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ABSTRACT
Data series similarity search is an important operation and at the
core of several analysis tasks and applications related to data se-
ries collections. Despite the fact that data series indexes enable fast
similarity search, all existing indexes can only answer queries of a
single length (fixed at index construction time), which is a severe
limitation. In this work, we propose ULISSE, the first data series
index structure designed for answering similarity search queries of
variable length. Our contribution is two-fold. First, we introduce
a novel representation technique, which effectively and succinctly
summarizes multiple sequences of different length (irrespective of
Z-normalization). Based on the proposed index, we describe effi-
cient algorithms for approximate and exact similarity search, com-
bining disk based index visits and in-memory sequential scans. We
experimentally evaluate our approach using several synthetic and
real datasets. The results show that ULISSE is several times (and
up to orders of magnitude) more efficient in terms of both space
and time cost, when compared to competing approaches.
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1. INTRODUCTION
Motivation. Data sequences are one of the most common data
types, and they are present in almost every scientific and social do-
main (example application domains include meteorology, astron-
omy, chemistry, medicine, neuroscience, finance, agriculture, ento-
mology, sociology, smart cities, marketing, operation health mon-
itoring, human action recognition and others) [1, 2, 3, 4, 5]. This
makes data series a data type of particular importance.

Informally, a data series (a.k.a data sequence, or time series) is
defined as an ordered sequence of points, each one associated with
a position and a corresponding value1. Recent advances in sensing,

1If the dimension that imposes the ordering of the sequence is time
then we talk about time series. Though, a series can also be de-
fined over other measures (e.g., angle in radial profiles in astron-
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networking, data processing and storage technologies have signifi-
cantly facilitated the processes of generating and collecting tremen-
dous amounts of data sequences from a wide variety of domains at
extremely high rates and volumes.

The SENTINEL-2 mission [6] conducted by the European Space
Agency (ESA) represents such an example of massive data series
collection. The two satellites of this mission continuously capture
multi-spectral images, designed to give a full picture of earth’s sur-
face every five days at a resolution of 10m, resulting in over five
trillion different data series. Such recordings will help monitor at
fine granularity the evolution of the properties of the surface of the
earth, and benefit applications such as land management, agricul-
ture and forestry, disaster control, humanitarian relief operations,
risk mapping and security concerns.
Data series analytics. Once the data series have been collected,
the domain experts face the arduous tasks of processing and ana-
lyzing them [7] in order to identify patterns, gain insights, detect
abnormalities, and extract useful knowledge. Critical part of this
process is the data series similarity search operation, which lies at
the core of several analysis and machine learning algorithms (e.g.,
clustering [8], classification [9], outliers [10], and others).

However, similarity search in very large data series collections
is notoriously challenging [11, 12, 13, 14, 14], due to the high di-
mensionality (length) of the data series. In order to address this
problem, a significant amount of effort has been dedicated by the
data management research community to data series indexing tech-
niques, which lead to fast and scalable similarity search [15, 16, 17,
18, 19, 20, 11, 21, 22, 23, 24, 25, 26].
Predefined constraints. Despite the effectiveness and benefits of
the proposed indexing techniques, which have enabled and pow-
ered many applications over the years, they are restricted in differ-
ent ways: either they only support similarity search with queries of
a fixed size, or they do not offer a scalable solution. The solutions
working for a fixed length, require that this length is chosen at in-
dex construction time (it should be the same as the length of the
series in the index).

Evidently, this is a constraint that penalizes the flexibility needed
by analysts, who often times need to analyze patterns of slightly
different lengths (within a given data series collection) [20, 27,
28, 29, 30]. This is true for several applications. For example,
in the SENTINEL-2 mission data, oceanographers are interested in
searching for similar coral bleaching patterns2 of different lengths;
at Airbus3 engineers need to perform similarity search queries for
patterns of variable length when studying aircraft takeoffs and land-

omy, mass in mass spectroscopy in physics, etc.). We use the terms
data series, time series, and sequence interchangeably.
2
http://www.esa.int/Our_Activities/Observing_the_Earth/

3
http://www.airbus.com/
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Figure 1: Indexing for supporting queries of 2 different lengths.
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Figure 2: Search space evolution of variable length similarity
search. Each dataset contains series of length 256

ings [31]; and in neuroscience, analysts need to search in Elec-
troencephalogram (EEG) recordings for Cyclic Alternating Pat-
terns (CAP) of different lengths (duration), in order to get insights
about brain activity during sleep [32]. In these applications, we
have datasets with a very large number of fixed length data series,
on which analysts need to perform a large number of ad hoc simi-
larity queries of (slightly) different lengths (as shown in Figure 1).

A straightforward solution for answering such queries would be
to use one of the available indexing techniques. However, in order
to support (exact) results for variable-length similarity search, we
would need to (i) create several distinct indexes, one for each pos-
sible query length; and (ii) for each one of these indexes, index all
overlapping subsequences (using a sliding window). We illustrate
this in Figure 1, where we depict two similarity search queries of
different lengths (` and `′). Given a data series from the collection,
Di (shown in black), we draw in red the subsequences that we need
to compare to each query in order to compute the exact answer. Us-
ing an indexing technique implies inserting all the subsequences in
the index: since we want to answer queries of two different lengths,
we are obliged to use two distinct indexes.

Nevertheless, this solution is prohibitively expensive, in both
space and time. Space complexity is increased, since we need to
index a large number of subsequences for each one of the supported
query lengths: given a data series collection C = D1, ..., D|C| and
a query length range [`min, `max], the number of subsequences we
would normally have to examine (and index) is:
S`min,`max =

∑(`max−`min)+1
`=1

∑|C|
i=1(|D

i| − (` − 1)). Fig-
ure 2 shows how quickly this number explodes as the dataset size
and the query length range increase: considering the largest query
length range (S96−256) in the 20GB dataset, we end up with a col-
lection of subsequences (that need to be indexed) 5 orders of mag-
nitude larger than the original dataset! Computational time is sig-
nificantly increased as well, since we have to construct different
indexes for each query length we wish to support.

In the current literature, a technique based on multi-resolution
indexes [27, 20] has been proposed in order to mitigate this explo-
sion in size, by creating a smaller number of distinct indexes and
performing more post-processing. Nonetheless, this solution works

exclusively for non Z-normalized series4 (which means that it can-
not return results with similar trends, but different absolute values),
and thus, renders the solution useless for a wide spectrum of appli-
cations. Besides, it only mitigates the problem, since it still leads
to a space explosion (albeit, at a lower rate), and therefore, it is not
scalable, either.

We note that the technique discussed above (despite its limita-
tions) is indeed the current state of the art, and no other technique
has been proposed since, even though during the same period of
time we have witnessed lots of activity and a steady stream of pa-
pers on the single-length similarity search problem (e.g., [17, 18,
19, 34, 11, 23, 24, 25, 26]). This attests to the challenging nature
of the problem we are tackling in this paper.
Contributions. In this work, we propose ULISSE (ULtra compact
Index for variable-length Similarity SEarch in data series), which
is the first single-index solution that supports fast answering of
variable-length similarity search queries for both non Z-normalized
and Z-normalized data series collections. ULISSE produces exact
(i.e., correct) results, and is based on the following key idea: a data
structure that indexes data series of length `, already contains all
the information necessary for reasoning about any subsequence of
length `′ < ` of these series. Therefore, the problem of enabling
a data series index to answer queries of variable-length, becomes
a problem of how to reorganize this information that already ex-
ists in the index. To this effect, ULISSE proposes a new summa-
rization technique that is able to represent contiguous and overlap-
ping subsequences, leading to succinct, yet powerful summaries: it
combines the representation of several subsequences within a sin-
gle summary, and enables fast (approximate and exact) similarity
search for variable-length queries.

