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ABSTRACT
Locality-sensitive hashing (LSH) is a well-known solution for ap-

proximate nearest neighbor (ANN) search in high-dimensional

spaces due to its robust theoretical guarantee on query accuracy.

Traditional LSH-based methods mainly focus on improving the effi-

ciency and accuracy of the query phase by designing different query

strategies, but pay little attention to improving the efficiency of

the indexing phase. They typically fine-tune existing data-oriented

partitioning trees to index data points and support their query

strategies. However, their strategy to directly partition the multi-

dimensional space is time-consuming, and performance degrades

as the space dimensionality increases. In this paper, we design an

encoding-based tree called Dynamic Encoding Tree (DE-Tree) to

improve the indexing efficiency and support efficient range quer-

ies based on Euclidean distance. Based on DE-Tree, we propose

a novel LSH scheme called DET-LSH. DET-LSH adopts a novel

query strategy, which performs range queries in multiple inde-

pendent index DE-Trees to reduce the probability of missing exact

NN points, thereby improving the query accuracy. Our theoret-

ical studies show that DET-LSH enjoys probabilistic guarantees

on query accuracy. Extensive experiments on real-world datasets

demonstrate the superiority of DET-LSH over the state-of-the-art

LSH-based methods on both efficiency and accuracy. While achiev-

ing better query accuracy than competitors, DET-LSH achieves up

to 6x speedup in indexing time and 2x speedup in query time over

the state-of-the-art LSH-based methods.
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1 INTRODUCTION
Background and Problem. Nearest neighbor (NN) search in high-

dimensional Euclidean spaces is a fundamental problem in various

fields, such as database [18], information retrieval [28], data mining

[52], and machine learning [3]. Given a datasetD of𝑛 data points in

𝑑-dimensional space R𝑑 and a query 𝑞, an NN query returns a point

𝑜∗ ∈ D which has the minimum Euclidean distance to 𝑞 among

all points in D. However, NN search in high-dimensional datasets

is challenging due to the ‘curse of dimensionality’ phenomenon

[8, 25, 61]. In practice, Approximate Nearest Neighbor (ANN) search

is often used as an alternative, sacrificing some query accuracy to

achieve a huge improvement in efficiency [20, 32, 53, 54, 59]. Given

an approximation ratio 𝑐 and a query 𝑞 ∈ R𝑑 , a 𝑐-ANN query

returns a point 𝑜 whose distance to 𝑞 is at most 𝑐 times the distance

between 𝑞 and its exact NN 𝑜∗, i.e., ∥𝑞, 𝑜 ∥ ≤ 𝑐 · ∥𝑞, 𝑜∗∥.
Prior Work. Locality-sensitive hashing (LSH)-based methods are

known for their robust theoretical guarantees on the accuracy of

query results, making them popular in high-dimensional 𝑐-ANN

search [1, 2, 22, 26, 31, 34, 36, 37, 51, 55, 66, 67]. At the core of

LSH-based methods is a family of LSH functions to map points

from the original high-dimensional space to low-dimensional pro-

jected spaces, and then construct indexes to efficiently support

queries, thus reducing the complexity of indexing and querying.

Thanks to the properties of LSH, points that are close in the ori-

ginal space are more likely to be close in the projected space than

those far away [23]. Therefore, high-quality results can be obtained

by only checking the points around the query point in the pro-

jected spaces [14]. Based on the query strategies, we classify the

mainstream LSH-based methods into three categories: 1) boundary

constraint (BC) based methods [1, 35, 53, 55]; 2) collision counting

(C2) based methods [22, 26, 31, 36, 37]; and 3) distance metric (DM)

based methods [51, 66]. BC methods map all data points to 𝐿 inde-

pendent 𝐾-dimensional projected spaces, and each projected point

is assigned to a hash bucket whose boundary is constrained by a

𝐾-dimensional hypercube. Among 𝐿 hash tables, two points can

be considered colliding as long as they are assigned to the same
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hash bucket at least once. Compared with BC methods, which re-

quire simultaneous collisions in 𝐾 dimensions, C2 methods relax

the collision condition. C2 methods select candidate points whose

number of collisions with the query point is greater than a pre-

defined threshold. In DMmethods, the distance between two points

in the projected space can be used to estimate their distance in the

original space with theoretical guarantees. Therefore, DM methods

select candidate points by conducting range queries based on the

Euclidean distance metric in the projected space.

Limitations andMotivation. Efficiency and accuracy are key met-

rics to evaluate the performance of LSH-based methods in 𝑐-ANN

search. Nowadays, new data is produced at an ever-increasing rate,

and the size of datasets is continuously growing [19, 39, 40, 62]. We

need to manage large-scale data more efficiently to support further

data analysis [16, 46, 47, 63]. However, existing LSH-based methods

mainly focus on reducing query time and improving query accuracy

by designing different query strategies, but pay little attention to

reducing indexing time [26, 36, 37, 51, 55, 66]. They typically fine-

tune existing data-oriented partitioning trees to index data points

and support their query strategies, such as R*-Tree [6] for DB-LSH

[55], PM-Tree [50] for PM-LSH [66], and R-Tree [24] for SRS [51].

Data-oriented partitioning trees [6, 12, 24, 50] group nearby data

points and partition them into their minimum bounding objects

(e.g., hyperrectangle, hypersphere) hierarchically. However, parti-

tioning directly in a multi-dimensional space is time-consuming,

which limits the efficiency of these methods in the indexing phase.

In addition, the performance of data-oriented partitioning trees de-

creases as the space dimensionality increases [7, 61], which limits

the dimensionality of the projected space. Therefore, it is necessary

to design a more efficient tree structure to address the limitations.

From another perspective, a more efficient tree structure can also

help improve query accuracy, since more trees can be constructed in

the same indexing time, and query answering based on more trees

can be more accurate. For example, the state-of-the-art method

among BC methods, DB-LSH [55], constructs five R*-Trees to re-

duce the probability of missing exact NN points in the query phase.

OurMethod. In this paper, we propose a novel tree structure called
Dynamic Encoding Tree (DE-Tree) and a novel LSH scheme called

DET-LSH to solve the high-dimensional 𝑐-ANN search problem

more efficiently and accurately. First, we present an encoding-based

tree called DE-Tree, which divides and encodes each dimension of

the projected space independently (as shown in Figure 1), avoiding

to directly partition the multi-dimensional projected space like data-

oriented partitioning trees do. This idea leads to improved indexing

efficiency. DE-Tree dynamically encodes projected points based on

the dataset’s distribution, so that nearby points have more similar

encoding representations than distant ones, thereby improving

query accuracy. DE-Tree supports efficient range queries because

the upper and lower bound distances between a query point and any

DE-Tree node can be easily calculated. Second, we propose a novel

LSH scheme called DET-LSH. DET-LSH dynamically encodes 𝐾-

dimensional projected points and then constructs 𝐿 DE-Trees based

on the encoded points.We design a two-step query strategy for DET-

LSH, which combines the ideas of BC and DM methods. The first

step is to perform range queries in DE-Trees and identify in a coarse-

grained way a certain proportion of candidate points that are close

to the query point. The second step is to calculate the actual distance

of each candidate point from the query point in a fine-grained way,

then sort the distances and return the final result. Intuitively, the

coarse-grained filtering improves the query efficiency, and the fine-

grained calculation improves query accuracy. Third, we conduct a

rigorous theoretical analysis showing that DET-LSH can correctly

answer a 𝑐2-𝑘-ANN query with a constant probability. Furthermore,

extensive experiments demonstrate that DET-LSH outperforms

existing LSH-based methods in both efficiency and accuracy.

Our main contributions are summarized as follows.

• We present a novel encoding-based tree structure called

DE-Tree. Compared with data-oriented partitioning trees

used in existing LSH-based methods, DE-Tree has better

indexing efficiency and can support more efficient range

queries based on the Euclidean distance metric.

• We propose DET-LSH, a novel LSH scheme based on DE-

Tree. We design a novel query strategy for DET-LSH, taking

into account both efficiency and accuracy. We provide a

theoretical analysis showing that DET-LSH answers a 𝑐2-𝑘-

ANN query with a constant success probability.

• We conduct extensive experiments, demonstrating that

DET-LSH can achieve better efficiency and accuracy than

existing LSH-based methods. While achieving better query

accuracy than competitors, DET-LSH achieves up to 6x

speedup in indexing time and 2x speedup in query time

over the state-of-the-art LSH-based methods.

2 RELATEDWORK
2.1 Mainstream LSH-based Methods
Boundary Constraint based methods (BC). BC requires 𝐾 · 𝐿
hash functions tomap all data points to𝐿 independent𝐾-dimensional

projected spaces. Each projected point is assigned to a hash bucket

whose boundary is constrained by a 𝐾-dimensional hypercube.

Among 𝐿 hash tables, two points can be considered colliding as

long as they are assigned to the same hash bucket at least once.

E2LSH [1] is the original BC method that adopts LSH functions

following the 𝑝-stable distribution [14]. E2LSH needs to continu-

ously generate new hash tables when the search radius 𝑟 gradually

increases, which leads to prohibitively large space consumption

in indexing. To alleviate this issue, LSB-Forest [53] adopts B-Tree

[5] to index projected points, avoiding building hash tables at dif-

ferent radii. SK-LSH [35] proposes a novel index structure based

on B
+
-Tree [5], and the search strategy supports it finding better

candidates with lower I/O cost. However, neither LSB-Forest nor

SK-LSH ensures any LSH-like theoretical guarantees since they are

based on heuristics. DB-LSH [55] is the state-of-the-art BC method

with strict theoretical guarantees, which presents a dynamic search

framework based on R
∗
-Tree [6].

