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ABSTRACT

This paper presents Odyssey, a novel distributed data-series process-

ing framework that efficiently addresses the critical challenges of

exhibiting good speedup and ensuring high scalability in data series

processing by taking advantage of the full computational capacity

of modern distributed systems comprised of multi-core servers.

Odyssey addresses a number of challenges in designing efficient

and highly-scalable distributed data series index, including efficient

scheduling, and load-balancing without paying the prohibitive cost

of moving data around. It also supports a flexible partial replication

scheme, which enables Odyssey to navigate through a fundamental

trade-off between data scalability and good performance during

query answering. Through a wide range of configurations and us-

ing several real and synthetic datasets, our experimental analysis

demonstrates that Odyssey achieves its challenging goals.
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1 INTRODUCTION

Motivation. Processing large collections of real-world data series

is nowadays one of the most challenging and critical problems for

a wide range of diverse application domains, including finance,

astrophysics, neuroscience, engineering, and others [44, 47, 81].

Such applications produce big collections of ordered sequences

of data points, called data series. When data series collections are
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generated, they need to be analyzed in order to extract useful knowl-

edge [11, 12, 32, 36, 41, 57, 68, 75]. This analysis usually encom-

passes answering similarity search queries [20, 21, 44], which are

useful in a variety of downstream analysis tasks [16, 18, 19]. More-

over, several applications across domains are very sensitive to the

accuracy of the results [7, 47], and thus, require exact query an-

swering [20], which is our focus.

As the size of the data series collections grows larger [44, 45,

47], recently proposed State-of-the-Art (SotA) data series indexes

exploit parallelism through the use of multiple threads and the

utilization of the SIMD capabilities of modern hardware [15, 51,

53]. However, the unprecedented growth in size that data series

collections experience nowadays, renders even SotA parallel data

series indexes inadequate [7, 17, 20, 21, 30, 45, 47], mainly due to the

large number of random disk page reads required for exact query

answering [20]. To address these issues, fast in-memory solutions

have been proposed [49, 50, 52]. However, these solutions do not

take advantage of distributed systems, and hence, are limited by the

amount of memory of a single machine. This is the limitation we

address, thus allowing the above SotA solutions to handle datasets

that far exceed the main memory capacity of any single node.

Challenges. In the context of data series similarity search, exact

query answering is very demanding in terms of resources, even

when using a data series index. We need to either prune, or visit

every leaf of the index. Previous works [20, 30] though, have shown

that pruning is not very effective, especially for some hard datasets.

The main goal we need to satisfy is (naturally) scalability. That

is, increasing the available hardware resources (e.g., the number

of nodes) should decrease the time cost, ideally by an equivalent

amount, or should enable to process an equivalent amount of addi-

tional data (at about the same time cost). In order to meet this goal,

we need to ensure that all nodes of the distributed system equally

contribute to completing the work, during the entire duration of the

execution. In turn, this translates to producing effective solutions

to the following two problems: (i) query scheduling: given a query

workload, decide which queries to assign to each system node; and

(ii) load-balancing: devise mechanisms so that system nodes that

have finished their work can help other system nodes finish theirs.

The challenges in this context are the following. First, to achieve

effective query scheduling, we need to come up with mechanisms

for estimating the execution cost of data series similarity search
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queries, which do not currently exist. Second, this observation

renders a load balancing scheme necessary, yet, this also means that

we need to replicate data in order to make such a mechanism viable,

as moving big volumes of data series around would be prohibitively

expensive. Data replication works against data scalability and is

more costly in whatever regards index creation time, but results in

better query answering times, thus leading in interesting trade-offs

through which an effective solution should navigate. Third, along

with all the above considerations, we also need to ensure that our

solutions will still maintain their good parallelization properties

for efficient execution in multi-core CPUs inside each system node,

and also achieve high pruning power during query answering.

Our Approach. We propose a novel distributed data-series (DS)

indexing and processing framework, called Odyssey, that efficiently

addresses the high scalability objective by taking advantage of the

full computational capacity of the computing platform.

To come up with an appropriate scheduling scheme for Odyssey,

we performed a query analysis that shows correlation between

the total execution time and a parameter of the category of the

single-node data series indexes we consider. This analysis drove the

design of efficient scheduling schemes, by generating an execution

time prediction for each query of the input query batch.

To achieve Load Balancing (LB) even in settings where predic-

tions may not be accurate, Odyssey provides a LB mechanism,

which ensures that nodes sitting idle can take away (or steal) work

from other nodes which have still work to do (provided that these

nodes store similar data). Combining Odyssey scheduler with this

LB technique results in very good performance and high scalability

for all query batches we experiment with.

Ensuring data scalability and, at the same time, good perfor-

mance for query answering are contradicting goals. A scheme

where data are not replicated would result in the lowest space

overhead, but experiments show that this technique does not en-

sure the best performance during query answering, because no data

replication means that Odyssey’s LB mechanism cannot be used.

Odyssey manages to effectively unify these two contradicting

goals by supporting a flexible partial replication scheme. This way,

it navigates through the fundamental trade-off between data scala-

bility and good performance during query answering. The degree

of replication is one of Odyssey’s parameters. By specifying it ap-

propriately, users can choose the time-space trade-off that best

suits their application and setting. Experiments show that Odyssey

achieves good performance even for small replication degrees.

Supporting the components for efficient distributed computa-

tion that Odyssey provides, on top of an index that exploits the

computation power of a single node as efficiently as SotA parallel

indexes [49, 50, 52], was one more challenging task we undertook

while designing Odyssey. A simple approach of using an instance

of the SotA MESSI index [49] in each node did not result in good

performance mainly due to two reasons. First, different data series

queries may exhibit variable degrees of locality (revealed only at

runtime), resulting in low pruning in some of the nodes, and thus,

in severe load balancing problems and performance degradation.

Second, supporting load-balancing on top of such a simple approach

would require moving data around, which is often prohibitively

expensive. Odyssey single-node indexing scheme borrows some

techniques from SotA indexes [49ś53], and couples those with new

components and mechanisms, to achieve load balancing and come

up with a scheme in which work from an overloaded node can be

given away to idle nodes without having to pay the prohibited cost

of moving any data around.

Odyssey is innovative in different ways. First, it employs a differ-

ent pattern of parallelism from all existing approaches in traversing

the index tree to produce the set of data series that cannot be pruned.

Second, it presents new implementations for populating and pro-

cessing the data structures needed for efficient query answering.

To achieve load balancing among the threads, it is critical to choose

an appropriate threshold on the size of these data structures, and

Odyssey proposes an effective mechanism for predicting a good

threshold. Additionally, Odyssey provides efficient communication

and book-keeping mechanisms, to enable fast exchange of informa-

tion among nodes to ensure good pruning degrees in all of them.

Odyssey is up to 6.6x faster than its competitors and more than

3.5x better than its best competitor. Additionally, Odyssey’s index

creation perfectly scales with both the dataset size and the number

of node. Moreover, Odyssey’s best performing scheduling strategy

is more than 2.5x faster than its initial one.

Contributions. The main contributions of the paper are as follows:

•We describe Odyssey, a scalable framework for distributed data

series similarity search in clusters with multi-core servers. This

makes our approach the first customized data series solution that

exploits parallelization both inside and across system nodes.

•We develop a scheduling algorithm for assigning queries to the

nodes of the cluster, which tries to balance the workload across the

nodes by computing a (good-enough) estimation of the execution

time of each query.

•We present a novel exact search algorithm that supports work-

stealing between nodes that share the same index (full replication).

Thus, our approach leads to high performance, even when the work

is not (or cannot be) equally distributed over the nodes of the cluster.

We further extend our solution to work even when only a part of

the index is shared among nodes (partial replication).

• Our approach supports different replication degrees among the

nodes, allowing users to navigate the entire spectrum of solutions,

trading space (replication degree) for speed (query answering time).

•We also present a density-aware data partitioningmethod that can

efficiently partition data in a way that improves the work balancing

capabilities of our approach.

• Finally, we conduct an experimental evaluation (code and data

available online [3]) with a wide range of configurations, using real

and synthetic datasets. The evaluation demonstrates the efficiency

of Odyssey, which exhibits an almost linear scale-up, and up to 6.6x

times faster exact query answering times than the competitors.

2 PRELIMINARIES AND RELATED WORK

Data Series. A data series, denoted as 𝑆 = {𝑝1, ..., 𝑝𝑛}, is a sequence

of points, where each point 𝑝𝑖 is a pair (𝑢𝑖 , 𝑡𝑖 ), 1 ≤ 𝑖 ≤ 𝑛, of a real

value 𝑢𝑖 and the position 𝑡𝑖 of 𝑝𝑖 in the sequence; 𝑛 is the size (or

dimensionality) of the sequence. When 𝑡𝑖 represents time, we talk

about time series. In several cases, we omit the 𝑡𝑖 , e.g., when they

are equally spaced, or only play the role of an index for the values

𝑢𝑖 [20]; for simplicity, we omit them, as well.



(a) Data Series (b) PAA Summary (c) iSAX Summary

(d) iSAX Tree

Figure 1: From data series to iSAX index

iSAX Summary. The iSAX summary [60] of a data series splits

the x-axis in equal segments and represents each segment with

the mean value of the points of the data series that it contains (see

Figure 1). Then it partitions the y axis into regions of sizes deter-

mined by the normal distribution and represents each region using

a number of bits (cardinality). The number of bits can be different

for each region, and this enables the creation of a hierarchical index

tree (iSAX-based index tree [46]; see Figure 1).

Similarity Search. Given a collection of data series C and an

input data series 𝑆 , called the query, similarity search is the task

of finding the data series in C which are most similar to 𝑆 . We

focus on finding a single best answer, known as the 1-NN problem.