Our contributions can be summarized as follows: (I) We in-
troduce the problem of Variable-Length Subsequences Indexing,
which calls for a single index that can inherently answer queries
of different lengths. (II) We provide a new data series summa-
rization technique, able to represent several contiguous series of
different lengths. This technique produces succinct, discretized
envelopes for the summarized series, and can be applied to both
non Z-normalized and Z-normalized data series. (III) Based on
this summarization technique, we develop an indexing algorithm,
which organizes the series and their discretized summaries in a hi-
erarchical tree structure, namely, the ULISSE index. (IV) We pro-
pose efficient exact and approximate K-NN algorithms, suitable for
the ULISSE index. (V) Finally, we perform an experimental eval-
uation with several synthetic and real datasets. The results demon-
strate the effectiveness and scalability of ULISSE to dataset sizes
that competing approaches cannot handle.
Paper Organization. The rest of this paper5 is organized as fol-
lows. Section 2 discusses related work, and Section 3 formulates
the problem. In Section 4, we describe the ULISSE summarization
techniques, and in Sections 5 and 6 we explain our indexing and
query answering algorithms. Section 7 describes the experimental
evaluation, and we conclude in Section 8.

2. RELATED WORK
Data series indexes. The literature includes several techniques for
data series indexing [15, 16, 19, 36, 18, 11], which are all based on
the same principle: they first reduce the dimensionality of the data
4Z-normalization transforms a series so that it has a mean value of
zero, and a standard deviation of one. This allows similarity search
to be effective, irrespective of shifting (i.e., offset translation) and
scaling[33].
5A high level (4-page poster paper) discussion of the ULISSE gen-
eral idea has appeared elsewhere [35].
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series by applying some summarization technique (e.g., Piecewise
Aggregate Approximation (PAA) [37], or Symbolic Aggregate ap-
proXimation (SAX) [19]. However, all the approaches mentioned
above share a common limitation: they can only answer queries of
a fixed, predetermined length, which has to be decided before the
index creation.
Indexing for variable length query. Faloutsos et al. [15] pro-
posed the first indexing technique suitable for variable length sim-
ilarity search query. This technique extracts subsequences that are
grouped in MBRs (Minimum Bounding Rectangles) and indexed
using an R-tree. We note that this approach works only for non Z-
normalized sequences. An improvement of this approach was pro-
posed by Kahveci and Singh [27]. They described MRI (Multi Res-
olution Index), which is a technique based on the construction of
multiple indexes for variable length similarity search query. Storing
subsequences at different resolutions (building indexes for different
series lengths) provided a significant improvement over the earlier
approach, since a greater part of a single query is considered dur-
ing the search. Subsequently, Kadiyala and Shiri [20] redesigned
the MRI construction, in order to decrease the indexing size and
construction time. This new indexing technique, called Compact
Multi Resolution Index (CMRI), has a space requirement, which is
99% smaller than the one of MRI. The authors also redefined the
search algorithm, guaranteeing an improvement of the range search
proposed upon the MRI index. In contrast to CMRI, our approach
uses a single index that is able to answer similarity search queries
of variable length over larger datasets, and works for both non Z-
normalized and Z-normalized series (a feature that is not supported
by any of the previously introduced indexing techniques).
Sequential scan techniques. Even though recent works have
shown that sequential scans can be performed efficiently [28, 38],
such techniques are mostly applicable when the dataset consists of
a single, very long data series, and queries are looking for poten-
tial matches in small subsequences of this long data series. Such
approaches, in general, do not provide any benefit when the dataset
is composed of a large number of small data series, like in our
case. Therefore, indexing is required in order to efficiently sup-
port data exploration tasks, which involve ad-hoc queries, i.e., the
query workload is not known in advance.

3. PROBLEM FORMULATION AND PRE-
LIMINARIES

Let a data series D = d1,...,d|D| be a sequence of numbers
di ∈ R, where i ∈ N represents the position in D. We denote
the length, or size of the data series D with |D|. The subsequence
Do,`=do,...,do+`−1 of length `, is a contiguous subset of ` points of
D starting at offset o, where 1 ≤ o ≤ |D| and 1 ≤ ` ≤ |D|−o+1.
A subsequence is itself a data series. A data series collection, C, is
a set of data series.

We say that a data series D is Z-normalized, denoted Dn, when
its mean µ is 0 and its standard deviation σ is 1. The normal-
ized version of D = d1, ..., d|D| is computed as follows: Dn =

{ d1−µ
σ

, ...,
d|D|−µ

σ
}. Z-normalization is an essential operation in

several applications, because it allows similarity search irrespec-
tive of shifting and scaling [33, 28].

Given two data seriesD = d1, ..., d|D| andD′ = d′1, ..., d
′
|D′| of

the same length (i.e., |D| = |D′|), we can calculate their Euclidean

Distance as follows: ED(D,D′) =
√∑|D|

1 (d1 − d′1)2.
The problem we wish to solve in this paper is the following.

PROBLEM 1 (VARIABLE-LENGTH SUBSEQUENCES INDEXING).
Given a data series collection C, and a series length range

........ ........
ROOT NODE

1 - 1 - 0 - 0
node split on 
2nd segment

Indexing D

iSAX(D): {1,11,0,0}

SAX(D,4,2): {1,1,0,0} 
data series D

1 - 11 - 0 - 0
increased cardinality

by adding 0

refine representation
of 2nd segment of D

increased cardinality
by adding 1

Insert in 
the correct 
leaf node

1 - 01 - 0 - 0

SAX(D,4,4): {11,10,01,00} 

Figure 3: Indexing of series D (and an inner node split).

[`min, `max], we want to build an index that supports exact
similarity search for queries of any length within the range
[`min, `max].

In our case similarity search is formally defined as follows:

DEFINITION 1 (SIMILARITY SEARCH). Given a data series
collection C = {D1, ..., DC}, a series length range [`min, `max],
a query data series Q, where `min ≤ |Q| ≤ `max, and k ∈ N,
we want to find the set R = {Di

o,`|Di ∈ C ∧ ` = |Q| ∧ (` +

o − 1) ≤ |Di|}, where |R| = k. We require that ∀Di
o,` ∈ R

@Di′

o′,`′ s.t. ED(Di′

o′,`′ , Q) < ED(Di
o,`, Q), where `′ = |Q|,

(`′ + o′ − 1) ≤ |Di′ | and Di′ ∈ C. We informally call R, the k
nearest neighbors set of Q.

In this study, we use Euclidean Distance as the measure for con-
ducting similarity search, which is a widely used and accepted mea-
sure [15, 16, 17, 18, 19, 20, 11, 21, 23, 24]. Though, our approach
could be extended to work with other distance measures as well
(e.g., Dynamic Time Warping, through the use of the correspond-
ing envelopes [39]).

3.1 The iSAX Index
The Piecewise Aggregate Approximation (PAA) of a data series

D, PAA(D) = {p1, ..., pw}, represents D in a w-dimensional
space by means of w real-valued segments of length s, where the
value of each segment is the mean of the corresponding values of
D [37]. We denote the first k dimensions of PAA(D), (k ≤ w),
as PAA(D)1,..,k. Then, the iSAX representation of a data series
D, denoted by SAX(D,w, |alphabet|), is the representation of
PAA(D) by w discrete coefficients, drawn from an alphabet of
cardinality |alphabet| [19].

