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ABSTRACT
The recent popularity of learned embeddings has fueled the growth
of massive collections of high-dimensional (high-d) vectors that
model complex data. Finding similar vectors in these collections
is at the core of many important and practical data science ap-
plications. The data series community has developed tree-based
similarity search techniques that outperform state-of-the-art meth-
ods on large collections of both data series and generic high-d
vectors, on all scenarios except for no-guarantees 𝑛𝑔-approximate
search, where graph-based approaches designed by the high-d vec-
tor community achieve the best performance. However, building
graph-based indexes is extremely expensive both in time and space.
In this paper, we bring these two worlds together, study the corre-
sponding solutions and their performance behavior, and propose
ELPIS, a new strong baseline that takes advantage of the best fea-
tures of both to achieve a superior performance in terms of indexing
and ng-approximate search in-memory. ELPIS builds the index 3x-
8x faster than competitors, using 40% less memory. It also achieves a
high recall of 0.99, up to 2x faster than the state-of-the-art methods,
and answers 1-NN queries up to one order of magnitude faster.
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1 INTRODUCTION
High-dimensional (high-d) data abounds in many real applica-
tions including agriculture, biology, finance, and smart cities, with
terabyte-scale data collections reaching thousands of dimensions.
Extracting value from these collections requires complex data ana-
lytical tasks. This is challenging to achieve efficiently because of the
large volume and dimensionality of the data. A key component of
these tasks is similarity search, a fundamental algorithm that is the
focus of our study, and at the core of many important and practical
data science applications. In data integration, it has been used to
automate entity resolution [32], complete missing values [55], and
support data discovery [18, 81, 127]. It has powered recommender
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systems of online billion-dollar enterprises [76, 117], and enabled
information retrieval [123], classification [37, 96] and outlier detec-
tion [11–14, 75, 88, 89]. Similarity search has also been exploited in
software engineering [3, 85] to automate API mappings and predict
program dependencies and I/O usage and in cybersecurity to profile
network usage and detect intrusions and malware [31].

Similarity search finds the most similar objects in a dataset to a
given query object. It is often reduced to 𝑘-nearest neighbor (𝑘-NN)
search, which represents the objects as points in 𝑅𝑑 space, and re-
turns the𝑘 closest vectors in the dataset S to a given query vector𝑉𝑄
according to some distance measure, such as the Euclidean distance.
The brute force approach for 𝑘-NN search consists of comparing
𝑉𝑄 to every single candidate in S. Supporting efficient similarity
search on high-d data relies on devising accurate dimensionality
reduction techniques and developing specialized data structures
and algorithms [41, 42]. Exact solutions return the true 𝑘-NN of𝑉𝑄
while approximate methods sacrifice accuracy for efficiency. We
call approximate solutions that do not provide any quality guaran-
tees on the results 𝑛𝑔-approximate, and 𝛿-𝜖-approximate for those
who provide such guarantees, where 𝜖 is the approximation error
and 𝛿 , the probability that this error will not be exceeded. When 𝛿

= 1, a 𝛿-𝜖-approximate method becomes 𝜖-approximate, and when
𝜖 = 0, an 𝜖-approximate method becomes exact [42, 43].

Although a variety of techniques have been proposed for ef-
ficient exact 𝑘-NN search in-memory and on-disk [9, 16, 21–
23, 42, 45, 68, 73, 74, 91, 92, 94, 95, 120–122, 124], their perfor-
mance is unsatisfactory for some data science applications [6, 36,
38, 40, 87]. Therefore, we have witnessed an increased interest by
the research community in solving the approximate 𝑘-NN prob-
lem [5, 42, 43, 119]. Such solutions can be classified into tree-
based [9, 43, 45, 121], hash-based [43, 59, 112], and graph-based
approaches [29, 48, 50, 70, 79, 111]. Tree-based indexing methods
partition the dataset space into embedded hierarchical sub-spaces
using a tree data structure, where similar data points belong in the
same leaves. Hash-based indexing methods map the dataset vectors
into different buckets of hash codes using multiple hash tables, and
guarantee with high probability that similar data are hashed into
the same buckets. Graph-based indexing methods structure the
dataset into a proximity graph, where data points are represented
as vertices and each vertex is connected to a set of similar vertices.

Each of the three families of similarity search methods has its
advantages and disadvantages [43]. Tree-based techniques are ef-
ficient at index building with a new class of extensions [43] sup-
porting all three flavors of search: exact, 𝛿-𝜖-approximate and 𝑛𝑔-
approximate search. These extensions achieve the best performance
on all scenarios except on 𝑛𝑔-approximate search, where their effi-
ciency is still unsatisfactory for many real applications. Hash-based
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techniques support 𝛿-𝜖-approximate search with additional theo-
retical guarantees on query efficiency, but are not scalable due to
the high index construction time, high memory footprint and low
empirical search performance. Theoretical guarantees on accuracy
are provided on the distance approximation error, but this does not
always translate into good recall empirically. Graph-based methods
offer the best performance in practice for 𝑛𝑔-approximate search,
but building the graph structure on large datasets is extremely
expensive both in time and space. Moreover, such techniques do
not offer any guarantees on search quality and efficiency. Despite
these disadvantages, graph-based approaches remain the methods
of choice for many real applications such as recommendation sys-
tems [62, 104, 110, 126] that require a very low query latency (a few
milliseconds per query on billion-scale collections), and can tolerate
a lack of theoretical guarantees on the quality of the answers as
long as a high recall (≥ 0.90) can be achieved empirically.

