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1 Background

2 Limitation of Distance-Based Measures

ANN Query on High-D Vectors ~ In(F((1 4€)r)/F(r))
. . . . LID(r) = lim
* Find the top-k vectors with smallest distance (L2/IP/Cosine) e—0  In((1+¢)r/r)
* Graph Indexes are the SOTA for ng-approximate result ‘ entry point
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Why does the performance of the queries vary significantly? = (5) i i2-5 2 Measures describing local data distribution (e.g.
How can we define the hardness of vector ANN queries? 0 LID) are totally unaware of graph connections!

LID

3 Steiner-Hardness

Steiner-Hardness on All Graph Indexes

We use ME on MRNG as Steiner-hardness
range are forbidden points in large out-degree M R N G | S p ru n e d fro m KG ra p h
to form the path. the search are discarded. °

St Strict RNG pruning rule (no specific tricks)
counted.
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Minimum ANN Query Effort Analyses on A Graph
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Unbiased Steiner-Workload Generation

* Classical Steiner-Tree problem: Given a root vertex r, a group of terminals T, find the smallest , ,
Current workloads are dominated by easy queries,

leading to over-optimistic results.

subgraph G', s.t. forany t € T, there is a path fromrto t on G'.

e Strict Lower Bound of ANN query: The size of the optimal Steiner-tree for any possible root

vertex (seed vertex), where the terminals are kNN of the query. 150 1. Over-sample quUEries from
3 the same data distribution
* Constraint on the lower bound to make it closer to the real effort: (1) the root vertex is limited to 5 100 7 Calculate Steiner-hardness
one of kNN (i.e., skip Phase-1 search), (2) not all kNNs are required to be accessed (recall), (3) 0 for new samples
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3. Pick queries from different
hardness ranges

only the candidates close to the query could form G’, (4) the decision cost on each step.

4 Experiments
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Steiner-hardness has on-average 0.75 correlation coefficient to the real query effort, while LID is 0.42.

Original workload
B New workload

Hardness Distribution on Workloads Different Benchmark Results on Two Workloads (Deep1M)
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More hard queries are included in the Steiner-workload, making

On new workload: 10x worse avg. performance, larger
an even distribution of query hardness.

performance variance, and HNSW, performs best.
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