The main idea of the iSAX representation (see Figure 3, top),
is that the real-values space may be segmented by |alphabet| − 1
breakpoints in |alphabet| regions that are labeled by distinct sym-
bols: binary values (e.g., with |alphabet| = 4 the available labels
are {00, 01, 10, 11}). iSAX assigns symbols to the PAA coeffi-
cients, depending in which region they are located.

The iSAX data series index is a tree data structure [19, 21], con-
sisting of three types of nodes (refer to Figure 3). (i) The root node
points to n children nodes (in the worst case n = 2w, when the se-
ries in the collection cover all possible iSAX representations). (ii)
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D

Containment area
Envelope extremes

D

Figure 4: a) master series of D in the length interval
`min, `max. b) Zero-aligned master series. c) Envelope built
over the master series.

Each inner node contains the iSAX representation of all the series
below it. (iii) Each leaf node contains both the iSAX representa-
tion and the raw data of all the series inside it (in order to be able
to prune false positives and produce exact, correct answers). When
the number of series in a leaf node becomes greater than the max-
imum leaf capacity, the leaf splits: it becomes an inner node and
creates two new leaves, by increasing the cardinality of one of the
segments of its iSAX representation. The two refined iSAX rep-
resentations (new bit set to 0 and 1) are assigned to the two new
leaves.

4. THE ULISSE FRAMEWORK
The key idea of the ULISSE approach is the succinct summa-

rization of sets of series, namely, overlapping subsequences. In this
section, we present this summarization method.

4.1 Representing Multiple Subsequences
When we consider, contiguous and overlapping subsequences of

different lengths within the range [`min, `max] (Figure 4.a), we ex-
pect the outcome as a bunch of similar series, whose differences
are affected by the misalignment and the different number of points.
We conduct a simple experiment in Figure 4.b, where we zero-align
all the series shown in Figure 4.a; we call those master series.

DEFINITION 2 (MASTER SERIES). Given a data series D,
and a subsequence length range [`min, `max], the master series are
subsequences of the form Di,min(|D|−i+1,`max), for each i such
that 1 ≤ i ≤ |D| − (`min − 1), where 1 ≤ `min ≤ `max ≤ |D|.

We observe that the following property holds for the master se-
ries.

LEMMA 1. For any master series of the form Di,`′ , we have
thatPAA(Di,`′)1,..,k = PAA(Di,`′′)1,..,k holds for each `′′ such
that `′′ ≥ `min, `′′ ≤ `′ ≤ `max and `′, `′′%k = 0.

PROOF. It trivially follows from the fact that, each non master
series is always entirely overlapped by a master series. Since the
subsequences are not subject to any scale normalization, their pre-
fix coincides to the prefix of the equi-offset master series.

Intuitively, the above lemma says that by computing only the
PAA of the master series in D, we are able to represent the PAA
prefix of any subsequence of D.

0 50 100 150 200 250

D1,256 (Z-normalized master series)

D1,128 (Z-normalized)

D1,64 (Z-normalized)

Figure 5: Master series D1,256 with marked PAA coefficients.

When we zero-align the PAA summaries of the master series,
we compute the minimum and maximum PAA values (over all
the subsequences) for each segment: this forms what we call an
Envelope (refer to Figure 4.c). (When the length of a master series
is not a multiple of thePAA segment length, we compute thePAA
coefficients of the longest prefix, which is multiple of a segment.)
We call containment area the space in between the segments that
define the Envelope.

4.2 PAA Envelope
In this subsection, we formalize the concept of the Envelope,

introducing a new series representation.
We denote by L and U the PAA coefficients, which delimit the

lower and upper parts, respectively, of a containment area (see Fig-
ure 4.c). Furthermore, we introduce a parameter γ, which corre-
sponds to the number of master series we represent by the Enve-
lope. This allows to tune the number of subsequences of length
in the range [`min, `max], that a single Envelope represents, influ-
encing both the tightness of a containment area and the size of the
Index (number of computed Envelopes). We will show the effect of
the relative tradeoff i.e., Tightness/Index size in the Experimental
evaluation. Given a, the point from where we start to consider the
subsequences in D, and s, the chosen length of the PAA segment,
we refer to an Envelope using the following signature:

paaENV[D,`min,`max,a,γ,s] = [L,U ] (1)

4.3 PAA Envelope for Z-Normalized subse-
quence

So far we have considered that each subsequence in the input
series D is not subject of any scale normalization, i.e., is not Z-
normalized. We introduce here a negative result, concerning the
unsuitability of a generic paaENV[D,`min,`max,a,γ,s] to describe
subsequences that are Z-normalized.

Intuitively, we argue that the PAA coefficients of a single master
seriesDi,a, generate a containment area, which may not embed the
coefficients of the Z-normalized subsequence in the form D′i,a′ ,
for a′ < a. This happens, because Z-normalization causes the
subsequences of different lengths to change their shape, and even
shift on the y-axis. Figure 5 depicts such an example.

We can now formalize this negative result.

LEMMA 2. A paaENV[D,`min,`max,a,γ,s] is not guaranteed to
contain all the PAA coefficients of the Z-normalized subsequences
of lengths [`min, `max], of D.

PROOF. To prove the correctness of the lemma, it suf-
fices to pick such a case where a subsequence of D, namely
Da,`′ , with `min ≤ `′ ≤ `max, is not encoded by
paaENV[D,`min,`max,a,γ,s]. Formally, we should consider
the case where ∃k such that PAA(Di,`′)k > Uk or
PAA(Di,`′)k < Lk. We may pick a Z-normalized series D
choosing `max = |D| = `min + 1 and γ = 0. The result-
ing paaENV[D,`min=`max−1,`max=|D|,i=1,γ=0,s] obtains equal
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s := segment length

Figure 6: PAA∗(D)1 computation. Since the first PAA seg-
ment (of length s) of the master series D, is also the first one of
the two non master series D1,|D−1|, D1,|D−2|, three PAA coef-
ficients are computed with the different normalizations.

bounds, namely L = U . Let consider the z-normalized subse-
quence D1,`min . Its PAA coefficients must be in the envelope.
This implies that, PAA(D1,`min)1 = L1 = U1 (2) must hold.
If s is the PAA segment length, in the case of Z-normalization,
PAA(D1,`min)1 = (((

∑s
i=1 di)−(µD1,`min×s))/σD1,`min)/s

andU1 = (((
∑s
i=1 di)−(µD×s))/σD)/s. Therefore, the follow-

ing equation: (µD1,`min × s)/σD1,`min = (µD × s)/σD holds,
which is equivalent to µD1,`min/σD1,`min = µD/σD . At this
point we may have that µD = µD1,`min , when d`max = µD1,`min .
This clearly leads to have a smaller dispersion on D than D1,`min

and thus σD < σD1,`min =⇒ (2) does not hold.

If we want to build an Envelope, containing all the Z-normalized
sequences, we need to take into account the shifted coefficients
of the Z-normalized subsequences, which are not master series.
Hence, each PAA segment coefficient (in a master series) will be
represented by the set of values resulting from the Z-normalizations
of all the subsequences of length in [`min, `max] that are not mas-
ter series and contain that segment.

Given a generic master series Di,` = {di, ..di+`−1}, and s the
length of the segment, its kth PAA coefficient set is computed

by: PAA∗(Di,`)k = {(
(
∑s(k−1)+s
p=s(k−1)+1

dp)−(µD
i,`′
×s)

σD
i,`′

)/s|`min ≤

`′ ≤ `max, `′ ≥ (s(k − 1) + s− (i− 1))} (3).
In Figure 6, we depict an example of PAA∗ computation for the

first segment of the master series D.
We can then follow the same procedure as before (in the case of

non Z-normalized sequences), computing the minimum and maxi-
mum PAA coefficients for each segment given by the above for-
mula, in order to get the Envelope for the Z-normalized sequences
(which we also denote with paaENV ).