The data series community has developed scalable tree-based
similarity search techniques that outperform state-of-the-art meth-
ods on large collections of both data series and generic high-d
vectors, on all scenarios except for 𝑛𝑔-approximate search, where
graph-based approaches designed by the high-d vector commu-
nity achieve the best performance. However building graph-based
indexes on massive datasets is extremely expensive both in time
and space [43, 108, 119]. The problem is compounded in scenarios
where main memory is limited, or when the index needs to be re-
built multiple times, either due to frequent updates [50], or to new
analytical needs (since query accuracy is not determined only at
query-time, but also by the quality of the graph index [43]), despite
the use of parallelism during index building.

We propose ELPIS to address the scalability bottleneck of graph-
based indexes, and therefore to support the large variety of data
science applications that depend on similarity search [34, 36, 39].
Instead of constructing and querying a large graph, ELPIS adopts
a divide-and-conquer approach. It splits the dataset into multiple
clusters1 based on the EAPCA summarization and builds a graph for
each cluster in parallel. During search, ELPIS exploits the EAPCA
lower-bounding distance to select an initial set of approximate
answers to guide the search and determine the clusters to search
and the order to search them. Both the index building and query
answering algorithms exploit multithreading and SIMD. During
query answering, multiple threads search different clusters in par-
allel. While we focus on single-node systems, the proposed ideas
and learned lessons can be exploited in a distributed setting, where
each dataset cluster is built/queried on a different node.

In this paper, we make the following contributions:
• We conduct a brief survey of the state-of-the-art tree- and graph-
based similarity search methods. We describe their chronological
development and highlight their key design principles.
•We propose ELPIS, a new index for in-memory 𝑛𝑔-approximate
similarity search that takes advantage of the best features of both
tree-based and graph-based families to achieve a superior perfor-
mance in terms of indexing and query answering. This is the first
in-memory graph-based similarity search solution using EAPCA-
based clustering, and employing intra-query parallelism.
1In the context of ELPIS, we use the term cluster to refer to a leaf node of the ELPIS
index tree, following the observation that the leaves of an index can be interpreted as
a clustering of the given dataset [58].

•We empirically demonstrate the efficacy, scalability and robust-
ness of ELPIS by conducting thorough experiments on real large
datasets from different domains: neuroscience, seismology, deep
network embeddings and computer vision; this is the first time
that graph-based similarity search techniques are evaluated on real
datasets from neuroscience and seismology. ELPIS builds the in-
dex 3x-8x faster than competitors, using 40% less memory. It also
achieves a high recall of 0.99, up to 2x faster than the state-of-the-
art methods on most scenarios, and answers 1-NN queries up to
one order of magnitude faster.
• We share key insights and lessons learned that can help the
community better understand the impact of the following design
choices on graph-based similarity search performance: (i) build-
ing/querying multiple graphs, each representing a cluster of a large
dataset, as opposed to building/querying one large graph represent-
ing the whole dataset; (ii) the clustering approach used to split a
large dataset into multiple chunks; (iii) the graph structure used
in each cluster; and (iv) the strategies adopted for pruning clusters
and vertices within each cluster.

Note that ELPIS fits within the scope of ng-approximate meth-
ods, i.e., methods that do not provide any theoretical guarantees
on efficiency and accuracy, but have excellent empirical perfor-
mance [119]. Nevertheless, these approaches are very popular [108],
and have several important applications, including enhancing web
search results (e.g., at Microsoft Bing [69]), and image similarity
search (e.g., at Facebook/Meta [62]).

2 PRELIMINARIES & RELATEDWORK
2.1 Definitions
The 𝑛𝑔-approximate similarity search problem can be modeled as
an approximate 𝑘-NN search problem in high-dimensional vector
space. Data points are represented as 𝑑-dimensional vectors in R𝑑 ,
and the 𝑑𝑖𝑠𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 between the points is measured using the
Euclidean distance 𝑑𝑖𝑠𝑡 . We consider a dataset collection S of 𝑛
𝑑-dimensional points and a query vector 𝑉𝑄 .

Definition 1. The Euclidean distance between any two points

𝑉𝐶 ,𝑉𝑄 in R𝑑 is 𝑑𝑖𝑠𝑡 (𝑉𝐶 ,𝑉𝑄 ) =
√︃∑︁𝑑

𝑖=1

(︂
𝑉 𝑖
𝐶
−𝑉 𝑖

𝑄

)︂2
, such that 𝑖 is an

integer and 1 ≤ 𝑖 ≤ 𝑑 .

Definition 2. Given an integer 𝑘 , a k-NN query retrieves the
set of vectors A = {{𝑉𝐶1 , ...,𝑉𝐶𝑘

} ⊆ S|∀ 𝑉𝐶 ∈ A 𝑎𝑛𝑑 ∀ 𝑉𝐶′ ∉

A, 𝑑𝑖𝑠𝑡 (𝑉𝑄 ,𝑉𝐶 ) ≤ 𝑑𝑖𝑠𝑡 (𝑉𝑄 ,𝑉𝐶′ )} [43].

Definition 3. Given a query𝑉𝑄 , an 𝑛𝑔-approximate algorithm
produces results, 𝑉𝐶 , that are at a distance 𝑑𝑖𝑠𝑡 (𝑉𝑄 ,𝑉𝐶 ) ≤ (1 +
𝜃 )𝑑 (𝑉𝑄 , [k-th NN of 𝑉𝑄 ]), for an arbitrary value 𝜃 ∈ R>0. [43]

We use the terms 𝑛𝑔-approximate search, approximate 𝑘-NN
search, approximate search and ANN search interchangeably.

