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Questions This Tutorial Answers

• how important are data series nowadays?

• what does data series analysis involve?

• how can we speed up such an analysis?

• what are the different kinds of similarity search?

• what are the state-of-the-art data series indices for similarity search?

• can such indices help with geolocated data series analysis?

• how can these indices parallelize/distribute their operations?

• can these indexes be used for general high-d vector similarity search?

• what are the open research problems in this area?

• what are the connections to deep learning?
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Data series
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• Sequence of points ordered along some dimension
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Scientific Monitoring

• meteorology, oceanography, astronomy, 

finance, sociology, …
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Historical stock quotes
http://money.cnn.com/2012/04/23/markets/walmart_stock/index.htm

Wind speed
From ocean observing node project
http://bml.ucdavis.edu/boon/wind.html

Time



Neuroscience

• functional Magnetic Resonance Imaging (fMRI) data

▫ primary experimental tool of neuroscientists

▫ reveal how different parts of brain respond to stimuli
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Schinnerer et al.
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Medicine

FrequencyMass
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Analysis Tasks

• analyze evolution of values across x-dimension

• identify trends

• treat data series as a first class citizen

▫ analyze each data series as a single object

▫ process all n-dimensions  at once
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Analysis Tasks

Subsequences

• often times the data series are very long

▫ n >> 1

▫ streaming data series

• we then chop the long sequence in subsequences

▫ e.g., using sliding window, or shifting window

▫ pick carefully length of subsequence 
 should contain patterns of interest

• and process each subsequence separately
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Analysis Tasks:

Simple Query Answering
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Simlarity
Search

select some 
data series

select values 
in time 
interval

select values 
in some 

range

combinations 
of those

Echihabi, Palpanas - MDM 2022



13

Similarity 
Search

Classification

Clustering
Outlier 

Detection

Frequent 
Pattern 
Mining
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Similarity 
Search

Classification

Clustering
Outlier 

Detection

Frequent 
Pattern 
Mining

HARD, because of very high dimensionality:
each data series has 100s-1000s of points!

even HARDER, because of very large size:
millions to billions of data series (multi-TBs)!
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Analysis Tasks:
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Publications

Keogh -
KDD‘04

for a complete 
and detailed 
presentation, 
see tutorial:



Comparison of Representations
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• which representation is the best?

• depends on data characteristics
▫ periodic, smooth, spiky, …

• overall (averaged over many diverse datasets, using same 
memory budget), when measuring reconstruction error (RMSE)
▫ no big differences among methods

▫ DFT, PAA, DWT (Haar), iSAX slightly better

• should also take into account other factors
▫ visualization, indexable, ...

Publications

Palpanas et al.
ICDE’04

Palpanas et al.
TKDE’08

Shieh et al.
KDD’08
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Problem Variations

Series
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Univariate

each point represents one   
value (e.g., temperature)

Multivariate

each point represents many   
values (e.g., temperature, 

humidity, pressure, wind, etc.)
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Problem Variations
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• similarity search is based on measuring distance between 
sequences

• dozens of distance measures have been proposed
▫ lock-step 

 Minkowski, Manhattan, Euclidean, Maximum, DISSIM, …

▫ sliding
 Normalized Cross-Correlation, SBD, …

▫ elastic
 DTW, LCSS, MSM, EDR, ERP, Swale, …

▫ kernel-based
 KDTW, GAK, SINK, …

▫ embedding 
 GRAIL, RWS, SPIRAL, …

Echihabi, Palpanas - MDM 2022

Distance Measures

Publications

Ding-
PVLDB‘08

Paparrizos-
SIGMOD’20



Problem Variations

22

• similarity search is based on measuring distance between 
sequences

• dozens of distance measures have been proposed
▫ lock-step 

 Minkowski, Manhattan, Euclidean, Maximum, DISSIM, …

▫ sliding
 Normalized Cross-Correlation, SBD, …

▫ elastic
 DTW, LCSS, MSM, EDR, ERP, Swale, …

▫ kernel-based
 KDTW, GAK, SINK, …

▫ embedding 
 GRAIL, RWS, SPIRAL, …

Echihabi, Palpanas - MDM 2022

Distance Measures

Publications

Ding-
PVLDB‘08

Paparrizos-
SIGMOD’20



Distance Measures:

LCSS against Euclidean, DTW

• Euclidean
▫ rigid

• Dynamic Time Warping (DTW)
▫ allows local scaling

• Longest Common SubSequence (LCSS)
▫ allows local scaling

▫ ignores outliers
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Problem Variations

Queries

Echihabi, Palpanas - MDM 2022

24

Whole matching

Entire query

Entire candidate

Subsequence matching

Entire query

A subsequence of a candidate



Problem Variations

Queries
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Subsequence matching

Entire query

A subsequence of a candidate

Whole matching

Entire query

Entire candidate



Problem Variations
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Queries

Nearest Neighbor (1NN)

k-Nearest Neighbor (kNN)

Farthest Neighbor

epsilon-Range

and more…



Similarity Matching

• given a data series collection D and a query data series q,  
return the data series from D that are the most similar to q

▫ there exist different flavors of this basic operation

• basis for most data series analysis tasks
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Similarity Matching

Nearest Neighbor (NN) Search

• given a data series collection D and a query data series q,  
return the data series from D that has the smallest distance to q

• result set contains one data series

28
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Similarity Matching

k-Nearest Neighbors (kNN) Search

• given a data series collection D and a query data series q,  
return the k data series from D that have the k smallest 
distances to q

• result set contains k data series
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Problem Variations
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Queries

Nearest Neighbor (1NN)

k-Nearest Neighbor (kNN)

Farthest Neighbor

epsilon-Range

And more…
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Nearest Neighbor (NN) Queries… Publications

Echihabi et al.
PVLDB‘19
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OQ

Nearest Neighbor (NN) Queries…
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Publications

Echihabi et al.
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OQ

Ox

exact 
NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1

result is exact NN

Publications

Echihabi et al.
PVLDB‘19
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OQ

Ox
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NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1

result is exact NN

Publications

Echihabi et al.
PVLDB‘19
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OQ

Ong

Ox

exact 
NN

dng

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1

result is exact NN

Publications
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OQ

Ong

Ox
Oε

exact 
NN

dε

dng

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries…
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Prob( dx = min{di} ) = 1

result is exact NN

Publications

Echihabi et al.
PVLDB‘19
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Oδε

Ong

Ox

OQ

δ-ε-approximate
neighbor

Oε

exact 
NN

dε

dδε

dng

Prob(dε <= dx (1+ε)) >= δ

result within (1+ ε) of exact NN 

with probability at least δ

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

Nearest Neighbor (NN) Queries…

Echihabi, Palpanas - MDM 2022

Prob( dx = min{di} ) = 1

result is exact NN
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dε

Ox

Oδε

OQ

δ-ε-approximate
neighbor

dδεOng

Oε

Prob(dε <= dx (1+ε)) >= δ

result within (1+ ε) of exact NN 

with probability at least δ

Prob(dε <= dx (1+ε)) = 1

result within (1+ ε) of exact NN 

with probability 1

Prob(dng <>= ?) = ?

result within ? of exact NN

dng

exact 
NN

Nearest Neighbor (NN) Queries…
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Query answering process

data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

Data Series 
Database/
Indexing

DataRaw data

Queries

39

these times are big!
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Query answering process

data-to-query time query answering time

Query Answering ProcedureData Loading Procedure

Answers

we need solutions 
for both problems!

