
𝑺𝒕𝒆 𝒊𝒏𝒆𝒓-Hardness: AQuery Hardness Measure for
Graph-Based ANN Indexes

Zeyu Wang
Fudan University

zeyuwang23@m.fudan.edu.cn

Qitong Wang∗
LIPADE, Université Paris Cité

qitong.wang@u-paris.fr

Xiaoxing Cheng
Tongji University

vozeo@tongji.edu.cn

Peng Wang
Fudan University

pengwang5@fudan.edu.cn

Themis Palpanas
LIPADE, Université Paris Cité
themis@mi.parisdescartes.fr

Wei Wang
Fudan University

weiwang1@fudan.edu.cn

ABSTRACT
Graph-based indexes have been widely employed to accelerate ap-
proximate similarity search of high-dimensional vectors. However,
the performance of graph indexes to answer different queries varies
vastly, leading to an unstable quality of service for downstream
applications. This necessitates an effective measure to test query
hardness on graph indexes. Nonetheless, popular distance-based
hardness measures like LID lose their effects due to the ignorance
of the graph structure. In this paper, we propose 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness,
a novel connection-based graph-native query hardness measure.
Specifically, we first propose a theoretical framework to analyze
theminimumquery effort on graph indexes and then define 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -
hardness as the minimum effort on a representative graph. More-
over, we prove that our 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness is highly relevant to the
classical Directed 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 Tree (DST) problems. In this case, we de-
sign a novel algorithm to reduce our problem to DST problems and
then leverage their solvers to help calculate 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness effi-
ciently. Compared with LID and other similar measures, 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -
hardness shows a significantly better correlation with the actual
query effort on various datasets. Additionally, an unbiased eval-
uation designed based on 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness reveals new ranking
results, indicating ameaningful direction for enhancing the robust-
ness of graph indexes.

PVLDB Reference Format:
Zeyu Wang, Qitong Wang, Xiaoxing Cheng, Peng Wang, Themis Palpanas,
and Wei Wang. 𝑺𝒕𝒆𝒊𝒏𝒆𝒓-Hardness: A Query Hardness Measure for
Graph-Based ANN Indexes. PVLDB, 17(13): 4668 - 4682, 2024.
doi:10.14778/3704965.3704974
PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/DSM-fudan/Steiner-hardness.

1 INTRODUCTION
Approximate Nearest Neighbor (ANN) search has recently gained
high importance. Compared to exact search, ANN can provide high-
quality approximate answers at a significantly reduced query time.
∗Qitong Wang is the corresponding author.
This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication
rights licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 17, No. 13 ISSN 2150-8097.
doi:10.14778/3704965.3704974

Figure 1: Query performance variance on graph indexes. (a)
Histograms of NDC to reach 90% recall on Deep [95] dataset.
(b) A real example on a RAG task [119], where the low recall
of hard queries impairs model accuracy.

To achieve this, ANN indexes are used, which are built before query-
ing. Among the various ANN index families [103], graph indexes1
like HNSW [76] have become the state-of-the-art for in-memory
ng-approximate (i.e., with no guarantees for the accuracy of the
results [33]) search [11, 34, 67]. In graph indexes, vectors are rep-
resented as vertices in a graph, and connected by edges based on
some kind of proximity between vectors. During query answering,
the algorithm starts from an entry vertex and travels along the
edges to compute the 𝑘NN answer.

Although graph indexes show superior query performance, it is
observed that the performance of different queries varies vastly [10,
12, 65]. That is, graph indexes answer some queries efficiently as
expected (i.e., for simple queries), while for other queries, they per-
form much worse (i.e., for hard queries). This problem widely oc-
curs in various datasets. As shown in Figure 1(a), to reach 90% re-
call, the Number of Distance Calculations (NDC)2 of the queries
varies by 3 orders of magnitude for the Deep dataset [95].