Collision Counting based methods (C2). C2 requires 𝐾
′ · 𝐿′

hash functions to construct 𝐿
′
independent 𝐾

′
-dimensional hash

tables, where 𝐾
′
< 𝐾 and 𝐿

′
> 𝐿. C2 selects candidate points

whose number of collisions is greater than a threshold 𝑡 , where

𝑡 < 𝐿
′
. C2LSH [22] proposes the C2 scheme and only maintain 𝐾

′

one-dimensional hash tables (𝐾
′
= 1). C2LSH adopts the virtual

rehashing technique to count collisions dynamically, reducing index

space consumption. QALSH [26] improves C2LSH by using B
+
-

Trees to locate points projected into the same bucket, avoiding



counting the collision numbers among a large number of points

dimension by dimension. To further reduce the space consumption

of QALSH, R2LSH [36] and VHP [37] are proposed. R2LSH maps

data points into multiple two-dimensional projected spaces (𝐾
′
= 2)

and VHP considers hash buckets as virtual hypersphere (𝐾
′
> 2).

LCCS-LSH [31] proposes a novel search framework, which extends

C2’s method of counting collisions from the number of discrete

points to the length of continuous co-substrings.

Distance Metric based methods (DM). The intuition of DM is

that the points close to query 𝑞 in the original space are also close

to query 𝑞 in the projected space. DM requires 𝐾 hash functions

to map data points into a 𝐾-dimensional projected space. SRS [51]

utilizes R-tree to index projected points and performs exact NN

search in the 𝐾-dimensional projected space. PM-LSH [66] designs

a range query mechanism based on PM-Tree [50] to improve query

efficiency. According to Euclidean distances between queries and

points in the projected space, 𝛽𝑛 + 𝑘 candidates will be selected

in PM-LSH, where 𝛽 is an estimated ratio to guarantee the ANN

search performance and 𝑛 is the dataset cardinality.

2.2 Tree Structure
Data-oriented Partitioning Tree. As mentioned above, main-

stream LSH-based methods adopt data-oriented partitioning trees,

such as B-Tree [5], R-Tree [24], M-Tree [12], and their variants [6,

50], to construct indexes and support queries. In these methods,

data-oriented partitioning trees group nearby data points and hier-

archically partition them into their minimum bounding graphics

(e.g., hyperrectangle, hypersphere). For example, R-Tree andM-Tree

partition data points into hyperrectangular and hyperspherical par-

titions, respectively. However, for LSH-based methods, partitioning

multi-dimensional projected spaces consumes much time. In addi-

tion, with the increase of space dimensionality, the effectiveness of

data-oriented partitioning trees decreases [7, 61], which is also the

reason why tree-based methods [10, 13, 49, 64] cannot efficiently

support ANN search in high-dimensional spaces.

Encoding-based Tree. Encoding-based trees play an important

role in data series similarity search [9, 11, 15, 17, 30, 33, 41–45, 57,

58, 60, 69]. Unlike data-oriented partitioning trees, which index a

data point directly based on their multi-dimensional coordinates,

encoding-based trees independently encode the coordinates of each

dimension of the data point into symbolic representations. The in-

dexable Symbolic Aggregate approXimation (iSAX) [48] is a widely

used symbolic representation. iSAX divides each dimension into

non-uniformly distributed regions and assigns a bit-wise symbol to

each region. Figure 1(a) illustrates the encoding process for iSAX

representations, and Figure 1(b) illustrates an iSAX index based on

the representations. In practice, iSAX requires only 256 symbols for

a very good approximation, so the maximum alphabet cardinality

can be represented by 8 bits [9]. Based on the iSAX representation,

several encoding-based trees with different indexing and query

strategies are proposed to support data series similarity search

[9, 11, 17, 42, 43, 45, 57, 60, 69]. The advantages of encoding-based

trees can be transferred to LSH-based methods for ANN search. Spe-

cifically, encoding-based trees divide and encode each dimension of

the space independently, avoiding partitioning multi-dimensional

projected spaces, improving indexing efficiency. In addition, the

(a) Encode data points into iSAX representations.

root

[0*,0*]{0*,1*} {1*,0*}[1*,1*]

[00,0*] [01,0*] [10,1*] [11,1*]

{00,00} {00,01} {01,00} {01,01} {10,10} {10,11} {11,10} {11,11}
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(b) An index based on the iSAX representations.

Figure 1: Illustration of an encoding-based tree.

upper and lower bound distances between two points can be cal-

culated easily using their region boundaries, which is suitable for

range queries in LSH-based methods, improving query efficiency.

3 PRELIMINARIES
3.1 Problem Definition
Let D be a dataset of points in 𝑑-dimensional space R𝑑 . The data-
set cardinality is denoted as |D| = 𝑛, and let ∥𝑜1, 𝑜2∥ denote the
distance between points 𝑜1, 𝑜2 ∈ D. The query point 𝑞 ∈ R𝑑 .

Definition 1 (𝑐-ANN). Given a query point 𝑞 and an approxim-
ation ratio 𝑐 > 1, let 𝑜∗ be the exact nearest neighbor of 𝑞 in D. A
𝑐-ANN query returns a point 𝑜 ∈ D satisfying ∥𝑞, 𝑜 ∥ ≤ 𝑐 · ∥𝑞, 𝑜∗∥.

The 𝑐-ANN query can be generalized to 𝑐-𝑘-ANN query that

returns 𝑘 approximate nearest points, where 𝑘 is a positive integer.

Definition 2 (𝑐-𝑘-ANN). Given a query point 𝑞, an approxim-
ation ratio 𝑐 > 1, and an integer 𝑘 . Let 𝑜∗

𝑖
be the 𝑖-th exact nearest

neighbor of 𝑞 in D. A 𝑐-𝑘-ANN query returns 𝑘 points 𝑜1, 𝑜2, ..., 𝑜𝑘 .
For each 𝑜𝑖 ∈ 𝐷 satisfying ∥𝑞, 𝑜𝑖 ∥ ≤ 𝑐 ·

∥︁∥︁𝑞, 𝑜∗
𝑖

∥︁∥︁, where 𝑖 ∈ [1, 𝑘].
In fact, LSH-based methods do not solve 𝑐-ANN queries directly

because 𝑜∗ and ∥𝑞, 𝑜∗∥ is not known in advance [31, 55, 66]. Instead,

they solve the problem of (𝑟 ,𝑐)-ANN proposed in [27].

Definition 3 ((𝑟 ,𝑐)-ANN). Given a query point 𝑞, an approxima-
tion ratio 𝑐 > 1, and a search radius 𝑟 . An (𝑟 ,𝑐)-ANN query returns
the following result:



Table 1: Notations

Notation Description

R𝑑 𝑑-dimensional Euclidean space

D, 𝑛 Dataset of points in R𝑑 and its cardinality |D |
𝑜,𝑞 A data point in D and a query point in R𝑑

𝑜′, 𝑞′ 𝑜 and 𝑞 in the projected space

𝑜∗, 𝑜∗
𝑖

The first and 𝑖-th nearest point in D to 𝑞

∥𝑜1, 𝑜2 ∥ The Euclidean distance between 𝑜1 and 𝑜2

𝑠, 𝑠′ Abbreviation for ∥𝑜1, 𝑜2 ∥ and
∥︁∥︁𝑜′

1
, 𝑜′

2

∥︁∥︁
ℎ (𝑜 ) Hash function

H(𝑜 ) [ℎ1 (𝑜 ), ..., ℎ𝐾 (𝑜 ) ], the coordinates of 𝑜′
H𝑖 (𝑜 ) Coordinates of 𝑜′ in the 𝑖-th project space

𝑐 Approximation ratio

𝑟, 𝑟𝑚𝑖𝑛 Search radius and the initial search radius

𝑑,𝐾 Dimension of the original and the projected space

𝐿 Number of independent projected spaces

(1) If there exists a point 𝑜 ∈ D such that ∥𝑞, 𝑜 ∥ ≤ 𝑟 , then return
a point 𝑜′ ∈ D such that ∥𝑞, 𝑜′∥ ≤ 𝑐 · 𝑟 ;

(2) If for all 𝑜 ∈ D we have ∥𝑞, 𝑜 ∥ > 𝑐 · 𝑟 , then return nothing;
(3) If for the point 𝑜 closest to 𝑞 we have 𝑟 < ∥𝑞, 𝑜 ∥ ≤ 𝑐 · 𝑟 , then

return 𝑜 or nothing.

The 𝑐-ANN query can be transformed into a series of (𝑟 ,𝑐)-

ANN queries with increasing radii until a point is returned. The

search radius 𝑟 is continuously enlarged by multiplying 𝑐 , i.e.,

𝑟 = 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑖𝑛 ·𝑐, 𝑟𝑚𝑖𝑛 ·𝑐2, ..., where 𝑟𝑚𝑖𝑛 is the initial search radius.

In this way, as proven by [27], the ANN query can be answered

with an approximation ratio 𝑐2, i.e., 𝑐2-ANN.

3.2 Locality-Sensitive Hashing
The capability of an LSH function ℎ is to project closer data points

into the same hash bucket with a higher probability. Formally, the

definition of LSH used in Euclidean space is given below [55, 66]:

Definition 4 (LSH). Given a distance 𝑟 , an approximation ratio
𝑐 > 1, a family of hash functions H = {ℎ : R𝑑 → R} is called
(𝑟 ,𝑐𝑟 ,𝑝1,𝑝2)-locality-sensitive, if for ∀𝑜1, 𝑜2 ∈ R𝑑 , it satisfies both of
the following conditions:

(1) If ∥𝑜1, 𝑜2∥ ≤ 𝑟 , Pr [ℎ(𝑜1) = ℎ(𝑜2)] ≥ 𝑝1;
(2) If ∥𝑜1, 𝑜2∥ > 𝑐𝑟 , Pr [ℎ(𝑜1) = ℎ(𝑜2)] ≤ 𝑝2,

where ℎ ∈ H is randomly chosen, and the probability values 𝑝1 and
𝑝2 satisfy 𝑝1 > 𝑝2.

