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Background

* Nearest neighbor (NN) search in high-dimensional Euclidean spaces is a
fundamental problem in various fields.

 database, information retrieval, data mining, machine learning,...

* However, NN search in high-dimensional datasets is challenging due to the
“curse of dimensionality” phenomenon.

* |n practice, Approximate NN (ANN) search is often used as an alternative,
sacrificing some query accuracy to achieve a huge improvement in efficiency.
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The core idea of LSH-based methods for ANN search

d — dimension

H;(0) = (hi1(0), hiz(0), ... hix (0))

K — dimension

H,(o0) H,(o) ...... H; (o)

e

Query Algorithm
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(L *K)

Low-dimensional projected
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(L)
Indexing phase
(Construct L independent
trees)

Query phase
(Search in L projected spaces)



Mainstream LSH-based Methods

* Boundary constraint based methods (BC)

* Core idea: Each point is assigned into a hash bucket in the projected space, whose boundary is
constrained by a K-dimensional hypercube. Among L hash tables, the point and query can be
considered colliding as long as they are assigned to the same hash bucket at least once.

* Representative work: DB-LSH (ICDE 22, SOTA)

 Collision counting based methods (C2)

* Core idea: Construct L independent low-dimensional hash tables, and selects candidate points whose
number of collisions with query is greater than a threshold t (t<L).

* Representative work: R2LSH(ICDE 20), VHP(VLDB 20)

* Distance metric based methods (DM)

* Core idea: Select candidate points based on distances to query in the projected space.
* Representative work: PM-LSH(VLDB 20)
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Motivation

* Previous LSH-based methods mainly focus on designing query strategies, but
pay little attention to the index structure.

* However, the index structure has a great impact on the performance of
Indexing and querying.

* It is necessary to comprehensively consider the index structure and query
strategies to support efficient index construction and query answering.

Can we design a novel tree structure and a novel LSH scheme that
can be well adapted to support efficient and accurate ANN search?
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Main Contributions

* We present a novel encoding-based tree structure called Dynamic Encoding
Tree (DE-Tree). DE-Tree has excellent indexing efficiency and can support
efficient range queries.

* We propose DET-LSH, a novel LSH scheme based on DE-Tree. We provide a
theoretical analysis showing that DET-LSH answers a c?-k-ANN query with a
constant success probability.

* We conduct extensive experiments, demonstrating that DET-LSH can achieve
better efficiency and accuracy than existing LSH-based methods. While achieving
better query accuracy, DET-LSH achieves up to 6x speedup in indexing time
and 2x speedup in query time over the SOTA LSH-based methods.
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Our Method: Dynamic Encoding Tree (DE-Tree)

 Dynamic breakpoints selection: use QuickSelect algorithm and divide-and-conquer strategy to
select breakpoints based on the data distribution.

 Encoding scheme: encode points into iSAX representations (256 symbols, 8-bit alphabet) based
on the breakpoints.

» Tree construction: leaf nodes contain information about points, while internal nodes only contain
index information.
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(a) Encode data points into iSAX

(b) An index based on the iISAX representations.
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Our Method: DET-LSH Overview (Encoding + Indexing)

K-dimensional SAX
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Compute hash in L projected spaces
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Our Method: DET-LSH Overview (Query)
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Our Method: DET-LSH

* Encoding phase
* 1. Generate L * K hash functions. (L = 4,K = 16)

2. Project all data points into 4 indepentent 16-dimensional spaces.

3. Calculate the “breakpoints” of each project space.

4. Encode all data points in 16-dimensional projected spaces based on

corresponding breakpoints.