Data Series 
Database/
Indexing

DataRaw data

Queries
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GEMINI Framework
• Raw data: original full-dimensional space 

• Summarization: reduced dimensionality space

• Searching in original space costly

• Searching in reduced space faster:

– Less data, indexing techniques available, lower bounding

• Lower bounding enables us to

– prune search space: throw away data series based on 
reduced dimensionality representation

– guarantee correctness of answer

• no false negatives

• false positives filtered out based on raw data

Echihabi, Palpanas - MDM 2022 41
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Generic Search using Lower Bounding

query

simplified

query

Simplified DB Original DBAnswer

Superset

Verify 

against 

original 

DB

Final 

Answer 

set

No false 
negatives!!

Remove false 
positives!!
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GEMINI: contractiveness

• GEMINI works when:

Dfeature ( F(x), F(y) ) <= Dreal (x, y)

• Note that, the closer the feature distance to the actual
one, the better
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Q

Cx

Q

Cx

Memory

Disk

Cx

Q

The summary of Q is compared to the 

summary of each candidate

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Q is compared to a raw candidate only if 

its summary cannot be pruned 
Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Answering a similarity search query using different access paths

(a) Serial scan
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Similarity Matching

Serial Scan
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Similarity Matching

Serial Scan
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Similarity Matching

Serial Scan
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Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths
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Similarity Matching
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Echihabi, Palpanas - MDM 2022



Q

Cx

Q

Cx

Memory

Disk

Cx

Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

54

Similarity Matching

Serial Scan
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Q is compared to a raw candidate only if 
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Q is compared to each raw candidate in the 
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Indexes vs. Scans
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Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned
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dataset before returning the answer Cx
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Memory
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Q

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Indexes vs. Scans

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

bsf     = +ꝏ

lbcur = +ꝏ

lower-bounding (lb) property:   
dlb(Q’, Ci’)  <= d(Q, Ci)
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The summary of Q (Q’) is compared to 

the summary of each candidate

Q is compared to a raw candidate only if 

its corresponding leaf cannot be pruned

Q is compared to each raw candidate in the 

dataset before returning the answer Cx

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan

Indexes vs. Scans
bsf     = +ꝏ

lbcur = dlb(Q’,C1’)
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the summary of each candidate
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Indexes vs. Scans

The summary of Q (Q’) is compared to 
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its corresponding leaf cannot be pruned
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Indexes vs. Scans

The summary of Q (Q’) is compared to 

the summary of each candidate
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lbcur = dlb(Q’,C2’) >= bsf
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lbcur = dlb(Q’,C2’) >= bsf d(Q,C2) >= 

prune C2
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LB Property   
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Q

Q is compared to a raw candidate only if 

its summary cannot be pruned 

Q is compared to each raw candidate in the 

dataset before returning the answer Cx
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Disk
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4

1

Answering a similarity search query using different access paths

(a) Serial scan (b) Skip-sequential scan (c) Tree-based index

3

1 2

Access Paths

OQ O
Q

OQ

The summary of OQ (OQ’) is compared to 
the summary of each candidate

Ox OxOx

OQ is compared to each raw candidate in 
the dataset before returning the answer Ox

OQ is compared to a raw candidate only if 
its summary cannot be pruned 
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Memory

Disk

Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)

lbcur =  dlb(OQ’, Ox’) < bsf
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Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)

lbcur =  dlb(OQ’, Ox’) < bsf

lbcur =  dlb(OQ’, Ox’) < bsf / (1+ε)
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Extensions: Skip-Sequential Scans

P{dε  <= dx (1+ε)} >= δ

Result is within    
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The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)

lbcur =  dlb(OQ’, Ox’) < bsf

lbcur =  dlb(OQ’, Ox’) < bsf / (1+ε)
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Then  bsf <= d(OQ, Ox) (1+ε) 
i.e.,     bsf <= dx (1+ε) 
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Extensions: Skip-Sequential Scans

OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)
If bsf <=(1+ε) rδ(OQ)
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P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer

with probability at 

least δ
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OQ

Ox

The summary of OQ (OQ’) is compared to 
the summary of each candidate

bsf = d(OQ,O1)
If bsf <=(1+ε) rδ(OQ)
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If bsf <= (1+ε) rδ(OQ)
Given that P{dx > rδ(OQ)} >= δ, i.e, P{dx <= rδ(OQ)} < 1-δ
And bsf / (1+ε) <= rδ(OQ) Then P{dx <= bsf / (1+ε)} < 1-δ *
So P{dx > bsf / (1+ε)} >= δ., i.e., P{bsf <  (1+ε) dx)} >= δ

* We assume the monotonicity of the distribution of nearest neighbors of OQ

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer

with probability at 

least δ
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bsf = d(OQ,O3)

lbcur =  dlb(OQ’,      ) < bsf
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1 2

Extensions: Tree Indexes

P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer with 

probability at least δ
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Extensions: Tree Indexes
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the exact answer with 
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Extensions: Tree Indexes
(1+ε) rδ(OQ)
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P{dε  <= dx (1+ε)} >= δ

Result is within    

distance (1+ ε) of 

the exact answer

with probability at 

least δ



δ-ε-Approximate* ng-Approximate

Probabilistic ε-Approximate

Exact

Similarity Search 
Methods

δ,ε guarantees No guarantees

δ < 1, ε guarantee δ = 1, ε guarantee

δ = 1, ε = 0 guarantee

* result is within distance
(1+ ε) of the exact answer 
with probability δ

extensions

Methods
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ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

VA+file[ ]

ADS+[ ]  

DSTree[ ]

iSAX2+ [ ]  

Mtree

QALSH

SRS

VA+file[ ]