We also focus on Euclidean Distance (ED). The euclidean distance

(or real distance) between two time series 𝑇 = {𝑡1, ..., 𝑡𝑛} and 𝑆 =

{𝑠1, ..., 𝑠𝑛} is defined as 𝐸𝐷 (𝑇, 𝑆) =
√︂

∑︁𝑛
𝑖=1 (𝑡𝑖 − 𝑠𝑖 )

2. We call the

distance between the iSAX summaries of 𝑇 and 𝑆 , lower-bound

distance. The lower-bound distance between any two data series is

always smaller than or equal to the real distance between them.

Single-Node Parallel Summary-Based DS Indexing. Such in-

dexes [6, 15, 49ś53] exploit multiple threads (and SIMD) to create

an index tree and answer queries on top of this tree. They are usu-

ally comprised of two main phases, the index tree construction and

the query answering phases. In the index tree construction phase,

they first calculate, in parallel, summarizations of all data series in

the collection. If the summarizations are iSAX summaries, we talk

about iSAX-based DS indexing. To achieve a good degree of locality

and low synchronization overheads, they store these summaries

into a set of summarization buffers. Data series that have similar

summarizations are placed into the same buffer. Subsequently, the

data series of each of these buffers are stored into each of the sub-

trees of the index tree that they construct. These design decisions

allow them to build the index tree in an almost embarrassingly par-

allel way (thus, without incurring synchronization overheads), and

achieve locality in accessing the data during tree construction. They

thus respect crucial principles for achieving good performance that

should be respected when designing a parallel index.

To answer a query, these indexes first calculate the summariza-

tion of the query. Subsequently, they traverse the index tree to find

the most appropriate data series based on the iSAX summary lower

bound distances. The distance of these data series from the query

Figure 2: Algorithm Outline of Parallel DS Indexes.

series is stored in a variable called best-so-far (BSF), and serves as

an initial approximate answer to the active query. Then, BSF is used

to prune data series from the initial collection. A data series 𝑆 is

pruned when the lower bound distance between 𝑆 and the query

is higher than the current value of the BSF. This process outputs a

hopefully small subset of the initial DS collection, containing series

that need to be further examined. These series are often stored in

(one or more) priority queues [49, 50, 52]. Multiple threads pro-

cess, concurrently, the elements of the priority queues, calculating

real distances (if needed), and updating the BSF each time a new

minimum is met (see Figure 2). Once this process completes, the

distance to the answer is contained in BSF.

Multi-node Systems and Query Processing. The system con-

sists of a number of asynchronous nodes which communicate by

exchanging messages. Each node is a multi-core machine, capa-

ble to support multiple threads (and possibly SIMD computation).

Threads communicate by accessing shared variables. A shared vari-

able can be atomically read and written. Stronger primitives, such

as Fetch&Add may also be provided. Fetch&Add(𝑉 , 𝑣𝑎𝑙 ) atomically

adds the value 𝑣𝑎𝑙 to the current value of variable 𝑉 and returns

the value that 𝑉 had before this update.

An arbitrarily large batch of queries is provided in the system as

input. The goal is to utilize the system’s computational power to

execute these queries in a way that minimizes the makespan, i.e.,

the length of time that elapses from the time that any node starts

processing a query of the batch to the first point that all nodes have

completed their computation. Our techniques can easily be adjusted

to work with queries that arrive in the system dynamically.

The data series in the initial collection can be stored in all nodes

(full replication), or may be scattered to the different nodes so that

nodes store disjoint subsets of the data (no replication). A partial

replication scheme is also possible, where nodes store subsets of the

data which are not necessarily pairwise disjoint (e.g., more than one

node may store the same subset of data series). A data partitioning

mechanism determines how to split and distribute the data of the

initial data-series collection to nodes.

Query scheduling algorithms aim to schedule the input queries to

nodes in a way that each node has approximately the same amount

of work to do. Considering full replication, a Static Query Scheduler

(SQS) partitions the sequence of queries into 𝑁 subsequences and

each node gets one of these subsequences to answer. A Dynamic

Query Scheduler (DQS) employs a coordinator node, and has other

nodes requesting queries to execute from the coordinator. The

coordinator may serve requests by assigning the next unprocessed



query to a worker when it receives its request, or it may preprocess

the sequence of queries (e.g., by re-arranging the queries based on

some property) before it starts assigning queries to nodes. To avoid

loosing computational power, the coordinator can answer queries

itself between serving requests from other nodes.

2.1 Related Work

Data series similarity search queries require the use of specialized

index structures in order to be executed fast on very large collec-

tions of data sequences. In general, data series indexes operate by

pruning the search space based on the summarizations of the series

and corresponding lower bounds, and only use the raw data of the

series in order to filter out the false positives.

Data Series Indexes. Agrawal et al. [4] presented the first work

that argued for the use of a spatial indexing structure for index-

ing data sequences, based on the R-Tree [59], and was later opti-

mized [56]. Various indices, specific to data sequences, have been

proposed in the literature [19]. DSTree [69] is an index based on

the APCA summarization [38]. The DSTree can adaptively per-

form split operations by increasing the detail of APCA as needed.

The iSAX index is based on the SAX summarization, and its ex-

tension, iSAX [60]. In this case, the data series summarization is

bitwise, leading to a concise representation and overall index. Sev-

eral other iSAX-based indices have been proposed in the litera-

ture [13, 39, 40, 46, 67, 70, 77, 78]. These indexes are among the

SotA solutions in this area [20], including MESSI [49, 52], an in-

memory, multi-core and SIMD-enabled version of the iSAX index.

Data Series Management Systems. Several data series man-

agement systems have been developed in the last few years [19,

35].Beringei [48] has a custom in-memory storage engine. It com-

presses and organizes data in a series per series scheme. Crat-

eDB [14] partitions data in chunks, stores them in a distributed file

system, and indexes them using Apache Lucene. InfluxDB [33] uses

Time-StructuredMerge Trees (LSM tree variant). Prometheus [54] is

based on the Beringei ideas. QuasarDB [55] utilizes either RocksDB

or Hellium [31]. Riak TS [58] supports both LevelDB or Bitcask,

which is a custom log structured hash table. Timescale [64] is a

Postgres extension. IoTDB [66] is geared towards streaming data

series. Finally, various systems such as OpenTSDB [43], Timely [63]

(concentrated on security) and Warp10 [71] are developed on top of

HBase. All the aforementioned systems support range scans in the

positions, aggregation functions and filtering. InfluxDB supports

queries like moving averages, prediction, transformations, etc, and

Timescale supports gap filling. Nevertheless, none of the above

systems supports exact whole-matching similarity search queries.

Distributed Data Series Indexes. KV-Match [72] and its improve-

ment, L-Match [26], are index structures that can support similarity

search. These indices can be implemented on top of Apache HBase,

and operate in a distributed fashion within Apache Spark. We note

that these solutions only support subsequence similarity search,

and not whole-matching [20], which is the focus of our paper.

TARDIS [76] is an Apache Spark system for similarity search. It

supports approximate queries, as well as exact match queries, where

we want to know if the query appears exactly the same within the

dataset, or not. This query type is much easier than the exact queries

we consider in our work, and cannot be efficiently transformed to

exact querying. Finally, DPiSAX [73, 74] is a distributed solution

for data series similarity search, developed for Apache Spark using

Scala. It was designed for answering batches of approximate search

queries, but also supports exact search. DPiSAX exploits the iSAX

summaries of a small sample of the dataset, in order to distribute

the data to the nodes equally. Then, an iSAX index is built in each

node on the local data, and is used to perform query answering. In

order to produce the exact search results, all nodes need to send

their partial results to the coordinator, which merges them and pro-

duces the final, exact answer. Note that DPiSAX was not explicitly

designed for intra-node parallelization, but is the only distributed

data series index in the literature that supports exact search.

Work-stealing was employed in the Cilk framework [1]. The

work-stealing approach was formally studied and analyzed in [10,

24, 25]. Lots of work has been done on this topic (e.g., [8, 9, 23]).

3 THE ODYSSEY FRAMEWORK

We start with a high level overview of the Odyssey flowchart, which

comprises of five stages (see Figure 3).

In the first stage, a coordinator node partitions the raw data-series

collection to as many chunks as the number of system nodes, and

assigns a chunk to each node (including itself). (Section 3.4 details

Odyssey’s partitioning schemes.) In the second stage, each node (i)

loads its chunk of data in memory, (ii) computes their iSAX sum-

maries and stores them into a number of summarization buffers, for

achieving locality, and (iii) builds its index tree. To enhance perfor-

mance at query answering, Odyssey employs data replication. It

forms groups of nodes (replication groups, described in Section 3.3),

where all nodes of each group store the same chunk of data. Each

replication group has a coordinator node, called group coordinator,

which schedules queries to the group’s nodes. A batch of queries

(e.g., originating from a k-NN classification task) to execute is sub-

mitted to all group coordinators (as different groups store different

data chunks). In the third stage, the group coordinators start by

estimating the execution time of each query, then sort queries in

descending order of estimated execution times, and dynamically

schedule them to the group’s nodes (Section 3.1 describes query

scheduling). In the fourth stage, each node processes the queries

assigned to it. It first calculates an initial BSF, and then prunes

the index tree using this BSF, populating the priority queues with

leaves that cannot be pruned. Finally, it processes the elements of

the priority queues to find the best local answer (corresponding to

its data chunk). In this stage, Odyssey supports BSF-sharing and

work-stealing (detailed in Section 3.2). In the last stage, the coordi-

nator node collects the local answers from the group coordinators,

and produces the final answers.

3.1 Query Scheduling

To correctly answer a query, it should be forwarded to at least one

set of system nodes that collectively store all the data. We call such

sets node clusters in Section 3.3. Thus, in the no-replication case

this set contains all system nodes, so a scheduling algorithm should

forward all queries to all nodes. Other replication settings (and

especially full replication) are more interesting, as they enable the

utilization of different scheduling techniques.



Figure 3: Odyssey flowchart.

