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TL;DR

• We introduce a theoretical framework for multi-task regression using random
matrix theory, providing analytic solutions and insights into task relationships.

• By framing multi-task optimization as a regularization technique, we enable
single-task models to leverage multi-task learning benefits.

• Our analysis offers consistent estimations of training and testing errors, facilitating
effective hyperparameter optimization.

• Experiments on synthetic and real-world datasets in regression and
multivariate time series forecasting demonstrate that our method significantly
improves univariate models when incorporated into the training loss.

Problem Setup

Goal: Leverage shared information across multiple related tasks to improve overall per-
formance in multi-task regression.

• Consider T regression tasks, each with its own input space X (t) ⊂ Rd and output
space Y (t) ⊂ Rq, for t = 1, . . . , T .

• For each task t, we have nt training examples comprising a feature matrix X(t) ∈ Rd×nt,
and response matrix Y(t) ∈ Rq×nt.

• Linear multi-task regression model:

Y(t) = X(t)⊤Wt√
Td

+ ε(t), ∀t = 1, . . . , T,

where Wt ∈ Rd×q is the signal-generating hyperplane for task t, and ε(t) is a noise
matrix with entries drawn from N (0, ΣN).

Weights Decomposition

• Each Wt is decomposed into:
Wt = W0 + Vt,

where W0 is the common component shared across all tasks, and Vt is the
task-specific deviation.

• Objective: Estimate W0 and {Vt} by solving:
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where λ and γt are regularization parameters controlling the trade-off between shared
and task-specific components.

The objective function consists of three components:

• A regularization term for W0 to mitigate overfitting,

• Task-specific regularization terms controlling deviations Vt from the shared weight
matrix W0,

• A loss term quantifying the error between the predicted outputs and the actual
responses for each task.

W0 : A shared component that enhances the performance of each task

Main Theoretical Results

Interpretation and Key Insights

• We decompose train and test risks into signal and noise terms to gain insights into our model’s
behavior and to find the optimal regularization parameter λ∗.

• λ∗ indicates the point at which we want to leverage multivariate information.

• The signal term capture how well the model learns the underlying tasks, while the noise term
represent the impact of noise on performance.

• This competition between signal and noise allows us to determine the optimal λ∗.

Main Theorem: Asymptotic Train and Test Risks
The test and train risks decompose into signal and noise contributions:

Test Risk:
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Error Contribution Analysis

The signal-noise competition makes the test-curve convex and allows us to identify λ∗ to solve our
optimization problem.

Implications:

• Increasing λ promotes shared learning by emphasizing the signal term.

• However, a too large λ can amplify the noise term, degrading performance.

• Therefore, finding λ∗ is crucial to balance enhancing the signal and suppressing the noise.
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Test loss contributions DIL, CMTL, NNT across three sample size regimes. The convexity of the test
risk curve allows us to identify λ∗ to solve our optimization problem.

Beyond the Case of Linear Models: Multivariate Time Series Forecasting

• We apply our theoretical framework to Multivariate Time Series Forecasting . We compare models
with and without MTL regularization.

• Evaluation conducted on common open-source benchmarks of various scales.

Dataset H
with MTL regularization without MTL regularization

PatchTST LinearU Transformer PatchTST LinearU LinearM Transformer SAMformer iTransformer
E
T
T
h
1

96 0.385 0.367∗ 0.368 0.387 0.397 0.386 0.370 0.381 0.386

192 0.422 0.405∗ 0.407∗ 0.424 0.422 0.437 0.411 0.409 0.441

336 0.433∗ 0.431 0.433 0.442 0.431 0.481 0.437 0.423 0.487

720 0.430∗ 0.454 0.455∗ 0.451 0.428 0.519 0.470 0.427 0.503

E
T
T
h
2

96 0.291 0.267∗ 0.270 0.295 0.294 0.333 0.273 0.295 0.297

192 0.346∗ 0.331∗ 0.337 0.351 0.361 0.477 0.339 0.340 0.380

336 0.332∗ 0.367 0.366∗ 0.342 0.361 0.594 0.369 0.350 0.428

720 0.384∗ 0.412 0.405∗ 0.393 0.395 0.831 0.428 0.391 0.427

W
e
at
h
e
r 96 0.148 0.149∗ 0.154∗ 0.149 0.196 0.196 0.170 0.197 0.174

192 0.190 0.206∗ 0.198∗ 0.193 0.243 0.237 0.214 0.235 0.221

336 0.242∗ 0.249∗ 0.258 0.246 0.283 0.283 0.260 0.276 0.278

720 0.316∗ 0.326∗ 0.331 0.322 0.339 0.345 0.326 0.334 0.358

Our multi-task regularization makes a univariate linear model state-of-the-art in multivariate
time series forecasting and improves transformer-based model performances as well.
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(a) Dataset ETTh1, Horizon 96
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(b) Dataset ETTh2, Horizon 96
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(c) Dataset Weather, Horizon 96
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(d) Dataset ETTh1, Horizon 336
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(e) Dataset ETTh2, Horizon 336
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(f) Dataset Weather, Horizon 336
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(g) Dataset ETTh1, Horizon 720
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(h) Dataset ETTh2, Horizon 720
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(i) Dataset Weather, Horizon 720

The non-linear model curves align with the theoretical patterns observed in linear models, and
our MTL regularization enhances transformer performance across four forecasting horizons.

Multi-Task Regression

We apply our theoretical framework to the Appliance Energy dataset, containing 138
time series of dimension 24, and reformulate it as a multi-task regression by selecting
two features as tasks and setting γ1 = γ2 = γ.

Optimal Regularization Parameter λ⋆:

λ⋆ = n

d
SNR − γ

2
, where SNR = ∥W1∥2

2 + ∥W2∥2
2

tr ΣN
+ W⊤

1 W2

tr ΣN
.

Interpretation and Key Insights

• α represents the cosine similarity between W1 and W2, i.e., α = W⊤
1 W2

∥W1∥2∥W2∥2
.

• As α increases, the tasks become more similar, and λ⋆ increases.

• Larger λ⋆ reduces the penalty on the shared component, enhancing the use of
multivariate information.

• Thus, similar tasks benefit from shared learning, which improves performance.

W1 ∼ N (0, Ip), W2 = αW1 +
√

1 − α2W⊥
1 ,

where W⊥
1 is any vector orthogonal to W1, and α ∈ [0, 1].

Theoretical predictions (smooth curves) closely match the empirical results (dots).
As α increases, λ⋆ also increases, indicating less penalty on the shared component.

Experimental Results:

• Experiments confirm that optimal λ⋆ increases with task similarity α.

• Theoretical predictions closely match empirical results, demonstrating the accuracy
of our analysis.

• Our framework effectively guides hyperparameter selection in real-world multi-task
learning.

Conclusion and Takeaways

• We developed a theoretical framework
providing optimal regularization parameters
for multi-task regression, effectively balancing
signal and noise to enhance performance.

• Our theoretical predictions closely align with
empirical results

• Applying our framework to multivariate time
series forecasting, we demonstrate that simpler
models can achieve state-of-the-art results.
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