Such a large variance in performancewill impair the downstream
tasks. For example, in recommendation systems, a reduced search
accuracy might drift the user away since irrelevant products are
recommended to them, if their profiles correspond to hard queries
[43, 49, 74]. Another example is shown in Figure 1(b), where graph
indexes are used in a Retrieval-AugmentedGeneration (RAG) frame-
work [119]. Specifically, HNSW index retrieves related items from
documents, and these items act as the prompt for language models.
In this case, the recall of ANN search influences model accuracy.
In a careful parameter setting, the average recall is 0.97; yet, some

1In this paper, we use graph indexes rather than graph-based indexes for simplicity.
2NDC is widely used in the literature [21, 29, 103] as a machine-independent indicator
of query time.

https://doi.org/10.14778/3704965.3704974
https://github.com/DSM-fudan/Steiner-hardness
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3704965.3704974

Figure 2: Comparison of LID and ME on the same dataset.

hard queries suffer from recall below 0.2, leading to suboptimal an-
swers by the language model. Note that in actual applications the
frequency of such hard queries is not known, and a reliable ANN
index is required to be able to effectively handle all queries. In this
context, an essential problem is required to be addressed: How can
we design a hardness measure for graph indexes to differentiate sim-
ple from hard queries?

The problem of LID. In the past years, Local Intrinsic Dimen-
sionality (LID) [12] has become the most widely used measure
to gauge the difficulty of queries and datasets. Formally, given a
query 𝑞, LID at distance 𝑟 is defined as 𝐿𝐼𝐷𝑞 (𝑟) = lim𝜖→0+
𝑙𝑛 (𝐹 ((1+𝜖)𝑟)/𝐹 (𝑟))

𝑙𝑛 (1+𝜖) , where 𝐹 : R→ [0, 1] is the cumulative distribu-
tion function of distances to 𝑞. When using LID as the hardness, 𝑟
is set to be the distance between 𝑞 and the 𝑘-th NN. LID describes
the increasing rate of mass w.r.t. the radius at some radius 𝑟 . The
more densely data are distributed at 𝑘NN neighborhood, the larger
𝐿𝐼𝐷 is which indicates a harder query.

Generally speaking, LID, alongwith other existing hardnessmea-
sures [6, 56, 124], describes the hardness in terms of the data distri-
bution in the high-dimensional space. It works well on partition-
based indexes [12, 123, 124] since it evaluates how hard it is to
distinguish 𝑘NN and other points w.r.t. the distance to the query.
However, on graph indexes, the effort to answer a query is directly
determined by the connections (i.e., edges), rather than the dis-
tance. Thus, for the points that are close to the query but not in
the 𝑘NN answer, if they are not located on the path from the en-
try point towards the 𝑘NN answers, they will never be accessed
during querying.

Figure 2 shows an illustrative example of measuring the hard-
ness of a query 𝑞 with 𝑘=5, where 𝑛1 to 𝑛5 are the five NNs. We
show the principle of LID in Figure 2(a), where the number of
points with slightly larger distance than𝑛5 to𝑞 (i.e., orange points)
are also considered for hardness estimation. However, Figure 2(b)
shows the shortest path from an entry point to all the NNs. Using
the given graph connections, the shortest path will not access the
orange points of Figure 2(a). In other words, the point density in
the𝑘NNneighborhood does not necessarily influence the hardness
of a query in a graph index. This raises the need for a graph-native
connection-based hardness measure. Such a measure should be de-
signed based on the query effort analysis on the graph (rather than
on the data distribution, like LID).

To achieve this goal, there are three major research challenges
that need to be tackled in order:

(a) LID (b) 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness

Figure 3: The correlation between 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness (b) and
NDC to reach 90% recall is much stronger than LID (a).

(1) (Query-Algorithm-Independent Effort Analysis) Given graph
index 𝐺 and query 𝑞, how can we estimate the (minimum) effort to
answer 𝑞 in 𝐺?

(2) (Index-IndependentQueryHardnessMeasure) How canwe judge
how hard it is to answer a query 𝑞 with some graph index?