To come up with Odyssey scheduler, we experimented with a

collection of scheduling techniques, including the simple static

and dynamic schemes (SQS and DQS) for full replication settings,

discussed in Section 2. Unfortunately, these schemes suffer from se-

vere load imbalance problems for many categories of query batches.

For the static case, consider for example, a query sequence which

consists of progressively more difficult queries (i.e., of queries that

each requires less time to run than the next one). SQS will assign

to the first system nodes easy queries, while the last nodes will get

more work to do. The dynamic method (DQS) may also result in

load imbalances: even in simple cases where e.g., a query batch

includes a single difficult query at the end, most nodes may be

sitting idle, while a single node is running the difficult query. This

may significantly degrade performance.

Some of these load imbalances could be avoided, if we knew the

execution time of each query. Recent work [17, 29] illustrated that

there exists a correlation between the initial BSF and the number

of vertices visited in a single-node index tree. We performed a

corresponding query analysis which showed that similarity search

queries, for which the initial BSF is high, tend to also have high

execution times. In this work, we use a linear regression model

(other pediction schemes can be used, as well) to produce estimates

for each query. An example of this outcome is shown in Figure 4

(for Seismic; we follow the same process for the other datasets).

These observations led us to design two scheduling algorithms.

The first, static prediction-based scheduling, statically allocates the

queries to nodes based on their estimations. Each node maintains

a load variable, which stores the sum of the estimations of the

queries that are assigned to it. The algorithm uses a greedy ap-

proach to assign queries to nodes so that load balancing is achieved.

There are two variations of the algorithm: the first (unsorted) sched-

ules the queries using their order in the sequence, and the second

(sorted) sorts the sequence based on decreasing execution time

estimations. . The second scheduling algorithm, called dynamic

prediction-based scheduling, is an enhanced version of DQS, where

queries are assigned to nodes after sorting the entire query batch,

based on estimations (in decreasing order).

Figure 4: Linear regression for Seismic queries prediction.

Example 3.1. Consider a system of two nodes, sn1 and sn2 , and

let Q = {𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5} be a query batch to execute. Assume that

ES = {100, 50, 200, 250, 80} is the set of the estimated execution

times, where the 𝑖-th element of ES is the estimated execution

time for 𝑞𝑖 , 1 ≤ 𝑖 ≤ 5. Unsorted static prediction-based schedul-

ing, with load variables 𝑙1 and 𝑙2 (for sn1 and sn2 , respectively),

proceeds as follows: 𝑞1 is assigned to sn1 (so, 𝑙1 = 100), and 𝑞2
is assigned to sn2 (so, 𝑙2 = 50). Since 𝑙2 < 𝑙1, 𝑞3 is assigned to

𝑠𝑛2 (thus, 𝑙2 = 250). Following a similar strategy, 𝑞4 is assigned to

sn1, and 𝑞5 is assigned to sn2 . So, 𝑠𝑛1 receives {𝑞1, 𝑞4} and 𝑠𝑛2 re-

ceives {𝑞2, 𝑞3, 𝑞5}. In sorted static prediction-based scheduling, the

queries of Q are first sorted in decreasing order of their estimated

times, resulting in 𝑄 ′ = {𝑞4, 𝑞3, 𝑞1, 𝑞5, 𝑞2} (which corresponds to

ES′ = {250, 200, 100, 80, 50}). After applying the static prediction-

based scheduling algorithm (as above) on these sets, {𝑞4, 𝑞5} is

assigned to 𝑠𝑛1 and {𝑞3, 𝑞1, 𝑞2} is assigned to 𝑠𝑛2. Finally, dynamic

prediction-based scheduling also sorts the queries of Q. In this case,

𝑞4 is assigned to sn1, 𝑞3 to sn2 , while the rest of the queries are

dynamically assigned to nodes (in order) upon request (thus, based

on actual execution times).

The Odyssey framework supports all of the above scheduling

algorithms. The Odyssey index utilizes dynamic prediction-based

scheduling, which turned out to be the best approach in most cases.



3.2 Load Balancing

Odyssey provides a load balancing (LB) mechanism, which can

be applied on top of any of the scheduling schemes described in

Section 3.1. Specifically, idle nodes can steal work from other nodes

which still have work to do (provided that they store similar data).

This is necessary as predictions may not always be accurate,

or the query batch may be produced dynamically at run time, in

which case sorting of the entire query batch is not possible. It is also

necessary for achieving high scalability. As the number of utilized

nodes increases, the number of batch queries that each node has to

process becomes smaller and smaller. Thus, problematic scenarios

as those described in Section 3.1, may appear, where just one or a

few nodes work on difficult queries, while others are sitting idle.

Overview of our approach. We performed a number of exper-

iments to get a break-down of the query answering time. This

break-down illustrated that the biggest part of the time for query

answering goes to priority queues’ processing. We thus focus on

designing a method that allows nodes to steal work during the

execution of that phase. For simplicity, we first focus on the full-

replication case, where the initial collection of data is available in

every node; partial replication is then discussed in Section 3.3.

A simple work-stealing scheme [1, 10] would not work, mainly

because moving data (stored in priority queues) around from one

node to another is expensive and should be avoided. Thus, the main

challenge in our setting is to take work away from one node and

assign it to another without ever moving any data around.

Odyssey’s load-balancing mechanism works as follows. An idle

system node 𝑠𝑛 randomly chooses another node 𝑠𝑛′ and sends it

a steal request. If 𝑠𝑛′ has still work to do, it chooses a number

of priority queues to give away to 𝑠𝑛. To avoid paying the cost

of transferring data around, Odyssey employs a technique that

informs 𝑠𝑛 on how to locally build the priority queues to work on,

based on its own index. Node 𝑠𝑛 traverses the identified part of its

index tree and re-constructs these priority queues. As the time to

create the priority queues is relatively small in comparison to that

for processing them, this scheme works quite well.

Note that the approaches followed by existing SotA indexes [49,

50, 52] for creating and processing the priority queues are too

naive to support work-stealing without moving any data around.

In Odyssey, we propose (in Section 3.2.1) a new implementation

of a single-node, multi-threaded index, which respects the good

design principles described for parallel indexes in Section 2, while

it simultaneously copes with the problem mentioned above.

3.2.1 Single-Node Query Answering. Consider any system node sn

and assume that an iSAX-based index tree has been created and an

initial value for the BSF has been computed in 𝑠𝑛. An outline of the

single-node query answering algorithm of Odyssey is depicted in

Figure 5. The pseudocode is provided in Algorithms 1 and 2.

Description. Node 𝑠𝑛 executes each of the queries in the query

batch assigned to it one by one (Algorithm 1). For each such query

𝑄 , it creates a number of search workers to execute it (line 8). As

soon as, all queries in 𝑠𝑛’s query batch have been processed, 𝑠𝑛

informs other nodes that it has completed (line 12). Then, it tries to

help other active nodes by executing PerformWorkStealing (line 13).

Each node allocates a thread to play the role of the work-stealing

manager (line 6). This thread simply processes all work-stealing
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Figure 5: Outline of the Odyssey single-node query-

answering process.

requests that the node will receive (Algorithm 3). (Work-stealing is

discussed in Section 3.2.2.)

The query answering algorithm in sn splits the tree into root

subtree (RS) batches, i.e., sets of consecutive root subtrees (see Fig-

ure 5), and allocates a number of threads to work on them. Each

thread begins by getting an RS-batch to work on using Fetch&Add

(Algorithm 2). Then, the thread executes the ProcessBatch routine,

which traverses the tree recursively and inserts the leaves that can-

not be pruned into one of a set of priority queues that belong to

the RS-batch. For every RS-batch, there exists one active priority

queue at each point in time. When the size of this priority queue

surpasses a threshold, this queue is abandoned and another one is

initialized for the RS-batch.

As soon as an idle thread th discovers that all RS-batches have

been assigned for processing, it tries to help some other still active

thread, th′, to complete processing its assigned RS-batch (lines 11-

14, Algorithm 2). To reduce the synchronization cost, there is a

threshold, HelpTH , on the number of threads that help on each RS-

batch (line 12). This phase ends when the subtrees of all RS-batches

have been traversed and all priority queues have been populated.

Experiments showed that we get the best performance when the

number of RS-batches, 𝑁𝑠𝑏 , equals the number of worker threads.

As soon as this tree traversal phase is over, we have a set of pri-

ority queues for each RS-batch, stored in an array. For performance

reasons, this array is sorted by the priority of the top element of

each priority queue. This comprises the priority queue preprocessing

phase (lines 15-21). This way, the algorithm processes the priority

queues with the smallest lower bound distances to the query first.

These queues contain data series that are more probable to be in

closer real distance to the query, thus enabling further pruning.

Then, the priority queue processing phase starts (lines 23-29). Ev-

ery thread gets a priority queue from the PQueues array to process

(using Fetch&Add). Routine ProcessPriorityQueue processes those

data series stored in the priority queue, which cannot be pruned.

Whenever a lower real time distance between any of these series

and the query series is calculated, the BSF is updated to contain this

distance. This improved BSF is submitted to all nodes of the system.