A widely adopted LSH family for the Euclidean space is defined

as follows [26]:

ℎ(𝑜) = 𝑎 · 𝑜, (1)

where 𝑜 is the vector representation of a point 𝑜 ∈ R𝑑 and 𝑎 is a

𝑑-dimensional vector where each entry is independently chosen

from the standard normal distribution N(0, 1).

3.3 𝑝-Stable Distribution and 𝜒2 Distribution
A distribution T is called 𝑝-stable, if for any𝑢 real numbers 𝑣1, ..., 𝑣𝑢
and identically distributed (i.i.d.) variables 𝑋1, ..., 𝑋𝑢 following T
distribution,

∑︁𝑢
𝑖=1 𝑣𝑖𝑋𝑖 has the same distribution as (∑︁𝑢𝑖=1 |𝑣𝑖 |𝑝 )1/𝑝 ·

𝑋 , where 𝑋 is a random variable with distribution T [14]. 𝑝-stable

distribution exists for any 𝑝 ∈ (0, 2] [68], and T is the normal

distribution when 𝑝 = 2.

Let 𝑜′ = H(𝑜) = [ℎ1 (𝑜), ..., ℎ𝐾 (𝑜)] denote the point 𝑜 in the

𝐾-dimensional projected space. For any two points 𝑜1, 𝑜2 ∈ D,

let 𝑠 = ∥𝑜1, 𝑜2∥ and 𝑠′ =
∥︁∥︁𝑜′

1
, 𝑜′

2

∥︁∥︁
denote the Euclidean distances

between 𝑜1 and 𝑜2 in the original space and in the projected space.

Lemma 1.
𝑠′2

𝑠2
follows the 𝜒2 (𝐾) distribution.

Proof. Let ℎ′ = ℎ(𝑜1) − ℎ(𝑜2) = 𝑎 · (𝑜1⃗ − 𝑜2⃗) =
∑︁𝑑
𝑖=1 (𝑜1 [𝑖] −

𝑜2 [𝑖]) · 𝑎[𝑖], where 𝑎[𝑖] follows the N(0, 1) distribution. Since 2-
stable distribution is the normal distribution, ℎ′ has the same dis-

tribution as (∑︁𝑑𝑖=1 (𝑜1 [𝑖] − 𝑜2 [𝑖])2)1/2 · 𝑋 = 𝑠 · 𝑋 , where 𝑋 is a

random variable with distribution N(0, 1). Therefore ℎ′
𝑠 follows

theN(0, 1) distribution. Given 𝐾 hash functions ℎ1 (·), ..., ℎ𝐾 (·), we
have

ℎ′2
1
+...+ℎ′2

𝐾

𝑠2
= 𝑠′2

𝑠2
, which has the same distribution as

∑︁𝐾
𝑖=1 𝑋

2

𝑖
.

Thus,
𝑠′2

𝑠2
follows the 𝜒2 (𝐾) distribution. □

Lemma 2. Given 𝑠 and 𝑠′ we have:

Pr [𝑠′ > 𝑠
√︂
𝜒2𝛼 (𝐾)] = 𝛼, (2)

where 𝜒2𝛼 (𝐾) is the upper quantile of a distribution 𝑌 ∼ 𝜒2 (𝐾), i.e.,
Pr [𝑌 > 𝜒2𝛼 (𝐾)] = 𝛼 .

Proof. From Lemma 1, we have
𝑠′2

𝑠2
∼ 𝜒2 (𝐾). Since 𝜒2𝛼 (𝐾) is the

𝛼 upper quantiles of 𝜒2 (𝐾) distribution, we have Pr [ 𝑠′2
𝑠2

> 𝜒2𝛼 (𝐾)] =

𝛼 . Transform the formulas, we have Pr [𝑠′ > 𝑠
√︂
𝜒2𝛼 (𝐾)] = 𝛼 . □

4 THE DET-LSH METHOD
In this section, we present the details of DET-LSH and the design

of Dynamic Encoding Tree (DE-Tree). DET-LSH consists of three

phases: an encoding phase to encode the LSH-based projected

points into iSAX representations; an indexing phase to construct

DE-Trees based on the iSAX representations; a query phase to per-

form range queries in DE-Trees for ANN search. Figure 2 provides

a high-level overview of the workflow for DET-LSH.

4.1 Encoding Phase
DET-LSH first encodes projected points into iSAX representations.

iSAX uses breakpoints to divide each dimension into non-uniform

regions, and assigns a bit-wise symbol to each region. For example,

Figure 1(a) illustrates an iSAX-based encoding process under a

two-dimensional space. In Figure 1(a), we use three breakpoints in

each dimension to divide it into four regions, each of which can be

represented by a 2-bit symbol: 00/01/10/11. Therefore, the space is

divided into 16 regions, and the points in the same region have the

same iSAX representations. Figure 1(b) shows an index based on the

iSAX representations. In practice, iSAX only requires 256 symbols

in each dimension to get a very good approximation [9], which

means each dimension can be encoded with an 8-bit alphabet.

Static encoding scheme. In data series similarity search, tra-

ditional iSAX-based methods adopt the static encoding scheme

[9, 11, 17, 42, 43, 45, 69]. Since normalized data series have highly

Gaussian distribution [48], they simply determine the breakpoints

𝑏1, ..., 𝑏𝑎−1 such that the area under aN(0, 1) Gaussian curve from
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Algorithm 1: Breakpoints Selection
Input: Parameters 𝐾 , 𝐿, 𝑛, all points in projected spaces 𝑃 ,

sample size 𝑛𝑠 , number of regions in each projected

space 𝑁𝑟
Output: A set of breakpoints 𝐵

1 Initialize 𝐵 with size 𝐿 · 𝐾 · (𝑁𝑟 + 1);
2 for 𝑖 = 1 to 𝐿 do
3 for 𝑗 = 1 to 𝐾 do
4 Sample 𝐶𝑖 𝑗 = [ℎ𝑖 𝑗 (𝑜1), ..., ℎ𝑖 𝑗 (𝑜𝑛𝑠 )] from 𝑃 ;

5 𝑟𝑜𝑢𝑛𝑑 ← log
2
𝑁𝑟 ;

6 for 𝑧 = 1 to 𝑟𝑜𝑢𝑛𝑑 do
7 Use QuickSelect algorithm and

divide-and-conquer strategy to find 2
𝑧−1

breakpoints in round 𝑧;

8 Store the found breakpoints in 𝐵𝑖 𝑗 ;

9 𝑓 𝑖𝑛𝑎𝑙_𝑟𝑒𝑔𝑖𝑜𝑛_𝑠𝑖𝑧𝑒 ← ⌊ 𝑛𝑠
2
𝑟𝑜𝑢𝑛𝑑 ⌋;

10 𝐵𝑖 𝑗 (1) ← the minimum element from 𝐶𝑖 𝑗 (1) to
𝐶𝑖 𝑗 (𝑓 𝑖𝑛𝑎𝑙_𝑟𝑒𝑔𝑖𝑜𝑛_𝑠𝑖𝑧𝑒);

11 𝐵𝑖 𝑗 (𝑁𝑟 + 1) ← the maximum element from

𝐶𝑖 𝑗 (𝑛𝑠 − 𝑓 𝑖𝑛𝑎𝑙_𝑟𝑒𝑔𝑖𝑜𝑛_𝑠𝑖𝑧𝑒) to 𝐶𝑖 𝑗 (𝑛𝑠 );

12 return 𝐵;

𝑏𝑖 to 𝑏𝑖+1 is 1

𝑎 , where 𝑏0 and 𝑏𝑎 are defined as −∞ and +∞. There-
fore, these breakpoints are static and independent of datasets. Ex-

isting methods encode a data series by checking which two break-

points each of its coordinates falls between in a common statistical

table. However, the datasets for ANN search have arbitrary distri-

butions, so the static encoding scheme is no longer suitable.

Dynamic encoding scheme. In DET-LSH, we design a dynamic

encoding scheme to dynamically select breakpoints based on the

distribution of the dataset, aiming to divide data points into dif-

ferent regions as evenly as possible, i.e., each region contains the

same number of points. Specifically, assuming we have a dataset

with cardinality 𝑛, we first use 𝐾 · 𝐿 hash functions to calculate

the 𝐾-dimensional points in 𝐿 projected spaces, where H𝑖 (𝑜) =
[ℎ𝑖1 (𝑜), ..., ℎ𝑖𝐾 (𝑜)] denote a point 𝑜 in the 𝑖-th projected space. Let

𝐶𝑖 𝑗 = [ℎ𝑖 𝑗 (𝑜1), ..., ℎ𝑖 𝑗 (𝑜𝑛)] denote the set of coordinates of all 𝑛

points in their 𝑖-th projected space and 𝑗-th dimension, where

𝑖 = 1, ..., 𝐿 and 𝑗 = 1, ..., 𝐾 . We denote 𝐶
↑
𝑖 𝑗

as a new set in which

Algorithm 2: Dynamic Encoding

Input: Parameters 𝐾 , 𝐿, 𝑛, all points in projected spaces 𝑃 ,

sample size 𝑛𝑠 , number of regions in each projected

space 𝑁𝑟
Output: A set of encoded points 𝐸𝑃

1 Initialize 𝐸𝑃 with size 𝑛 · 𝐿 · 𝐾 ;
2 𝐵 ← call BreakpointsSelection(𝐾 ,𝐿,𝑛,𝑃 ,𝑛𝑠 ,𝑁𝑟 );
3 for 𝑖 = 1 to 𝐿 do
4 for 𝑗 = 1 to 𝐾 do
5 for 𝑧 = 1 to 𝑛 do
6 Obtain 𝑜𝑧 from 𝑃 ;

7 Use BinarySearch to find integer 𝑏 ∈ [1, 𝑁𝑟 ]
such that 𝐵𝑖 𝑗 (𝑏) ≤ ℎ𝑖 𝑗 (𝑜𝑧) ≤ 𝐵𝑖 𝑗 (𝑏 + 1);

8 𝐸𝑃𝑖 𝑗 (𝑜𝑧) ← 𝑏-th symbol in the 8-bit alphabet;

9 return 𝐸𝑃 ;

the elements of 𝐶𝑖 𝑗 are sorted in ascending order, and use 𝐶
↑
𝑖 𝑗
(𝑡) to

represent the 𝑡-th element in𝐶
↑
𝑖 𝑗
. Intuitively, to make points evenly

divided into 𝑁𝑟 = 256 regions in each dimension, we can select

ordered breakpoints 𝐵𝑖 𝑗 from𝐶
↑
𝑖 𝑗
, where 𝐵𝑖 𝑗 (𝑧) = 𝐶↑𝑖 𝑗 (⌊

𝑛
𝑁𝑟
⌋ ·(𝑧−1))

and 𝑧 = 2, ..., 𝑁𝑟 . We set 𝐵𝑖 𝑗 (1) = 𝐶↑𝑖 𝑗 (1) and 𝐵𝑖 𝑗 (𝑁𝑟 + 1) = 𝐶
↑
𝑖 𝑗
(𝑛).

