDE’18

Management System s

Palpanas-
SIGREC’15

- Big Sequence Management System
= general purpose data series management system

&b

N
Data Model
marizations

Data Structures

Access Methods

Varying Length
Queries

Holistic Optimization | (&%

Distributed Processing /

data sequences
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Publications

Zoumbatianos
ICDE’18

Management System s

Palpanas-
SIGREC’15

- Big Sequence Management System

Data Model

Summarizations Query Language

Data Structures

Access Methods

Varying Length Uncertain
Queries Sequences

Distributed Processing

T Spark / Flink / (HDFS) W

Holistic Optimization
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Publications

Zoumbatianos

ICDE’18
Management System
HPCS’17
Palpanas-
. SIGREC’15
« Big Sequence Management System Echihabi-
PVLDB’18
D el
Scenarios
Dataset | Idx Idx+ | Idx+
= Exact | Exact | Exact Exact Exact
.S 100 100 10K Easy-20 | Hard-20
'lc-c' Small A D S D D [ D |
3 Large S ——
'S A [ Astro U U vV v ] U
A= T | DeeplB U U U D 1] U
= SALD D JC D D]
8“ Seismic | A U
Small -
= Large [ S J[ D} LT 1 D |
7 a Astro C V1
o= . 2 [DecplB ——
S | Distr SALD —— I S | ——
m | Seismic [ V ]
Spark / A: D ee, |I:] 1
p S:[SFA] U:[UCR-Suite] V:[VAZEfle ]
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BestNeighbor:
Choosing Indexing Method for Given Dataset

- method to choose between DPiSAX and ParSketch
« based on data power spectrum
« 1ISAX less efficient than ParSketch for high-frequency data
. BestNeighbor uses dataset characteristics (Fourier
coefficients), and chooses
« ParSketch: if there is substantial power at least up to the
30th coefficient
« DPiSAX: otherwise (mmost of energy in low order Fourier
coefficients) http://imitates.gforge.inria.fr/

Serles
Random Walk 100 M (100 GB) ~

- how do these results extend to
. other data characteristics?
» more indexing methods?
. take hardware specifications into consideration? il | e

ppppppppp

Bk
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Challenges and Open Problems
Outline

* sequence management system

« benchmarking

- interactive analytics

- general high-dimensional vectors
 deep learning
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Previous Studies

evaluate performance of indexing methods using random queries

* chosen from the data (with/without noise)

WVAV.-
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Previous Studies

With or without noise
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Publications

Zoumbatianos
KDD ‘15

Previous Workloads

TKDE ‘18

Most previous workloads are skewed to easy queries

— 64 — 256 — 1024
_gloo- _gloo- _gloo-
= 754 o 751 o /5]
DNA 3 50 3. 50- > 50
5 251 ‘5 251 ‘5 251
s ol . s olfifla.... 2 ol
0.0 0.1 0.2 0.3 04 0.5 0.0 0.1 0.2 0.3 04 0.5 0.0 0.1 0.2 0.3 04 0.5
= Hardness = Hardness = Hardness
100 1 100+ 1004
= 751 = 751 = 754
EEG Q ) O
= 501 = 501 = 50-
‘5 251 5 251 5 251
s A S ol —r s 4
0.0 0.1 0.2 0.3 04 0.5 0.0 0.1 0.2 0.3 04 0.5 0.0 0.1 0.2 0.3 0.4 0.5
0 . Hardness 0 __ Hardness 0 —, Hardness
g o 75 o 751 S 751
5 = 501 = 501 = 50+
&% D 251 D 251 D 251
O\O 0- i O\O 0- — O\O 0-I -I- _I | | |
000102030405 000102030405 0.0 0.1 02030405
Hardness Hardness Hardness
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Publications

Benchmark Workloads

If all queries are easy If all queries are hard
all indexes look good all indexes look bad

Echihabi, Palpanas - MDM 2022



Publications

Zoumbatianos
KDD ‘15

summary R

Pros:

| Theoretical background
Methodology for characterizing

"? NN queries for data series indexes

<% Nearest neighbor query workload generator

1.6 : .
"1., ~7 Designed to stress-test data series indexes
2 ad at varying levels of difficulty
Cons:

Time complexity
Need new approach to scale to very large datasets

Echihabi, Palpanas - MDM 2022
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Challenges and Open Problems
Outline

sequence management system
benchmarking

interactive analytics
parallelization and distribution
general high-dimensional vectors
deep learning
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Interactive Analytics?