0 ⩽ δ ⩽ 1, ε ⩾ 0

ADS+         RTree

DSTree SFA

iSAX2+      Stepwise

Mtree UCR-Suite

MASS VA+file

ADS+           IMI

CK-Means iSAX2+[ ]

DSTree [ ]     NSG

Flann SFA 

HD-index VA+file[ ]

HNSW

Techniques for data Series
Techniques for High-D vectors Echihabi-

PVLDB‘19

Publications

Echihabi-
PVLDB‘18
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DSTree

Summarization
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Intertwined with indexing

The APCA and EAPCA representations

Publications

Wang-
PVLDB‘13



DSTree

Indexing
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Each node contains
❑ # vectors
❑ segmentation SG
❑ synopsis Z

Each Leaf node also :
❑ stores its raw 
vectors in a separate
disk file

Publications

Wang-
PVLDB‘13



Symbolic Fourier Approximation (SFA)

Summarization
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The SFA representation*
*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx

Publications

Schafer-
EDBT‘12
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Indexing

Echihabi, Palpanas - MDM 2022

109

The SFA Trie*
*https://www2.informatik.hu-berlin.de/~schaefpa/talks/scalable_classification.pptx

Publications

Schafer-
EDBT‘12



iSAX Family

iSAX Summarization
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• based on iSAX representation, which offers a bit-aware, quantized, 
multi-resolution representation with variable granularity

= {110 ,110 ,0111 ,000}

= {11  ,11  ,011 ,00 }

= {1 ,1 ,0 ,0  }

Publications

Shieh-
KDD‘08
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ROOT
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1  1  1  11  1  1  10 1
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0
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FBL

LBL

R

L1 I1

L4

main memory

disk

I2

L6L5

a

a

x

y

b
c

z

I3

L8L7

b
c

iSAX2+-Indexing
Publications

Camerra-
KAIS‘14



ADS+

• novel paradigm for building a data series index

▫ does not build entire index and then answer queries

▫ starts answering queries by building the part of the index needed 
by those queries

• still guarantees correct answers

• intuition for proposed solution

▫ builds index using only iSAX summaries; uses large leaf size

▫ postpones leaf materialization to query time

▫ only materialize (at query time) leaves needed by queries

▫ parts that are queried more are refined more

▫ use smaller leaf sizes (reduced leaf materialization and query 
answering costs)
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Raw data

PARTIAL
PARTIAL

ROOT

I1

L5L2

L1

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

TOO BIG!
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Raw data

PARTIAL

PARTIAL

ROOT

I1

L5

I3

L2

I2

LBL

FBL

PARTIAL

DISK

RAML4

PARTIAL

Query #1

PARTIAL

L5L4

Adaptive split

Create a smaller leaf
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Raw data
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ROOT
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DISK
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FULL

L5L4
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Coconut

• current solution for limited memory devices and streaming 
time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

117

Publications

Kondylakis-
PVLDB‘18

Kondylakis-
SIGMOD’19
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• current solution for limited memory devices and streaming 
time series

▫ bottom-up, succinct index construction based on sortable 
summarizations
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Coconut

• current solution for limited memory devices and streaming 
time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time
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Coconut

• current solution for limited memory devices and streaming 
time series

▫ bottom-up, succinct index construction based on sortable 
summarizations

▫ outperforms state-of-the-art in terms of index space, index 
construction time, and query answering time

▫ compatible with traditional single-dimensional balanced indexes

 B+-tree, LSM-tree, …
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Coconut-LSM
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Coconut-LSM
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ULISSE

• ULISSE: current solution for variable-length queries

▫ single-index support for 

 queries of variable lengths

 Z-normalized + non Z-normalized data

 Euclidean + DTW distance measures
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ULISSE

• ULISSE: current solution for variable-length queries

▫ single-index support for 

 queries of variable lengths

 Z-normalized + non Z-normalized data

 Euclidean + DTW distance measures
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ULISSE

• ULISSE: current solution for variable-length queries

▫ single-index support for 

 queries of variable lengths

 Z-normalized + non Z-normalized data

 Euclidean + DTW distance measures

▫ orders of magnitude faster than competing approaches
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Geolocated Data Series

• search both on spatial proximity and data series similarity
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Geolocated Data Series

• search both on spatial proximity and data series similarity

• BTSR-Tree: hybrid index that combines Minimum Bounding 
Rectangles (MBR) and bundled Minimum Bounding Time Series 
(MBTS) to prune the search space

▫ prunes subtrees that cannot contain any results
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Geolocated Data Series

• search both on spatial proximity and data series similarity

• BTSR-Tree: hybrid index that combines Minimum Bounding 
Rectangles (MBR) and bundled Minimum Bounding Time Series 
(MBTS) to prune the search space

▫ prunes subtrees that cannot contain any results
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Geolocated Data Series

• search both on spatial proximity and time series similarity

• BTSR-Tree: hybrid index that combines Minimum Bounding 
Rectangles (MBR) and bundled Minimum Bounding Time Series 
(MBTS) to prune the search space

▫ prunes subtrees that cannot contain any results
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Geolocated Data Series

• search both on spatial proximity and data series similarity

• BTSR-Tree: hybrid index that combines Minimum Bounding 
Rectangles (MBR) and bundled Minimum Bounding Time Series 
(MBTS) to prune the search space

▫ prunes subtrees that cannot contain any results

• HSJ: hybrid similarity join on geolocated data series using the 
BTSR-Tree

▫ per- and cross-partition search in parallel (adjacent bands/boxes)
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Geolocated Data Series

• search both on spatial proximity and data series similarity

• BTSR-Tree: hybrid index that combines Minimum Bounding 
Rectangles (MBR) and bundled Minimum Bounding Time Series 
(MBTS) to prune the search space

▫ prunes subtrees that cannot contain any results

• HSJ: hybrid similarity join on geolocated data series using the 
BTSR-Tree

▫ per- and cross-partition search in parallel (adjacent bands/boxes)

• VisExp: interactive visual exploration on geolocated data series 
using either geo-iSAX or BTSR-Tree

▫ geo-iSAX: iSAX index - nodes augmented with MBR data
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Geolocated Data Series

• search both on spatial proximity and data series similarity

• BTSR-Tree: hybrid index that combines Minimum Bounding 
Rectangles (MBR) and bundled Minimum Bounding Time Series 
(MBTS) to prune the search space

▫ prunes subtrees that cannot contain any results

• HSJ: hybrid similarity join on geolocated data series using the 
BTSR-Tree

▫ per- and cross-partition search in parallel (adjacent bands/boxes)

• VisExp: interactive visual exploration on geolocated data series 
using either geo-iSAX or BTSR-Tree

