

TL;DR

- We introduce a **theoretical framework** for **multi-task regression** using **random** matrix theory, providing analytic solutions and insights into task relationships.
- By framing multi-task optimization as a **regularization technique**, we enable single-task models to leverage multi-task learning benefits.
- Our analysis offers **consistent estimations** of training and testing errors, facilitating effective hyperparameter optimization.
- Experiments on synthetic and real-world datasets in regression and multivariate time series forecasting demonstrate that our method significantly **improves** univariate models when incorporated into the training loss.

Problem Setup

Goal: Leverage shared information across multiple related tasks to improve overall performance in multi-task regression.

- Consider T regression tasks, each with its own input space $\mathcal{X}^{(t)} \subset \mathbb{R}^d$ and output space $\mathcal{Y}^{(t)} \subset \mathbb{R}^q$, for $t=1,\ldots,T$.
- For each task t, we have n_t training examples comprising a feature matrix $\mathbf{X}^{(t)} \in \mathbb{R}^{d imes n_t}$, and response matrix $\mathbf{Y}^{(t)} \in \mathbb{R}^{q \times n_t}$.
- Linear multi-task regression model:

$$\mathbf{Y}^{(t)} = \frac{\mathbf{X}^{(t)^{\top}} \mathbf{W}_{t}}{\sqrt{Td}} + \boldsymbol{\varepsilon}^{(t)}, \quad \forall t = 1, \dots, T,$$

where $\mathbf{W}_t \in \mathbb{R}^{d imes q}$ is the signal-generating hyperplane for task t, and $m{arepsilon}^{(t)}$ is a noise matrix with entries drawn from $\mathcal{N}(0, \Sigma_N)$.

Weights Decomposition

• Each \mathbf{W}_t is decomposed into:

$$\mathbf{W}_t = \mathbf{W}_0 + \mathbf{V}_t,$$

where \mathbf{W}_0 is the common component shared across all tasks, and \mathbf{V}_t is the task-specific deviation.

• Objective: Estimate \mathbf{W}_0 and $\{\mathbf{V}_t\}$ by solving:

$$\min_{\mathbf{V}_0, \{\mathbf{V}_t\}, \lambda} \quad \frac{1}{2\lambda} \|\mathbf{W}_0\|_F^2 + \frac{1}{2} \sum_{t=1}^T \frac{\|\mathbf{V}_t\|_F^2}{\gamma_t} + \frac{1}{2} \sum_{t=1}^T \left\|\mathbf{Y}^{(t)} - \frac{\mathbf{X}^{(t)^\top} \mathbf{W}_t}{\sqrt{Td}}\right\|_F^2,$$

where λ and γ_t are regularization parameters controlling the trade-off between shared and task-specific components.

The objective function consists of three components:

- A regularization term for \mathbf{W}_0 to mitigate overfitting,
- Task-specific regularization terms controlling deviations \mathbf{V}_t from the shared weight matrix \mathbf{W}_{0} ,
- A loss term quantifying the error between the predicted outputs and the actual responses for each task.

 W_0 : A shared component that enhances the performance of each task

Analysing Multi-Task Regression via Random Matrix Theory

¹Huawei Noah's Ark Lab ²LIPADE, Paris Descartes University ³School of Data Science, The Chinese University of Hong Kong, Shenzhen, China ⁴Inria, Univ. Rennes 2, CNRS, IRISA

Main Theoretical Results

Interpretation and Key Insights

- We decompose train and test risks into **signal** and **noise** terms to gain insights into our model's behavior and to find the optimal regularization parameter λ^* .
- λ^* indicates the point at which we want to **leverage multivariate information**.
- The signal term capture how well the model learns the underlying tasks, while the noise term • Therefore, finding λ^* is crucial to balance enhancing the signal and suppressing the noise. represent the impact of noise on performance.
- This competition between signal and noise allows us to determine the optimal λ^* .

Main Theorem: Asymptotic Train and Test Risks

The test and train risks decompose into signal and noise contributions:

Test Risk:

$$\mathcal{R}_{\text{test}}^{\infty} = \underbrace{\frac{\operatorname{tr}\left(\mathbf{W}^{\top}\mathbf{A}^{-\frac{1}{2}}\bar{\tilde{\mathbf{Q}}}_{2}(\mathbf{A})\mathbf{A}^{-\frac{1}{2}}\mathbf{W}\right)}{Td}}_{\text{Signal Term}} + \underbrace{\frac{\operatorname{tr}(\boldsymbol{\Sigma}_{N}\bar{\mathbf{Q}}_{2})}{Td}}_{\text{Noise Terms}} + \operatorname{tr}(\boldsymbol{\Sigma}_{N}).$$

Train Risk:

$$\mathcal{R}_{\text{train}}^{\infty} = \underbrace{\frac{\operatorname{tr}\left(\mathbf{W}^{\top}\mathbf{A}^{-\frac{1}{2}}\bar{\tilde{\mathbf{Q}}}\mathbf{A}^{-\frac{1}{2}}\mathbf{W}\right)}{Tn} - \underbrace{\frac{\operatorname{tr}\left(\mathbf{W}^{\top}\mathbf{A}^{-\frac{1}{2}}\bar{\tilde{\mathbf{Q}}}_{2}(\mathbf{I}_{Td})\mathbf{A}^{-\frac{1}{2}}\mathbf{W}\right)}{Tn}}_{\text{Signal Term}} + \underbrace{\frac{\operatorname{tr}\left(\boldsymbol{\Sigma}_{N}\bar{\mathbf{Q}}_{2}\right)}{Tn}}_{\text{Noise Term}}$$

Beyond the Case of Linear Models: Multivariate Time Series Forecasting

- We apply our theoretical framework to Multivariate Time Series Forecasting . We compare models with and without MTL regularization.
- Evaluation conducted on common open-source benchmarks of various scales.