2.2 Tree-based Similarity Search
Tree-based similarity search approaches organize the data in a tree
structure to help prune candidates during search. Some indexing
methods first reduce the dimensionality of the original data and
then index the summarizations [8, 56, 103], while others perform
dimensionality reduction and indexing in one step [17, 35, 73, 74,



121, 125, 128], or index the high-d data directly [26]. Some tree-
based methods support only exact search, while others support also
𝑛𝑔-approximate and 𝛿-𝜖-approximate search [25, 33, 43].
Summarization Techniques. The Discrete Haar Wavelet Trans-
form (DHWT) [20] transforms each high-d vector into a multi-level
hierarchical structure using the Haar wavelet decomposition. The
Discrete Fourier Transform (DFT) [2, 44, 99, 100] decomposes the
original vector into frequency coefficients and uses a subset as a
summary. The Piecewise Aggregate Approximation (PAA) [63] and
Adaptive Piecewise Constant Approximation (APCA) [19] techniques
divide the high-d vector respectively into equi-length and variable-
length segments, with each segment being represented by the mean
value of the corresponding points. The Extended Adaptive Piecewise
Approximation (EAPCA) [121] extends APCA by representing each
segment using both the standard deviation and the mean. The Sym-
bolic Aggregate Approximation (SAX) [71] first transforms a vector
using PAA then represents the mean values of the segments with a
discrete set of symbols.
Similarity Search Methods. The state-of-the-art tree-based sim-
ilarity search methods designed for data series [42] include the
DSTree [121] approach, which uses the EAPCA summarization
technique. The iSAX family [86] includes a large number of meth-
ods based on the iSAX summarization. The iSAX 2.0 index [15]
adds bulk-loading support to the original iSAX index [105] and
improves its splitting policy; iSAX2+ [17] further optimizes bulk-
loading, while ADS+ [128] proposes data-adaptive index building
and Dumpy [122] data-adaptive node-splitting. ParIS+ [94] and
Messi [92, 93] are parallel iSAX-based approaches and Hercules [35]
is a parallel index using both the iSAX and EAPCA summarizations.

The high-d vector community contributed many tree-based tech-
niques [102], including theM-tree [26], which is a multidimensional
metric-space access method that leverages the relative distances
between data points to divide them using hyper-spheres. Flann [82]
is an in-memory ensemble technique for 𝑛𝑔-approximate search
including both randomized kd-trees [107] and hierarchical k-means
trees [82]. HD-index [4] is an 𝑛𝑔-approximate approach that parti-
tions the original space into disjoint partitions of lower dimension-
ality, and indexed by an RBD tree (a modified B+tree).

2.3 Graph-based Similarity Search
The most popular 𝑛𝑔-approximate similarity search techniques are
based on graphs [30, 43, 48–50, 61, 70, 78, 79, 97, 111, 119]. These
approaches typically build a proximity graph structure 𝐺 (V,E),
such that V is the set of vertices where each vertex represents a
point𝑉 ∈ S and E ⊂ S × S is the set of edges that connect similar
vertices. Two vertices are connected with an edge if the points they
represent are close in R𝑑 space according to some distance measure,
often the Euclidean distance. For a given query 𝑉𝑄 ∈ R𝑑 , search
generally starts from a set of initial entry points or seeds, which
can be random or satisfy some conditions, then visits neighboring
vertices using a best-first search greedy approach, returning the
set A of 𝑘 approximate neighbors to 𝑉𝑄 when no better candidates
can be found. State-of-the-art approximate graph-based similarity
search approaches typically exploit a set of known base proximity
graph structures and the same greedy search algorithm but differ in
the way they construct the graph and select the entry points during
search. Note that the larger the out-degree of vertices in the graph,

the harder the routing task becomes, since many candidate vertices
have to be pruned before finding the right path to reach the𝑘 nearest
neighbors. On the other hand, lacking good edges may lead the
search into local minima results. State-of-the-art approaches aim
at finding the right trade-off between constructing short and long
range edges, keeping the graph as sparse as possible, to minimize
the number of distance calculations, and guard against convergence
to local minima results.

2.3.1 Base Proximity Graphs. One of the most general proximity
graphs in the literature is the Delaunay Graph (DG) or Delaunay Tri-
angulation (DT) [67]. The DG is a planar dual graph for the Voronoi
Diagram [47], where each vertex is the center of its own voronoi cell,
and two vertices are connected if and only if their corresponding
voronoi cells share at least one edge. The DG 𝐺 (V,E) constructed
over S must satisfy the DT: ∀𝑞, 𝑝, 𝑟 ∈ V, (𝑞, 𝑝), (𝑞, 𝑟 ), (𝑟, 𝑝) ∈ E if
no other vertex from V is inside the circumcircle passing through
𝑞, 𝑝, 𝑠 . Greedy search on DG is guaranteed to find the exact nearest
neighbors [28]. Nevertheless, using DG for high-dimensional data is
impractical as the graph becomes almost fully connected when the
dimension 𝑑 grows [28]. Therefore, it is more common in practice
to use a proximity graph that is a subgraph of the DG [51, 80, 115].
Below, we describe the four most popular subgraphs of the DG used
in the approximate nearest neighbor search literature. Assume a
graph 𝐺 (V,E) is constructed on a set of points S.
Gabriel Graph.𝐺 is aGabriel Graph (GG) [51] in Euclidean space if
it guarantees that ∀(𝑢, 𝑣) ∈ V2, (𝑢, 𝑣) ∈ E⇔ 𝑂 (𝑢, 𝑣) ∩ V⧹{𝑢, 𝑣} =
∅; 𝑂 (𝑢, 𝑣) is the circle passing through 𝑢 and 𝑣 with diameter 𝑢𝑣 .
Relative Neighbor Graph. 𝐺 is a Relative Neighbor Graph
(RNG) [114] if it is an undirected graph that is a subset of the
GG graph [51], and is built using an edge selection policy based
on the notion of ’relatively close’ neighbors [66]. According to
such a policy, two vertices (𝑢, 𝑣) ∈ V2 are considered relatively
close if and only if 𝑑𝑖𝑠𝑡 (𝑢, 𝑣) ≤ 𝑚𝑎𝑥 [𝑑𝑖𝑠𝑡 (𝑢,𝑤), 𝑑𝑖𝑠𝑡 (𝑤, 𝑣)] for all
𝑤 = 1, ..., 𝑛,𝑤 ≠ 𝑢, 𝑣 .
Minimum Spanning Tree.𝐺 is aMinimum Spanning Tree (or Min-
imumWeight Spanning Tree) if and only if it is a connected acyclic
graph with the minimal sum of weights of edges