Algorithm 1: Odyssey Single-Node Query Answering -

Code for node 𝑠𝑛
1 Shared Variables: Shared PointerToArray 𝑃𝑄𝑢𝑒𝑢𝑒𝑠 = 𝑁𝑈𝐿𝐿

Input: QuerySeriesBatch𝑄𝐵𝑎𝑡𝑐ℎ, Index 𝐼𝑛𝑑𝑒𝑥 , Integer 𝑁𝑇ℎ𝑟𝑒𝑎𝑑𝑠
2 Array 𝐵𝑆𝐹𝐴𝑟𝑟𝑎𝑦 [ ] ⊲ with size |𝑄𝐵𝑎𝑡𝑐ℎ |

3 for every query series id𝑄 in QBatch do
4 𝑖𝑆𝐴𝑋𝑄 = calculate iSAX summary for Q

5 𝐵𝑆𝐹 = approxSearch(𝑖𝑆𝐴𝑋𝑄 , 𝐼𝑛𝑑𝑒𝑥 )

6 create a thread to execute an instance of WorkStealingManager(Q)

7 for 𝑖 ← 0 to 𝑁𝑇ℎ𝑟𝑒𝑎𝑑𝑠 − 1 do
8 create a thread to execute an instance of SearchWorker(𝑄 , 𝐼𝑛𝑑𝑒𝑥 ,

𝑁𝑠𝑏 , 𝑖 , 𝑃𝑄𝑢𝑒𝑢𝑒𝑠 )

9 Wait for all threads to finish

10 FinishFlag[Q] := TRUE

11 BSFArray[Q] := 𝐵𝑆𝐹 ;

12 send(DONE, 𝑠𝑛) to all nodes

13 PerformWorkStealing()

14 return (𝐵𝑆𝐹𝐴𝑟𝑟𝑎𝑦)

Algorithm 2: SearchWorker - Code for thread 𝑡𝑖𝑑

1 ⊲ Shared Variables

2 Shared Integers 𝐵𝐶𝑛𝑡 = 0, 𝑃𝑄𝐶𝑛𝑡 = 0,𝑇𝑜𝑡𝑃𝑄 = 0;

Input: QuerySeries𝑄 , Index 𝐼𝑛𝑑𝑒𝑥 , Integer 𝑁𝑠𝑏 , Integer 𝑡𝑖𝑑 , Queue
𝑃𝑄𝑢𝑒𝑢𝑒𝑠 [ ]

3 Integer 𝑏𝑖𝑛𝑑𝑒𝑥 , 𝑝𝑞𝑖𝑛𝑑𝑒𝑥 ;

4 ⊲ Tree Traversal Phase

5 while (𝑇𝑅𝑈𝐸 ) do
6 𝑏𝑖𝑛𝑑𝑒𝑥 ← Fetch&Add(𝐵𝐶𝑛𝑡 ,1);

7 if 𝑏𝑖𝑛𝑑𝑒𝑥 ≥ 𝑁𝑠𝑏 then
8 break;

9 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑅𝑆𝐵𝑎𝑡𝑐ℎ (𝑄,𝑏𝑖𝑛𝑑𝑒𝑥, 𝐼𝑛𝑑𝑒𝑥.𝑅𝑆𝐵𝑎𝑡𝑐ℎ𝑒𝑠 ) ;

10 𝐼𝑛𝑑𝑒𝑥 .𝑅𝑆𝐵𝑎𝑡𝑐ℎ𝑒𝑠 [𝑏𝑖𝑛𝑑𝑒𝑥 ] .𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ← 𝑇𝑅𝑈𝐸;

11 for 𝑏𝑖𝑛𝑑𝑒𝑥 ← 0 to 𝑁𝑠𝑏 do
12 if !𝐼𝑛𝑑𝑒𝑥 .𝑅𝑆𝐵𝑎𝑡𝑐ℎ𝑒𝑠 [𝑏𝑖𝑛𝑑𝑒𝑥 ] .𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 AND

Fetch&Add(𝐼𝑛𝑑𝑒𝑥 .𝑅𝑆𝐵𝑎𝑡𝑐ℎ𝑒𝑠 [𝑏𝑖𝑛𝑑𝑒𝑥 ] .ℎ𝑒𝑙𝑝𝑒𝑑, 1) < 𝐻𝑒𝑙𝑝𝑇𝐻
then

13 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝐵𝑎𝑡𝑐ℎ (𝑄,𝑏𝑖𝑛𝑑𝑒𝑥, 𝐼𝑛𝑑𝑒𝑥.𝑅𝑆𝐵𝑎𝑡𝑐ℎ𝑒𝑠 ) ;

14 𝐼𝑛𝑑𝑒𝑥 .𝑅𝑆𝐵𝑎𝑡𝑐ℎ𝑒𝑠 [𝑏𝑖𝑛𝑑𝑒𝑥 ] .𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑒 ← 𝑇𝑅𝑈𝐸;

15 Barrier for all threads;

16 ⊲ Priority Queue Preprocessing Phase

17 if 𝑡𝑖𝑑 == 0 then
18 Traverse all RS-batches and put their priority queues into 𝑃𝑄𝑢𝑒𝑢𝑒𝑠 [ ];

19 𝑆𝑜𝑟𝑡𝐵𝑦𝑅𝑜𝑜𝑡𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦 (𝑃𝑄𝑢𝑒𝑢𝑒𝑠 ) ;

20 𝑇𝑜𝑡𝑃𝑄 ← number of valid elements of 𝑃𝑄𝑢𝑒𝑢𝑒𝑠 ;

21 Barrier for all threads;

22 ⊲ Priority Queue Processing Phase

23 while (𝑇𝑅𝑈𝐸 ) do
24 𝑝𝑞𝑖𝑛𝑑𝑒𝑥 ← Fetch&Add(𝑃𝑄𝐶𝑛𝑡, 1) ;

25 if 𝑝𝑞𝑖𝑛𝑑𝑒𝑥 ≥ 𝑇𝑜𝑡𝑃𝑄 then
26 break;

27 if 𝑃𝑄𝑢𝑒𝑢𝑒𝑠 [𝑝𝑞𝑖𝑛𝑑𝑒𝑥 ] .𝑠𝑡𝑜𝑙𝑒𝑛 then
28 continue;

29 𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦𝑄𝑢𝑒𝑢𝑒 (𝑃𝑄𝑢𝑒𝑢𝑒𝑠 [𝑝𝑞𝑖𝑛𝑑𝑒𝑥 ] ) ;

Finally, all answers are transmitted to the coordinator node, and

the globally smallest value of the BSF is the response to the query.

Size of Priority Queues. The size of each priority queue cannot

be larger than a specific threshold, TH . If adding an element in a

priority queue results the size of the queue to reach TH , then the

thread gives up this priority queue and initiates a new one for the

RS-batch. This way, each priority queue does not contain leaves

from more than one RS-batch, and contains at most TH leaves from

the tree part that corresponds to the RS-batch.

Algorithm 3:WorkstealingManager - Code for node 𝑠𝑛

Input: Integer 𝑁𝐵

1 Upon Receiving a message of type StealingRequest from node 𝑠𝑛′:

2 S := Set of at most 𝑁𝑠𝑒𝑛𝑑 ids of RS-batches that satisfy the Take-Away

Property

3 send(𝑆 ,𝑄 of 𝑠𝑛,𝑄 ’s current BSF) to 𝑠𝑛′

4 Mark the priority queues of the RS-batches with ids in 𝑆 as stolen

5 ⊲ Always-enabled event: it is executed repeatedly

6 Upon receiving no message:

7 if FinishFlag[Q] in 𝑠𝑛 is set then
8 Terminate

Algorithm 4: PerformWorkStealing - Code for node 𝑠𝑛

Input: Index 𝑖𝑛𝑑𝑒𝑥 , Function 𝑒𝑥𝑎𝑐𝑡_𝑠𝑒𝑎𝑟𝑐ℎ_𝑤𝑜𝑟𝑘𝑠𝑡𝑒𝑎𝑙𝑖𝑛𝑔_𝑓 𝑢𝑛𝑐 ,
QuerySeries 𝑞𝑢𝑒𝑟𝑖𝑒𝑠 [ ], Integer 𝑡𝑜𝑡𝑎𝑙_𝑛𝑜𝑑𝑒𝑠_𝑝𝑒𝑟_𝑛𝑜𝑑𝑒𝑔𝑟𝑜𝑢𝑝

1 Upon Receiving a DONE message from node 𝑠𝑛′:

2 add 𝑠𝑛′ in set 𝐷𝑜𝑛𝑒𝑁𝑑𝑠

3 if 𝐷𝑜𝑛𝑒𝑁𝑑𝑠 contains all system’s nodes then
4 Terminate

5 Upon Receiving a𝑚𝑠𝑔 = ⟨𝑆,𝑄𝑠 , 𝐵𝑆𝐹𝑠 ⟩ from node 𝑠𝑛′:

6 if |S| > 0 then
7 Create threads to traverse the RS-batches with ids in 𝑆

8 Populate and process the corresponding priorities queues

9 BSFArray[𝑄𝑠 ] := 𝐵𝑆𝐹𝑠 ; ⊲ computed by threads above

10 Wait all threads to complete

11 ResponseFlag := 0

12 ⊲ Always-enabled event: it is executed repeatedly

13 Upon receiving no message:

14 if !(ResponseFlag) then
15 𝑠𝑛′ := choose randomly a node not in 𝐷𝑜𝑛𝑒𝑁𝑑𝑠

16 send(StealingRequest, 𝑠𝑛) to 𝑠𝑛′

17 ResponseFlag := 1

(a) Sigmoid function fitting for

determining TH .

(b) Performance for different

Threshold division factors.

Figure 6: Odyssey Single-Node Query-Answering Algorithm

Configuration.

Choosing the appropriate value for the threshold, TH , is impor-
tant for achieving load balancing among the different threads. Our
goal is to develop a method for determining a threshold value which
will result with a set of priority queues that have about the same
size. The threshold is determined and configured for every dataset
we use, based on the queries we run. We explain the process of
determining TH for the Seismic real dataset [2], but the process is
similar for all other datasets (real or synthetic) we experimented
with. After running multiple queries of varying difficulty, we fig-
ured out that there exists again a correlation between the initial BSF
that is computed for the query and the median size of the priority



queues produced for answering it. Then we performed a sigmoid
function fitting using the following parameterized formula:

𝑓 (𝑍 ) =𝑚 + (𝑀 −𝑚)
1

1 + 𝑏 · 𝑒𝑥𝑝 (−𝑐 (𝑍 − 𝑑 ) )

where𝑀 ∈ [0, 1],𝑚 ≤ 𝑀,𝑏, 𝑐 ∈ R
∗, and 𝑑 ∈ R are the parameters of

the sigmoid function (Figure 6a). The final threshold value for each

query is the median value estimation as it comes from the sigmoid

function, divided by a factor (e.g. for seismic this factor has to be

16, based on the diagram shown in Figure 6b).