In practice, we dynamically select 𝑁𝑟 + 1 breakpoints for each

dimension. Then, for any point 𝑜 , each dimension ℎ𝑖 𝑗 (𝑜) can be

independently encoded based on the selected breakpoints 𝐵𝑖 𝑗 .

In terms of algorithm design, the intuitive idea is to completely

sort 𝐶𝑖 𝑗 to get the exact 𝐶
↑
𝑖 𝑗

and then select breakpoints from it.

However, we only need𝑁𝑟 +1 discrete elements in𝐶
↑
𝑖 𝑗
, the complete

sorting of 𝐶𝑖 𝑗 is wasteful. Therefore, combining the QuickSelect al-
gorithm with the divide-and-conquer strategy, we design a dynamic

encoding scheme based on the unordered 𝐶𝑖 𝑗 . Algorithm 1 intro-

duces how we dynamically select breakpoints, which is the first

step of the encoding scheme. To improve efficiency, we randomly

sample 𝑛𝑠 points from the dataset and select breakpoints based on

these sampled points. In practice, we set 𝑛𝑠 = 0.1𝑛. For each 𝐶𝑖 𝑗 ,

Algorithm 1 obtains breakpoints by running multiple rounds of

the QuickSelect algorithm combined with the divide-and-conquer
strategy (lines 6-8). For unordered 𝐶𝑖 𝑗 , QuickSelect(𝑠𝑡𝑎𝑟𝑡 , 𝑞, 𝑒𝑛𝑑)
can find the 𝑞-th smallest element between𝐶𝑖 𝑗 (𝑠𝑡𝑎𝑟𝑡) and𝐶𝑖 𝑗 (𝑒𝑛𝑑),



Algorithm 3: Create Index
Input: Parameters 𝐾 , 𝐿, 𝑛, encoded points set 𝐸𝑃 , maximum

size of a leaf node𝑚𝑎𝑥_𝑠𝑖𝑧𝑒

Output: A set of DE-Trees: 𝐷𝐸𝑇𝑠 = [𝑇1, ...,𝑇𝐿]
1 for 𝑖 = 1 to 𝐿 do
2 Initialize 𝑇𝑖 and generate 2

𝐾
first layer nodes as the

original leaf nodes;

3 for 𝑧 = 1 to 𝑛 do
4 𝑒𝑝𝑖 (𝑜𝑧) ← (𝐸𝑃𝑖1 (𝑜𝑧), ..., 𝐸𝑃𝑖𝐾 (𝑜𝑧));
5 𝑝𝑜𝑠𝑧 ← the position of 𝑜𝑧 in the dataset;

6 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑒𝑎𝑓 ← leaf node of 𝑇𝑖 to insert

⟨𝑒𝑝𝑖 (𝑜𝑧), 𝑝𝑜𝑠𝑧⟩;
7 while 𝑠𝑖𝑧𝑒𝑜 𝑓 (𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑒𝑎𝑓 ) ≥ 𝑚𝑎𝑥_𝑠𝑖𝑧𝑒 do
8 SplitNode(𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑒𝑎𝑓 );

9 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑒𝑎𝑓 ← the new leaf node to insert

⟨𝑒𝑝𝑖 (𝑜𝑧), 𝑝𝑜𝑠𝑧⟩;
10 Insert ⟨𝑒𝑝𝑖 (𝑜𝑧), 𝑝𝑜𝑠𝑧⟩ to 𝑡𝑎𝑟𝑔𝑒𝑡_𝑙𝑒𝑎𝑓 ;

11 return 𝐷𝐸𝑇𝑠 ;

and move it to the position of 𝐶𝑖 𝑗 (𝑠𝑡𝑎𝑟𝑡 + 𝑞). Then, 𝐶𝑖 𝑗 (𝑠𝑡𝑎𝑟𝑡 + 𝑞)
is greater than all elements from 𝐶𝑖 𝑗 (𝑠𝑡𝑎𝑟𝑡) to 𝐶𝑖 𝑗 (𝑠𝑡𝑎𝑟𝑡 + 𝑞 − 1)
and smaller than all elements from 𝐶𝑖 𝑗 (𝑠𝑡𝑎𝑟𝑡 + 𝑞 + 1) to 𝐶𝑖 𝑗 (𝑒𝑛𝑑).
Therefore, we can select a single breakpoint from 𝐶𝑖 𝑗 by running

QuickSelect once. Since we set 𝑁𝑟 = 256, the divide-and-conquer
strategy can be perfectly applied to our algorithm. Specifically, a

total of log
2
𝑁𝑟 rounds need to run, and the 𝑧-th round select 2

𝑧−1

breakpoints by running QuickSelect in 2
𝑧−1

sub-regions generated

from the (𝑧-1)-th round, where 𝑧 = 1, ..., log
2
𝑁𝑟 . For each 𝐶𝑖 𝑗 , we

select the minimum element as the first breakpoint 𝐵𝑖 𝑗 (1) and the

maximum element as the last breakpoint 𝐵𝑖 𝑗 (𝑁𝑟 + 1) (lines 9-11).
In practice, Algorithm 1 achieves 3x speedup in running time over

the complete sorting scheme, as shown in Section 6.2. After getting

the breakpoint set 𝐵, Algorithm 2 will encode all points into iSAX

representations and return the set of encoded points 𝐸𝑃 (lines 3-8).

4.2 Indexing Phase
As mentioned before, DET-LSH requires 𝐿 DE-Trees to support

queries. Algorithm 3 presents how to construct 𝐿 DE-Trees based

on the encoded points set 𝐸𝑃 . Specifically, for each DE-Tree, the

first step is to initialize the first layer nodes, which are the children

of the root (line 2). As shown in Figure 1(b), according to the iSAX

encoding rules, the initial division of each dimension has two cases:

0
∗
and 1

∗
. Therefore, each DE-Tree has 2

𝐾
first layer nodes. Then,

for each point 𝑜𝑧 , we get its encoded representation 𝑒𝑝𝑖 (𝑜𝑧) for the
𝑖-th DE-Tree𝑇𝑖 and its position 𝑝𝑜𝑠𝑧 in the dataset (lines 3-5). Based

on 𝑒𝑝𝑖 (𝑜𝑧), we can get the leaf node of 𝑇𝑖 to insert ⟨𝑒𝑝𝑖 (𝑜𝑧), 𝑝𝑜𝑠𝑧⟩
(line 6). If the leaf node is full, we split it until we get a new leaf node

and insert ⟨𝑒𝑝𝑖 (𝑜𝑧), 𝑝𝑜𝑠𝑧⟩ (lines 7-10). Note that only leaf nodes

contain information about points, such as encoded representations

and positions, while internal nodes only contain index information.

In a DE-Tree, except the root node that has 2
𝐾
children, other

internal nodes have only two children. This is because when an in-

ternal node needs to be split, we only select one of its 𝐾 dimensions

for further bit-wise binary division. For example, in Figure 1(b), we

Algorithm 4: DET Range Query

Input: A projected query point 𝑞′, the search radius 𝑟 ′, the
index DE-Tree 𝑇 , project dimension 𝐾

Output: A set of points 𝑆

1 Initialize a points set 𝑆 ← ∅;
2 for 𝑖 = 1 to 2𝐾 do
3 𝑛𝑜𝑑𝑒 ← the 𝑖-th child of root node in 𝑇 ;

4 call TraverseSubtree(𝑛𝑜𝑑𝑒 , 𝑞′, 𝑟 ′, 𝑆);

5 return 𝑆 ;

Algorithm 5: Traverse Subtree
Input: A node 𝑛𝑜𝑑𝑒 , the projected query point 𝑞′, the

search radius 𝑟 ′, the set of points 𝑆
1 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑_𝑑𝑖𝑠𝑡 ← calculate the lower bound distance

between 𝑞′ and 𝑛𝑜𝑑𝑒 ;
2 if 𝑙𝑜𝑤𝑒𝑟_𝑏𝑜𝑢𝑛𝑑_𝑑𝑖𝑠𝑡 > 𝑟 ′ then
3 break;

4 else if 𝑛𝑜𝑑𝑒 is a leaf then
5 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑_𝑑𝑖𝑠𝑡 ← calculate the upper bound

distance between 𝑞′ and 𝑛𝑜𝑑𝑒;
6 if 𝑢𝑝𝑝𝑒𝑟_𝑏𝑜𝑢𝑛𝑑_𝑑𝑖𝑠𝑡 ≤ 𝑟 ′ then
7 𝑆 ← 𝑆 ∪ all points in 𝑛𝑜𝑑𝑒 ;

8 else
9 while 𝑛𝑜𝑑𝑒 has next point do
10 Get next point 𝑜 ∈ 𝑛𝑜𝑑𝑒 ;
11 𝑑𝑖𝑠𝑡 ← calculate the distance between 𝑞′ and

the projected 𝑜′;
12 if 𝑑𝑖𝑠𝑡 ≤ 𝑟 ′ then
13 𝑆 ← 𝑆 ∪ 𝑜 ;

14 else
15 call TraverseSubtree(𝑛𝑜𝑑𝑒.𝑙𝑒 𝑓 𝑡𝐶ℎ𝑖𝑙𝑑 , 𝑞′, 𝑟 ′, 𝑆);
16 call TraverseSubtree(𝑛𝑜𝑑𝑒.𝑟𝑖𝑔ℎ𝑡𝐶ℎ𝑖𝑙𝑑 , 𝑞′, 𝑟 ′, 𝑆);

choose the first dimension of node [0
∗
,0
∗
] to split, and the repres-

entations of its two children are [00,0
∗
] and [01,0

∗
]. The choice of

which dimension to divide is important for splitting nodes. Intu-

itively, splitting a node works better if the obtained two children

contain similar numbers of points. Therefore, when splitting nodes,

we choose the dimension that most evenly divides the points.