∑︁ |E |
𝑖=1𝑤 (𝑒𝑖 ) [54]. In

the context of a proximity graph, the weight of an edge corresponds
to the distance between its two vertices.
Nearest Neighbor Graph. 𝐺 is a 𝑘-Nearest Neighbor Graph (𝑘-
NNG) if it is a directed graph where each vertex is connected to its
exact or approximate 𝑘-nearest neighbors [29, 72].

2.3.2 Base Search Algorithms. Graph-based similarity search meth-
ods typically perform nearest neighbor search using the beam
search algorithm [101], a variation of best-first search [90]. Best-
first search is a class of search algorithms that examine a graph
by managing a set of promising nodes. The algorithm selects the
most promising node with respect to a given problem, and adds
its neighbors to the same set until no promising candidates can
be found. In the case of 𝑘-NN search, the most promising node
is the closest node to the query. Beam search [101] is a variant of
best-first search where only 𝐿 promising candidates are kept during
the search process. The 𝐿 parameter is called the beam width and is
used to tune the efficiency/accuracy tradeoffs. When 𝐿 = 1, a beam
search is equivalent to a greedy search, and when 𝐿 ≈ 𝑁 where



N is the graph size, beam search is equivalent to best-first search.
Note that although beam search does not guarantee to find the best
candidates, it is used by most state-of-the-art graph-based similar-
ity search methods. Some start the beam search with random (e.g.,
HNSW [79]) or predefined starting points during index building
(e.g., VAMANA [111], which uses the centroid of the dataset), while
others select seeds during query answering using pre-built indexes
such as the KD-tree and LSH [48, 61, 83].

2.3.3 State-of-the-art Approaches. The research community has
been actively working on improving the scalability of graph-based
approximate 𝑘-NN search methods. Compared to earlier works [29,
48, 57, 61, 97], the current methods are one order of magnitude
faster for both indexing and query answering [70, 72, 106, 119].

KGRAPH [29] and NNdescent [30] reduce the construction cost
of an exact 𝑘-NNG and approximate 𝑘-NNG by refining a ran-
dom initial graph. Iterative Expanding Hashing [61] (IEH) exploits
NNdescent with hashing methods to generate initial candidates for
graph construction instead of random selection, while EFANNA [48]
initializes neighbors of each vertex using randomized truncated kd-
trees [27] and refines the graph into an approximate𝑘-NNG through
NNdescent. The Navigable Small World (NSW) technique [78, 97]
exploits the notion of a small world network [64, 65] to build the
graph with long range edges, and adapts VoroNet’s [7] peer-to-peer
small world network to the graph-based similarity search prob-
lem. Nevertheless, the resulting graph suffers from a scalability
bottleneck due to the high out-degree of vertices. NSW’s authors
addressed these issues in the Hierarchical Navigable Small World
(HNSW) graph [79], which builds multi-resolution layers of NSW
graphs, refined following an RNG process to reduce the out-degree
of vertices. The number of nodes in each layer increases while de-
scending the hierarchical structure of layers. The bottommost layer
contains all the points in the dataset, and hierarchical layers are
exploited during search to converge fast to the region that contains
the query’s nearest neighbors.

Inspired by HNSW’s performance, subsequent methods have
further exploited the RNG refinement process. The Diversified
Proximity Graph (DPG) [70] builds an approximate 𝑘-NNG based
on an RNG-refined KGRAPH [29]. The Navigating Spreading-out
Graph (NSG) [50] builds an approximate 𝑘-NNG based on an initial
EFANNA graph, refined through a monotonic RNG process [50],
which also guarantees the existence of a monotonic path between
any two nodes in the graph (A path is said to be monotonic if and
only if on each hop, the distance of the query to the current node is
strictly inferior to the distance of the query to the previous node in
the path.) VAMANA [111] refines a random initial graph through
two RNG passes. SPTAG [24] splits the dataset into multiple subsets
using TPTrees [118] and merges the multiple subsets after building
exact 𝑘-NNGs on each one of them. The Hierarchical Clustering-
Based Graph [83] follows the same strategy with a hierarchical
clustering splitting and builds an MST graph on each subset.

3 THE ELPIS APPROACH
We now describe ELPIS, a new baseline for graph-based similarity
search that achieves better performance in both indexing and in-
memory 𝑛𝑔-approximate similarity search.