Experiments show that after the tree traversal phase is completed,

we end up with a set of RS-batches that have a number of priority

queues with most of them being the same size. This results in load

balancing among the threads when processing priority queues.

3.2.2 Work-Stealing Algorithm. If a system node sn becomes idle,

sn initiates the work-stealing protocol (Algorithm 4, lines 15-17). It

randomly chooses a system node sn′ from the set of those nodes that

𝑠𝑛 knows to be still active and sends a steal request to it1. A thread

in each node acts as the work-stealing manager (Algorithm 3). As

soon as the work-stealing manager of sn′ receives the request, it

tries to give away work to sn (lines 2-4 of Algorithm 3).

Earlier work has demonstrated that a large amount of the query

answering execution time is devoted to verifying that there is no

better answer after the correct answer has been processed [17, 29,

30]. Based on these findings, Odyssey’s work-stealing mechanism

chooses to give away an RS-batch 𝐵 which satisfies the Take-Away

Property, namely that 𝐵 is not yet stolen and its first priority queue

is located in the rightmost possible index of the PQueue array. This

priority queue is then marked as stolen. If more than one batches

are to be given away, this process is applied repeatedly to choose

additional RS-batches. Recall that the 𝑃𝑄𝑢𝑒𝑢𝑒 array is sorted by the

priority of the top element of each priority queue. Thus, by giving

away batches in this way, 𝑠𝑛′ assigns to helpers priority queues

that may still contain work. Additionally, it gives away RS-batches

that have the highest probability to be unprocessed. Throughout

the process, the current 𝐵𝑆𝐹 is shared among the nodes, every time

it is updated, as a helper may steal a priority queue that contains a

better answer (or the owner may compute a better BSF later).

The number, 𝑁𝑠𝑒𝑛𝑑 , of RS-bathes that a node gives-away during

stealing affects performance. Theoretically, we would like to give

away a number of RS-batches which on the one hand, it will enable

the stealing node to do a noticeable amount of work, but on the

other, the work to be given away should not result in higher query

answering times. Experiments show that fixing 𝑁𝑠𝑒𝑛𝑑 to 4 was the

best choice (so 𝑁𝑠𝑒𝑛𝑑 = 4 in Odyssey).

3.3 Data Replication

Odyssey aims at ensuring data scalability and, at the same time,

good performance for query answering. Optimal data scalability

requires to follow a no replication approach, but experiments show

that the best query answering performance is noticed for fully repli-

cated settings. Odyssey manages to effectively navigate through

this trade-off between data scalability and good performance during

query answering, by providing a flexible partial replication scheme.

1The codes for Algorithms 3 and 4 are written in an event-driven style [5, 42]
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Figure 7: Data replication partial-4 (𝑁𝑠𝑛 = 8, data size 80GB).

The idea is to split the set of system nodes into clusters, where

each cluster collectively stores the entire dataset (see Figure 7). Each

cluster node stores (and indexes) a chunk of the dataset. The chunks

stored in each node of a cluster are mutually disjoint. A replication

group is a group of nodes such that each node stores the same dataset

as every other node in the group. (We experimentedwith replication

groups of the same size, but Odyssey can operate with replication

groups of different sizes, as well.) The nodes of a replication group

build their iSAX indices from the same data chunk. Thus, inside

every replication group, we can apply the scheduling and load-

balancing schemes described in Sections 3.1 and 3.2, respectively.

We call the number of clusters the replication degree of the system.

Consider a system with 𝑁𝑠𝑛 system nodes. We call partial-𝑘 ,

𝑘 ∈ {1, 2, 4, . . . , 𝑁𝑠𝑛}, a replication setting with 𝑘 replication groups

and 𝑁𝑠𝑛/𝑘 clusters. Observe that partial-𝑁𝑠𝑛 , or eqally-split

corresponds to no replication (each node stores a disjoint chunk

of the dataset), and partial-1, or full corresponds to full replica-

tion (each node stores the full dataset). Note that Odyssey’s data

replication scheme supports 1 + log𝑁𝑠𝑛 different replication de-

grees. Smaller replication degrees lead to smaller space overheads

(and thus better data scalability). Thus, Odyssey’s data replication

scheme allows us to tackle memory limitation problems. Moreover,

more replication groups lead to scalability in index creation.

Example 3.2. A system with 8 nodes supports 1 + log 8 = 4

different replication degrees: full (partial-1), partial-2, partial-

4, and eqally-split (partial-8). Figure 7 illustrates the case of

partial-4: we have 4 replication groups, organized in 2 clusters;

replication degree is 2.

3.4 Data Partitioning

Odyssey framework supports more than one partitioning schemes.

Under eqally-split, each systemnode is assigned a discrete chunk

and builds the corresponding index, resulting in a scheme where

each node keeps a local index on its own part of the data. Queries

are forwarded to all nodes. Each node produces an answer based

on its local index and data. The minimum among them is the final

answer. Before distributing the data, random shuffling (RS) can be

applied to randomly rearrange the series of the initial collection.

To answer a query batch using partial data replication (or no

replication), each query is sent to every replication group. Each



node answers queries using its local data, and the partial answers for

each query are gathered in the end to find the smallest answer. Very

often for real data, the close answers to a query could be located into

a small part of the dataset. The group that has these data will get a

good initial answer, it will prune more and it will answer each query

really fast, while other groups, will not necessarily compute good

initial BSF values. Thus, they will have more work to do leading to

imbalances. For this reason, we enhance our distributed index with

a book-keeping method that supports BSF sharing. When a node is

processing a query and finds an improved value for BSF, it shares

this value through a common BSF-Sharing channel (as illustrated

in Figure 7). Every node periodically checks this channel to see if

an answer for a query has arrived. Because this process runs in

parallel, a node may receive a better answer for a query that will be

encountered later on. Odyssey’s book-keeping method solves such

synchronization problems. Each node holds an array that stores the

improvements received from the channel for the BSF of each query,

and before answering a query it checks the data held in this array.

Thus, each node has the best answers extracted from all nodes, and

our experimental evaluation shows that the use of this method is

critical for performance.

In addition to these simple techniques, Odyssey also provides a

sophisticated data partitioning scheme, based on preprocessing of

the initial data series collection, which provides a density-aware

distribution of the data among the available nodes. The required

preprocessing incurs some time overhead. However, it occurs only

once for answering as many queries as needed, and thus, as the

number of queries to process increases, this overhead is amortized.

We describe this scheme in Section 3.4.1.

3.4.1 density-aware Data Partitioning. We observe that a good

partitioning strategy should not assign all similar series to the same

system node. In such a case, we risk to create work imbalance for

the following reason. Assume that we need to answer a similarity

search query, for which all candidate series from the dataset that

are similar to the query are stored in one of the system nodes,

while all other nodes are storing series that are not similar to the

query. Then, during query answering, the node with the similar

series will need to perform many (lower bound and real distance)

computations in order to determine which of the candidate series is

the nearest neighbor to the query, with essentially little pruning (if

at all). On the other hand, all the other nodes that store dissimilar

series will be able to prune aggressively, and therefore, finish their

part of the computations much faster.

The above observations led us to the design of thedensity-aware

partitioning strategy, whose goal is to partition similar series across

all system nodes, without incurring a high computational cost. This

is achieved by exploiting Gray Code [28] ordering for effectiveness

(since it helps us split the similar series), and the summarization

buffers of our index for efficiency (since we have to operate at the

level of buffers, rather than individual series).

Example 3.3. Figure 8 shows an example of partitioning the data

series in the summarization buffers according to a simple strategy

using binary code, and to a strategy based on Gray Code. In the

former case, the buffers that end up in the same node contain similar

series: their iSAX representations (the iSAX word of the buffer) are

very close to one another, e.g., node 1 stores buffers "000" and "100",
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so series whose iSAX summaries only differ in one bit. In the latter

case, this problem is addressed. The Gray Code ordering places

similar buffers close to one another (by definition, two neighboring

buffers in this order differ in only one bit), so it is then easy to

assign them to different system nodes in a round-robin fashion.

We depict the flowchart of the density-aware partitioning strat-

egy in Figure 9. We start by computing the iSAX summaries of the

data series collection, and assigning each summary to the corre-

sponding summarization buffer. These buffers are ordered according

to Gray Code, and then the actual data partitioning starts (using

round-robin scheduling). We first partition the series inside the 𝜆

largest buffers; this is necessary, since often times a small number

of buffers will contain an unusually large number of series (that we

do not want to assign them all to the same system node). Then, we

partition the remaining buffers, and we check if the partitioning is

balanced. If it is not, then we select the largest buffer of the largest

node, and we partition the series inside this buffer. Our experi-

ments with several real datasets (omitted for brevity) showed that

density-aware exhibits a very stable behavior as we vary 𝜆 from

a few hundred to several thousands. In this study, we use 𝜆 = 400.

4 EXTENSIONS

We now discuss two extensions of Odyssey, in order to support

k-NN search and the Dynamic Time Warping (DTW) distance.

k-NN Search. ExtendingOdyssey to support k-NN similarity search

is straight-forward. Instead of computing a single BSF value, we

simply need to keep track of the 𝑘 smallest BSF values.

DTW Distance. We also extend Odyssey to perform similarity

search using Dynamic Time Warping (DTW), which is an elastic



distance measure [37]. Note that no changes are required in the in-

dex structure for this: the index we build can answer both Euclidean

and DTW similarity search queries. Supporting DTW queries re-

quires modifying the query answering algorithm only, and using

LB_Keogh [37], which is a tight lower bound of the DTW distance.

We note that a lower bound for the DTW distance between the

query and a candidate series can be computed by considering the

distances between the corresponding points of the candidate series

and the points of the LB_Keogh envelope of the query.