Dataset	Η	with MTL regularization			without MTL regularization					
		PatchTST	LinearU	Transformer	PatchTST	LinearU	LinearM	Transformer	SAMformer	iTransformer
ETTh1	96	0.385	0.367*	0.368	0.387	0.397	0.386	0.370	0.381	0.386
	192	0.422	0.405*	0.407^{*}	0.424	0.422	0.437	0.411	0.409	O.441
	336	0.433*	0.431	0.433	0.442	0.431	0.481	0.437	0.423	0.487
	720	0.430*	0.454	0.455^{*}	0.451	0.428	0.519	0.470	0.427	0.503
ЕТТҺ2	96	0.291	0.267*	0.270	0.295	0.294	0.333	0.273	0.295	0.297
	192	0.346^{*}	0.331 *	0.337	0.351	0.361	0.477	0.339	0.340	0.380
	336	0.332*	0.367	0.366^{*}	0.342	0.361	0.594	0.369	0.350	0.428
	720	0.384*	0.412	0.405^{*}	0.393	0.395	0.831	0.428	0.391	0.427
Weather	96	0.148	0.149*	0.154*	0.149	0.196	0.196	0.170	0.197	O.174
	192	0.190	0.206^{*}	0.198^{*}	0.193	0.243	0.237	0.214	0.235	0.221
	336	0.242*	0.249*	0.258	0.246	0.283	0.283	0.260	0.276	0.278
	720	0.316 *	0.326^{*}	0.331	0.322	0.339	0.345	0.326	0.334	0.358

Our multi-task regularization makes a univariate linear model state-of-the-art in multivariate time series forecasting and improves transformer-based model performances as well.

Main References

- Ilbert et al. ICML 2024 (Oral) SAMformer
- Tiomoko et al. PrePrint 2020 Large Dimensional Analysis
- Yang et al. ICML 2023 Precise High-Dimensional Asymptotics

Romain Ilbert

Malik Tiomoko

Romain Ilbert¹² Malik Tiomoko¹ Cosme Louart³ Ambroise Odonnat¹⁴ Vasilii Feofanov¹ Themis Palpanas² levgen Redko¹

Error Contribution Analysis

The signal-noise competition makes the test-curve convex and allows us to identify λ^* to solve our optimization problem.

Implications:

- Increasing λ promotes shared learning by emphasizing the signal term.
- However, a too large λ can amplify the noise term, degrading performance.

Test loss contributions \mathcal{D}_{IL} , \mathcal{C}_{MTL} , \mathcal{N}_{NT} across three sample size regimes. The convexity of the test risk curve allows us to identify λ^* to solve our optimization problem.

The non-linear model curves align with the theoretical patterns observed in linear models, and our MTL regularization enhances transformer performance across four forecasting horizons.

Multi-Task Regression

We apply our theoretical framework to the **Appliance Energy** dataset, containing 138 time series of dimension 24, and reformulate it as a **multi-task regression** by selecting two features as tasks and setting $\gamma_1 = \gamma_2 = \gamma$.

Optimal Regularization Parameter λ^* :

$$\lambda^{\star} = \frac{n}{d} \operatorname{SNR} - \frac{\gamma}{2}, \quad \text{where} \quad \operatorname{SNR} = \frac{\|\mathbf{W}_1\|_2^2 + \|\mathbf{W}_2\|_2^2}{\operatorname{tr} \boldsymbol{\Sigma}_N} + \frac{\mathbf{W}_1^\top \mathbf{W}_2}{\operatorname{tr} \boldsymbol{\Sigma}_N}.$$

Interpretation and Key Insights

- α represents the **cosine similarity** between \mathbf{W}_1 and \mathbf{W}_2 , i.e., $\alpha = \frac{\mathbf{W}_1^{\top}\mathbf{W}_2}{\|\mathbf{W}_1\|_2\|\mathbf{W}_2\|_2}$.
- As α increases, the tasks become more similar, and λ^* increases.
- Larger λ^* reduces the penalty on the **shared component**, enhancing the use of multivariate information.
- Thus, similar tasks benefit from shared learning, which **improves performance**.

$$\mathbf{W}_1 \sim \mathcal{N}(0, I_p), \quad \mathbf{W}_2 = \alpha \mathbf{W}_1 + \sqrt{1 - \alpha^2} \mathbf{W}_1^{\perp},$$

where \mathbf{W}_1^{\perp} is any vector orthogonal to \mathbf{W}_1 , and $\alpha \in [0, 1]$.

Theoretical predictions (smooth curves) closely match the empirical results (dots). As α increases, λ^* also increases, indicating less penalty on the shared component.

Experimental Results:

- Experiments confirm that **optimal** λ^* **increases with task similarity** α .
- Theoretical predictions closely match empirical results, demonstrating the **accuracy** of our analysis.
- Our framework effectively guides **hyperparameter selection** in real-world multi-task learning.

Conclusion and Takeaways

- We developed a theoretical framework providing optimal regularization parameters for multi-task regression, effectively balancing signal and noise to enhance performance.
- Our theoretical predictions **closely align with** empirical results
- Applying our framework to **multivariate time** series forecasting, we demonstrate that simpler models can achieve state-of-the-art results.