4.4 Indexing the Envelopes
Here, we define the procedure used to index the Envelopes. In

that regard, we aim to adapt the iSAX indexing mechanism (de-
picted in Figure 3).

Given a paaENV , we can translate its PAA extremes into the
relative iSAX representation: uENVpaaENV[D,`min,`max,a,γ,s]

=

[iSAX(L), iSAX(U)], where iSAX(L) (iSAX(U)) is the vec-
tor of the minimum (maximum) PAA coefficients of all the seg-
ments corresponding to the subsequences of D.

The ULISSE Envelope, uENV , represents the principal build-
ing block of the ULISSE index. Note that, we might remove for
brevity the subscript containing the parameters from the uENV
notation, when they are explicit.

In Figure 7, we show a small example of envelope building,
given an input series D. The picture shows the PAA coeffi-
cients computation of the master series. They are calculated by
using a sliding window starting at point a = 1, which stops af-
ter γ steps. Note that the Envelope generates a containment area,

21 :PAA(D2,60)2

D

1:PAA(D1,60)1

not enough 
points for the 
3rd segments

paaENV[D, lmin=40, lmax=60, a=1, γ=20, s=20 pts] = 
U = [Max(1,…, 1γ)] , Max(2,…, 2γ)], ..., Max(3)]
L =  [Min(1,…, 1γ)] , Min(2,…, 2γ)], ..., Min(3)]
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Figure 7: uENV building, with input: data series D of length
60, PAA segment size = 20, γ = 20, `min = 40 and `max = 60.

Algorithm 1: uENV computation
Input: float[]D, int s, int `min, int `max, int γ, int a
Output: uENV[iSAXmin, iSAXmax]

1 int w← b`max/sc ;
2 int segUpdateList[S]←{0,...,0};
3 float U [w]← {−∞, ...,−∞}, L[w]←{∞, ...,∞};
4 if |D| − (i− 1) ≥ `min then
5 float paaRSum← 0;

// iterate the master series.
6 for i← a to min(|D|,a+ `max + γ) do

// running sum of paa segment
7 paaRSum← paaRSum + D[i];
8 if (j-a)> s then
9 paaRSum← paaRSum - D[i-s];

10 for z← 1 to min(b[i-(a-1)] / sc,w) do
11 if segUpdatedList[z]≤ γ then
12 segUpdateList[z] ++;
13 float paa← (paaRSum / s);
14 L[z]←min(paa, L[z]);
15 U [z]←max(paa, U [z]);
16 uENV← [iSAX(L),iSAX(U )];
17 else
18 uENV← ∅;

which embeds all the subsequences of D of all lengths in the range
[`min, `max].

5. INDEXING ALGORITHM

5.1 Non Z-Normalized Subsequences
We are now ready to introduce the algorithms for building

an uENV . Algorithm 1 describes the procedure for non-Z-
normalized subsequences. As we noticed, maintaining the running
sum of the last s points, i.e., the length of a PAA segment (refer
to Line 7), allows us to compute all the PAA values of the ex-
pected envelope in O(w(`max + γ)) time in the worst case, where
`max+γ is the points window we need to take into account for pro-
cessing each master series, and w is the number of PAA segments
in the maximum subsequence length `max. Since w, is usually a
very small number (ranging between 8-16), it essentially plays the
role of a constant factor. In order to consider not more than γ steps
for each segment position, we store how many times we use it, to
update the final envelope in the vector, in Line 2.
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Figure 8: Running example of Algorithm 2. Left column) Points
iteration, the dashed squared contours the subsequence used to
normalize the PAA coefficients in the Second loop. Right col-
umn) Statistics update at each step, which serve the computa-
tion of µ and σ of each possible coefficients normalization.

5.2 Z-Normalized Subsequences
In Algorithm 2, we show the procedure that computes an in-

dexable Envelope for Z-normalized sequences, which we denote
as uENVnorm. This routine iterates over the points of the over-
lapping subsequences of variable length (First loop in Line 7), and
performs the computation in two parts. The first operation consists
of computing the sum of each PAA segment we keep in the vec-
tor PAAs defined in Line 2. When we encounter a new point, we
update the sum of all the segments that contain that point (Lines 8-
11). The second part, starting in Line 16 (Second loop), performs
the segment normalizations, which depend on the statistics (mean
and std.deviation) of all the subsequences of different length (mas-
ter and non-master series), in which they appear. During this step,
we keep the sum and the squared sum of the window, which per-
mits us to compute the mean and the standard deviation in constant
time (Lines 19,20). We then compute the Z-normalizations of all
the PAA coefficients in Line 25, by using Equation 3.

In Figure 8, we show an example that illustrates the operation of
the algorithm. In 1, the First loop has iterated over 8 points (marked
with the dashed square). Since they form a subsequence of length
`min, the Second Loop starts to compute the Z-normalized PAA
coefficients of the two segments, computing the mean and the stan-
dard deviation using the sum (acSAc) and squared sum (acSqAc)
of the points considered by the First loop (gray circles). The sec-
ond step takes place after that the First Loop has considered the 9th

point (black circle) of the series. Here, the Second Loop updates
the sum and the squared sum, with the new point, calculating then
the corresponding new Z-normalized PAA coefficients. At step 3,
the algorithm considers the second subsequence of length `min,
which is contained in the nine points window. The Second Loop
considers in order all the overlapping subsequences, with differ-
ent prefixes and length. This permits to update the statistics (and
all possible normalizations) in constant time. The algorithm termi-
nates, when all the points are considered by the First loop, and the
Second Loop either encounters a subsequence of length `min (as

Algorithm 2: uENVnorm computation
Input: float[]D, int s, int `min, int `max, int γ, int a
Output: uENVnorm[iSAXmin, iSAXmax]

1 int w← b`max/sc ;
// sum of PAA segments values

2 float PAAs [`max + γ − (s− 1)]←{0,...,0};
3 float U [w]← {−∞, ...,−∞}, L[w]← {∞, ...,∞};
4 if |D| − (a− 1)≥ `min then
5 int nSeg← 1;
6 float accSum, accSqSum← 0;

// First loop: Iterate the points.
7 for i← a to min(|D|,(a+`max+γ)) do

// update sum of PAA segments values
8 if i− a > s then
9 nSeg++;

10 PAAs[nSeg]← PAAs[nSeg-1] - D[i-s];
11 PAAs[nSeg] += D[i];

// keep sum and squared sum.

12 accSum += D[i], accSqSum += (D[i])2;
// the window contains enough points.

13 if i-(a-1)≥ `min then
14 acSAc← accSum, acSqSAc← accSqSum;
15 int nMse← min(γ+1,(i-(a-1)-`min) + 1);

// Normalizations of PAA coefficients.
16 for j← 1 to nMse do
17 int wSubSeq← i-(a-1)-(j-1) ;
18 if wSubSeq≤ `max then
19 float µ←acSAc/wSubSeq;

20 float σ←
√

( acSqSAcwSubSeq − µ2);

21 int nSeg← bwSubSeq÷sc;
22 for z← 1 to nSeg do
23 float a← PAAs[j+[(z-1)×s]];
24 float b← s×µ;

25 float paaNorm← ((a−b)/σ)
s ;

26 L[z]←min(paaNorm,L[z]);
27 U [z]←max(paaNorm,U [z]);
28 acSAc -= D[j], acSqSAc -= (D[j])2;
29 uENVnorm← [iSAX(L),iSAX(U )];
30 else
31 uENVnorm← ∅;

depicted in the step 15), or performs at most γ iterations, since all
the subsequences starting at position a+γ+1 or later (if any) will
be represented by other Envelopes.