5 EXPERIMENTAL EVALUATION

Setup. Experiments conducted on a cluster of 16 SR645 nodes,

connected through an HDR 100 Infiniband network. Each node

has 128 cores (with no hyper-threading), 200GB RAM (available

to users out of the 256GB physical memory), and runs Red Hat

Enterprise Linux r8.2. All evaluated algorithms written in C and

compiled using MPICC, Intel(R) MPI Library for Linux OS, v2021.2.

Algorithms. Our experimental analysis includes the entire range

of Odyssey’s data distribution strategies with 𝑘 replication groups,

partial-𝑘 , 𝑘 ∈ {1, 2, 4, . . . , 𝑁𝑠𝑛}, as well as the density-aware data

partitioning algorithm (density-aware). Recall that partial-𝑁𝑠𝑛 ,

or eqally-split corresponds to no replication, and partial-1,

or full corresponds to full replication. Additionally, our analy-

sis evaluates Odyssey’s queries scheduling algorithms: (i) static

scheduling assigning equally sized query sets to nodes (static);

(ii) dynamic scheduling using a coordinator (dynamic); and (iii)

predictions-based scheduling, including: static without ordering

(predict-st-unsorted), static with ordering (predict-st), and dy-

namic (predict-dn). Moreover, we evaluate Odyssey’s work-stealing

mechanism using both dynamic and predict-dn, resulting in algo-

rithms work-steal and work-steal-predict, respectively. The

latter is our best scheduling algorithm (cf. paragraph łQueries sched-

ulingž). We note that that Odyssey’s query scheduling and work-

stealing mechanisms can be used together only with the full or

partial data distribution strategies that provide some replication.

We compare Odyssey to: (i) MESSI [49], where we run the MESSI

index independently in each system node; (ii) MESSI SWBSF, where

we extend the previous solution by enabling system-wide sharing

of the BSF values; and (iii) DPiSAX [74], where we implement (in

C) the DPiSAX data partitioning strategy, and (for fair comparison)

implement query answering in each node using MESSI.

Datasets. We evaluated Odyssey’s strategies and algorithms using

real and synthetic datasets, of varying sizes (refer to Table 1). The

synthetic data series, called Random, were generated as random-

walks (i.e., cumulative sums) of steps that follow a Gaussian dis-

tribution (0,1). This type of data has been extensively used in the

past [13, 20ś22, 79, 80], and models the distribution of stock mar-

ket prices [22]. Our five real datasets come from the domains of

seismology (Seismic), astronomy (Astro), deep learning (Deep), im-

age processing (Sift), and information retrieval (Yan-TtI ). Seismic

contains seismic instrument recordings and consists of 100M data

series of size 256 [27]. Astro represents celestial objects and consists

of 100M data series of size 256 [62]. Deep [65] contains 1B Deep

vectors of size 96 extracted from the last layers of a convolutional

neural network. Sift [34] is comprised of image descriptors and Yan-

dex Text-to-Image (Yan-TtI ) [61] contains 1B vectors that include

Table 1: Details of datasets used in experiments.

Dataset # of series Length (floats) Size (GB) Description

Seismic 100M 256 100 seismic records

Astro 270M 256 265 astronomical data

Deep 1B 96 358 deep embeddings

Sift 1B 128 477 image descriptors

Yan-TtI 1B 200 800 image and text

Random 100M-1600M 256 100-1600 random walks
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Figure 10: Odyssey’s scheduling algorithms (Seismic).

image- and textual-embeddings in the same space; it represents

typical cross-modal information retrieval tasks.

Evaluation Measures. During each experiment, 𝐸, and for each

node, sn, we measure (i) the buffer time required to calculate the

iSAX summaries and fill-in the receive buffers, (ii) the tree time

required to insert the items of the receive buffers in the index tree,

and (iii) the query answering time required to answer the queries

assigned to sn. The sum of these times constitute the total time

that sn works during 𝐸; also, buffer and tree times constitute the

time required to create the index, called index time. To compute

all the above times during 𝐸, we take the maximum among the

corresponding times of each node participating in 𝐸. We report the

average times of 10 experiments.

Query scheduling. To compare Odyssey’s queries scheduling

algorithms, the full replication strategy is selected, to avoid mea-

suring any overheads resulting from the partial replicated strate-

gies. Recall that scheduling algorithms can’t be used together with

the no replication strategies. We experimented with both Random

(synthetic dataset) and Seismic (real dataset), and all of our algo-

rithms positively affected performance in comparison with static.

Moreover, for the synthetic dataset, we have seen no remarkable

differences between all our scheduling algorithms, since the ran-

domness when producing the data series of both the dataset and

the queries set, results in queries with almost the same effort to

be answered. We present the results for Seismic, where the effort

for answering queries varies. Specifically, Figure 10 shows that as

the number of nodes increases, predict-dn is the best scheduling

policy in all cases and it is up to 150% better than static.

Work-stealing. Figure 10a shows thatwork-steal-predict greatly

outperforms (up to almost 2x) predict-dn for large number of

nodes when using full replication, i.e. our work-stealing tech-

nique positively affects performance on these cases. The same is

true for partial-2 replication, but to a lesser extent. Recall (from

Section 3.2.2) that this happens since all the algorithms that do

not use the work-stealing technique suffer from load-imbalance

issues. Specifically, when a query set contains a few (significantly

less than the number of nodes) queries that require significantly

more effort to get answered (than the majority of queries), then as
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Figure 11: Query answering scalability as the number of

queries increase (Random).
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Figure 12: Query time for 100 queries vs data size (8 nodes).
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Figure 14: Index size.

the number of nodes increases more nodes remain idle at the end of

the corresponding query answering phase, since no such difficult

query is assigned to them.

Query Scalability. To evaluate the scalability of Odyssey’s algo-

rithms with increasing number of queries, we conducted experi-

ments with work-steal using synthetic and real datasets. In Fig-

ure 11a, we present the results for the Random dataset (results with

the other tested datasets are similar) with full replication, for a

total of 100, 200, 400, and 800 queries. As we can see, work-steal

scales almost perfectly with the increasing number of queries, since

the time to execute 100 queries in 1 node is the same with the time

to execute 𝑗 ∗100 queries in 𝑗 nodes, 𝑗 ∈ {2, 4, 8}. We have observed

the same trend for the partial scheduling algorithms (Figure 11b).

Note that partial replication can be applied only with two or more

nodes. Additionally, we present in Figure 12 scalability experiments,

by increasing the dataset size, for Random (between 100-1600GB)

and Yan-TtI (between 100-800GB). We measure the total query an-

swering time for 100 queries, when using 8 nodes. Note that we

could not execute all replication strategies for all dataset sizes, due

to the memory capacity of our nodes. The results show that query

answering time scales gracefully as we increase the dataset size,

while increasing the replication degree leads to better performance.

Moreover, we observe that Odyssey’s query answering algorithm

achieves good scalability as the number of nodes increases. This

is better illustrated in Figure 13, which presents the work-steal

throughput on the Random dataset.
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Figure 15: Comparison of Odyssey’s replication strategies,

using work-steal-predict with Seismic.

Replication. We study now Odyssey’s different replication strate-

gies using the Seismic dataset and work-steal-predict that is

our best scheduling algorithm, to avoid any overhead incurred by

load-imbalances between nodes. Specifically, we test eqally-split,

partial-4, partial-2 and full, for varying number of queries. Fig-

ures 15a-15b present the query answering time2, where we observe

that the more a dataset is replicated, the less time is required to

answer queries, and this is consistent for all number of queries.

So, the full replication strategy has the smaller queries answering

time. On the other hand, Figures 15c-15d present the total execu-

tion time, which includes also the time for index tree construction.

Interestingly, for small query numbers (100), we observe exactly

the opposite: a larger amount of data replication, results in bigger

total time, with full having now the bigger index tree construction

time. This happens because the increased index tree construction

time dominates in the total time. However, as the number of queries

increases, the differences between the total execution time of al-

gorithms become smaller. Remarkably, for large enough number

of queries (e.g., 800), the increased index tree construction cost is

amortized by the smaller query answering time, having full repli-

cation strategy performing better than eqally-split. This analysis

reveals an interesting trade-off (regarding the level of replication)

between the query answering cost and the index tree construction

cost, while the latter can be amortized using a large enough set of

queries. Figure 16 shows the results of the query answering experi-

ment with 100 queries for the rest of the real datasets. We observe

similar trends to those of Seismic (Figure 15a). Overall, when query

answering needs to be optimized, we recommend that Odyssey is

used with the highest possible replication degree (given the dataset

size and compute-cluster characteristics).

Index Scalability.We present in Figure 14 the total index size in

GBs, for every replication strategy when using 8 nodes, for all real

datasets we used and for Random 100GB (Ran.100). In all cases,

the index size is very small compared to the size of the dataset.

Figures 17a and 17b illustrate the index creation time of Odyssey

for our 1B series Deep dataset using eqally-split, as the dataset

2We report results with 16 nodes only for the small workload, because the scheduler
of our cluster does not allow long-running jobs on more than 8 nodes.
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Figure 16: Comparison of Odyssey’s replication strategies, using work-steal-predict with real datasets, using 100 queries.
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size increases on a system with 16 nodes and as the number of

nodes increases (while using the full size datasets), respectively. In

both cases, we observe optimal speedup regarding index creation.

Additionally, Figure 17c presents the scalability of Odyssey on the

Random dataset as both the dataset size and the number of nodes

increase linearly, again using eqally-split. As shown, Odyssey

achieves perfect scalability since the corresponding buffer times

and index times remain almost constant.