▫ geo-iSAX: iSAX index - nodes augmented with MBR data
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Geolocated Data Series

• search both on spatial proximity and data series similarity

• BTSR-Tree: hybrid index that combines Minimum Bounding 
Rectangles (MBR) and bundled Minimum Bounding Time Series 
(MBTS) to prune the search space

▫ prunes subtrees that cannot contain any results

• HSJ: hybrid similarity join on geolocated data series using the 
BTSR-Tree

▫ per- and cross-partition search in parallel (adjacent bands/boxes)

• VisExp: interactive visual exploration on geolocated data series 
using either geo-iSAX or BTSR-Tree

▫ geo-iSAX: iSAX index - nodes augmented with MBR data
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Geolocated Data Series

• search both on spatial proximity and data series similarity

• BTSR-Tree: hybrid index that combines Minimum Bounding 
Rectangles (MBR) and bundled Minimum Bounding Time Series 
(MBTS) to prune the search space

▫ prunes subtrees that cannot contain any results

• HSJ: hybrid similarity join on geolocated data series using the 
BTSR-Tree

▫ per- and cross-partition search in parallel (adjacent bands/boxes)

• VisExp: interactive visual exploration on geolocated data series 
using either geo-iSAX or BTSR-Tree

▫ geo-iSAX: iSAX index - nodes augmented with MBR data
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spaTScope

• interactive demo application for visual geolocated data series 
exploration

▫ zoom-in/out, pan the map and receive summaries of geolocated data 
series and corresponding MBRs
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spaTScope

• interactive demo application for visual geolocated data series 
exploration

▫ zoom-in/out, pan the map and receive summaries of geolocated data 
series and corresponding MBRs
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Twin Subsequence Search 

• discover subsequences, where distance between points is always < ε
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Twin Subsequence Search 

• discover subsequences, where distance between points is always < ε
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Twin Subsequence Search 

• discover subsequences, where distance between points is always < ε

• SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences 
of length ≥δ, within large collections of (short) data series

▫ prunes search space by discretizing values, and using checkpoints
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Twin Subsequence Search 

• discover subsequences, where distance between points is always < ε

• SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences 
of length ≥δ, within large collections of (short) data series

▫ prunes search space by discretizing values, and using checkpoints
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Twin Subsequence Search 

• discover subsequences, where distance between points is always < ε

• SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences 
of length ≥δ, within large collections of (short) data series

▫ prunes search space by discretizing values, and using checkpoints

• SBTSR-Tree: solution for (x-axis) aligned subsequences within 
large collections of (short) data series, which are geolocated

▫ BTSR-Tree index on segmented data series, with bit-vectors that mark 
continuity of same series across segments
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Twin Subsequence Search 

• discover subsequences, where distance between points is always < ε

• SL/CP: solutions for pairs/groups of (x-axis) aligned subsequences 
of length ≥δ, within large collections of (short) data series

▫ prunes search space by discretizing values, and using checkpoints

• SBTSR-Tree: solution for (x-axis) aligned subsequences within 
large collections of (short) data series, which are geo-located

▫ BTSR-Tree index on segmented data series, with bit-vectors that mark 
continuity of same series across segments
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Twin Subsequence Search 

• discover subsequences, where distance between points is always < ε

• TS-Index: solution for subsequences of a long data series T that are 
similar to a (short) query sequence of length l

▫ k-ary balanced index, built on per-point min/max envelopes of all l-
length subsequences of T
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Twin Subsequence Search 

• discover subsequences, where distance between points is always < ε

• TS-Index: solution for subsequences of a long data series T that are 
similar to a (short) query sequence of length l

▫ k-ary balanced index, built on per-point min/max envelopes of all l-
length subsequences of T
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Twin Subsequence Search 

• discover subsequences, where distance between points is always < ε

• TS-Index: solution for subsequences of a long data series T that are 
similar to a (short) query sequence of length l

▫ k-ary balanced index, built on per-point min/max envelopes of all l-
length subsequences of T

• TS-Index OPT: memory footprint and bulk-loading optimizations 
for TS-Index

▫ build index bottom-up after sorting and grouping the subsequences 
using a z-order space filling curve
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ADS Index creation
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ParIS+
Parallel Indexing of Sequences

• solution for SIMD, multi-core, multi-socket architectures

▫ completely masks out the CPU cost during index creation

▫ answers exact queries in the order of few secs on 100GB dataset

 up to 3 orders of magnitude faster then single-core solutions
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ParIS+
Parallel Indexing of Sequences

• solution for SIMD, multi-core, multi-socket architectures

▫ completely masks out the CPU cost during index creation

▫ answers exact queries in the order of few secs on 100GB dataset

 up to 3 orders of magnitude faster then single-core solutions
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ParIS+
Parallel Indexing of Sequences

• solution for SIMD, multi-core, multi-socket architectures

▫ completely masks out the CPU cost during index creation

▫ answers exact queries in the order of few secs on 100GB dataset

 up to 3 orders of magnitude faster then single-core solutions

150

18x faster

k-NN Classification

classifying 100K objects using a 100GB dataset 
goes down from several days to few hours!
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Double 
Buffer

ROOT

0 0 0 1 1 1. . .

IdxBulkLoading worker

RecBuf RecBuf

Array of iSAX
Summarizations

Raw Data Buffer

SAX

Coordinate
Worker

B1

Index creation

RAW Data Disk

Main memory

B2
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RAW Data

0 0 0 1 1 1. . .

Disk

Main memory

0 00 0 0 01 0

1 10 11 1 11 11

1 1 10 1 1 11

OutBuf OutBuf OutBufOutBuf

IdxConstr worker 1 IdxConstr worker k…

create 
thread

Coordinat
e
Worker

Index creation
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ParIS+ exact query answering

ROOT

0 0 0

0 01 0

0 01 01

. . . . . .

RAW File

LBC 
Worker

3. Read raw data 
for series in leaf  

4.Get BSF 

5. Calculate LB distance 
& generate candidate 

list 

LB_dist
LB_dist
LB_dist

LB_dist
LB_dist

Array of 

Candidate List
Array of iSAX

Summarizations

1. Query q
arrives

Disk

Main memory

SAX C l

2. Run
approximate
search
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ROOT

0 0 0

0 00 
0

0 01 0

0 01 
00

0 01 01

. . 

.
. . .