(3) (Efficiency) How can we calculate the hardness efficiently?
Query Effort Analysis. To analyze the query effort on graph

indexes, many theoretical studies have been proposed recently [37,
38, 63, 80, 82, 120]. However, there are still four major limitations
that render them impractical. First, most studies [37, 38, 63, 80, 82]
assume a uniform data distribution, which is very far from the
distributions observed in real datasets. Second, the graph struc-
tures considered in these studies, such as MSNET [37, 38, 80], 𝜌-
Graph [63, 82], and exact Vamana [54], differ from the graph in-
dexes used in practice. Third, the expected- or worst-case results
are insufficient to explain the behaviors observed in practice [97].
Last but not least, all these studies focus on an over-simplified
single-direction (i.e., 𝑒 𝑓 =1) greedy search algorithm for the 1NN
problem.

To overcome these limitations, we propose a theoretical frame-
work to analyze the Minimum Effort (ME) to answer queries using
a graph index. Our framework introduces a lower bound of the
real effort to answer a query using a given graph, based only on
the connections of that graph. That is, ME represents the effort of
an optimal query algorithm on the given graph. Our framework
incorporates three major improvements. First, our analysis can be
applied to any graph index and any data distribution. Second, our
framework is designed to describe the query effort under differ-
ent recall targets, which is important for the ANN problem. Third,
our framework focuses on the analysis of the real bottleneck in the
query answering process: as we explain in Section 4, most of the
query time is spent on identifying the rest of the 𝑘NN answers af-
ter having identified the first of the 𝑘NN answers. However, this
part of the query answering process has not been studied in detail
in the past. With these improvements, our theoretical framework
can effectively estimate the query effort on a given graph index
and explain the performance variance.

Query Hardness Measure. To further define an index inde-
pendent query hardness measure based on the ME, it is impor-
tant to extract the common feature of the current indexes. We ob-
serve that current graph indexes, even though are of various types,
have two common structural features. First, most of the edges are
short-range connections. They can all be roughly viewed as sub-
graphs of a large 𝐾Graph. Second, they use edge-pruning rules to

control the out-degree and sparsify the graph, in expectation of
a better navigability-sparsity tradeoff [99]. To this effect, we se-
lect MRNG (Monotonic Relative Neighborhood Graph) [38] as the
representative graph, which prunes edges from short links with
direction-based pruning rules. Then we define our hardness mea-
sure, 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness, as the ME on this MRNG. Figure 3 displays
the correlation between LID, 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness and the NDC to
reach 90% recall for the queries on Deep dataset with HNSW. We
observe that the correlation is significantly improvedwith our 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -
hardness, which demonstrates the effectiveness of the proposed
measure. Efficient algorithms to calculate 𝑺𝒕𝒆 𝒊𝒏𝒆𝒓-hardness.
Although 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness is effective for measuring the query
difficulty, it can be computationally intensive when implemented
in a naive manner. To overcome this problem, we first draw the
connections between ME and the classical Directed 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 Tree
(DST) problem [122] and its variants [47], and then leverage the
DST solvers to solve ME efficiently. Moreover, we design a novel
union-find set based algorithm to reduce our ME to the standard
DST problems, which provides more than 1000x speedup when
compared to the naive method.

Unbiased Workloads Generation. Finally, we observe that
the hardness distribution of current query workloads is biased. As
shown in Figure 1, most of the queries are simple, and only a small
minority are hard. When using the average performance to show
the ability of an index, the result will be dominated by the simple
queries, and thus, become over-optimistic. Unfortunately, current
benchmarks do not pay particular attention to the distribution of
the query workloads [11, 29, 67, 99]. To tackle this problem, we
propose a method to build an unbiased workload where queries
fall within the same distribution as the dataset, and the hardness
of queries follows a uniform distribution. Using this workload, we
can stress-test the graph indexes, and evaluate their performance
when faced with queries of various hardness.