Quickselect
A

Algorithm 2: Dynamic Encoding

round 1. . e % Input: Parameters K, L, Ny, n, all data points in the
select 1 breakpoints *  * % ® «* . .
projected spaces P, sample size ng
Quickselect Quickselect Output: A set of encoded points EP
round 2: 1 Initialize EP with size n- L - K;
select 2 breakpoints ¢ e 8% o 4* Ce e, 0,0 2 B « call Breakpoints Selection(K,L,N,.n,P.n);

3 fori=1toL do

Quickselect Quickselect Quickselect Quickselect
—— 1 for j=1toK do
round 3: L l L 4
o : e . . v 5 forz=1tondo
select 4 breakpoints ¢ " e e e o ® R I N .
3 Use Binarysearch to find b € |0, N;.| such that
i : Bf_j{b} = hjj{ﬂz) EB;J‘(’b+1);
7 EP;ij(0z) « b-th symbol in the 8-bit alphabet;
Figure 3: An illustration of Algorithm 1: select breakpoints

in multiple rounds by Quickselect algorithm with divide-and-

conquer strategy. s return EP;
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Our Method: DET-LSH

* Indexing phase

Algorithm 3: Create Index

Input: Parameters K, L, n, encoded points set £'P,
maximum size of a leaf node maxr_size

Output: A set of DE-Trees: DET's = [Ty, ..., Ty

for i = 1 1o L do

Initialize T; and generate 2 first layer nodes as
the original leaf nodes;

for - =1 to n do

epilo:) — (EPn(o:), ..., EFK(o:));

pos. +— the position of o. in the dataset;

target_leaf + leaf node of T; to insert
lepilo.), pos.):

while sizeof({target_leaf) = mar_size do

8 SplitNode(target_lea f);

target_leaf + the new leat node to
insert {ep;(o:), pos.);

10 Insert (ep;(o0.), pos.) to target_leaf;

=, R W b

=]

11 r;l:urn DETs:
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Our Method: DET-LSH WFlle e, S
* Query phase T el o
e Input: a search radius r, the maximum number of i i R e
candidate points fn, a query point g T e il s

q

* 1. Calculate g; in all projected spaces (L=4).

* 2. Range query: m‘

* For each projected space, use g; to search leaf nodes whose Hy(o) H,(0) H;(0) H, (o)

lower bound distances with g; are less than the search l l

radius r

* Add all obtained leaf nodes to a priority queue, and sort
them in ascending order according to their lower bound

distance with g;
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Our Method: DET-LSH

* Query phase /\

H H H H
e 3. Construct candidate points set S: 1(0) Zl(o) 3(0) 4(0)

* Continuously pop the leaf node from the priority queue,
if its upper bound distance with g; is smaller than r,
add all points belong to it into S ; otherwise, traverse
data points in the leaf node, and add the data points to
S whose distances with g; are smaller than r.

* The termination condition is that the number of points
in S equals to fn (we set f = 0.1 in practice).

e 4. Sort and return

e Sort and obtain the top-k candidate points in S whose Candidate points set
exact distances with g in the original space are smaller Sorting based on the
than other candidate points. exact distances with g
* Return the top-k candidates as the results. st 2nd  3rd  --eee- k-th

Return the top-k candidates as the result
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Theoretical Guarantee

Let ‘Hj(o) = [hit(0), ... hjx(0)] denote a data point o in the i-th

projected space, where i = 1, ..., L. We define three events as follows:

e E1: If there exists a point o satisfying ||o, g|| < r, then its
projected distance to g, i.e., [['H;(0), Hi(g)]l, is smaller than
erforsomei=1,...1L;

e E2:If there exists a point o satisfying ||o, g|| > cr, then its
projected distance to g, i.e., [['H;(0), Hi(g)]l, is smaller than
erforsomei=1,...L;

e E3: Fewer than fin points satisfying E2 in dataset 9.

1

Lemma 3. Given K and c, setting L = —ﬁ and f =2 — ZQQW
such that @y, ay, and € satisfy Equation 3, the probability that E1

occurs is at least 1 — % and the probability that E3 occurs is at least %

e = o, (K) = - 2, (K). 3)

Proor. Given a point o satisfying ||o,q|| < r, let s = ||o,gq|| and
s; = ||'Hi(0), Hi(g)|| denote the distances between o and g in the
original space and in the i-th projected space, where i = 1,.., L.