RAW File

LBC 
Worker

3. Read raw data 
for series in leaf  

4.Get BSF 

5. Calculate LB distance 
& generate candidate 

list 

LB_dist
LB_dist
LB_dist

LB_dist
LB_dist

Array of 

Candidate List
Array of iSAX

Summarizations

1. Query q
arrives

Disk

Main memory

SAX C l

2. Run
approximate
search

Lower-Bound Distance 

Calculation in SIMD 

Result above branch Dist_above[1] Dist_above[2] Dist_above[3] Dist_above[4] …

Mask above branch TRUE TRUE …

Result below branch Dist_below[1] Dist_below[2] Dist_below[3] Dist_below[4] …

Mask below branch TRUE …

Result in branch Dist_in[1] Dist_in[2] Dist_in[3] Dist_in[4] …

Mask in branch TRUE …

Final Result Dist_above[1] Dist_in[2] Dist_above[3] Dist_below[4] …

query series:
PAA representation

candidate series:
iSAX representation

…

query IN candidate

query ABOVE candidate query BELOW candidate
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ROOT

0 0 0

0 00 
0

0 01 0

0 01 
00

0 01 01

. . 

.
. . .

RAW File

LBC 
Worker

3. Read raw data 
for series in leaf  

4.Get BSF 

5. Calculate LB distance 
& generate candidate 

list 

LB_dist
LB_dist
LB_dist

LB_dist
LB_dist

Array of 

Candidate List
Array of iSAX

Summarizations

1. Query q
arrives

Disk

Main memory

SAX C l

2. Run
approximate
search

Lower-Bound Distance 

Calculation in SIMD 
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ParIS+ exact query answering

ROOT

0 0 0

0 01 0

0 01 01

. . . . . .

RAW File

LBC 
Worker

BSF

…

RDC 
Worker

3. Read raw data 
for series in leaf  

4.Get BSF 

6. Read raw data 
using candidate 
list order

7. Update BSF 

LB_dist
LB_dist
LB_dist

LB_dist
LB_dist

Array of 

Candidate List
Array of iSAX

Summarizations

1. Query q
arrives

Disk

Main memory

SAX C l

2. Run
approximate
search
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MESSI
In-Memory Data Series Index

• in-memory solution for SIMD, multi-core, multi-socket architectures

▫ index-creation algorithm

 balances workload of different workers, minimizes synchronization cost

▫ exact query answering algorithm

 optimizes tree traversal and pruning

 minimizes number of lower-bound and real distance calculations

▫ answers exact queries at interactive speeds: ~50msec on 100GB

 up to 11x faster than competing approaches
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MESSI Query answering – Stage 3
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MESSI Query answering – Stage 3

ROOT

0 0 0

0 01 0

0 01 01

. . . . . .

1. Query q
arrives

2. Run
approximate
search

4.Get BSF 
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4.Get BSF 
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MESSI Query answering – Stage 3

Leaf 
node

Leaf 
node

Leaf 
node

Interna
l node

Search worker 

7. if node dist<BSF
insert node in PQ

… …

ROOT

Interna
l node

PQ[0]PQ[0]PQ[0]Priority Queues

6. Calculate 

node distance

5. Traverse 

tree index

shared data structures

ROOT

0 0 0

0 01 0

0 01 01

. . . . . .

1. Query q
arrives

2. Run
approximate
search

Raw Data

…

0 00 0

0 01 00

3. Read raw data 
for series in leaf  



Raw Data

…
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ExactSearch worker 

LB_dist
LB_dist
LB_dist
LB_dist

Real_dist

Real_dist

Leaf 
node

BSF

MESSI Query answering – Stage 3

PQ[0]PQ[0]PQ[0]Priority Queues

11. Produce final 
1-NN answer

8. Pop node from 
a priority queue

shared
variable

9. Calculate lower
bound distances

10. Calculate real 
distances for 
non-pruned 
series
& update BSF



SING
Sequence Indexing Using GPUs

• in-memory solution for SIMD, multi-core, multi-socket architectures 
with GPUs (Graphical Processing Units)

▫ new exact query answering algorithm

 CPU-GPU co-processing framework

 new GPU-friendly lower bound distance calculation algorithm

▫ answers exact queries at interactive speeds: ~32msec on 100GB dataset

 up to 5x faster than competing approaches

Echihabi, Palpanas - MDM 2022
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GPUs for Data Series Similarity Search
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• a natural solution
• GPUs typically part of modern hardware
• GPUs offer massive parallelization opportunities
• data series operations are massively parallelizable

• challenges
• Limited GPU memory size (~12GB of RAM for modern GPUs)

• much smaller than raw data
• Slow interconnect speeds (PCI-Express 3.0 x16 delivers 10GB/sec)

• moving raw data needed by individual queries prohibitively 
expensive

• non-sophisticated Streaming Processors (GPU cores)
• not suited for supporting complex data structures/branching
• very limited in-core fast memory 

• trade-offs will change as GPU and interconnects technology advances
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GPU

Search

query

traverse index, insert leaf nodes in priority queue(s)

calculate LBDs only for series under a 
node inside the

intervals with all non-pruned nodes

CPU

compute LBDs for children of root, 
compute contiguous interval with all non-pruned nodes

perform approximate search, compute BSF

FMapG
sorted 

iSAX array 

LB_dist
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SING Query answering
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GPU

Search

query

traverse index, insert leaf nodes in priority queue(s)

CPU

compute LBDs for children of root, 
compute contiguous interval with all non-pruned nodes

perform approximate search, compute BSF

-
-
-

LB_dist
LB_dist

ax3+bx

SING Query answering

GPU-friendly Lower Bound Distance Computations

Breakpoint=breakpoint[Sax]
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GPU

Search

query CPU

perform approximate search, compute BSF

-
-
-

ax3+bx

SING Query answering

GPU-friendly Lower Bound Distance Computations

Breakpoint=breakpoint[Sax] BreakPoly(Sax)=a*(Sax)3+b*(Sax)
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GPU

Search

query

compute LBDs for children of root, 
compute contiguous interval with all non-pruned nodes

perform approximate search, compute BSF

-
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LB_dist
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SING Query answering
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iSAX breakpoints BreakPoly breakpoints

GPU with BreakPoly() breakpoints is ~10x faster
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GPU

Search

query

traverse index, insert leaf nodes in priority queue(s)

Search

1-NN answer

check priority queue(s), process leaf nodes.

check LBD values in FmapC or calculate it,
calculate real distances

update BSF, use new BSF to prune better

calculate LBDs only for series under a 
node inside the

intervals with all non-pruned nodes
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SING Query answering
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DPiSAX
Distributed Partitioned iSAX

• solution for distributed processing (Spark)

▫ balances work of different worker nodes

 partitions series into uniform groups with parallel sampling (for load 
balancing)

 creates in parallel an index for each group (in a different node)
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DPiSAX
Distributed Partitioned iSAX