Our contributions can be summarized as follows.
(1) We propose a theoretical framework to analyze the practical

effort to answer approximate𝑘NNqueries on graph indexes, which
effectively estimates the actual query effort (Section 4).

(2) We develop a novel 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness measure for queries
on graph indexes based on our theoretical framework, along with
an efficient algorithm to calculate it with the help of DST solvers.
𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness effectively differentiates the difficulty of different
queries for graph indexes (Sections 5 and 6).

(3) We propose a method for building unbiased workloads with
variable hardness. This method can then be used to evaluate the
comprehensive performance of graph indexes (Section 6.1).

(4) We conduct extensive experiments on public datasets to ver-
ify the effectiveness of the proposed analytical framework, 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -
hardness and workload generation methods. Moreover, we evalu-
ate current graph indexes with the new unbiased query workloads.
The result provides new insights for index selection (Section 7).

2 PRELIMINARIES
Problem Setting In this paper, we assume a high-d vector data-
base𝑑𝑏 containing 𝑁 vectors of length 𝑑 . The exact 𝑘NN query can
be defined as follows.

Algorithm 1 Greedy search (graph𝐺 , query 𝑞, entry point 𝑒𝑝 , 𝑒 𝑓)
1: 𝑝𝑞 = a priority queue with unlimited capacity, initialized with 𝑒𝑝
2: 𝐻 = a max-heap with capacity 𝑒 𝑓
3: while 𝑝𝑞 is not empty do
4: 𝑑𝑣𝑐 , 𝑣𝑐 = pop an element from 𝑝𝑞
5: 𝑑𝑣𝑡𝑜𝑝 , 𝑣𝑡𝑜𝑝 = the heap top of𝐻
6: if 𝑑𝑣𝑐 > 𝑑𝑣𝑡𝑜𝑝 then
7: break
8: for each neighbor 𝑣 of 𝑣𝑐 which has not been accessed do
9: if 𝐷 (𝑣,𝑞) < 𝑑𝑣𝑡𝑜𝑝 then

10: Insert (𝐷 (𝑣,𝑞), 𝑣) into 𝑝𝑞 and𝐻
11: mark 𝑣 as accessed
12: resize𝐻 to be 𝑒 𝑓
13: return 𝑘 smallest elements in𝐻

Definition 1 (𝑘NN QeRy). Given an integer 𝑘 , a query vector
𝑞 of dimensionality 𝑑 , and a distance measure 𝐷 , a 𝑘NN query re-
trieves from 𝑑𝑏 the set of vectors 𝑁𝑘 = {𝑛1, 𝑛2, . . . , 𝑛𝑘 } such that for
any other vector 𝑣 in 𝑑𝑏 and any 𝑛𝑖 ∈ 𝑁𝑘 , 𝐷 (𝑛𝑖 , 𝑞) ≤ 𝐷 (𝑣, 𝑞).

For simplicity, we denote the distance between query and the
𝑖-th nearest neighbor by 𝑑𝑖 = 𝐷 (𝑞, 𝑛𝑖). Approximate 𝑘NN query
returns approximate answers, 𝐴𝑁𝑘 = {𝑎𝑛1, 𝑎𝑛2, . . . , 𝑎𝑛𝑘 }, instead
of the exact 𝑘NN results. Recall is often used to indicate the quality
of the approximate answers. Formally, 𝑅𝑒𝑐𝑎𝑙𝑙@𝑘 = |𝐴𝑁𝑘∩𝑁𝑘 |