3.1 Index construction
During index construction, ELPIS first splits the dataset into mul-
tiple clusters using Hercules [35], where each leaf is considered a
cluster, then builds graph structures in parallel on the tree’s leaves.
We opted for the state-of-the-art index tree Hercules [35] to cluster
the dataset because it efficiently intertwines index building and data-
adaptive dimensionality reduction, leading to well-clustered leaves,
i.e., similar high-d vectors are stored in the same leaf. Moreover, the
Hercules tree is based on the EAPCA summarization [121], used dur-
ing search for pruning clusters. Any state-of-the-art graph-based
similarity approach can be used within a leaf. We chose HNSW [79],
because it led to the best overall performance (cf. Section 4).

Hercules builds its index tree using a double buffer to read the
dataset from disk into memory in batches, while the vectors previ-
ously loaded into memory are being inserted in the tree. Multiple
threads insert vectors in parallel into the tree. Each thread traverses
the binary index tree to find the appropriate leaf, routing left or
right depending on the split policy of the visited node. The resulting
tree will have leaves that contain the original high-d vectors and
internal nodes that record statistics about the vectors belonging to
their subtrees. Each node has its own EAPCA segmentation and
the vectors in each node are segmented using the same policy.

ELPIS then proceeds with building an HNSW graph for each
leaf in parallel. The main coordinator thread initializes 𝑛1 leafCoor-
dinator threads. Each leafCoordinator selects a leaf for which the
graph was not built yet, and creates 𝑛2 leafWorker threads. Both
the leafCoordinator and the leafWorkers contribute in building the
graph within their corresponding leaf. Each one of them reads a
vector from the dataset and inserts it into the graph. Once the graph
has been built, the leafCoordinator materializes it into a separate
file on disk, and selects a new leaf to process. Index construction
terminates once the graphs for all index leaves have been built.

3.2 Query Answering
Answering a query 𝑉𝑄 with ELPIS proceeds in two major steps:
(1) the Hercules tree is traversed to find 𝑘 initial best-so-far (bsf)
neighbors to 𝑉𝑄 , which are then used to select a list of 𝑙 candidate
leaves, i.e., clusters; and (2) a beam search is performed in parallel
on the graph structures corresponding to the 𝑙 candidate leaves.

During the first step, ELPIS traverses the Hercules tree, which
is pre-loaded into memory, to find the leaf where 𝑉𝑄 would have
been inserted if it belonged to the dataset. Then, it performs a beam
search on the HNSW graph corresponding to this leaf, returning
the 𝑘 closest vectors to 𝑉𝑄 as first bsf answers. ELPIS resumes the
traversal of the index tree using both the 𝑘𝑡ℎ bsf answer and the
EAPCA segmentation to prune nodes. The algorithm then returns,
as candidate clusters, a list of 𝑙 leaves sorted in increasing order of
their 𝐿𝐵𝐸𝐴𝑃𝐶𝐴 distance to 𝑉𝑄 .

In the second step, multiple threads process the candidate clus-
ters in parallel, starting with the leaves that have the lowest
𝐿𝐵𝐸𝐴𝑃𝐶𝐴 distances to 𝑉𝑄 . (Exploiting parallelism within the same
graph is still an open problem and is beyond the scope of this paper,
so each leaf graph is processed by only one thread but the same
thread can process multiple leaves, one at a time.) A thread pro-
cesses a leaf by running a beam search on the corresponding HNSW
graph and returning 𝑘 bsf answers. Each thread maintains a local



priority queue which stores the 𝑘 bsf answers corresponding to the
processed leaf and a local 𝑘𝑡ℎ

𝑑𝑖𝑠𝑡
, the Euclidean distance between𝑉𝑄

and the 𝑘𝑡ℎ bsf answer in the current leaf. The threads use a readers-
writer lock to synchronize access to a global 𝑘𝑡ℎ

𝑑𝑖𝑠𝑡
, the Euclidean

distance between 𝑉𝑄 and the 𝑘𝑡ℎ bsf answer across all leaves. The
global 𝑘𝑡ℎ

𝑑𝑖𝑠𝑡
bsf is updated every time a thread finds a better local

𝑘𝑡ℎ
𝑑𝑖𝑠𝑡

bsf answer. Once a thread finishes search within a leaf, it uses
its existing priority queue to warm up a new search on the next
leaf with the lowest 𝐿𝐵𝐸𝐴𝑃𝐶𝐴 to 𝑉𝑄 . Search terminates either after
the 𝑙 candidate clusters are processed or once the 𝐿𝐵𝐸𝐴𝑃𝐶𝐴 dis-
tances between 𝑉𝑄 and the next leaf to be processed is larger than
the 𝑘𝑡ℎ

𝑑𝑖𝑠𝑡
. This is because (i) the 𝐿𝐵𝐸𝐴𝑃𝐶𝐴 distance guarantees the

lower-bounding property, i.e., that the Euclidean distance between
any two points in the original high-d space is guaranteed to be
larger than or equal to their 𝐿𝐵𝐸𝐴𝑃𝐶𝐴 distance; and (ii) the list of
candidate leaves is sorted in increasing order of 𝐿𝐵𝐸𝐴𝑃𝐶𝐴 . Once all
threads terminate, ELPIS computes the final results: it aggregates
the answers from all local priority queues, and selects the 𝑘 answers
with the smallest Euclidean distance to 𝑉𝑄 .