From Equation 3, we have ,/y2 (K) = e. For each independent

projected space, from Lemma 2, we have Pr(s] > s, "X:%. (K)] =
Pr(s] > es] = ay. Since s < r, Prs] > er] = . Considering L
projected spaces, we have Pr [E1] > 1—{1.'][' = 1—%. Likewise, given a
point o satisfying [|o, g| > cr,lets = ||o, gl| and 5] = [|H; (o), Hi(g) |l
denote the distances between o and g in the original space and in the
i-th projected space, where i = 1, ..., L. From Equation 3, we have

X4, (K) = £. For each independent projected space, from Lemma

2, we have Pr [s > s,/x%,(K)| = Pr[s/ > €] = az. Since s > cr,
ie, £ >rPr[s! > er] > az. Considering L projected spaces, we
have Pr[E2] < 1-— a’é‘, thus the expected number of such points in
dataset D is upper bounded by (1 — asz] - n. By Markov’s inequality,

p— L .
we have Pr[E3] > 1— U;;% = %
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TureoreMm 2. Algorithm 7 returns a ¢*>-k-ANN with at least a con-

stant probability o_f% - %

Proor. We show that when E1 and E3 hold at the same time,
Algorithm 7 returns a correct ¢>-k-ANN result. Let o; be the i-th
exact nearest point to g in 9), we assume that ri.* = “0;, q” > min.
where ry,i, 1s the initial search radius and i = 1,..., k. We denote
the number of points in the candidate set under search radius r as
|Sr|. Obviously, when enlarging the search radius r = rypin, Fmin -

€, Pmin - €2, ..., there must exist a radius ry satisfying [Sp,| < pn+k
and |S¢.,| = fn + k. The distribution of r!.* has three cases:

(1) Case 1:If for all i = 1,...k satisfying r; < ry, which
indicates the range queries in all L index trees have been
executed at r = rg (line 3-8). Due to E1, all r! must in
Sr,- Since Sy, {i Se-ry» all v} also must in Sc.r,. Therefore,
Algorithm 7 returns the exact k nearest points o] to q.

(2) Case 2: If for all i = 1,....k satisfying r > rg, all r] not
belong to S,;. Since Algorithm 7 may terminate after exe-
cuting range queries in part of L index trees at r = ¢-rp (line
8), we cannot guarantee that r; < ¢-ro. However, due to E3,
there are at least k points o; in S.., satisfying ||o;, q| < c¢®rg,
i = 1,...k. Therefore, we have |jos. g < ¢?rg < czrl;*, ie.,
cach o; is a ¢>-ANN point for corresponding 0.

(3) Case 3: If there exists an integer m € (1, k) such that for
all i = 1, ..., m satisfying r!;* <rpandforalli=m+1, ..k
satisfying r] > rp, indicating that Case 3 is a combination
of Case 1 and Case 2. For each i € [1,m], Algorithm 7
returns the exact nearest point o; to g based on Case 1. For
each i € [m+1, k], Algorithm 7 returns a c?-ANN point for
o; based on Case 2.

Therefore, when E1 and E3 hold simultaneously, Algorithm 7 can
always correctly answer a c?-k-ANN query, i.c., Algorithm 7 returns
a c’-k-ANN with at least a constant probability of % - % m|




Evaluation: DET-LSH v.s. LSH-based methods

Table 2: Datasets

Dataset Cardinality Dimensions Type

Msong 994,185 420 Audio

Deep1M 1,000,000 256 Image

Sift1oM 10,000,000 128 Image

Tinylmages80M 79.302,017 384 Image

Sift100M 100,000,000 128 Image

Yandex Deep500M 500,000,000 96 Image
Microsoft SPACEV500M 500,000,000 100 Text
Microsoft Turing-ANNS500M 500,000,000 100 Text
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Table 3: Performance comparison with competitors (the best value in each row is highlighted in bold; the number in parentheses

indicates how many times slower a method is than the best method).