Data partitioning and comparison to competitors. Figure 17d

presents (i) a comparison of work-steal-predict Odyssey’s best

performing algorithm, against dmessi, dmessi-sw-bsf, and dpisax;

and (ii) the performance of Odyssey’s different data partitioning

schemes, i.e., eqally-split and density-aware, as well as the

full replication strategy, using Seismic. Interestingly, dmessi per-

forms significantly worse that all the other implementations, show-

ing that by simply executing multiple instances of a SotA single-

node algorithm like MESSI on a multi-node system (in order to

scale its applicability on larger dataset sizes) does not perform

well on real datasets; thus, more sophisticated approaches are re-

quired. On the other hand, Odyssey’s work-steal-predict with

full replication strategy is significantly better than all its com-

petitors. Specifically, it is up to 6.6x, 3.7x and 3.8x faster than
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dmessi, dmessi-sw-bsf, and dpisax, respectively. Moreover, regard-

ing Odyssey’s data partitioning techniques, Figure 17d shows that

work-steal-predict with the density-aware partitioning per-

forms better than eqally-split.

Extensions to k-NN and DTW. Finally, we present experiments

with k-NN queries, and the DTW distance, where we measure the

query answering time for 100 queries as we increase the number of

nodes, when using different replication strategies. We evaluated all

replication strategies when varying 𝑘 between 1 and 20 for k-NN,

and when varying the warping window size between 1%-15% of

the series length for DTW. Figure 18 shows the k-NN results for

𝑘 = 10, and Figure 19 shows the DTW results for 5%warping (results

with the rest of parameter values are similar). As expected, query

answering times are in both cases higher than before, while using

more nodes and higher replication degrees improves performance

in the same way we have observed in previous experiments. Results

with Seismic exhibit similar trends and are omitted for brevity.

6 CONCLUSIONS

We presented Odyssey, a novel distributed data-series processing

framework that takes advantage of modern clusters comprised of

multi-core servers. Odyssey addresses a number of challenges in

designing an efficient and highly-scalable distributed data series

index, including efficient scheduling, load-balancing, and flexible

partial replication, and successfully navigates the trade-off between

data scalability and good performance during query answering. In

future work, we plan to extend Odyssey to support subsequence

similarity search [40], as well as approximate similarity search.

ACKNOWLEDGMENTS

Work supported by NSFC Grant No. 62202450, EU Horizon 2020

Marie Sklodowska-Curie project PLATON No 101031688, and Hel-

lenic Foundation for Research and Innovation (HFRI) project to

support Faculty Members and Researchers No 3684. Numerical

computations performed on the S-CAPAD/DANTE platform, IPGP,

France. Work conducted while Manos Chatzakis was working for

the University of Crete, ICS-FORTH and Université Paris Cité.



REFERENCES
[1] 1996. Cilk: An Efficient Multithreaded Runtime System. J. Parallel and Distrib.

Comput. 37, 1 (1996), 55ś69.
[2] 2016. Incorporated Research Institutions for Seismology ś Seismic Data Access.

http://ds.iris.edu/data/access/.
[3] 2022. Odyssey code and datasets. https://helios2.mi.parisdescartes.fr/~themisp/

odyssey/.
[4] Rakesh Agrawal, Christos Faloutsos, and Arun N. Swami. 1993. Efficient Similar-

ity Search In Sequence Databases. In FODO, David B. Lomet (Ed.).
[5] Hagit Attiya and Jennifer Welch. 2004. Distributed Computing: Fundamentals,

Simulations and Advanced Topics. John Wiley and Sons, Inc., Hoboken, NJ, USA.
[6] Ilias Azizi, Karima Echihabi, and Themis Palpana. 2023. Elpis: Graph-Based

Similarity Search for Scalable Data Science. PVLDB (2023).
[7] Anthony J. Bagnall, Richard L. Cole, Themis Palpanas, and Konstantinos Zoumpa-

tianos. 9(7), 2019. Data Series Management. Dagstuhl Reports (9(7), 2019).
[8] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. 1999. Provably Efficient

Scheduling for Languages with Fine-Grained Parallelism. J. ACM 46, 2 (mar
1999), 281ś321. https://doi.org/10.1145/301970.301974

[9] Guy E. Blelloch, Phillip B. Gibbons, Yossi Matias, and Girija J. Narlikar. 1997.
Space-Efficient Scheduling of Parallelism with Synchronization Variables. In
Proceedings of the Ninth Annual ACM Symposium on Parallel Algorithms and
Architectures (SPAA ’97). Association for Computing Machinery.

[10] Robert D. Blumofe and Charles E. Leiserson. 1999. Scheduling Multithreaded
Computations by Work Stealing. J. ACM 46, 5 (sep 1999), 720ś748. https:
//doi.org/10.1145/324133.324234

[11] Paul Boniol, Michele Linardi, Federico Roncallo, and Themis Palpanas. 2020.
Automated Anomaly Detection in Large Sequences. In ICDE.

[12] Paul Boniol and Themis Palpanas. 2020. Series2Graph: Graph-based Subsequence
Anomaly Detection for Time Series. PVLDB (2020).

[13] Alessandro Camerra, Jin Shieh, Themis Palpanas, Thanawin Rakthanmanon, and
Eamonn J. Keogh. 2014. Beyond one billion time series: indexing and mining
very large time series collections with iSAX2+. Knowl. Inf. Syst. 39, 1 (2014),
123ś151. http://dblp.uni-trier.de/db/journals/kais/kais39.html#CamerraSPRK14

[14] Crate. 2018. CrateDB: Real-time SQL Database for Machine Data & IoT. http:
//crate.io/

[15] Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas,
and Houda Benbrahim. 2022. Hercules Against Data Series Similarity Search.
PVLDB (2022).

[16] Karima Echihabi, Themis Palpanas, and Kostas Zoumpatianos. 2021. New Trends
in High-D Vector Similarity Search: AI-driven, Progressive, and Distributed. Proc.
VLDB Endow. 14, 12 (2021), 3198ś3201.

[17] Karima Echihabi, Theophanis Tsandilas, Anna Gogolou, Anastasia Bezerianos,
and Themis Palpanas. 2023. ProS: Data Series Progressive k-NN Similarity Search
and Classification with Probabilistic Quality Guarantees. VLDBJ (2023).

[18] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2020. Scalable Ma-
chine Learning on High-Dimensional Vectors: From Data Series to Deep Network
Embeddings. In WIMS: The 10th International Conference on Web Intelligence,
Mining and Semantics. ACM, 1ś6.

[19] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2021. Big Se-
quence Management: Scaling up and Out. In Proceedings of the 24th International
Conference on Extending Database Technology, EDBT. OpenProceedings.org, 714ś
717.

[20] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2018. The Lernaean Hydra of Data Series Similarity Search: An Experimental
Evaluation of the State of the Art. PVLDB (2018).

[21] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2019. Return of the Lernaean Hydra: Experimental Evaluation of Data Series
Approximate Similarity Search. PVLDB (2019).

[22] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1994. Fast
subsequence matching in time-series databases. In SIGMOD. ACM, New York,
NY, USA, 419ś429. https://doi.org/10.1145/191839.191925

[23] Panagiota Fatourou. 2001. Low-Contention Depth-First Scheduling of Parallel
Computations with Write-Once Synchronization Variables. In Proceedings of
the Thirteenth Annual ACM Symposium on Parallel Algorithms and Architectures
(Crete Island, Greece) (SPAA ’01). Association for Computing Machinery, New
York, NY, USA, 10. https://doi.org/10.1145/378580.378639

[24] Panagiota Fatourou and Paul Spirakis. 1999. A New Scheduling Algorithm for
General Strict Multithreaded Computations. In Distributed Computing, Prasad
Jayanti (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 297ś311.

[25] Panagiota Fatourou and Paul Spirakis. 2000. Efficient Scheduling of Strict Multi-
threaded Computations. Theory of Computing Systems 33 (2000), 173ś232.

[26] Kefeng Feng, PengWang, JiayeWu, andWeiWang. 2020. L-Match: A Lightweight
and Effective Subsequence Matching Approach. IEEE Access 8 (2020), 71572ś
71583.

[27] Incorporated Research Institutions for Seismology with Artificial Intelligence.
2018. Seismic Data Access. http://ds.iris.edu/data/access/.

[28] Martin Gardner. 1986. Knotted Doughnuts and Other Mathematical Entertainments.
W. H. Freeman.

[29] Anna Gogolou, Theophanis Tsandilas, Karima Echihabi, Anastasia Bezerianos,
and Themis Palpanas. 2020. Data Series Progressive Similarity Search with Proba-
bilistic Quality Guarantees. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data.

[30] Anna Gogolou, Theophanis Tsandilas, Themis Palpanas, and Anastasia Bezeri-
anos. 2019. Progressive Similarity Search on Time Series Data. In EDBT.

[31] Hellium. 2018. Hellium: Ultra high performance key/value storage. https:
//www.levyx.com/helium

[32] Pablo Huijse, Pablo A Estevez, Pavlos Protopapas, Jose C Principe, and Pablo
Zegers. 2014. Computational intelligence challenges and applications on large-
scale astronomical time series databases. CIM (2014).

[33] InfluxDB. 2018. InfluxDB - Open Source Time Series, Metrics, and Analytics
Database (http://influxdb.com/). http://influxdb.com/

[34] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011.
Searching in one billion vectors: Re-rank with source coding. In Proceedings
of the IEEE International Conference on Acoustics, Speech, and Signal Processing,
ICASSP 2011, May 22-27, 2011, Prague Congress Center, Prague, Czech Republic.
IEEE, 861ś864. https://doi.org/10.1109/ICASSP.2011.5946540

[35] Sùren Kejser Jensen, Torben Bach Pedersen, and Christian Thomsen. 2017. Time
Series Management Systems: A Survey. IEEE Trans. Knowl. Data Eng. 29, 11
(2017), 2581ś2600.

[36] Kunio Kashino, Gavin Smith, and Hiroshi Murase. 1999. Time-series active
search for quick retrieval of audio and video. In ICASSP.

[37] Eamonn Keogh and Chotirat Ann Ratanamahatana. 2005. Exact indexing of
dynamic time warping. KIS (2005).