• solution for distributed processing (Spark)

▫ balances work of different worker nodes

 partitions series into uniform groups with parallel sampling (for load 
balancing)

 creates in parallel an index for each group (in a different node)
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DPiSAX
Distributed Partitioned iSAX

• solution for distributed processing (Spark)

▫ balances work of different worker nodes

 partitions series into uniform groups with parallel sampling (for load 
balancing)

 creates in parallel an index for each group (in a different node)

▫ speeds-up query answering

 exact queries are answered by all nodes (parallelize query execution)

 approximate queries answered only by a single node (parallelize 
workload execution)
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iSAX Index Family Lineage Tree

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows 
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity 
search with deterministic and probabilistic quality guarantees.
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iSAX Index Family Lineage Tree

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows 
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity 
search with deterministic and probabilistic quality guarantees.
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iSAX Index Family Lineage Tree

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows 
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity 
search with deterministic and probabilistic quality guarantees.
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iSAX Index Family Lineage Tree

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows 
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity 
search with deterministic and probabilistic quality guarantees.
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iSAX Index Family Lineage Tree

Timeline depicted on top; implementation languages marked on the right. Solid arrows denote inheritance of index design; dashed arrows 
denote inheritance of some of the design features; two new versions of iSAX2+/ADS+ marked with asterisk support approximate similarity 
search with deterministic and probabilistic quality guarantees.
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Hercules
Parallel Indexing of Sequences

• Disk-based solution for SIMD, multi-core, multi-socket 
architectures

▫ Exploits the benefits of two different summarization techniques 
(iSAX and EAPCA), and novel indexing and query answering 
algorithms

▫ Leads to better query answering performance than all recent 
state-of-the-art approaches across all popular query workloads

 only index that outperforms optimized scan on all scenarios (including 
hard query workloads on disk-based datasets)  

▫ Performs up to one order of magnitude faster than the best 
competitor (which is not always the same)
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Hercules
Parallel Indexing of Sequences

• Disk-based solution for SIMD, multi-core, multi-socket 
architectures

179

Publications

Echihabi-
PVLDB’22

Query Performance with Increased Query Difficulty (Seismic100GB)

only index always 
better than optimized 
sequential scan 

PSCAN, an Optimized Sequential Scan 
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Hercules
Parallel Indexing of Sequences

• Disk-based solution for SIMD, multi-core, multi-socket 
architectures

180

Publications

Echihabi-
PVLDB’22

Query Performance with Increased Dataset Size and Series Length (Synthetic)

Hercules best overall
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Publications
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Hercules Index Building Workflow

Hercules
Index Building
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Hercules
Index Writing
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Publications
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Hercules Index 
Writing Workflow
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Hercules
Query Answering
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Publications
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TARDIS

• solution for distributed processing (Spark)

▫ based on iSAX-T representation and sigTree index

 iSAX Transposition: transposes matrix of iSAX words of same cardinality, 
represents as strings

 sigTree: prefix k-ary tree on iSAX-T strings

Publications

Zhang et al.
ICDE‘19
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TARDIS

• solution for distributed processing (Spark)

▫ based on iSAX-T representation and sigTree index

 iSAX Transposition: transposes matrix of iSAX words of same cardinality, 
represents as strings

 sigTree: prefix k-ary tree on iSAX-T strings

▫ centralized global sigTree + distributed local sigTrees with raw data

 global sigTree

 constructed using statistics from local samples

 serves as partition scheme for data re-distribution

Publications

Zhang et al.
ICDE‘19
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TARDIS-G
(Global Index)

Indexed Data

TARDIS-L
(Local Index)

query

accessing global index for 
best-match partition(s)

partition-level access, 
utilizing local index

master node

worker nodes

TARDIS
Publications

Zhang et al.
ICDE‘19
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TARDIS

• solution for distributed processing (Spark)

▫ based on iSAX-T representation and sigTree index

 iSAX Transposition: transposes matrix of iSAX words of same cardinality, 
represents as strings

 sigTree: prefix k-ary tree on iSAX-T strings

▫ centralized global sigTree + distributed local sigTrees with raw data

 global sigTree

 constructed using statistics from local samples

 serves as partition scheme for data re-distribution

▫ query answering

 ng-approximate k-NN queries

 exact-match queries (does the query appear exactly the same in the dataset?)

Publications

Zhang et al.
ICDE‘19
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KV-match

• solution for distributed (HDFS) subsequence similarity search

▫ similarity search problem

 subsequence similarity search: search for a short query inside a long series

 ε-range queries

 exact answers for constrained ε-range queries (using cNSM)

▫ cNSM: constrained Normalized Subsequence Matching

 essentially, constrained similarity search

 intuitively, Z-normalization with constraints on degrees of amplitude scaling and 
offset shifting (α ≥ 1 and β ≥ 0, respectively) 

 users control extent of amplitude scaling and offset shifting 

 normalized subsequence matching is a special case of cNSM

Publications

Wu et al.
ICDE‘19
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KV-match

• solution for distributed (HDFS) subsequence similarity search

▫ index creation

 slide window on input series

 produce ordered rows of key-value pairs

 key Ki : a range of mean values, Ki = [LRi , URi ) 

 value Vi : the set of sliding windows whose mean values fall within Ki

 key-value table stored in HBase

Publications

Wu et al.
ICDE‘19
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KV-match

• solution for distributed (HDFS) subsequence similarity search

▫ query answering

 for query Q and corresponding subsequence S

 segment Q into aligned length-w disjoint windows (requires having several 
indexes of different lengths)

 for each window Qi and Si

 filtering condition: S is candidate answer only if all μSi fall within [LRi , URi]

 Phase 1: Index-probing

 generate set of candidate subsequences CS

 Phase 2: Post-processing

 verify subsequences in CS by computing actual distance on the raw data

Publications

Wu et al.
ICDE‘19
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L-match

• solution for distributed (HDFS) subsequence similarity search

▫ L-match improves on KV-match

 instead of sliding a window to build the index, L-match slides a window on query

 index is more compact

 operations are naturally parallelizable (no data-window overlaps among nodes)

Publications

Feng et al.
IEEE Access‘20
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L-match

• solution for distributed (HDFS) subsequence similarity search

▫ L-match improves on KV-match

 instead of sliding a window to build the index, L-match slides a window on query

 index is more compact

 operations are naturally parallelizable (no data-window overlaps among nodes)

▫ compared to KV-match, L-match is slightly slower, but 10x smaller

Publications

Feng et al.
IEEE Access‘20
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Experimental Framework

• Hardware

▫ HDD and SSD

• Datasets

▫ Synthetic (25GB to 1TB) and 4 real (100 GB)

• Exact Query Workloads

▫ 100 – 10,000 queries 

• Performance measures

▫ Time, #disk accesses, footprint, pruning, Tightness of Lower Bound (TLB), etc.