- data series analytics is computationally expensive
= very high inherent complexity

- may not always be possible to remove delays
> but could try to hide them!
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N eed fo r Publications
Interactive Analytics

- interaction with users offers new opportunities

5 progressive answers
 produce intermediate results
- iteratively converge to final, correct solution

Average Times of 100 queries (in sec)

1-NN Total
i Time
seismig [
(100M, 256 b
SALD
(200M, 128
deep1B
(267M, 96 p.)
0 20 40 60 80
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N eed fo r Publications
Interactive Analytics

- interaction with users offers new opportunities

5 progressive answers
 produce intermediate results
- iteratively converge to final, correct solution

Average Times of 100 queries (in sec)

Total 254
Time

= average trend
204

seismig [
(100M, 256 b

1NN Distance Error (%)
=

0.1 1 10 100
Time (sec) in log-scale

L
(267M, 96 p.) 0.001 0.01

0 20 40 60 80
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Interactive Analytics

- interaction with users offers new opportunities
5 progressive answers
 produce intermediate results
- iteratively converge to final, correct solution
- provide bounds on the errors (of the intermediate results) along the way

Query & Initial Estimate

L

distance

[

0 5 10 15
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Need for

Interactive Analytics

- interaction with users offers new opportunities

5 progressive answers
 produce intermediate results
- iteratively converge to final, correct solution
- provide bounds on the errors (of the intermediate results) along the way

Query & Initial Estimate Progressive Results

26 msec (1 leaf)
L

\
distance

P M\‘”J \l\"‘\

1NN probability = 1%
To be found within 7.8 sec (9

40

distance

<P

errar (%)

l

10 15
10 15

5

5
o 10 20 30
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Need for

Interactive Analytics

- interaction with users offers new opportunities
5 progressive answers
 produce intermediate results
- iteratively converge to final, correct solution
- provide bounds on the errors (of the intermediate results) along the way

Query & Initial Estimate Progressive Results
26 msec (1 leaf) 1.1 sec (1024 leaves)
M, ﬂl A (V{Ull"rl'
mw W,\W\WM| MUM " M M\f“) \l\f\l I"lw'“"\\ﬁ JM%MM% I‘NIT{&
1NN probability = 1% 1NN probability = 52%
To be found within 7.8 sec (95% conf.)

distance

I

40

distance

<P

errar (%)

l

distance
o

w
—
[=]
-

10 15
10 15

error (%)

L

5

5
0 10 20 30 40

o 10 20 30

(=]
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Need for

Interactive Analytics

- interaction with users offers new opportunities

5 progressive answers
+ produce intermediate results
- iteratively converge to final, correct solution
+ provide bounds on the errors (of the intermediate results) along the way

Query & Initial Estimate Progressive Results
26 msec (1 leaf) 1.1 sec (1024 leaves) 3.8 sec (4096 leaves)
F I L
W‘WMWM MW W\J/N”\JWV\ .*.mww'tﬂﬁww W‘*ru Mgy V_ﬂ,ﬂme%.f“ 'W“\»M

1NN probability = 1% 1NN probability = 52% 1NN probability = 94%
To be found within 7.8 sec (95% conf.)
distance ¥ error (%)

Nl

distance

I

distance
o

distance
—_——

w uy
- -
[=] (=]
- -

10 15
10 15

error (%) "