4.3 Query Phase
Since the query strategy of DET-LSH is based on the Euclidean dis-

tance metric, range queries can improve the efficiency of obtaining

candidate points. In a DE-Tree, each space is divided into different

regions by multiple breakpoints. The breakpoints on all sides of a

region can be used to calculate the upper and lower bound distances

between two points or between a point and a tree node.

DET Range Query. Algorithm 4 is designed for range queries in

DE-Tree. We select all 2
𝐾
children of the root node as the entry of

the traversal and then traverse their subtrees in order (lines 2-4).

Algorithm 5 presents how to obtain points within the search radius



Algorithm 6: (𝑟 ,𝑐)-ANN Query

Input: A query point 𝑞, parameters 𝐾 , 𝐿, 𝑛, 𝑐 , 𝑟 , 𝜖 , 𝛽 , index

DE-Trees 𝐷𝐸𝑇𝑠 = [𝑇1, ...,𝑇𝐿]
Output: A point 𝑜 or ∅

1 Initialize a candidate set 𝑆 ← ∅;
2 for 𝑖 = 1 to 𝐿 do
3 Compute 𝑞′

𝑖
= 𝐻𝑖 (𝑞) = [ℎ𝑖1 (𝑞), ..., ℎ𝑖𝐾 (𝑞)];

4 𝑆𝑖 ← call DETRangeQuery(𝑞′
𝑖
, 𝜖 · 𝑟,𝑇𝑖 , 𝐾 );

5 𝑆 ← 𝑆 ∪ 𝑆𝑖 ;
6 if |𝑆 | ≥ 𝛽𝑛 + 1 then
7 return the point 𝑜 closest to 𝑞 in 𝑆 ;

8 if |{𝑜 | 𝑜 ∈ 𝑆 ∧ ∥𝑜, 𝑞∥ ≤ 𝑐 · 𝑟 }| ≥ 1 then
9 return the point 𝑜 closest to 𝑞 in 𝑆 ;

10 return ∅;

𝑟 ′ by recursively traversing the subtrees. For the node being visited,
if its lower bound distance with 𝑞′ is greater than 𝑟 ′, it means that

the distance between any point in its subtree and 𝑞′ is greater than
𝑟 ′, so no further traversal is needed (lines 1-3). If the upper bound

distance between a leaf node and 𝑞′ is not greater than 𝑟 ′, it means

that the distance between any data point in the leaf node and 𝑞′

is not greater than 𝑟 ′, so that all points can be added to 𝑆 (lines

4-7). If 𝑟 ′ falls within the range of the lower bound distance and

the upper bound distance between a leaf node and 𝑞′, we should
traverse the data points in the leaf node and add those within the

search radius to 𝑆 (lines 8-13). If the node being visited is not a leaf

node and further traversal is required, we need to further traverse

its subtrees (lines 14-16).

(𝑟 ,𝑐)-ANN Query. Algorithm 6 shows that DET-LSH can answer

an (𝑟 ,𝑐)-ANN query with any search radius 𝑟 . After the indexing

phase, DET-LSH obtains 𝐿 DE-Trees 𝑇1, ...,𝑇𝐿 . Given a query 𝑞, we

consider 𝐿 projected spaces in order. For the 𝑖-th space, we first

compute the projected query 𝑞′
𝑖
(line 3). Then, we call Algorithm 4

to perform a range query in the 𝑖-th DE-Tree 𝑇𝑖 (line 4). The search

radius in the projected space is 𝜖 · 𝑟 . The parameter 𝜖 guarantees

that if the distance between a point 𝑜 and 𝑞 is not greater than 𝑟 ,

then the distance between the projected 𝑜′ and 𝑞′ is not greater
than 𝜖 · 𝑟 with a constant probability. Detailed analysis and proof

will be introduced in Lemma 3 in Section 5. We continuously add

the candidate points obtained by range queries to a candidate set

𝑆 (line 5). If the number of candidate points in 𝑆 exceeds 𝛽𝑛 + 1,
the point 𝑜 closest to 𝑞 will be returned, where parameter 𝛽 is the

maximum false positive percentage (lines 6-7). After completing

range queries in 𝐿 DE-Trees, if the size of 𝑆 is still smaller than

𝛽𝑛 + 1 and there is at least one point in 𝑆 whose distance with 𝑞 is

not greater than 𝑐 · 𝑟 , then return the point 𝑜 closest to 𝑞 in 𝑆 (lines

8-9). Otherwise, the algorithm returns nothing (line 10). According

to Theorem 1, to be introduced in Section 5, DET-LSH can correctly

answer an (𝑟 ,𝑐)-ANN query with a constant probability.

𝑐2-𝑘-ANN Query. Since 𝑜∗ and ∥𝑞, 𝑜∗∥ are not known in advance,

we cannot directly perform an ANN query with a pre-defined 𝑟

like (𝑟 ,𝑐)-ANN query does. Instead, we can conduct a series of (𝑟 ,𝑐)-

ANN queries with increasing radii until enough points are returned.

Algorithm 7 outlines the query processing. We can see that most

Algorithm 7: 𝑐2-𝑘-ANN Query

Input: A query point 𝑞, parameters 𝐾 , 𝐿, 𝑛, 𝑐 , 𝑟𝑚𝑖𝑛 , 𝜖 , 𝛽 , 𝑘 ,

index DE-Trees 𝐷𝐸𝑇𝑠 = [𝑇1, ...,𝑇𝐿]
Output: 𝑘 nearest points to 𝑞 in 𝑆

1 Initialize a candidate set 𝑆 ← ∅ and set 𝑟 ← 𝑟𝑚𝑖𝑛 ;

2 while TRUE do
3 for 𝑖 = 1 to 𝐿 do
4 Compute 𝑞′

𝑖
= 𝐻𝑖 (𝑞) = [ℎ𝑖1 (𝑞), ..., ℎ𝑖𝐾 (𝑞)];

5 𝑆𝑖 ← call DETRangeQuery(𝑞′
𝑖
, 𝜖 · 𝑟,𝑇𝑖 , 𝐾 );

6 𝑆 ← 𝑆 ∪ 𝑆𝑖 ;
7 if |𝑆 | ≥ 𝛽𝑛 + 𝑘 then
8 return the top-𝑘 points closest to 𝑞 in 𝑆 ;

9 if |{𝑜 | 𝑜 ∈ 𝑆 ∧ ∥𝑜, 𝑞∥ ≤ 𝑐 · 𝑟 }| ≥ 𝑘 then
10 return the top-𝑘 points closest to 𝑞 in 𝑆 ;

11 𝑟 ← 𝑐 · 𝑟 ;

of the steps of Algorithm 7 (lines 3-10) are almost the same as

Algorithm 6 (lines 2-9), except that Algorithm 7 needs to consider 𝑘

when judging conditions and returning results. The main difference

is that when neither the termination condition at line 8 nor line 10

is satisfied, Algorithm 7 will enlarge the search radius for the next

round of queries (line 11). According to Theorem 2, to be introduced

in Section 5, DET-LSH can correctly answer a 𝑐2-𝑘-ANN query with

a constant probability.

5 THEORETICAL ANALYSIS
5.1 Quality Guarantee
Let H𝑖 (𝑜) = [ℎ𝑖1 (𝑜), ..., ℎ𝑖𝐾 (𝑜)] denote a data point 𝑜 in the 𝑖-th

projected space, where 𝑖 = 1, ..., 𝐿. We define three events as follows:

• E1: If there exists a point 𝑜 satisfying ∥𝑜, 𝑞∥ ≤ 𝑟 , then its

projected distance to 𝑞, i.e., ∥H𝑖 (𝑜),H𝑖 (𝑞)∥, is smaller than

𝜖𝑟 for some 𝑖 = 1, ..., 𝐿;

• E2: If there exists a point 𝑜 satisfying ∥𝑜, 𝑞∥ > 𝑐𝑟 , then its

projected distance to 𝑞, i.e., ∥H𝑖 (𝑜),H𝑖 (𝑞)∥, is smaller than

𝜖𝑟 for some 𝑖 = 1, ..., 𝐿;

• E3: Fewer than 𝛽𝑛 points satisfying E2 in dataset D.

Lemma 3. Given 𝐾 and 𝑐 , setting 𝐿 = − 1

ln𝛼1
and 𝛽 = 2− 2𝛼

− 1

𝑙𝑛𝛼
1

2

such that 𝛼1, 𝛼2, and 𝜖 satisfy Equation 3, the probability that E1
occurs is at least 1− 1

e
and the probability that E3 occurs is at least 1

2
.

𝜖2 = 𝜒2𝛼1 (𝐾) = 𝑐
2 · 𝜒2𝛼2 (𝐾) . (3)

Proof. Given a point 𝑜 satisfying ∥𝑜, 𝑞∥ ≤ 𝑟 , let 𝑠 = ∥𝑜, 𝑞∥ and
𝑠′
𝑖
= ∥H𝑖 (𝑜),H𝑖 (𝑞)∥ denote the distances between 𝑜 and 𝑞 in the

original space and in the 𝑖-th projected space, where 𝑖 = 1, ..., 𝐿.