5.2.1 Complexity Analysis

Given w, the number of PAA segments in the window of length
`max, and M = `max− `min+ γ, the number of master series we
need to consider, building a normalized Envelope, uENVnorm,
takes O(Mγw) time.

5.3 Building the index
We now introduce the algorithm, which builds a ULISSE index

upon a data series collection. We maintain the structure of the
iSAX index [21], introduced in the preliminaries.

Each ULISSE internal node stores the Envelope uENV that rep-
resents all the sequences in the subtree rooted at that node. Leaf
nodes contain several Envelopes, which by construction have the
same iSAX(L). On the contrary, their iSAX(U) varies, since it
get updated with every new insertion in the node. (Note that, in-
serting by keeping the same iSAX(U) and updating iSAX(L)
represents a symmetric and equivalent choice.)

In Figure 9, we show the structure of the ULISSE index dur-
ing the insertion of an Envelope (rectangular/yellow box). Note
that insertions are performed based on iSAX(L) (underlined in
the figure). Once we find a node with the same iSAX(L) =
(1 − 0 − 0 − 0) (Figure 9, 1ststep) if this is an inner node, we
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Algorithm 3: ULISSE index computation
Input: Collection C, int s, int `min, int `max, int γ, bool bNorm
Output: ULISSE index I

1 foreach D in C do
2 inta′ ← ∅;
3 uENV E ← ∅;
4 while true do
5 if bNorm then
6 E ← uENVnorm(D, s, `min, `max, γ, a

′);
7 else
8 E ← uENV (D, s, `min, `max, γ, a

′);
9 a′ ← a′ + γ + 1 ;

10 ifE == ∅ then
11 break;
12 bulkLoadingIndexing(I, E);
13 I.inMemoryList.add(maxCardinality(E));

descend its subtree (always following the iSAX(L) representa-
tions) until we encounter a leaf. During this path traversal, we
also update the iSAX representation of the Envelope we are in-
serting, by increasing the number of bits of the segments, as nec-
essary. In our example, when the Envelope arrives at the leaf, it
has increased the cardinality of the second segment to two bits:
iSAX(L) = (1−10−0 − 0), and similarly for iSAX(U) (Fig-
ure 9, 2ndstep). Along with the Envelope, we store in the leaf a
pointer to the location on disk for the corresponding raw data se-
ries. We note that, during this operation, we do not move any raw
data into the index.

To conclude the insertion operation, we also update the
iSAX(U) of the nodes visited along the path to the leaf, where
the insertion took place. In our example, we update the upper
part of the leaf Envelope to iSAX(U) = (1−11−0 − 0), as
well as the upper part of the Envelope of the leaf’s parent to
iSAX(U) = (1−1−0 − 0) (Figure 9, 3rdstep). This brings the
ULISSE index to a consistent state after the insertion of the Enve-
lope.

Algorithm 3 describes the procedure, which iterates over the se-
ries of the input collection C, and inserts them in the index. Note
that function bulkLoadingIndexing in Line 12 may use different
bulk loading techniques. In our experiments, we used the iSAX 2.0
bulk loading algorithm [34]. Alongside the index, we also keep
in memory (using the raw data order) all the Envelopes, repre-
sented by the symbols of the highest iSAX cardinality available
(Line 13). This information is used during query answering.

5.3.1 Space complexity analysis
The index space complexity is equivalent for the case of Z-

normalized and non Z-normalized sequences. The choice of γ de-
termines the number of Envelopes generated and thus the index
size. Hence, given a data series collection C = {D1, ..., D|C|} the
number of extracted Envelopes is given byN = (

∑|C|
i b

|Di|
`min+γ

c).
If w PAA segments are used to discretize the series, each iSAX
symbol is represented by a single byte (binary label) and the disk
pointer in each Envelope occupies b bytes (in general 8 bytes are
used). The final space complexity is O((2w)bN).

6. SIMILARITY SEARCH WITH ULISSE
In this section, we present the building blocks of the similarity

search algorithms we developed for the ULISSE index.

6.1 Lower Bounding Euclidean Distance
The iSAX representation allows the definition of a distance func-

tion, which lower bounds the true Euclidean [19]. This function
compares the PAA coefficients of the first data series, against the
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computing the new representation 
for the split symbols

..... ROOT
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INDEX
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Figure 9: Envelope insertion in an ULISSE index. iSAX(L) is
chosen to accommodate the Envelopes inside the nodes.

iSAX breakpoints (values) that delimit the symbol regions of the
second data series.

Let βu(S) and βl(S) be the breakpoints of the iSAX symbol S.
We can compute the distance between a PAA coefficient and an
iSAX region using:

distLB(PAA(D)i, iSAX(D′)i) =
(βu(iSAX(D′)i)− PAA(D)i)

2 ifβu(iSAX(D′)i) < PAA(D)i
(βl(iSAX(D′)i)− PAA(D)i)

2 ifβl(iSAX(D′)i) > PAA(D)i
0 otherwise.

In turn, the lower bounding distance between two equi-length se-
riesD,D′, represented byw PAA segments andw iSAX symbols,
respectively, is defined as:

mindistPAA iSAX(PAA(D), iSAX(D′)) =√
|D|
w

√√√√ w∑
i=1

distLB(PAA(D)i, iSAX(D′)i).
(4)

We rely on the following proposition [40]:

PROPOSITION 1. Given two data series D,D′, where
|D| = |D′|, mindistPAA iSAX(PAA(D), iSAX(D′)) ≤
ED(D,D′).

Since our index contains Envelope representations, we need to
adapt Equation 4, in order to lower bound the distances between
a data series Q, which we call query, and a set of subsequences,
whose iSAX symbols are described by the Envelope
uENVpaaENV[D,`min,`max,a,γ,s]

= [iSAX(L), iSAX(U)].
Therefore, given w, the number of PAA coefficients ofQ, that are

computed using the Envelope PAA segment length s on the longest
multiple prefix, we define the following function:

mindistULiSSE(PAA(Q), uENVpaaENV...) =

√
s

√√√√√ w∑
i=1

(PAA(Q)i−βu(iSAX(U)i))
2, ifβu(iSAX(U)i)<PAA(Q)i

(PAA(Q)i−βu(iSAX(L)i))
2, ifβl(iSAX(L)i)>PAA(Q)i

0 otherwise.

(5)
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Figure 10: Given the PAA representation of a query Q
(a) and uENVpaaENV[D,`min,`max,a,γ,s]

(b) we compute their
mindistULiSSE . The iSAX space is delimited with dashed
lines and the relative breakpoints βi.

In Figure 10, we report an example of mindistULiSSE compu-
tation between a query Q, represented by its PAA coefficients, and
an Envelope in the iSAX space.

PROPOSITION 2. Given two data series Q,D,
mindistULiSSE(PAA(Q), uENVpaaENV[D,`min,`max,a,γ,s]

) ≤
ED(Q,Di,|Q|), for each i such that a ≤ i ≤ a + γ + 1 and
|D| − (i− 1) ≥ `min.