Vi N

5
5

error (%)

i -

o 10 20 30
0 10 20 30 40
0 10 20 30 40

(=]
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Need for

Interactive Analytics

- interaction with users offers new opportunities

5 progressive answers
+ produce intermediate results
- iteratively converge to final, correct solution
+ provide bounds on the errors (of the intermediate results) along the way

Query & Initial Estimate Progressive Results
26 msec (1 leaf) 1.1 sec (1024 leaves) 3.8 sec (4096 leaves) 15.7 sec (16384 leaves)
I
i Wi
I o M i Pl W
\J \ I (A% M' W
mww M WM M‘u \wfﬂw \ IMW”‘MQ' |'u N ﬁ“ﬁ'\. MW“LN’MI‘FVMI M"‘r"'ﬂf '\'WHL'\ " wam W
1NN probability = 1% 1NN probability = 52% 1NN probability = 94% 1NN probability = 98%
_ To be found within 7.8 sec (95% conf.)
distance . o =) =3 =
ke o distance 7] error (%) £+ distance ¥ 25 distance 4 distance ¥
= ¢ - — 3 — 3
i ; 3 " & i 8 " 8
;] W o u o error (%) wn o -] o
= o I oo error (%) 21 error (%)
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Need for

Interactive Analytics

- interaction with users offers new opportunities

5 progressive answers
+ produce intermediate results
- iteratively converge to final, correct solution
+ provide bounds on the errors (of the intermediate results) along the way

Query & Initial Estimate Progressive Results Final Result (1-NN)
26 msec (1 leaf) 1.1 sec (1024 leaves) 3.8 sec (4096 leaves) 15.7 sec (16384 leaves) 75.2 sec (110203 leaves)
I
i Wi
I o M i el I Wi i
\J \ I (A% N' W A [
mWW M P l "“MFM I [ — W g e ! L
1NN probability = 1% 1NN probability = 52% 1NN probability = 94% 1NN probability = 98% 1NN probability = 100%
_ To be found within 7.8 sec (95% conf.)
distance . =) =) =3 = =]
2 o distance 7] error (%) - distance <9 distance ~ 21 distance ¥ 2 distance ¥
=+ =, =, =, ==
i ; R " & i & " & i &
;] W o u o error (%) wn o error (%) -] o uwy =
- T - | error (%) T
I _—L -~ error (%)
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Need for
Interactive Analytics

- interaction with users offers new opportunities

5 progressive answers
 produce intermediate results
- iteratively converge to final, correct solution
- provide bounds on the errors (of the intermediate results) along the way

- several exciting research problems in intersection of visualization
and data management
= frontend: HCI/visualizations for querying/results display
o backend: efficiently supporting these operations

Echihabi, Palpanas - MDM 2022
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Challenges and Open Problems
Outline

* sequence management system

- benchmarking

- interactive analytics

- general high-dimensional vectors
 deep learning
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Publications

Data Series vs. high-d Vectors

» two sides of the same(?) coin
= data series as multidimensional points
= for a specific ordering of the dimensions

- data series techniques are the overall winners, even on
general high-d vector data

- several new applications (and challenges) for data series
similarity search techniques!

» design efficient techniques for ng-approximate search
» devise efficient stopping conditions for 6e-approximate search

Echihabi, Palpanas - MDM 2022
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Connections to Deep Learning

data series indexing for deep embeddings
» deep embeddings are high-d vectors
> data series techniques provide effective/scalable similarity search

deep learning for summarizing data series
= eg, autoencoders can learn efficient data series summaries

deep learning for designing index data structures
» learn an index for similarity search

deep learning for query optimization
= search space is vast
» learn optimization function

Echihabi, Palpanas - MDM 2022
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Overall Conclusions

data series is a very common data type

o across several different domains and applications

complex data series analytics are challenging

» have very high complexity

o efficiency comes from data series management/indexing techniques
need for Sequence Management System

» optimize operations based on data/hardware characteristics

o transparent to user

several exciting research opportunities

Echihabi, Palpanas - MDM 2022
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thank vyou!

google: Karima Echihabi
Themis Palpanas

visit: http://nestordb.com
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