From Equation 3, we have

√︂
𝜒2𝛼1 (𝐾) = 𝜖 . For each independent

projected space, from Lemma 2, we have Pr [𝑠′
𝑖
> 𝑠

√︂
𝜒2𝛼1 (𝐾)] =

Pr [𝑠′
𝑖
> 𝜖𝑠] = 𝛼1. Since 𝑠 ≤ 𝑟 , Pr [𝑠′𝑖 > 𝜖𝑟 ] ≤ 𝛼1. Considering 𝐿

projected spaces, we have Pr [E1] ≥ 1−𝛼𝐿
1
= 1− 1

e
. Likewise, given a

point𝑜 satisfying ∥𝑜, 𝑞∥ > 𝑐𝑟 , let 𝑠 = ∥𝑜, 𝑞∥ and 𝑠′
𝑖
= ∥H𝑖 (𝑜),H𝑖 (𝑞)∥

denote the distances between 𝑜 and𝑞 in the original space and in the



𝑖-th projected space, where 𝑖 = 1, ..., 𝐿. From Equation 3, we have√︂
𝜒2𝛼2 (𝐾) =

𝜖
𝑐 . For each independent projected space, from Lemma

2, we have Pr [𝑠′
𝑖
> 𝑠

√︂
𝜒2𝛼2 (𝐾)] = Pr [𝑠′

𝑖
> 𝜖𝑠

𝑐 ] = 𝛼2. Since 𝑠 > 𝑐𝑟 ,

i.e.,
𝑠
𝑐 > 𝑟 , Pr [𝑠′

𝑖
> 𝜖𝑟 ] > 𝛼2. Considering 𝐿 projected spaces, we

have Pr [E2] ≤ 1 − 𝛼𝐿
2
, thus the expected number of such points in

datasetD is upper bounded by (1−𝛼𝐿
2
) ·𝑛. ByMarkov’s inequality,

we have Pr [E3] > 1 − (1−𝛼
𝐿
2
) ·𝑛

𝛽𝑛
= 1

2
.

□

Theorem 1. Algorithm 6 answers an (𝑟 ,𝑐)-ANN query with at
least a constant probability of 1

2
− 1

e
.

Proof. We show that when E1 and E3 hold at the same time,

Algorithm 6 returns an correct (𝑟 ,𝑐)-ANN result. The probability

of E1 and E3 occurring at the same time can be calculated as

Pr [E1E3] = Pr [E1] − Pr [E1E3] > Pr [E1] − Pr [E3] = 1

2
− 1

e
.

When E1 and E3 hold at the same time, if Algorithm 6 terminates

after getting at least 𝛽𝑛 + 1 candidate points (line 7), due to E3,
there are at most 𝛽𝑛 points satisfying ∥𝑜, 𝑞∥ > 𝑐𝑟 . Thus we can get

at least one point satisfying ∥𝑜, 𝑞∥ ≤ 𝑐𝑟 , and the returned point

is obviously a correct result. If the candidate set 𝑆 has no more

than 𝛽𝑛 + 1 points, but there exists at least one point in 𝑆 satisfying
∥𝑜, 𝑞∥ ≤ 𝑐𝑟 , Algorithm 6 can also terminate and then return a result

correctly (line 9). Otherwise, it indicates that no points satisfying

∥𝑜, 𝑞∥ ≤ 𝑐𝑟 . According to the Definition 3 of (𝑟 ,𝑐)-ANN, nothing

will be returned (line 10). Therefore, when E1 and E3 hold at the

same time, Algorithm 6 can always correctly answer an (𝑟 ,𝑐)-ANN

query. In other words, Algorithm 6 answers an (𝑟 ,𝑐)-ANN query

with at least a constant probability of
1

2
− 1

e
. □

Theorem 2. Algorithm 7 answers a 𝑐2-𝑘-ANN query with at least
a constant probability of 1

2
− 1

e
.

Proof. We show that when E1 and E3 hold at the same time,

Algorithm 7 returns a correct 𝑐2-𝑘-ANN result. Let 𝑜∗
𝑖
be the 𝑖-th

exact nearest point to 𝑞 in D, we assume that 𝑟∗
𝑖
=
∥︁∥︁𝑜∗
𝑖
, 𝑞
∥︁∥︁ > 𝑟𝑚𝑖𝑛 ,

where 𝑟𝑚𝑖𝑛 is the initial search radius and 𝑖 = 1, ..., 𝑘 . We denote

the number of points in the candidate set under search radius 𝑟 as

|𝑆𝑟 |. Obviously, when enlarging the search radius 𝑟 = 𝑟𝑚𝑖𝑛, 𝑟𝑚𝑖𝑛 ·
𝑐, 𝑟𝑚𝑖𝑛 · 𝑐2, ..., there must exist a radius 𝑟0 satisfying |𝑆𝑟0 | < 𝛽𝑛 + 𝑘
and |𝑆𝑐 ·𝑟0 | ≥ 𝛽𝑛 + 𝑘 . The distribution of 𝑟∗

𝑖
has three cases:

(1) Case 1: If for all 𝑖 = 1, ..., 𝑘 satisfying 𝑟∗
𝑖
≤ 𝑟0, which

indicates the range queries in all 𝐿 index trees have been

executed at 𝑟 = 𝑟0 (lines 3-8). Due to E1, all 𝑟∗
𝑖
must in

𝑆𝑟0 . Since 𝑆𝑟0 ⫋ 𝑆𝑐 ·𝑟0 , all 𝑟
∗
𝑖
also must in 𝑆𝑐 ·𝑟0 . Therefore,

Algorithm 7 returns the exact 𝑘 nearest points 𝑜∗
𝑖
to 𝑞.

(2) Case 2: If for all 𝑖 = 1, ..., 𝑘 satisfying 𝑟∗
𝑖
> 𝑟0, all 𝑟

∗
𝑖
not

belong to 𝑆𝑟0 . Since Algorithm 7may terminate after execut-

ing range queries in part of 𝐿 index trees at 𝑟 = 𝑐 ·𝑟0 (line 8),
we cannot guarantee that 𝑟∗

𝑖
≤ 𝑐 · 𝑟0. However, due to E3,

there are at least𝑘 points𝑜𝑖 in 𝑆𝑐 ·𝑟0 satisfying ∥𝑜𝑖 , 𝑞∥ ≤ 𝑐2𝑟0,
𝑖 = 1, ..., 𝑘 . Therefore, we have ∥𝑜𝑖 , 𝑞∥ ≤ 𝑐2𝑟0 ≤ 𝑐2𝑟∗𝑖 , i.e.,
each 𝑜𝑖 is a 𝑐

2
-ANN point for corresponding 𝑜∗

𝑖
.

(3) Case 3: If there exists an integer𝑚 ∈ (1, 𝑘) such that for

all 𝑖 = 1, ...,𝑚 satisfying 𝑟∗
𝑖
≤ 𝑟0 and for all 𝑖 = 𝑚 + 1, ..., 𝑘

satisfying 𝑟∗
𝑖
> 𝑟0, indicating that Case 3 is a combination

Figure 3: Illustration of the theoretical 𝛽 when 𝐿 varies (for
𝐾 = 16 and 𝑐 = 1.5), which is in line with Lemma 3.

of Case 1 and Case 2. For each 𝑖 ∈ [1,𝑚], Algorithm 7

returns the exact nearest point 𝑜∗
𝑖
to 𝑞 based on Case 1. For

each 𝑖 ∈ [𝑚 + 1, 𝑘], Algorithm 7 returns a 𝑐2-ANN point for

𝑜∗
𝑖
based on Case 2.

Therefore, when E1 and E3 hold simultaneously, Algorithm 7 can

always correctly answer a 𝑐2-𝑘-ANN query, i.e., Algorithm 7 returns

a 𝑐2-𝑘-ANN with at least a constant probability of
1

2
− 1

e
. □

5.2 Parameter Settings
The performance of DET-LSH is affected by several parameters: 𝐿,

𝐾 , 𝛽 , 𝑐 , and so on. According to Lemma 3, when 𝐿 and 𝑐 are set

as constants, there is a mathematical relationship between 𝐾 and

𝛽 . We set 𝐾 = 16 and 𝑐 = 1.5 by default, and Figure 3 shows the

theoretical 𝛽 as 𝐿 changes, which is in line with Lemma 3. Figure 3

illustrates that 𝛽 and 𝐿 have a negative correlation. Theoretically,

a greater 𝛽 means a higher fault tolerance when querying, so the

accuracy of DET-LSH is improved. Meanwhile, a greater 𝐿 means

fewer correct results are missed when querying, so the accuracy

of DET-LSH can also be improved. However, both greater 𝛽 and

greater 𝐿 will reduce query efficiency, so we need to find a balance

between 𝛽 and 𝐿. As shown in Figure 3, 𝐿 = 4 is a good choice

because as 𝐿 increases, 𝛽 drops rapidly until 𝐿 = 4, and then 𝛽 drops

slowly. Therefore, we choose 𝐿 = 4 as the default value.

For the initial search radius 𝑟𝑚𝑖𝑛 , we follow the selection scheme

proposed in [66]. Specifically, to reduce the number of iterations for

different 𝑟 and terminate the query process faster, we find a ‘magic’

𝑟𝑚𝑖𝑛 that satisfies the following conditions: 1) when 𝑟 = 𝑟𝑚𝑖𝑛 in

Algorithm 7, the number of candidate points in 𝑆 satisfies |𝑆 | ≥
𝛽𝑛 + 𝑘 ; 2) when 𝑟 = 𝑟𝑚𝑖𝑛

𝑐 in Algorithm 7, the number of candidate

points in 𝑆 satisfies |𝑆 | < 𝛽𝑛 + 𝑘 . Since DET-LSH can implement

dynamic incremental queries as 𝑟 increases, the choice of 𝑟𝑚𝑖𝑛 is

expected to have a relatively small impact on its performance.