𝑘 .
Query on Graph Indexes Graph indexes use a directed graph

𝐺 (𝑉 , 𝐸) to index vectors, where each vector is represented as a
vertex in 𝑉 , and the edges in 𝐸 connect vectors based on some
kind of proximity. Graph indexes commonly use greedy search to
retrieve 𝑘NN. As shown in Algorithm 1 and Figure 2(c), the search
starts from an entry point 𝑒𝑝 , which is often selected randomly,
and then computes the distance between the neighbors of 𝑒𝑝 to
the query 𝑞. The accessed points are stored in a priority queue 𝑝𝑞.
In the next step, the algorithm selects the closest point to 𝑞 from
𝑝𝑞 as the next stop to visit and repeats the above process. Note
that not all accessed points can enter 𝑝𝑞: the algorithm maintains
a size-bounded heap 𝐻 and only the points that are closer than
some point in 𝐻 are qualified to enter 𝑝𝑞. Finally, the algorithm
terminates when all the points in 𝑝𝑞 are farther than the points in
𝐻 to𝑞.The algorithm is greedy because only relatively close points
to the query can be accessed. For example, a point of 𝑁𝑘 who is the
neighbor of a distant point to 𝑞 will not be accessed. A direct way
to escape such “local optimum” is to increase the capacity of𝐻 , i.e.,
𝑒 𝑓 , which is also the knob to tune the efficiency-accuracy trade-off
in graph indexes.

3 RELATEDWORK
3.1 ANN indexes
Partition-based indexes. Partition-based indexes usually first re-
duce the dimensions of vectors and then build indexes to partition
the lower-dimensional space. When querying, the index only ac-
cesses data in the partitions that are near to the query. These in-
dexes often provide a quality guarantee for approximate queries [34].
Several index families are designed based on this rationale. The Lo-
cality Sensitive Hashing (LSH) indexes [39, 42, 53, 72, 118] use hash
functions to project high-d vectors and build spatial indexes. Some
tree indexes [17, 32, 69, 70, 78, 79, 100–102, 104, 105, 110, 112, 113]
use summarization techniques such as iSAX [87] to reduce dimen-
sionality and build ad-hoc tree indexes to partition the space. DET-
LSH is an LSH solution with quality guarantees that employs iSAX,

leading to improved performance [109]. Others directly partition
the space hierarchically with hyper-planes [15, 25, 31]. Pivot-based
indexes [9, 18, 19, 21, 41, 59, 77] cluster data according to the dis-
tance to a given group of pivots [121].

Graph indexes. In the past decade, the superior query per-
formance of graph indexes has attracted great interest from the
research and industrial [45, 98, 108, 111, 116] communities. The
simplest graph index is 𝐾Graph [30], where each vector connects
to its 𝐾 nearest neighbors. Inspired by the small-world phenom-
enon [62], NSW [75] adds more long-range links to achieve bet-
ter navigability, and HNSW [76] uses the RNG rule to sparsify the
graph and bounds the out-degree of each point. In this way, HNSW
achieves a balance between sparsity and navigability leading to
a significant improvement. DPG [67], NSG [38] and NSSG [37]
further study the influence of the angle between edges on search
performance when sparsifying the graph. 𝜏-MNG [80], DEG [48]
and [46, 92, 114] also study the navigability-sparsity tradeoff in
theory and practice. Some works focus on the selection of entry
points [73, 117] while others optimize the search process [20, 40,
65, 71, 106, 115]. The evolution of the graph index design is dis-
cussed and verified in [103]. ELPIS improves on the HNSW per-
formance by combining it with an iSAX-based tree [13]. Wang et
al. [99] conducts a comprehensive survey on graph indexes.

3.2 Hardness Measures
A few hardness measures are leveraged to measure the query hard-
ness. The most popular measure is LID [12, 50, 51]. Besides LID,
there are several other local intrinsic dimension models [52, 61, 86]
following a similar rationale. In this paper, we select the most pop-
ular LID as in [12]. Due to the computational difficulty, LID is
usually estimated by the following equation, which is a maximum-
likelihood estimation [7, 64]. Formally, ˆ𝐿𝐼𝐷𝑞 = −(1𝑘