DET-LSH DB-LSH PM-LSH LCCS-LSH DET-ONLY
Query Time (ms) 112.97 (1.43) 118.10 (1.49) 120.36 (1.53) 170.13 (2.16) T8.87
Recall 0.9546 0.9474 0.949 0.849 0.891
Msong : - - - -
Owverall Ratio 1.0012 1.0013 10013 10035 1.0046
Indexing Time (s) 4.654 (3.90) 4974 (4.17) 2.950 (2.47) 28.925 (24.2) 1.194
Query Time (ms) 10928 (1.37) 117.79 (1.48) 20737 (2.61) 136.21 {1.71) 79.51
DeepIM Recall 0.9112 0.8552 0857 0.848 0818
Owverall Ratio 1.0022 10038 10042 1L.003%9 1.0061
Indexing Time (s) 4.647 (3.97) 4.809 (4.10) 2.991 (2.55) 7.652 (49.2) 1.172
Query Time (ms) 506.34 (1.20) 944.23 (2.25) 148284 (3.53) 1905.09 {4.53) 420.43
e Recall 0.9644 0.9438 094938 0.8924 0886
SifreM Owerall Ratio 1.0009 1.0015 10016 1.0021 1.0035
Indexing Time (s) 44435 (4.00) 64.861 (5.85) B0.099 (7.22) 509.417 (45.9) 11.094
Query Time [ms} 767623 (1.00) 2164 96 (l.!]'?} 146726 [1_79} 112728 {I.d?] T657.08
TinyImages80M Recall 0.9108 0.9056 0.8822 0.87 0.8338
Owverall Ratio 1.0016 1.0016 1.0023 LO01Y 1.0036
Indexing Time (s) 335.419 (4.08) 641.988 (7.81) 1471.31 (17.89) 12128.1 (147.5) 82.235
Query Time (ms) 4757.76 (1.20) 11064.8 (2.78) 15722.8 (3.95) 24221.8 (6.08) 3983.41
Sift100M Recall : 0.9822 0.9652 0.944 0.892 0.5848
Owerall Ratio 1.0005 1.0007 1.0013 LO01Y 1.0034
Indexing Time (s) | 439.434 (4.04) 952773 (B.76) 19227 (17.67) 7519.43 (69.1) 108.782
Query Time [ms} 28546.6 (1.09) 616579 (2.35} 917242 l:fi.S!]} 624118 {2.38] 262004
Yandex Recall 0.9852 0.9644 09298 0.9506 09176
Deep500M Owerall Ratio 1.0003 1.0009 Lo032 L0009 1.0058
Indexing Time (s) 226387 (4.22) 17182.7 (32.04) 13685.2 (25.52) B5968.3 (160.3) 536.262
Query Time (ms) 31404.3 (1.07) 666323 (2.28) 945683 (3.25) 70697.5 (2.42) 29212.6
Microsoft Recall 0.963 0.9492 0.9568 0.9195 0.8978
SPACEVs00M Owerall Ratio 1.0008 10012 10011 10026 1.00336
Indexing Time (G} 220494 (4.21) 16114.7 (3!]_??’} 131895 (25_ 19) B7591.1 (Ib?.:ﬁ) 523.662
Q'LIEI'}f Time [ms} F1280.1 (1.04) 68636.6 (2.23} 106987 (3.55) T3618.2 {2.44] 30127.2
Microsoft Recall 0.9806 09604 0.9636 0.9404 09008
Turing-ANNS500M Owerall Ratio 1.0005 1Lo012 L.o00Y 1.0012 1.0043
Indexing Time (s) 2301.02 (4.22) 16408.2 (30.11) 12680.2 (23.27) 79162.5 (145.3) 545.006

While achieving better query accuracy than competitors, DET-LSH achieves up to 6x speedup
in indexing time and 2x speedup in query time over the state-of-the-art LSH-based methods.
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Evaluation: DET-LSH v.s. LSH-based methods
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Figure 7: Recall-time and overall ratio-time curves.
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Evaluation: DET-LSH v.s. Graph-based methods
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smaller in size than the index updates, DET-LSH is 2-3

constructed by the competitors orders of magnitude faster
DET-LSH has an advantage in indexing than HNSW and LSH-APG.

efficiency: it creates the index and answers
30K-70K queries before the best competitor
(i.e., HNSW) answers its first query.
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