5.3 Complexity Analysis
In the encoding and indexing phases, DET-LSHhas time costO(𝑛(𝑑+
log𝑁𝑟 )), and space cost O(𝑛). The time cost comes from four parts:

(1) computing hash values for 𝑛 points, O(𝐿 · 𝐾 · 𝑛 · 𝑑); (2) using
Algorithm 1 for breakpoint selection, O(𝐿 ·𝐾 ·𝑛 · log𝑁𝑟 ); (3) using
Algorithm 2 for encoding, O(𝐿 · 𝐾 · 𝑛 · log𝑁𝑟 ); and (4) using Al-

gorithm 3 for constructing 𝐿 DE-Trees, O(𝐿 · 𝑛 · 𝐾 · log𝑁𝑟 ). Since
both 𝐾 = O(1) and 𝐿 = O(1) are constants, the total time cost

is O(𝑛(𝑑 + log𝑁𝑟 )). Obviously, the size of encoded points and 𝐿

DE-Trees are both O(𝐿 · 𝐾 · 𝑛) = O(𝑛).



Table 2: Datasets

Dataset Cardinality Dimensions Type

Msong 994,185 420 Audio

Deep1M 1,000,000 256 Image

Sift10M 10,000,000 128 Image

TinyImages80M 79.302,017 384 Image

Sift100M 100,000,000 128 Image

Yandex Deep500M 500,000,000 96 Image

Microsoft SPACEV500M 500,000,000 100 Text

Microsoft Turing-ANNS500M 500,000,000 100 Text

In the query phase, DET-LSH has time cost O(𝑛(𝛽𝑑 + log𝑁𝑟 )).
The time cost comes from four parts: (1) computing hash values for

the query point𝑞, O(𝐿 ·𝐾 ·𝑑) = O(𝑑); (2) finding candidate points in
𝐿 DE-Trees, O(𝐿 ·𝐾2 · log𝑁𝑟 · 𝑛

𝑚𝑎𝑥_𝑠𝑖𝑧𝑒 +𝐿 ·𝐾 ·𝑛) = O(𝑛 log𝑁𝑟 ); (3)
computing the real distance of each candidate point to 𝑞, O(𝛽𝑛𝑑);
and (4) finding the 𝑡𝑜𝑝-𝑘 points to 𝑞, O(𝛽𝑛 log𝑘). The total time

cost in the query phase is O(𝑛(𝛽𝑑 + log𝑁𝑟 )).

6 EXPERIMENTAL EVALUATION
In this section, we self-evaluate DET-LSH, conduct comparative

experiments with the state-of-the-art LSH-based methods, and com-

pare with graph-based methods. Our method is implemented in C

and C++ and compiled using -O3 optimization. All experiments are

conducted using a single thread, on a machine with 2 AMD EPYC

9554 CPUs @ 3.10GHz and 756 GB RAM, running on Ubuntu 22.04.

6.1 Experimental Setup
Datasets and Queries. We use eight real-world datasets for ANN

search. Table 2 shows the key statistics of the datasets. Note that

the points in Sift10M and Sift100M are randomly chosen from the

Sift1B dataset
1
. Similarly, the points in Yandex Deep500M, Microsoft

SPACEV500M, and Microsoft Turing-ANNS500M are also randomly

chosen from their 1B-scale datasets
2
. We randomly select 100 data

points as queries and remove them from the original datasets.

Evaluation Measures. We adopt five measures to evaluate the

performance of all methods: index size, indexing time, query time,

recall, and overall ratio. For a query 𝑞, we denote the result set as

𝑅 = {𝑜1, ..., 𝑜𝑘 } and the exact 𝑘-NNs as 𝑅∗ = {𝑜∗
1
, ..., 𝑜∗

𝑘
}, recall is

defined as
|𝑅∩𝑅∗ |
𝑘

and overall ratio is defined as
1

𝑘

∑︁𝑘
𝑖=1

∥𝑞,𝑜𝑖 ∥
∥𝑞,𝑜∗𝑖 ∥

[55].

Benchmark Methods. We compare DET-LSH with three state-of-

the-art LSH-based in-memory methods mentioned in Section 2, i.e.,

DB-LSH [55], LCCS-LSH [31], and PM-LSH [66]. Moreover, to study

the capability of DE-Tree and the advantages of LSH, we use a single

DE-Tree to index points without LSH for ANN searches. We call this

method DET-ONLY. Since DET-ONLY is not based on LSH, we adopt

the Piecewise Aggregate Approximation (PAA) [29] technique to

reduce the dimensionality of points. PAA divides a 𝑑-dimensional

point into𝐾 segments of equal length ⌊ 𝑑
𝐾
⌋ and uses the mean value

of the coordinates in each segment to summarize the point. DET-

ONLY adopts the same query strategy as DET-LSH. To study the

characteristics of LSH-based methods and graph-based methods,

1
http://corpus-texmex.irisa.fr/

2
https://big-ann-benchmarks.com/neurips21.html

Figure 4: Running time break-down for the DET-LSH encod-
ing and indexing phases.

Figure 5: Running time and recall of optimized/non-
optimized query-phase algorithms of DET-LSH.

Figure 6: Index size for all datasets.

we also compare DET-LSH with two state-of-the-art graph-based

methods, i.e., HNSW [38] and LSH-APG [65].

Parameter Settings. 𝑘 in 𝑘-ANN is set to 50 by default. For DET-

LSH, the parameters are set as described in Section 5.2. For com-

petitors, the parameter settings follow their source codes or papers.

To make a fair comparison, we set 𝛽 = 0.1 and 𝑐 = 1.5 for DET-LSH,

DB-LSH, PM-LSH, and DET-ONLY. For DB-LSH, 𝐿 = 5, 𝐾 = 12,

𝑤 = 4𝑐2. For LCCS-LSH,𝑚 = 64. For PM-LSH, 𝑠 = 5,𝑚 = 15. For

DET-ONLY, 𝐾 = 16, 𝐿 = 1. For HNSW, 𝑀 = 48, 𝑒 𝑓 = 100. For

LSH-APG, 𝐾 = 16, 𝐿 = 2, 𝑇 = 24, 𝑇 ′ = 2𝑇 , 𝑝𝜏 = 0.95.



Table 3: Performance comparison with competitors (the best value in each row is highlighted in bold; the number in parentheses
indicates how many times slower a method is than the best method).

DET-LSH DB-LSH PM-LSH LCCS-LSH DET-ONLY

Msong

Query Time (ms) 112.97 (1.43) 118.10 (1.49) 120.36 (1.53) 170.13 (2.16) 78.87
Recall 0.9546 0.9474 0.949 0.849 0.891

Overall Ratio 1.0012 1.0013 1.0013 1.0035 1.0046

Indexing Time (s) 4.654 (3.90) 4.974 (4.17) 2.950 (2.47) 28.925 (24.2) 1.194

Deep1M

Query Time (ms) 109.28 (1.37) 117.79 (1.48) 207.37 (2.61) 136.21 (1.71) 79.51
Recall 0.9112 0.8552 0.857 0.848 0.818

Overall Ratio 1.0022 1.0038 1.0042 1.0039 1.0061

Indexing Time (s) 4.647 (3.97) 4.809 (4.10) 2.991 (2.55) 57.652 (49.2) 1.172

Sift10M

Query Time (ms) 506.34 (1.20) 944.23 (2.25) 1482.84 (3.53) 1905.09 (4.53) 420.43
Recall 0.9644 0.9438 0.9338 0.8924 0.886

Overall Ratio 1.0009 1.0015 1.0016 1.0021 1.0035

Indexing Time (s) 44.435 (4.00) 64.861 (5.85) 80.099 (7.22) 509.417 (45.9) 11.094

TinyImages80M

Query Time (ms) 7676.23 (1.00) 8164.96 (1.07) 13672.6 (1.79) 11272.8 (1.47) 7657.08
Recall 0.9108 0.9056 0.8822 0.87 0.8338

Overall Ratio 1.0016 1.0016 1.0023 1.0019 1.0036

Indexing Time (s) 335.419 (4.08) 641.988 (7.81) 1471.31 (17.89) 12128.1 (147.5) 82.235

Sift100M

Query Time (ms) 4757.76 (1.20) 11064.8 (2.78) 15722.8 (3.95) 24221.8 (6.08) 3983.41
Recall 0.9822 0.9652 0.944 0.892 0.8848

Overall Ratio 1.0005 1.0007 1.0013 1.0019 1.0034

Indexing Time (s) 439.434 (4.04) 952.773 (8.76) 1922.7 (17.67) 7519.43 (69.1) 108.782

Yandex
Deep500M

Query Time (ms) 28546.6 (1.09) 61657.9 (2.35) 91724.2 (3.50) 62411.8 (2.38) 26200.4
Recall 0.9852 0.9644 0.9298 0.9506 0.9176

Overall Ratio 1.0003 1.0009 1.0032 1.0009 1.0058

Indexing Time (s) 2263.87 (4.22) 17182.7 (32.04) 13685.2 (25.52) 85968.3 (160.3) 536.262

Microsoft
SPACEV500M

Query Time (ms) 31404.3 (1.07) 66632.3 (2.28) 94868.3 (3.25) 70697.5 (2.42) 29212.6
Recall 0.963 0.9492 0.9568 0.9198 0.8978

Overall Ratio 1.0008 1.0012 1.0011 1.0026 1.00336

Indexing Time (s) 2204.94 (4.21) 16114.7 (30.77) 13189.5 (25.19) 87591.1 (167.3) 523.662

Microsoft
Turing-ANNS500M

Query Time (ms) 31280.1 (1.04) 68636.6 (2.28) 106987 (3.55) 73618.2 (2.44) 30127.2
Recall 0.9806 0.9604 0.9636 0.9404 0.9008

Overall Ratio 1.0005 1.0012 1.0009 1.0012 1.0043

Indexing Time (s) 2301.02 (4.22) 16408.2 (30.11) 12680.2 (23.27) 79162.5 (145.3) 545.006

6.2 Self-evaluation of DET-LSH
6.2.1 Encoding and Indexing Phase. Figure 4 shows the specific run-
ning time of each algorithm in the encoding and indexing phases.