4 EXPERIMENTAL EVALUATION
Setup. All methods were compiled with GCC 8.2.0 under Ubuntu
Linux 20.04 (Rocky Linux 8.5 on HPC) with the default compilation
flags and the optimization level 3. Experiments were conducted on
an Intel(R) Xeon(R) Platinum 8276 server (4 sockets, 28 cores per
socket, and 1 thread per core, 35MB cache) with 1.5TB RAM.
Algorithms. We compare ELPIS against the best performing
state-of-the-art ng-approximate methods [43, 119], HNSW [79],
NSG [50], VAMANA [111], EFANNA [48], HCNNG [83], DPG [70]
and KGRAPH [29], and for each method, we use the most efficient
C/C++ implementation publicly available. We also compare ELPIS
to Hercules [35] and QALSH [59], the state-of-the-art methods in
exact and probabilistic similarity search respectively. All methods
exploit multithreading and SIMD vectorization. To ensure a fair
comparison across methods, we clear the caches between query
workloads, and we disable certain optimizations used by some
techniques, such as pre-warming the caches with query searches
(VAMANA) and using an L2-normalized Euclidean distance (NSG,
EFANNA and VAMANA). Unless stated otherwise, all algorithms
are tuned to reach the right accuracy/efficiency tradeoffs.
Datasets.We use the following five real datasets covering a variety
of domains from deep network embeddings, computer vision, neu-
roscience and seismology: (i) Deep [109] contains 1 billion vectors
of 96 dimensions extracted from the last layers of a convolutional
neural network; (ii) Sift [60, 113] consists of 1 billion SIFT vectors
of size 128 representing image feature descriptions; (iii) SALD [116]
contains neuroscience MRI data and includes 200 million data series
of size 128; (iv) Seismic [46] contains 100 million data series of size
256 representing earthquake recordings at seismic stations world-
wide; and (v) Gist [113] contains 1 million images of 960 dimensions.
For Deep, SALD, Seismic and Sift, we select subsets of different
sizes from each dataset and we refer to each subset with the name
of the dataset followed by the subset size in GBs (e.g., Deep25GB).
We refer to the 1-million and 1-billion datasets with the 1M and

1B prefixes, respectively. To evaluate ELPIS on datasets with differ-
ent distributions, we also generated three random 25GB datasets
RandPow0, RandPow5 and RandPow50, each with 256 dimensions,
following the power law distribution [84] using three power law
exponents: 0 (uniform [98]), 5 and 50 (very skewed).
Queries. Query workloads consist of 100 high-d query vectors ran
one after the other, i.e., not in batch mode, which is a common
scenario in a real setting where the queries are not known in ad-
vance [52, 53, 87]. Experiments that report numbers for 1 million
queries extrapolate the results of the 100-query workloads. For the
Deep, Gist and Sift datasets, queries were randomly sampled from
the publicly available query workloads. For the SALD and Seismic
datasets, real query workloads were not available, so we randomly
sampled 100 queries from the corresponding dataset and excluded
them during index building. In one experiment, we use queries of
different difficulty for the Deep dataset, labeled with a percentage
(1%-10%). These queries were generated by randomly selecting vec-
tors from the dataset and perturbing them using different levels of
Gaussian noise (𝜇 = 0, 𝜎2 = 0.01-0.1) [129]. The percentage indicates
the value of 𝜎2. We also generated a 100-query workload for each of
the power law distribution datasets. Our experiments cover k-NN
queries, where k ∈ [1, 100] but for space considerations, we only
report the 10-NN results per previous studies [108]. The overall
trends remain the same (detailed results can be found in [1]).
Measures. We measure the accuracy of a 𝑘-NN query 𝑆𝑄 using
Recall [77]: 𝑅𝑒𝑐𝑎𝑙𝑙 (𝑆𝑄 ) =

# true neighbors returned by𝑄
𝑘

. The reported
recall is the average across the query workload.

4.1 Results
We compare ELPIS to the state-of-the-art in-memory graph-based
𝑛𝑔-approximate similarity search approaches, and demonstrate the
following points: (i) careful design choices render building/querying
multiple graphs (each representing one of the clusters of a large
dataset) more efficient than building/querying a single large graph
representing the entire dataset; (ii) using the EAPCA adaptive seg-
mentation technique to cluster the dataset leads to better index-
ing and query answering performance compared to K-means; (iii)
𝐿𝐵𝐸𝐴𝑃𝐶𝐴 leads to better pruning of the clusters compared to the
centroid-based distance, and warming the local priority queues
with some bsf answers (at the beginning of the search within a
cluster), leads to better performance than maintaining a global pri-
ority queue during search across all clusters; (iv) the number of
clusters and type of graph structure used within each cluster have
a significant impact on performance.

4.1.1 Index Construction Performance. We now study the index-
ing scalability of ELPIS in terms of both wall-clock time and
memory footprint. We compare ELPIS to HNSW [79], NSG [50],
VAMANA [111], EFANNA [48], HCNNG [83], DPG [70] and
KGRAPH [29] on the Deep dataset ranging in size from 1 million
to 1 billion vectors (up to 350GB). (Other datasets exhibit the same
trends and are omitted for brevity). Since the indexing cost depends
on the accuracy required during search, the numbers reported for
each method are those required for the index to be able to reach an
accuracy of 0.99 during search; for DPG, KGRAPH and HCNNG,
we report the numbers for the best indexes we could build, which
reached an accuracy below 0.8. All methods were included in the



