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Motivation Challenges

Subsequence anomaly detection in streams is an State-of-the-art subsequence anomaly detection methods [1,2] are not able to
important problem with applications in medicine, energy perform on a streaming fashion.
production, etc Extensions to handle in real-time changes of normal behavior are needed.
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Problem
We tackle the problem of subsequence anomaly detection in streams. Formally, for a given length £, and a stream

T, arriving in batch '[[‘%, return the n most abnormal subsequences of length £.

Proposed Approach: SAND
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Experimental Evaluation: SAND in action: System overview

- Comparison of static and streaming baselines on 30 data series [6,7] (both - Screenshot of the Web User interface based on SAND:
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- Comparison of streaming methods throughputs: -
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