PROOF. (sketch) We may have two cases, when
mindistULiSSE is equal to zero, the proposition clearly
holds, since Euclidean distance is non negative. On the other
hand, the function yields values greater than zero, if one of the
first two branches is true. Let consider the first (the second is
symmetric). If we denote with D′′ the subsequence in D, such that
βl(iSAX(U)i) ≤ PAA(D′′)i ≤ βu(iSAX(U)i), we know that
the upper breakpoint of the ith iSAX symbol, of each subsequence
in D, which is represented by the Envelope, must be less or equal
than βu(iSAX(U)i). It follows that, for this case, Equation 5 is
equivalent to
distLB(PAA(Q)i, iSAX(D′′)i), which yields the shortest
lower bounding distance between the ith segment of points in D
and Q.

6.2 Approximate search
Similarity search performed on ULISSE index relies on Equa-

tion 5 to prune the search space. This allows to navigate the tree in
order, visiting first the most promising nodes.

We thus provide a fast approximate search procedure we report
in Algorithm 4. In Line 4, we start to push the internal nodes of the
index in a priority queue, where the nodes are sorted according to
their lower bounding distance to the query. Note that in the compar-
ison, we use the largest prefix of the query, which is a multiple of
the PAA segment length, used at the index building stage (Line 1).
Then, the algorithm pops the ordered nodes from the queue, visiting
their children in the loop of Line 6. In this part, we still maintain
the internal nodes ordered (Lines 21,22).

As soon as a leaf node is discovered (Line 8), we check if its
mindist to the query is shorter than the bsf. If this is verified, the
dataset does not contain any data series that are closer than those
already compared with the query. In this case, the approximate
search result coincides with that of the exact search. Otherwise,
we can load the raw data series pointed by the Envelopes in the
leaf, which are in turn sorted according to their position, to avoid
random disk reads. We visit a leaf only if it contains Envelopes that
represent sequences of the same length as the query. Each time we
compute the true Euclidean distance, the best-so-far distance (bsf )
is updated, along with theRapprox vector. Since priority is given to
the most promising nodes, we can terminate our visit, when at the
end of a leaf visit the k bsf ’s have not improved (Line 15). Hence,
the vector Rapprox contains the k approximate query answers.

Algorithm 4: ULISSE K-nn-Approx
Input: int k, float []Q, ULISSE index I
Output: float [k][|Q|]Rapprox, float [] bsf

1 float []Q∗← PAA(Q1,..,b|Q|/I.sc);
2 float[k] bsf ← {∞, ...,∞} ;
3 PriorityQueue nodes;
4 foreach node in I.root.children() do
5 nodes.push(node,mindistULiSSE(Q∗, node));
6 while n = nodes.pop() do
7 if n.isLeaf() and n.containsSize(|Q|) then
8 if n.mindist < bsf[k] then

// sort according disk pos.
9 uENV [] Envelopes = sort(n.Envelopes);

// iterate the Env. and compute true ED
10 oldBSF← bsf [k];
11 foreach E in Envelopes do
12 float [] D← readSeriesFromDisk(E);
13 for i← E.a to min(E.a+E.γ+1,|D| − (|Q| − 1)) do
14 EDupdateBSF (Q,E.Di,|Q|, k,bsf , Rapprox);

// if bsf has not improved end visit.
15 if oldBSF == bsf[k] then
16 break;
17 else
18 break; // Approximate search is exact.
19

20 else
21 nodes.push(n.right,mindistULISSE(Q

∗, n.right));
22 nodes.push(n.left,mindistULISSE(Q

∗, n.left));

Algorithm 5: ULISSE K-nn-Exact
Input: int k, float []Q, ULISSE index I
Output: float [k][|Q|]R

1 float []Q∗← PAA(Q1,..,b|Q|/I.sc);
2 float [] bsf, float [k][|Q|]R←K-nn-Approx(k,Q, I) ;
3 if bsf is not exact then
4 foreach E in I.inMemoryList do
5 ifmindistULiSSE(Q∗, E)< bsf[k] then
6 float [] D← readSeriesFromDisk(E);
7 for i← E.a to min(E.a+E.γ+1,|D| − (|Q| − 1)) do
8 EDupdateBSF (Q,E.Di,|Q|, k,bsf , R);

6.3 Exact search
Note that the approximate search described above may not visit

leaves that contain answers better than the approximate answers al-
ready identified, and therefore, it will fail to produce exact, correct
results. We now describe an exact nearest neighbor search algo-
rithm, which finds the k sequences with the absolute smallest dis-
tances to the query.

In the context of exact search, accessing disk-resident data fol-
lowing the lower bounding distances order may result in several
leaf visits: this process can only stop after finding a node, whose
lower bounding distance is greater than the bsf, guaranteeing the
correctness of the results. This would penalize computational time,
since performing many random disk I/O might unpredictably de-
generate.

We may avoid such a bottleneck by sorting the Envelopes, and
in turn the disk accesses. Moreover, we can exploit exploit the bsf
provided by approximate search, in order to perform a sequential
search with pruning over the sorted Envelopes list (this list is stored
across the ULISSE index). Intuitively, we rely on two aspects. First,
the bsf, which can translate into a tight-enough bound for pruning
the candidate answers. Second, since the list has no hierarchy struc-
ture, any Envelope is stored with the highest cardinality available,
which guarantees a fine representation of the series, and can con-
tribute to the pruning process.

Algorithm 5 describes the exact search procedure. In Line 5, we
compute the lower bounding distance between the Envelope and
the query. If it is not better than the kth bsf, we do not access the
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disk, pruning Euclidean Distance computations as well. We note
that, while we are computing the true Euclidean distance, we can
speed-up computations using the Early Abandoning technique [28],
which is effective especially for Z-normalized data series.

6.4 Complexity of query answering
We provide now the time complexity analysis of query answer-

ing with ULISSE. Both the approximate and exact query answering
time strictly depend on data distribution as shown in [41]. We focus
on exact query answering, since approximate is part of it.
Best Case. In the best case, an exact query will visit one leaf
at the stage of the approximate search (Algorithm 4), and dur-
ing the second leaf visit will fulfill the stopping criterion (i.e., the
bsf distance is smaller than the mindist between the second leaf
and the query). Given the number of the first layer nodes (root
nodes) N , the length of the first leaf path L, and its size S, the
best case complexity is given by the cost to iterate the first layer
node and descend to the leaf keeping the nodes sorted in the heap:
O(w(N + LlogL)), where w is the number of symbols checked
at each mindist computation. Moreover we need to take into ac-
count the additional cost of computing the true distances in the leaf,
which isO(S(logS+`max)) (including both the cost of sorting the
disk accesses, and the cost of computing the Euclidean distances).
Worst Case. The worst case for exact search takes place when at
the approximate search stage, the complete set of leaves that we
denote with T , need to be visited. This has a cost of O(w(N +
TLlogL)) plus the cost of computing the true Euclidean distances,
which in this case takesO(T (S(logS+ `max))). Note though that
this worst case is pathological: for example, when all the series
in the dataset are the same straight lines (only sligthly perturbed).
Evidently, the very notion of indexing does not make sense in this
case, where all the data series look the same. As we show in our
experiments on several datasets, in practice, the approximate algo-
rithm always visits a very small number of leaves.
ULISSE K-nn Exact complexity. So far we have considered
the exact K-nn search with regards to Algorithm 4 (approximate
search). When this algorithm produces approximate answers, pro-
viding just an upper bound bsf, in order to compute exact answers
we must run Algorithm 5 (exact search). The complexity of this
procedure is given by the cost of iterating over the Envelopes and
computing the mindist, which takes O(Mw) time, where M is
the total number of Envelopes. Let’s denote with V the number
of Envelopes, for which the raw data are retrieved from disk and
checked. Then, the algorithm takes an additional O(V `max) time
to compute the true Euclidean distances.