1-million experiments. Due to scalability issues, we could not report
results on the 25GB experiments for HCNNG (indexing time ex-
ceeded 24 hours) and KGRAPH/DPG (could not reach an acceptable
accuracy, i.e., recall > 0.8). Due to the low performance on the 25GB
experiments of VAMANA and EFANNA (indexing a 25GB dataset
required over 300GB RAM and indexing a 100GB dataset needed
more than the 1.4TB of available memory) and NSG (since it uses
EFANNA as a base graph), we excluded them from experiments
with larger datasets.
Indexing Time. Figure 1 shows that on the 25GB dataset, ELPIS can
build its index 2x and 5x faster than HNSW and NSG, respectively,
and over an order of magnitude faster than the other competitors.
On the other dataset sizes, ELPIS is twice faster than its second best
competitor, HNSW. Since NSG [50] is built on top of EFANNA [48],
we include the time to build both indexing structures. Although
VAMANA [111] builds the graph based on a random initial graph,
it spends more than 7 hours to create the Deep25GB index. This is
due to the fact that it has a two-pass refinement process, and needs
a higher out-degree parameter compared to NSG.
Indexing Footprint. Figure 2 compares the main memory foot-
print of index building for the state-of-the-art methods (including
the raw data). We measure the maximum amount of memory used
by each technique during its index construction process2. ELPIS
occupies at least 40 per cent less memory resources than competi-
tors when constructing the index. As the dataset size grows, HNSW
suffers from a steeper increase in footprint compared to ELPIS. We
also measure the final size of the index once the index has been
built (including the raw data). Figure 3 shows that the final index
size is almost the same for all methods on most dataset sizes, but as
the dataset size grows, ELPIS has a relatively lower disk footprint.
This experiment shows that some methods require a memory foot-
print that is far larger than the final size of the index. For example,
HCNNG keeps in-memory multiple random samples of the data
while building the index.

4.1.2 Query Answering Performance. In the following experiments,
we compare the query answering scalability of ELPIS against the
competitors on 5 real datasets ranging in size from 1 million to 1
billion vectors.
Footprint & Beam Width. We evaluate the memory footprint
and the beam width required to reach an accuracy of 0.99 (except
for DPG, KGRAPH and HCNNG, which could not reach accuracies
above 0.8) on multiple subsets of the Deep dataset ranging from
1 million to 1 billion. Figure 4 shows the main memory footprint
is dominated by the size of the index, as we reported in Figure 3.
In Figure 5, we evaluate the average beam width required by the
different methods to reach 0.99 accuracy. Recall that the beamwidth
is the size of the priority queue used during the beam search. We
can observe that ELPIS requires up to a 40% smaller beam width
across all dataset sizes, which translates into better query efficiency.
Efficiency/Accuracy with different real datasets. Overall,
ELPIS, HNSW and NSG display the best performance, with NSG
winning on the small datasets and ELPIS outperforming all methods
on the large datasets. Figure 6 shows that ELPIS and NSG perform
the best on Sift1M and Seismic1M. NSG keeps its superiority on
the other datasets, whereas the performance of ELPIS degrades
2We read the Virtual Memory Peak from the proc pseudo filesystem.

on Deep1M, SALD1M and Gist1M. ELPIS is more competitive on
the 25GB datasets (Fig. 7), winning on Deep25GB and Sift25GB
and performing equally to NSG on Seismic25GB and SALD25GB.
Note that no method is able to reach an accuracy beyond 0.8 on the
Seismic dataset, so we report the results for the low recall values.
Due to the large indexing footprint of NSG, we could not continue
the evaluation with NSG on the larger datasets because building
the EFANNA graph (on which NSG is based) requires more than the
available memory (1.4TB). Figure 8 demonstrates the superiority of
ELPIS on the large datasets of 1 billion vectors, being up to an order
of magnitude faster for 0.95 accuracy. Similar trends are observed
over subsets ranging from 100GB to 250GB (detailed results in [1]).
Efficiency/Accuracy with different query workloads. We also
run experiments where we vary the difficulty of queries and observe
the performance of ELPIS and its strongest contenders (NSG and
HNSW) on the Deep25GB dataset. Figure 9 clearly shows that ELPIS
maintains its superiority on all query workloads.
Efficiency/Accuracy with different data distributions. ELPIS
achieves the best performance on RandPow0 (Fig. 7e) and Rand-
Pow5 [1]. On the hardest dataset, RandPow0, we observe that the
competitors cannot reach a recall beyond 0.7. We believe that their
search algorithm gets stuck in a local minimum, whereas the multi-
cluster search of ELPIS is able to reach for the answers in different
regions of the data space. As the power law exponent increases, the
data becomes more concentrated in a dense region and the perfor-
mance of all methods improves. In the extreme case of RandPow50
(Fig. 7f), all methods have comparable efficiency.
Comparison to methods with answer guarantees. To better
illustrate the gap in performance between similarity search ap-
proaches that support guarantees on query accuracy and those
that do not, we compare ELPIS (ng-approximate search) to the
following state-of-the-art methods: Hercules [35] (exact search),
and QALSH [59] (𝛿-𝜖-approximate search, which includes the LSH
family). Figure 10 shows that QALSH doesn’t reach a recall higher
than 0.75, whereas ELPIS can reach a 0.99 recall for all values of k.
For the same recall, ELPIS is over five orders of magnitude faster
than QALSH. As an exact technique, Hercules always reaches a
recall of 1, but it is two orders of magnitude slower than ELPIS.