We have the following observations: (1) Dynamic Encoding (Al-

gorithm 2) takes longer time than Create Index (Algorithm 3). Al-

though we have optimized the process of locating regions when

encoding through binary search, it still takes much time to locate a

specific region from 256 regions for each dimension of each projec-

ted point. (2) Optimized Breakpoints Selection (Algorithm 1) achieves

3x speedup in running time over the unoptimized algorithm. As

mentioned in Section 4.1, we use QuickSelect algorithm with divide-
and-conquer strategy to avoid complete sorting, thus reducing the

time complexity from O(𝑛 log𝑛) to O(𝑛 log𝑁𝑟 ).

6.2.2 Query Phase. In practice, in Algorithm 5, if the upper bound

distance between a leaf node and 𝑞′ is greater than the search

radius, it will take much time to calculate the distance between

each point in the leaf node and 𝑞′ (lines 8-13). After experiments,

we found that if the leaf node size𝑚𝑎𝑥_𝑠𝑖𝑧𝑒 is appropriately set in

Algorithm 3, most of the points in these ‘troublesome’ leaf nodes

are within the search radius. Therefore, we optimized Algorithm 5

in two aspects: (1) We relax the requirements for candidate points

to improve efficiency. In our implementation, as long as the lower

bound distance between a leaf node and 𝑞′ is not greater than 𝑟 , we
will add all its points to 𝑆 . (2) We maintain a priority queue to hold

traversed leaf nodes based on their lower bound distances to 𝑞′. A
leaf node with a smaller lower bound distance to 𝑞′ can add all its

points to 𝑆 earlier, guaranteeing the quality of candidate points. As

shown in Figure 5, with an acceptable sacrifice of query accuracy,

optimized Algorithm 4 and Algorithm 7 improve query efficiency

by up to 50% and 30%.

6.3 Comparison with Competitors
6.3.1 Indexing Performance. Figure 6 and Table 3 show the com-

parison between all methods with default parameter settings on all

datasets. To ensure fairness, for DET-LSH and DET-ONLY, the time

of the encoding phase is included in the indexing time. We make

the following observations: (1) DET-LSH has the best indexing ef-

ficiency compared to all LSH-based methods. The reason is that

DB-LSH and PM-LSH use data-oriented partitioning trees to con-

struct indexes. It is time-consuming to partition amulti-dimensional

projected space. DET-LSH adopts DE-Trees to construct indexes,

which divide and encode each dimension of the projected space

independently, thereby improving indexing accuracy. LCCS-LSH



Figure 7: Recall-time and overall ratio-time curves.

Figure 8: Scalability: performance under different 𝑛 on Microsoft SPACEV500M.

Figure 9: Performance under different 𝑘 .

has a significantly longer indexing time compared to other meth-

ods because of building its proposed data structure Circular Shift

Array (CSA). (2) The advantage of DET-LSH’s indexing efficiency

increases with the dataset cardinality. When 𝑛 is not greater than

1M, the indexing time of DET-LSH is longer than that of PM-LSH,

because DET-LSH constructs 4 DE-Trees, while PM-LSH only con-

structs one PM-Tree. As 𝑛 increases from 10M to 500M, DET-LSH

achieves from 2x speedup to 6x speedup in indexing time over other

methods. The reason is that the construction time of a DE-Tree

increases linearly with 𝑛. (3) With respect to index size, DET-LSH is

not very competitive on small-scale datasets, but its design proves

advantageous for large-scale datasets. The reason is that DET-LSH

only saves the iSAX representation of each data point in the DE-

Tree (not the original data point or the LSH-projected data point).

Each iSAX representation is stored as an ‘unsigned char’, which

takes up only one byte. Yet, DET-LSH builds 4 DE-Trees, which

restricts its advantage on small-scale datasets. As the dataset size

increases, the advantage of DET-LSH becomes more pronounced.

(4) The index size and indexing time of DET-ONLY are always about

one-quarter of that of DET-LSH. The reason is that DET-ONLY only

constructs one DE-Tree, while DET-LSH constructs 4 DE-Trees.

6.3.2 Query Performance. We study query performance based on

the query time, recall, and overall ratio shown in Table 3, and

the Recall-Time and OverallRatio-Time curves shown in Figure 7.

We have the following observations: (1) DET-LSH outperforms all

LSH-based methods on both efficiency and accuracy (DET-ONLY is

not an LSH-based method). As shown in Table 3, DET-LSH has a

shorter query time, higher recall, and smaller ratio on all datasets.

As 𝑛 increases, DET-LSH achieves up to 2x speedup in query time

over other LSH-based methods. The reason is that closer points

have similar encoding representations in DE-Tree so that range

queries can obtain higher-quality candidate points in a shorter

time. (2) The query efficiency of DET-ONLY is slightly better than

DET-LSH, but the query accuracy is significantly lower than DET-

LSH. Since DET-LSH performs queries on 4 DE-Trees, querying is

more expensive in terms of time cost, but more accurate than DET-

ONLY, which uses a single DE-Tree to answer queries. DET-LSH can

control the trade-off between accuracy and efficiency by adjusting

the number of DE-Trees, while DET-ONLY cannot do this. The

performance of DET-ONLY shows that it is not suitable to support

accurate ANN queries, demonstrating the importance of the of the

LSH component to guarantee query accuracy. Overall, DET-LSH is



Figure 10: Cumulative query cost (first query includes index-
ing time).

more advantageous than DET-ONLY. (3) DET-LSH achieves the best

trade-off between efficiency and accuracy. As shown in Figure 7,

compared with other LSH-based methods, DET-LSH consumes the

least time to achieve the same recall or overall ratio.

6.3.3 Scalability. A method has good scalability if it performs well

on datasets of different cardinalities. To investigate the scalability

of all methods, we randomly select different number of points from

the Microsoft SPACEV500M dataset and compare the indexing and

query performance of all methods under default parameter settings.

Figure 8 shows the results. We have the following observations: (1)

Although the indexing and query times increase with the cardinality

for all methods, DET-LSH grows much slower than other LSH-

based methods due to the efficiency of DE-Tree (Figure 8(a) and

Figure 8(b)). DET-ONLY constructs indexes and answers queries

faster, but the accuracy is much less than other methods. (2) The

recall and overall ratio are relatively stable for all methods. The

reason is that the data distribution does not change significantly

with the cardinality because we select points randomly. To sum up,

DET-LSH has better scalability than other LSH-based methods.

6.3.4 Effect of 𝑘 . To investigate the effect of 𝑘 , we evaluate the

performance of all methods under different 𝑘 . Since changing 𝑘 has

little impact on query time, and has no impact on indexing time, we

only report the results on recall and overall ratio, shown in Figure 9.

We make the following observations: (1) As 𝑘 increases, the query

accuracy of all methods decreases slightly. The reason is that the

number of candidate points does not change with 𝑘 . A larger 𝑘

means it is more likely to miss the exact NN points. (2) DET-LSH

consistently exhibits the best performance among all competitors.

6.4 Comparison with Graph-based Methods
In this section, we compare DET-LSH to graph-basedmethods [4, 21,

38, 47, 56]. Nevertheless, LSH-based and graph-based methods have

different design principles and characteristics [16, 32, 59], making

them suitable to different application scenarios. In particular, graph-

based methods only support ng-approximate answers [16], that is,

they do not provide any quality guarantees on their results. It

Figure 11: Index size. Figure 12: Update efficiency.

is important to emphasize that DET-LSH has to pay the cost of

providing guarantees for its answers; graph-based methods, that

do not provide any guarantees, do not pay this cost.

In our previous experiments, we demonstrated that DET-LSH

outperforms other LSH-based methods. In this section, we com-

pare DET-LSH to HNSW [38], the state-of-the-art graph-based

method [16]. In addition, we compare to a hybrid method, LSH-

APG [65], which uses LSH to retrieve a high-quality entry point for

the subsequent search in an Approximate Proximity Graph (APG).

In terms of indexing and query efficiency, Figure 10 shows the

cumulative query costs of DET-LSH, HNSW, and LSH-APG, where

the cost of the first query also includes the indexing time. We ob-

serve that, as expected, DET-LSH has an advantage in indexing

efficiency: it creates the index and answers 30K-70K queries be-

fore the best competitor (i.e., HNSW) answers its first query. This

behavior is partly explained by the more succinct index structure

of DET-LSH. Figure 11 shows that the DET-LSH index is almost

3x smaller in size than the index constructed by the competitors.

Finally, Figure 12 shows the update efficiency of these methods, by

measuring the number of data points per second when inserting

the last 10M points of the Sift100M dataset into the existing indexes.

In this scenario that involves updates, DET-LSH is 2-3 orders of

magnitude faster than HNSW and LSH-APG.

In summary, LSH-based methods (DET-LSH) have distinct char-

acteristics and different advantages when compared to graph-based

methods, pure (such as HNSW) or hybrid (such as LSH-APG), mak-

ing each method better suited for different scenarios.

7 CONCLUSIONS
In this paper, we have proposed a novel LSH scheme, called DET-

LSH, to efficiently and accurately answer 𝑐-ANN queries in high-

dimensional spaces with strong theoretical guarantees. DET-LSH

combines the ideas of BC and DM methods, constructing multiple

index trees to support range queries based on the Euclidean distance

metric, which reduces the probability of missing exact NN points

and improves query accuracy. To efficiently support range queries

in DET-LSH, we designed a dynamic encoding-based tree called DE-

Tree, which outperforms data-oriented partitioning trees used in

existing LSH-based methods, especially in very large-scale datasets.

Extensive experiments demonstrate that DET-LSH outperforms the

state-of-the-art LSH-based methods in both efficiency and accuracy.
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