• C/C++ methods (4 methods reimplemented from scratch) 

• Procedure:

▫ Step 1: Parametrization

▫ Step 2: Evaluation of individual methods

▫ Step 3: Comparison of best methods

Publications

Echihabi-
PVLDB‘18
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Scenario: Indexing and answering 10K exact queries on HDD

Recommendations

Publications

Echihabi-
PVLDB‘18
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Unexpected Results

• Some methods do not scale as expected (or not at all!)

• Brought back to the spotlight two older methods VA+file and 
DSTree

▫ New reimplementations outperform by far the original ones 

• Optimal parameters for some methods are different from the ones 
reported in the original papers

• Tightness of Lower Bound (TLB) does not always predict 
performance

Publications

Echihabi-
PVLDB‘18
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Insights

• Results are sensitive to:

▫ Parameter tuning

▫ Hardware setup

▫ Implementation

▫ Workload selection

• Results identify methods that would benefit from modern 
hardware

Publications

Echihabi-
PVLDB‘18
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Experimental Framework
• Datasets

▫ In-memory and disk-based datasets

▫ Synthetic data modeling financial time series 

▫ Four real datasets from deep learning, computer vision, seismology, and 
neuroscience (25GB-250GB)

• Query Workloads

▫ 100 – 10,000 kNN queries k in [1,100]

▫ ng-approximate and δ-ε-approximate queries (exact queries used as yardstick)

• C/C++ methods (3 methods reimplemented from scratch) 

• Performance measures
▫ Efficiency: time, throughput, #disk accesses, % of data accessed

▫ Accuracy: average recall, mean average precision, mean relative error 

• Procedure:

▫ Step 1: Parametrization

▫ Step 2: Evaluation of indexing/query answering scalability in-memory 

▫ Step 3: Evaluation of indexing/query answering scalability on-disk

▫ Step 4: Additional experiments with best-performing methods on disk

Publications

Echihabi-
PVLDB‘19
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Approximate Methods Covered in Study
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Approximate Methods Covered in Study
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Approximate Methods Covered in Study
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Our extensions

Approximate Methods Covered in Study
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Our extensions

Approximate Methods Covered in Study
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results

DSTree
iSAX2+
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results

DSTree
iSAX2+

DSTree
iSAX2+

DSTree
iSAX2+
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results

Echihabi, Palpanas - MDM 2022

210



DSTree
iSAX2+
VA+file

o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint
DSTree
iSAX2+

Unexpected Results
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DSTree
iSAX2+

o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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iSAX2+
VA+file

o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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iSAX2+
VA+file

o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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o New data series extensions are the overall winners even for 
general high-d vectors 

o perform the best for approximate queries with probabilistic 
guarantees (δ-ε-approximate search), in-memory and on-disk

o perform the best for long vectors, in-memory and on-disk

o perform the best for disk-resident vectors

o are fastest at indexing and have the lowest footprint

Unexpected Results
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Only exception is HNSW 
winning on in-memory 
data, with a prebuilt 
index  (no guarantees 
for the answers)
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Exciting research direction for approximate similarity search in high-d 
spaces:

Currently two main groups of solutions exist:

We show that it is possible to have efficient approximate algorithms with 
guarantees

Insights
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Exciting research direction for approximate similarity search in high-d 
spaces:

Currently two main groups of solutions exist:

We show that it is possible to have efficient approximate algorithms with 
guarantees

approximate search solutions

without guarantees

relatively efficient

approximate search solutions 

with guarantees

relatively slow

Insights
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Exciting research direction for approximate similarity search in high-d 
spaces:

Currently two main groups of solutions exist:
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Exciting research direction for approximate similarity search in high-d 
spaces:

Currently two main groups of solutions exist:

We show that it is possible to have efficient approximate algorithms with 
guarantees

approximate search solutions

without guarantees

relatively efficient

approximate search solutions 

with guarantees

relatively slow

Insights
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Approximate state-of-the-art techniques for high-d vectors are not 
practical:

Insights



Echihabi, Palpanas - MDM 2022

221

Approximate state-of-the-art techniques for high-d vectors are not 
practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)

kNNG-based techniques

slow indexing, difficult to tune, in-memory, no guarantees 

Quantization-based techniques

slow indexing, difficult to tune, no guarantees

Insights
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Approximate state-of-the-art techniques for high-d vectors are not 
practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)
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slow indexing, difficult to tune, in-memory, no guarantees 

Quantization-based techniques

slow indexing, difficult to tune, no guarantees
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Approximate state-of-the-art techniques for high-d vectors are not 
practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)

kNNG-based techniques

slow indexing, difficult to tune, in-memory, no guarantees 

Quantization-based techniques

slow indexing, difficult to tune, no guarantees

Insights
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Approximate state-of-the-art techniques for high-d vectors are not 
practical:

LSH-based techniques

slow, high-footprint, low accuracy (recall/MAP)

kNNG-based techniques

slow indexing, difficult to tune, in-memory, no guarantees 

Quantization-based techniques

slow indexing, difficult to tune, no guarantees

Insights



Data series approaches 

are the overall winners!

The only exception is HNSW for in-memory

ng-approximate queries using an existing index

Recommendations for approx. techniques
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Scenario: Answering a query workload using an existing index

Recommendations
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AI and Similarity Search

• Representation Learning

▫ Learned summarizations for data series

• Search and Indexing

▫ Learned indexes

▫ Similarity search on deep network embeddings

Echihabi, Palpanas - MDM 2022

229



AI and Similarity Search
Representation Learning for Sequences

• GRAIL

▫ learns representations that preserve a user-defined comparison function

▫ for a given comparison function:

 extracts landmark series 

using clustering

 optimizes parameters

 exploits approximations 

for kernel methods to 

construct representations 

by expressing each series 

as a combination of the 

landmark series

Echihabi, Palpanas - MDM 2022
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• GRAIL

▫ uses the learned representations for querying, classification, clustering, … 

Echihabi, Palpanas - MDM 2022
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• Series Approximation Network (SEAnet)

▫ novel autoencoder architecture 

▫ learns deep embedding approximations

▫ uses those for similarity search

Echihabi, Palpanas - MDM 2022
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Representation Learning for Sequences



• Series Approximation Network (SEAnet)