4.1.3 Choosing the clustering technique. We evaluate three differ-
ent clustering techniques: EAPCA-based clustering, exact K-means
and approximate K-means. Exact K-means is the K-means algo-
rithm in [10] that continues iterating until all centroids stabilize.
Approximate K-means refers to a modified version of the exact
K-means which stops execution after a certain number of itera-
tions (user-defined). We evaluate different numbers of iterations
and choose the one that leads to the same accuracy as the exact
K-means. For a fair comparison, we use the number of clusters
produced by the EAPCA clustering (which is not known in ad-
vanced, but determined adaptively) as the number of clusters in
both K-means algorithms. Note that the points allocated to each
cluster may be different across clustering techniques. The set of
clusters produced by each technique is then fed to the same al-
gorithm, which builds in parallel an HNSW graph in each cluster.
In the case of ELPIS, the clusters correspond to the EAPCA-based
Hercules tree leaves, and the entire tree represents the index. For
the other techniques, the index consists only of the set of clusters.
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The query answering algorithm within each cluster is the same
across techniques, but the pruning of clusters depends on the clus-
tering approach: in the case of EAPCA-based clustering, we search
clusters in ascending order of 𝐿𝐵𝐸𝐴𝑃𝐶𝐴 (lower bounding distance
between the query and the EAPCA representations of the clusters),
and we prune clusters using both 𝐿𝐵𝐸𝐴𝑃𝐶𝐴 and 𝑘𝑡ℎ

𝑑𝑖𝑠𝑡
, the distance

between the query and the current 𝑘𝑡ℎ bsf answer, obtained by
traversing the Hercules tree. Both exact and approximate K-means
prune clusters based on the distance between the query and the
cluster centroids. We also evaluate the pruning of the clusters using
EAPCA-based clustering with centroid-based pruning (EAPCA-
Centroid). EAPCA-Centroid uses the same clusters obtained by the

EAPCA clustering, but prunes clusters using the distances to the
cluster centroids (instead of 𝐿𝐵𝐸𝐴𝑃𝐶𝐴 and 𝑘𝑡ℎ

𝑑𝑖𝑠𝑡
).

Figure 11 summarizes the results of this experiment on the
Deep25GB dataset. To ensure a fair comparison between EAPCA
and K-means, we use the same number of clusters. Since in EAPCA,
this number is found adaptively and cannot be enforced, we use
the number of leaves that result from building the EAPCA tree
as the number of clusters for the K-means algorithms (in the case
of Deep25GB, this number is 26). The exact K-means algorithm
requires 551 iterations to converge, while approximate K-means
requires 40 iterations to reach the accuracy levels of exact K-means.
We observe that on average for a given query, ELPIS delivers the
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Figure 11: K-means vs EAPCA (Deep25GB)

same accuracy as previous methods up to 1.5x faster (Figs. 11a-
11b). At the same time, it builds the index and answers 1 million
queries 5x-15x faster than competitors (Fig. 11c). We report that
ELPIS builds its index 4x and 60x faster than the solutions using
approximate and exact K-means, respectively, even though they
are building the same number of clusters. This is because both
exact and approximate K-means spend a significant amount of time
to find the centroids and populate them with vectors, whereas
ELPIS uses the efficient index building algorithm of Hercules. We
can see in Figure 11d that the EAPCA clustering, used by ELPIS,
achieves the same recall as EAPCA-Centroid by visiting a smaller
number of clusters. Since they both use the exact same clusters and
query algorithmwithin each cluster, this means that EAPCA prunes
the clusters better than EAPCA-Centroid. For instance, EAPCA-
Centroid needs to visit 20 clusters whereas EAPCA only needs to
visit 16. Besides, by visiting the same number of clusters, EAPCA
can reach a higher recall than EAPCA-Centroid, because it more
intelligently selects the most promising clusters to search.

4.1.4 Choosing the graph structure within each cluster. In this ex-
periment, we evaluate different state-of-the-art graph structures to
choose the best performing one. We divide a dataset into several
clusters using the EAPCA dynamic segmentation, then evaluate
the indexing and query performance of different types of graphs
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within the clusters (ELPIS-H using HNSW; ELPIS-N and ELPIS-V
using NSG and VAMANA respectively), and compare against the
performance of the original graphs. Figure 12 demonstrates that
using HNSW within the clusters leads to best performance than
using NSG or VAMANA, in both indexing and query answering.

4.1.5 Choosing the number of clusters. In this experiment, we show
that it is not sufficient to divide the search space to improve the
performance of graph-based methods; careful tuning should be
applied, in order to find the optimal number of clusters. Hercules
determines the number of clusters adaptively. It takes as input the
maximum amount of data that can fit in one leaf (max_leaf_size),
then creates enough leaves to fit similar vectors together in the
same leaf. Figure 13 reports on the x-axis the value ofmax_leaf_size
as a percentage of the size of the dataset, and at the top of each
bar the corresponding number of clusters. When the percentage of
data is 100, this corresponds to the original HNSW built on the full
dataset (i.e., one cluster). We observe that splitting the dataset into
many small clusters leads to better indexing performance, but slow
query answering, whereas using a small number of large clusters
leads to slower indexing and querying, where the clustering cost
becomes marginal compared to the cost of building a graph within
each cluster. For our experiments, we choose max_leaf_size to be
between 5% and 10% of the dataset size since it leads to the best
tradeoff. Additionally, we ran an experiment where we vary the size
of the clusters and perform the ELPIS search algorithm only on one
cluster, keeping all the other parameters fixed. Figure 14 indicates
that as the size of a cluster increases, the accuracy improves, but
throughput (expressed in Queries Per Second (QPS)) decreases.

5 CONCLUSIONS AND FUTUREWORK
We proposed ELPIS, a new solution for in-memory 𝑛𝑔-approximate
similarity search over massive collections of high-dimensional vec-
tors. We demonstrated the efficacy of ELPIS on large datasets from
various domains, where ELPIS considerably outperforms its com-
petitors. Finally, we shared key insights and lessons learned that
can help the community better understand the impact of different
design choices on graph-based similarity search performance, and
to make further progress in this area. A theoretical analysis of the
performance and reliability properties of graph-based similarity
search methods is an interesting and challenging open problem.
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