7. EXPERIMENTAL EVALUATION
Setup. All the experiments presented in this section are com-
pletely reproducible: the code and datasets we used are available
online [42]. We implemented all algorithms (indexing and query
answering) in C (compiled with gcc 4.8.2). We ran experiments
on an Intel Xeon E5-2403 (4 cores @ 1.9GHz), using the x86 64
GNU/Linux OS environment.
Algorithms. We compare ULISSE to the Compact Multi-
Resolution Index (CMRI) [20], which is the current state-of-the-
art index for similarity search with varying-length queries (recall
that CMRI constructs a limited number of distinct indexes for se-
ries of different lengths). We note though, that in contrast to our
approach, CMRI can only support non Z-normalized sequences. In
addition, we compare to the current state-of-the-art algorithms for
subsequence similarity search, the UCR suite [28], and MASS [38].
These algorithms do not use an index, but are based on optimized
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Figure 11: a) Construction and bulk Loading time (log scale)
of Envelopes in 5GB datasets varying γ (5M of series of length
256), `min = 160, `max = 256 . b) Construction and Bulk
Loading time (log scale) of Envelopes in 5GB dataset (2.5M of
series of length 512) varying `max − `min (lengths range), γ =
256, fixed `max = 512.

serial scans, and are natural competitors, since they can process
overlapping subsequences very fast.
Datasets. For the experiments, we used both synthetic and real
data. We produced the synthetic datasets with a generator, where
a random number is drawn from a Gaussian distribution N(0, 1),
then at each time point a new number is drawn from this distribu-
tion and added to the value of the last number. This kind of data
generation has been extensively used in the past [41], and has been
shown to effectively model real-world financial data [15].

The real datasets we used are astrophysics and seismic data se-
ries. The first contains 100 Million astronomical data series of
length 256 (100GB), representing celestial objects (ASTRO)[43].
The second real dataset contains 100 Million seismic data series
(100GB) of length 256, collected from the IRIS Seismic Data
Access repository (SEISMIC) [44]. In our experiments, we test
queries of lengths 160-4096 points, since these cover at least 90%
of the ranges explored in works about data series indexing in the
last two decades [33, 45, 46]. Moreover, of the 85 datasets in the
UCR archive [47], only four are (slightly) longer than 1,024.

7.1 Envelope Building
In the first set of experiments, we analyze the performance of the

ULISSE indexing algorithm. In Figure 11.a) we report the index-
ing time (Envelope Building and Bulk loading operations) when
varying γ. We use a dataset containing 5M series of length 256,
fixing `min = 160 and `max = 256. We note that, when γ = 0,
the algorithm needs to extract as many Envelopes as the number
of master series of length `min. This generates a significant over-
head for the index building process (due to the maximal Envelopes
generation), but also does not take into account the contiguous se-
ries of same length, in order to compute the statistics needed for
Z-normalization. A larger γ speeds-up the Envelope building op-
eration by several orders of magnitude, and this is true for a very
wide range of γ values (Figure 11.a)). These results mean that the
uENVnorm building algorithm can achieve good performance in
practice, despite its complexity that is quadratic on γ.

In Figure 11.b) we report an experiment, where γ is fixed, and
the query length range (`max − `min) varies. We use a dataset,
with the same size of the previous one, which contains 2.5M series
of length 512. The results show that increasing the range has a
linear impact on the final running time.

7.2 Exact Search Similarity Queries
We now test ULISSE on exact 1-Nearest Neighbor queries.

We have repeated this experiment varying the ULISSE pa-
rameters along predefined ranges, which are (default in
bold) γ : [0%, 20%, 40%, 60%, 80%,100%], where the
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Figure 12: Query answering time performance, varying γ on
non Z-normalized data series. a) ULISSE average query time
(CPU + disk I/O). b) ULISSE average query disk I/O time.
c) ULISSE average query pruning power. d) Comparison of
ULISSE to other techniques (cumulative indexing + query an-
swering time). e) Table resuming the indexes’ properties.

percentage is referring to its maximum value, `min :
[96, 128,160, 192, 224, 256], `max : [256], dataset series length
(`S): [256, 512, 1024, 1536, 2048, 2560] and dataset size of 5GB.
Here, we use synthetic datasets containing random walk data in
binary format, where a single point occupies 4 bytes. Hence, in
each dataset C, where |C|Bytes denotes the corresponding size in
bytes, we have a number of subsequences of length ` given by
Nseq = (`S − ` + 1) × ((|C|Bytes/4)/`S). For instance, in a
5GB dataset, containing series of length 256, we have ∼500 Mil-
lion subsequences of length 160.

We record the average CPU time, query disk I/O time (time to
fetch data from disk: Total time - CPU time), and pruning power
(percentage of the total number of Envelopes in the index that do
not need to be read), of 100 queries, extracted from the datasets
with the addition of Gaussian noise. For each index used, the build-
ing time and the relative size are reported. Note that we clear the
main memory cache before answering each set of queries. We have
conducted our experiments using datasets that are both smaller and
larger than the main memory.

In all experiments, we report the cumulative running time of
1000 random queries for each query length.
Varying γ. We first present results for similarity search queries on
ULISSE when we vary γ, ranging from 0 to its maximum value, i.e.,
`max − `min. In Figure 12, we report the results concerning non
Z-normalized series (for which we can compare to CMRI). We ob-
serve that grouping contiguous and overlapping subsequences un-
der the same summarization (Envelope) by increasing γ, affects
positively the performance of index construction, as well as query
answering (Figure 12.a,d)). The latter may seem counterintuitive,
since γ influences in a negative way pruning power, as depicted
in Figure 12.c). Indeed, inserting more master series into a single
Envelope is likely to generate large containment areas, which are

not tight representations of the data series. On the other hand, it
leads to an overall number of Envelopes that is several orders of
magnitude smaller than the one for γ = 0%. In this last case, when
γ = 0, the algorithm inserts in the index as many records as the
number of master series present in the dataset (485M), as reported
in (Figure 12.e)).

We note that the disk I/O time on compact indexes is not nega-
tively affected at the same ratio of pruning power. On the contrary,
in certain cases it becomes faster. For example, the results in Fig-
ure 12.b) show that for query length 160, the γ = 100% index is
more than 2x faster in disk I/O than the γ = 0% index, despite the
fact that the latter index has an average pruning power that is 14%
higher (Figure 12.c)). This behavior is favored by disk caching,
which translates to a higher hit ratio for queries with slightly larger
disk load. We note that we repeated this experiment several times,
with different sets of queries that hit different disk locations, in or-
der to verify this specific behavior. The results showed that this
disk I/O trend always holds.

While disk I/O represents on average the 3 − 4% of the total
query cost, computational time significantly affects the query per-
formance. Hence, a compact index, containing a smaller number of
Envelopes, permits a fast in memory sequential scan, performed
by Algorithm 5.

In Figure 12.d) we show the cumulative time performance (i.e.,
4, 000 queries in total), comparing ULISSE, CMRI, and UCR Suite.
Note that in this experiment, ULISSE indexing time is negligible
w.r.t. the query answering time. ULISSE, outperforms both UCR
Suite and CMRI, achieving a speed-up of up to 12x.