▫ novel autoencoder architecture 

▫ learns deep embedding approximations

▫ uses those for similarity search
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• Series Approximation Network (SEAnet)

▫ novel autoencoder architecture 

▫ learns deep embedding approximations

▫ uses those for similarity search
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• Series Approximation Network (SEAnet)

▫ is an exponentially dilated ResNet architecture + Sum of Squares regularization

▫ minimizes 

 reconstruction error 

 difference between distance of two vectors in embedded space and distance in original 
space 
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• Series Approximation Network (SEAnet)

▫ is an exponentially dilated ResNet architecture + Sum of Squares regularization

▫ minimizes 

 reconstruction error 

 difference between distance of two vectors in embedded space and distance in original 
space 
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• Search and Indexing

▫ Problem:
 Sequence similarity search is hard

 Massive datasets and high dimensionality in 100s-1000s

 Sophisticated indexing structures and search algorithms

▫ Solutions:
 Learned Indexes

 Improve search efficiency using deep learning

 Indexing for learned embeddings
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• Learned Indexes:

▫ Main idea: replace an index with a learned model

 One-dimensional learned indexes

▫ Seminal work: The Case for Learned Indexes

 Multi-dimensional indexes

▫ Exhaustive tutorial on this topic at SIGSPATIAL’20: 

https://www.cs.purdue.edu/homes/aref/learned-indexes-tutorial.html

 Some initial attempts for similarity search

▫ Main challenges for multi-dimensional indexes:

 How to sort the data?

 How to correct prediction errors?

 Which ML model to choose?

 How to store the data?

 How to learn indexes specifically for (the high-d) sequences?
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• Indexing Deep Network Embeddings (DNE)

Extensions to data series indexes outperform competitors
sequences

text
images

video
graphs

... 

deep embeddings
high-d vectors learned using a DNN
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Search and Indexing
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sequences
text

images
video

graphs
... 

deep embeddings
high-d vectors learned using a DNN

• Indexing Deep Network Embeddings (DNE)

▫ Data series techniques provide effective/scalable similarity search over 
DNE

▫ They outperform hashing-based, quantization-based inverted indexes 
and kNN graphs on many scenarios

Extensions to data series indexes outperform competitors

AI and Similarity Search
Search and Indexing
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Challenges and Open Problems

• we are still far from having solved the problem

• several challenges remain in terms of 

▫ usability, ease of use

▫ scalability, distribution

▫ benchmarking

• these challenges derive from modern data series applications
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Massive Data Series Collections

Human Genome project

130 TB

NASA’s Solar Observatory 

1.5 TB per day

Large Synoptic Survey 
Telescope (2019)

~30 TB per night
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data center and
services monitoring

2B data series
4M points/sec
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Challenges and Open Problems

Outline

• sequence management system

• benchmarking

• interactive analytics

• general high-dimensional vectors

• deep learning

244
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Management System

“enable practitioners and non-expert users to easily and 
efficiently manage and analyze massive data series collections”

245
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Management System

• Big Sequence Management System

▫ general purpose data series management system

246

data sequences
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Management System

• Big Sequence Management System

247
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Management System

• Big Sequence Management System
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BestNeighbor:

Choosing Indexing Method for Given Dataset

⚫ method to choose between DPiSAX and ParSketch

⚫ based on data power spectrum

⚫ iSAX less efficient than ParSketch for high-frequency data

⚫ BestNeighbor uses dataset characteristics (Fourier 

coefficients), and chooses

⚫ ParSketch: if there is substantial power at least up to the 

30th coefficient

⚫ DPiSAX: otherwise (most of energy in low order Fourier 

coefficients)

⚫ how do these results extend to 

⚫ other data characteristics?

⚫ more indexing methods?

⚫ take hardware specifications into consideration?

⚫ …
249
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http://imitates.gforge.inria.fr/
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Challenges and Open Problems

Outline

• sequence management system

• benchmarking

• interactive analytics

• general high-dimensional vectors

• deep learning

250
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Previous Studies

• chosen from the data (with/without noise)

251

evaluate performance of indexing methods using random queries
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Previous Studies
With or without noise

noise

252
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Previous Workloads
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Most previous workloads are skewed to easy queries
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Benchmark Workloads

256

If all queries are easy 
all indexes look good

If all queries are hard 
all indexes look bad

need methods for generating queries of varying hardness
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Summary

Theoretical background
Methodology for characterizing 
NN queries for data series indexes

Nearest neighbor query workload generator
Designed to stress-test data series indexes 
at varying levels of difficulty

261

Pros:

Time complexity
Need new approach to scale to very large datasets

Cons:
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Challenges and Open Problems

Outline

• sequence management system

• benchmarking

• interactive analytics

• parallelization and distribution

• general high-dimensional vectors

• deep learning

262
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Interactive Analytics?

• data series analytics is computationally expensive

▫ very high inherent complexity

• may not always be possible to remove delays

▫ but could try to hide them!

263
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

264
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way
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Need for

Interactive Analytics

• interaction with users offers new opportunities

▫ progressive answers

 produce intermediate results

 iteratively converge to final, correct solution

 provide bounds on the errors (of the intermediate results) along the way

• several exciting research problems in intersection of visualization 
and data management

▫ frontend: HCI/visualizations for querying/results display

▫ backend: efficiently supporting these operations

272
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Challenges and Open Problems

Outline

• sequence management system

• benchmarking

• interactive analytics

• general high-dimensional vectors

• deep learning

273
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Data Series vs. high-d Vectors

• two sides of the same(?) coin

▫ data series as multidimensional points

▫ for a specific ordering of the dimensions

• data series techniques are the overall winners, even on 
general high-d vector data

• several new applications (and challenges) for data series 
similarity search techniques!

▫ design efficient techniques for ng-approximate search

▫ devise efficient stopping conditions for δε-approximate search

274
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Connections to Deep Learning

• data series indexing for deep embeddings

▫ deep embeddings are high-d vectors

▫ data series techniques provide effective/scalable similarity search

• deep learning for summarizing data series

▫ eg, autoencoders can learn efficient data series summaries

• deep learning for designing index data structures

▫ learn an index for similarity search

• deep learning for query optimization

▫ search space is vast

▫ learn optimization function
Echihabi, Palpanas - MDM 2022
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Overall Conclusions

• data series is a very common data type

▫ across several different domains and applications

• complex data series analytics are challenging

▫ have very high complexity

▫ efficiency comes from data series management/indexing techniques

• need for Sequence Management System

▫ optimize operations based on data/hardware characteristics

▫ transparent to user

• several exciting research opportunities
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google: Karima Echihabi

Themis Palpanas
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