[38] Eamonn J. Keogh, Kaushik Chakrabarti, Sharad Mehrotra, and Michael J. Pazzani.
2001. Locally Adaptive Dimensionality Reduction for Indexing Large Time Series
Databases. In SIGMOD, Sharad Mehrotra and Timos K. Sellis (Eds.).

[39] Michele Linardi and Themis Palpanas. 2019. Scalable, Variable-Length Similarity
Search in Data Series: The ULISSE Approach. PVLDB (2019).

[40] Michele Linardi and Themis Palpanas. 2020. Scalable Data Series Subsequence
Matching with ULISSE. VLDBJ (2020).

[41] Michele Linardi, Yan Zhu, Themis Palpanas, and Eamonn J. Keogh. 2020. Matrix
Profile Goes MAD: Variable-Length Motif And Discord Discovery in Data Series.
In DAMI.

[42] Nancy A. Lynch. 1996. Distributed Algorithms. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[43] OpenTSDB. 2015. OpenTSDB - A Distributed, Scalable Monitoring System
(http://opentsdb.net/). http://opentsdb.net/

[44] Themis Palpanas. 2015. Data Series Management: The Road to Big Sequence
Analytics. SIGMOD Record (2015).

[45] Themis Palpanas. 2017. The Parallel and Distributed Future of Data Series Mining.
In HPCS.

[46] Themis Palpanas. 2020. Evolution of a Data Series Index - The iSAX Family of
Data Series Indexes. In Communications in Computer and Information Science
(CCIS), Vol. 1197.

[47] Themis Palpanas and Volker Beckmann. 48(3), 2019. Report on the First and
Second Interdisciplinary Time Series Analysis Workshop (ITISA). SIGREC (48(3),
2019).

[48] Tuomas Pelkonen, Scott Franklin, Paul Cavallaro, Qi Huang, Justin Meza, Justin
Teller, and Kaushik Veeraraghavan. 2015. Gorilla: A Fast, Scalable, In-Memory
Time Series Database. VLDB (2015).

[49] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. Fast data series
indexing for in-memory data. VLDB J. 30, 6 (2021), 1041ś1067.

[50] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. SING: Sequence
Indexing Using GPUs. In Proceedings of the International Conference on Data
Engineering (ICDE).

[51] Botao Peng, Themis Palpanas, and Panagiota Fatourou. 2018. ParIS: The Next
Destination for Series Indexing and Query Answering. IEEE BigData (2018).

[52] Botao Peng, Themis Palpanas, and Panagiota Fatourou. 2020. MESSI: In-Memory
Data Series Indexing. In ICDE.

[53] Botao Peng, Themis Palpanas, and Panagiota Fatourou. 2020. ParIS+: Data Series
Indexing on Multi-core Architectures. TKDE (2020).

[54] Prometheus. 2018. Prometheus ś Monitoring system & time series database.
http://prometheus.io/

[55] QuasarDB. 2018. QuasarDB: high-performance, distributed, time series database.
https://www.quasardb.net/

[56] Davood Rafiei and Alberto O.Mendelzon. 1998. Efficient Retrieval of Similar Time
Sequences Using DFT. In FODO, Katsumi Tanaka and Shahram Ghandeharizadeh
(Eds.).

[57] Usman Raza, Alessandro Camerra, Amy L Murphy, Themis Palpanas, and
Gian Pietro Picco. 2015. Practical data prediction for real-world wireless sensor
networks. TKDE (2015).

[58] RiakTS. 2018. Riak TS ś Basho Technologies. http://basho.com/products/riak-ts/
[59] Timos K. Sellis, Nick Roussopoulos, and Christos Faloutsos. 1987. The R+-Tree:

A Dynamic Index for Multi-Dimensional Objects. In VLDB.

https://helios2.mi.parisdescartes.fr/~themisp/odyssey/
https://helios2.mi.parisdescartes.fr/~themisp/odyssey/
https://doi.org/10.1145/301970.301974
https://doi.org/10.1145/324133.324234
https://doi.org/10.1145/324133.324234
http://dblp.uni-trier.de/db/journals/kais/kais39.html#CamerraSPRK14
http://crate.io/
http://crate.io/
https://doi.org/10.1145/191839.191925
https://doi.org/10.1145/378580.378639
http://ds.iris.edu/data/access/
https://www.levyx.com/helium
https://www.levyx.com/helium
http://influxdb.com/
https://doi.org/10.1109/ICASSP.2011.5946540
http://opentsdb.net/
http://prometheus.io/
https://www.quasardb.net/
http://basho.com/products/riak-ts/


[60] Jin Shieh and Eamonn Keogh. 2008. ISAX: Indexing and Mining Terabyte Sized
Time Series. (2008), 9. https://doi.org/10.1145/1401890.1401966

[61] Harsha Vardhan Simhadri, George Williams, Martin Aumüller, Matthijs Douze,
Artem Babenko, Dmitry Baranchuk, Qi Chen, Lucas Hosseini, Ravishankar Kr-
ishnaswamny, Gopal Srinivasa, Suhas Jayaram Subramanya, and Jingdong Wang.
2022. Results of the NeurIPS?21 Challenge on Billion-Scale Approximate Nearest
Neighbor Search. In Proceedings of the NeurIPS 2021 Competitions and Demon-
strations Track. 177ś189.

[62] S Soldi, Volker Beckmann, WH Baumgartner, Gabriele Ponti, Chris R Shrader, P
Lubiński, HA Krimm, F Mattana, and Jack Tueller. 2014. Long-term variability
of AGN at hard X-rays. Astronomy & Astrophysics 563 (2014), A57.

[63] Timely. 2018. Timely ś A secure time series database based on Accumulo and
Grafana. https://code.nsa.gov/timely/

[64] Timescale. 2018. Timescale - an open source time series management system.
http://timescale.com/

[65] Skoltech Computer Vision. 2018. Deep billion-scale indexing. http://sites.skoltech.
ru/compvision/noimi.

[66] Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei Rui, Jinrui Zhang,
Rong Kang, Julian Feinauer, Kevin Mcgrail, Peng Wang, Diaohan Luo, Jun Yuan,
Jianmin Wang, and Jiaguang Sun. 2020. Apache IoTDB: Time-series database for
Internet of Things. Proc. VLDB Endow. 13, 12 (2020), 2901ś2904.

[67] Qitong Wang and Themis Palpanas. 2021. Deep Learning Embeddings for Data
Series Similarity Search. In KDD ’21: The 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18,
2021. ACM, 1708ś1716.

[68] Qitong Wang, Stephen Whitmarsh, Vincent Navarro, and Themis Palpanas. 2023.
iEDeaL: A Deep Learning Framework for Detecting Highly Imbalanced Interictal
Epileptiform Discharges. PVLDB 16, 2 (2023).

[69] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. 2013. A Data-
adaptive and Dynamic Segmentation Index for Whole Matching on Time Series.
PVLDB 6, 10 (2013).

[70] Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2023.
Dumpy: A Compact and Adaptive Index for Large Data Series Collections. In

SIGMOD.
[71] Warp10. 2018. Warp 10 ś The Most Advanced Time Series Platform. https:

//www.warp10.io/
[72] Jiaye Wu, Peng Wang, Ningting Pan, Chen Wang, Wei Wang, and Jianmin Wang.

2019. KV-Match: A Subsequence Matching Approach Supporting Normalization
and Time Warping. In 35th IEEE International Conference on Data Engineering,
ICDE 2019, Macao, China, April 8-11, 2019. IEEE, 866ś877.

[73] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas.
2017. DPiSAX: Massively Distributed Partitioned iSAX. (2017), 1135ś1140.
https://doi.org/10.1109/ICDM.2017.151

[74] Djamel-Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Pal-
panas. 2020. Massively Distributed Time Series Indexing and Querying. IEEE
Transactions on Knowledge and Data Engineering 32, 1 (2020), 108ś120. https:
//doi.org/10.1109/TKDE.2018.2880215

[75] Lexiang Ye and Eamonn Keogh. 2009. Time series shapelets: a new primitive for
data mining. In SIGKDD. ACM.

[76] Liang Zhang, Noura Alghamdi, Mohamed Y. Eltabakh, and Elke A. Rundensteiner.
2019. TARDIS: Distributed Indexing Framework for Big Time Series Data. In
ICDE.

[77] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for
interactive exploration of big data series. In SIGMOD.

[78] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2016. ADS: the
adaptive data series index. VLDB J. (2016).

[79] Kostas Zoumpatianos, Yin Lou, Ioana Ileana, Themis Palpanas, and Johannes
Gehrke. 2018. Generating data series query workloads. VLDB J. (2018).

[80] Kostas Zoumpatianos, Yin Lou, Themis Palpanas, and Johannes Gehrke. 2015.
Query Workloads for Data Series Indexes. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, Syd-
ney, NSW, Australia, August 10-13, 2015. 1603ś1612. https://doi.org/10.1145/
2783258.2783382

[81] Kostas Zoumpatianos and Themis Palpanas. 2018. Data Series Management:
Fulfilling the Need for Big Sequence Analytics. In ICDE.

https://doi.org/10.1145/1401890.1401966
https://code.nsa.gov/timely/
http://timescale.com/
http://sites.skoltech.ru/compvision/noimi
http://sites.skoltech.ru/compvision/noimi
https://www.warp10.io/
https://www.warp10.io/
https://doi.org/10.1109/ICDM.2017.151
https://doi.org/10.1109/TKDE.2018.2880215
https://doi.org/10.1109/TKDE.2018.2880215
https://doi.org/10.1145/2783258.2783382
https://doi.org/10.1145/2783258.2783382

	Abstract
	1 Introduction
	2 Preliminaries and Related Work
	2.1 Related Work

	3 The Odyssey Framework
	3.1 Query Scheduling
	3.2 Load Balancing
	3.3 Data Replication
	3.4 Data Partitioning

	4 Extensions
	5 Experimental Evaluation
	6 Conclusions
	Acknowledgments
	References