Further analyzing the performance of CMRI, we observe that
it constructs four indexes (for four different lengths), generating
more than 2B index records! Consequently, it is clear that the size
of these indexes will negatively affect the performance of CMRI,
even if it achieves reasonable pruning ratios. These results suggest
that the idea of generating multiple copies of an index for different
lengths, is not a scalable solution.
Varying Length of Data Series. In this part, we present the re-
sults concerning the query answering performance of ULISSE and
UCR Suite, as we vary the length of the sequences in the indexed
datasets, as well as the query length (refer to Figure 13). In this
case, varying the data series length in the collection, leads to a
search space growth, in terms of overlapping subsequences, as re-
ported in Figure 13.e). This certainly penalizes index creation, due
to the inflated number of Envelopes that need to be generated. On
the other hand, UCR Suite takes advantage of the high overlapping
of the subsequences during the in-memory scan. Note that we do
not report the results for CMRI in this experiment, since its index
building time would take up to 1 day. In the same amount of time,
ULISSE answers more than 1, 000 queries.

Observe that in Figures 13.a) and .c), ULISSE shows better query
performance than the UCR suite, growing linearly as the search
space gets exponentially larger. This demonstrates that ULISSE of-
fers a competitive advantage in terms of pruning the search space
that eclipses the pruning techniques UCR Suite. The aggregated
time for answering 4, 000 queries (1, 000 for each query length)
is 2x for ULISSE when compared to UCR Suite (Figures 13.b)
and .d)).
Varying Range of Query Lengths. In the last experiment of
this subsection, we investigate how varying the length range
[`min; `max] affects query answering performance. In Figure 14,
we depict the results for Z-normalized sequences. We observe that
enlarging the range of query length, influences the number of En-
velopes we need to accommodate in our index.Moreover, a larger
query length range corresponds to a higher number of Series (dif-
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ferent normalizations), which the algorithms needs to consider for
building a single Envelope (loop of line 16 of Algorithm 2). This
leads to large containment areas and in turn, coarse data summa-
rizations. In contrast, Figure 14.c) indicates that pruning power
slightly improves as query length range increases. This is justi-
fied by the higher number of Envelopes generated, when the query
length range gets larger. Hence, there is an increased probability to
save disk accesses. In Figure 14.a) we show the average query time
(CPU + disk I/O) on each index, observing that this latter is not sig-
nificantly affected by the variations in the length range. The same
is true when considering only the average query disk I/O time (Fig-
ure 14.b), which accounts for 3 − 4% of the total query cost. We
note that the cost remains stable as the query range increases, when
the query length varies between 96-192. For queries of length 224
and 256, when the range is the smallest possible the disk I/O time

increases. This is due to the high pruning power, which translates
into a higher rate of cache misses.

In Figure 14.d), the aggregated time comparison shows ULISSE
achieving an up to 2x speed-up over UCR Suite.

7.3 Comparison to Serial Scan Algorithms
We now perform further comparisons to serial scan algorithms,

namely, MASS and UCR Suite, with varying query lengths.
MASS [38] is a recent data series similarity search algorithm that

computes the distances between a Z-normalized query of length
l and all the Z-normalized overlapping subsequences of a single
sequence of length n ≥ l. MASS works by calculating the dot
products between the query and n overlapping subsequences in fre-
quency domain, in logn time, which then permits to compute each
Euclidean distance in constant time. Hence, the time complexity of
MASS is O(nlogn), and is independent of the data characteristics
and the length of the query (l). In contrast, the UCR Suite effec-
tiveness of pruning computations may be significantly affected by
the data characteristics.

We compared ULISSE (using the default parameters), MASS and
UCR Suite on a dataset containing 5M data series of length 4096.
In Figure 14.f), we report the average query time (CPU + disk/io)
of the three algorithms.

We note that MASS, which in some cases is outperformed by
UCR Suite and ULISSE, is strongly penalized, when ran over a
high number of non overlapping series. The reason is that, although
MASS has a low time complexity of O(nlogn), the Fourier trans-
formations (computed on each subsequence) have a non negligible
constant time factor that render the algorithm suitable for compu-
tations on very long series.

7.4 Approximate Search Similarity Queries
In this subsection, we evaluate ULISSE approximate search.

Since we compare our approach to CMRI, Z-normalization is not
applied. Figure 15.a) depicts the cumulative query answering time
for 4, 000 queries. As previously, we note that the indexing time for
ULISSE is relatively very small. On the other hand, the time that
CMRI needs for indexing is 2x more than the time during which
ULISSEs has finished indexing and answering 4, 000 queries.
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In Figure 15.b), we measure the quality of the Approximate
search. In order to do this, we consider the exact query results rank-
ing, showing how the approximate answers are distributed along
this rank, which represents the ground truth. We note that CMRI
answers have slightly better positions than the ULISSE ones. This
happens thanks to the tighter representation generated by the com-
plete sliding window extraction of each subsequence, employed by
CMRI. Nevertheless, this small penalty in precision is balanced out
by the considerable time performance gains: ULISSE is up to 15x
faster than CMRI. When we use a smaller γ, (e.g., 20), ULISSE
shows its best time performance. This is due to tighter Envelopes
containment area, which permits to find a better best-so-far with a
shorter tree index visit.

7.5 Experiments with Real
In this last part, we test ULISSE on three large synthetic datasets

of sizes 100GB, 500GB, and 750GB, as well as on two real series
collections, i.e., ASTRO and SEISMIC (described earlier). The
other parameters are the default ones. For each generated index
and for the UCR Suite, we ran a set of 100 queries, for which we
report the average exact search time. In Figure 16.a) we report
the average query answering time (1−NN ) on synthetic datasets,
varying the query length. These results demonstrate that ULISSE
scales better than UCR Suite across all query lengths, being up to
5x faster. In Figure 16.b), we report theK−NN exact search time
performance, varying K and picking the smallest query length,

namely 160. Note that, this is the largest search space we con-
sider in these datasets, since each query has 9.7 billion of possible
candidates (subsequences of length 160). The experimental results
on real datasets confirm the superiority of ULISSE, which scales
with stable performance, also when increasing the number K of
nearest neighbors. Once again it is up to 5x faster than UCR Suite,
whose performance deteriorates as K gets larger. In Figure 16.c)
we report the number of disk accesses of the queries considered in
Figure 16.b). Here, we are counting the number of times that we
follow a pointer from an envelope to the raw data on disk, during
the sequential scan in Algorithm 5. Note that the number of disk
accesses is bounded by the total number of Envelopes, which are
reported in Figure 16.d) (along with the number of leaves and the
building time for each index). We observe that in the worst case,
which takes place for the ASTRO dataset forK = 100, we retrieve
from disk ∼82% of the total number of subsequences. This still
guarantees a remarkable speed-up over UCR Suite, which needs to
consider all the raw series. Moreover, since ULISSE can use Early
Abandoning during exact query answering, we observe during our
empirical evaluation that disposing of the approximate answer dis-
tance prior the start of the exact search, permits to abandon on av-
erage 20% of points more than UCR Suite for the same query.

8. CONCLUSIONS
Similarity search is one of the fundamental operations for several

data series analysis tasks. Even though much effort has been dedi-
cated to the development of indexing techniques that can speed up
similarity search, all existing solutions are limited by the fact that
they can only support queries of a fixed length.

In this work, we proposed ULISSE, the first index able to an-
swer similarity search queries of variable-length, over both Z-
normalized and non Z-normalized sequences. We experimentally
evaluated, our indexing and similarity search algorithms, on syn-
thetic and real datasets, demonstrating the effectiveness and effi-
ciency (in space and time cost) of the proposed solution. In our
future work, we will adapt our technique in order to allow the use
of more elastic measures, such as Dynamic Time Warping. We also
plan to study extensions that work for datasets containing a few
very long sequences, as well as solutions adapted to multi-core and
multi-socket architectures.
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