∑𝑘
𝑖=1 𝑙𝑛

𝑑𝑖
𝑑𝑘

)−1.
Relative Contrast (RC) [56] andQuery Expansion (QE) [6] are also
studied in [12] as hardnessmeasures based on data distribution. RC
presents a global view for other dataset points by using 𝑑𝑚𝑒𝑎𝑛 as
an indicator while QE considers the density in the local area. For-
mally, 𝑅𝐶𝑞 = 𝑑𝑚𝑒𝑎𝑛

𝑑𝑘
where 𝑑𝑚𝑒𝑎𝑛 is the mean distance between

𝑞 and all the vectors in 𝑑𝑏, and 𝑄𝐸𝑞 = 𝑑2𝑘
𝑑𝑘

. Larger RC and QE
mean simpler queries. 𝝐-hardness is also proposed for pruning-
based tree indexes [123, 124]. Given the pruning ability of an in-
dex on a specific query, there are some close points to the query
that cannot be pruned. These points are viewed as the ME to an-
swer this query. Formally, 𝜖-hardness of a query 𝑞 is defined as
|{𝑣 |𝑣 ∈ 𝑑𝑏 ∧ 𝐷 (𝑞, 𝑣) ≤ (1 + 𝜖)𝑑𝑘 }|, where 𝜖 is a user-determined
parameter. A recent study predicts the hardness on-the-fly, while
the query is executed halfway, using learned models based on the
found best-so-far answers [65]. However, it cannot reveal the in-
trinsic hardness.

3.3 Theoretical Study ofQuery Complexity on
Graph Indexes

Although graph indexes are proposed based on heuristics [62], there
are also some studies trying to analyze the complexity of query

answering on graph indexes. The concept of MSNET [26] is in-
troduced in [38] and the expected length of the search path be-
tween two points in the dataset in MSNET is O(𝑛 2

𝑑 𝑙𝑜𝑔𝑛) when
using a simplified greedy search algorithm under the uniform dis-
tribution. Moreover, it proposes a prototype MRNG which is an
instance of MSNET. MRNG modifies the RNG [90] to be a directed
graph. On MRNG, a point will link to its nearest neighbors un-
less the neighbors are located in a very close direction. (More de-
tails provided in Section 6.) The case when the query is not in
the dataset is discussed in [37]. 𝜏-MG [80] is proposed to opti-
mize MRNG when 𝑑1 < 𝜏 while in [120] MRNG is generalized
by bounding the out-degree and the considered candidates in the
building stage. [63, 82] study this problem on 𝜌-Graph of different
ranges of dimensionality. The worst-case analyses are first studies
in [54] under datasets with bounded doubling dimension on exact
Vamana graph [58]. However, this study is still limited in 𝑘=1 and
the simplified greedy search algorithm and the handcrafted hard
queries somewhat deviate from the original data distribution. De-
launay graph [27] is sometimes utilized to explain this [38, 80, 99],
which however, quickly becomes a complete graph as 𝑑 grows. Re-
cently, [97] tries to build connections between the size of strongly
connected components of 𝑘NN-induced subgraph and the recall of
a query, which inspires our work.

4 CHARACTERIZE THE EFFORT OF
ANSWERING A QUERY

We now analyze the effort to answer approximate 𝑘NN queries on
any given graph index, which lays the foundation of our hardness
measure. For graph indexes, the querying time cost is dominated
by the time spent on distance calculations between the database
points and the query point. The number of Distance Calculations
(NDC) is also the number of the accessed points in the graph when
querying.Thus, to analyze the query effort, we focus on calculating
the minimum number of accessed points on a given graph (Sec-
tion 4.1). This minimum effort (i.e., ME) provides a strict lower
bound for the cost of any query answering algorithm. However,
since the common query algorithm is greedy, with a far higher cost
than the theoretical bound, we pose three constraints when analyz-
ing the ME to make it more practical (Sections 4.2 and 4.3). Finally,
to efficiently calculate the proposed ME (as well as our hardness
measure), we map our definitions to the classical DST problems,
and adapt DST solvers to our problem (Sections 4.4 and 4.5).

4.1 Basic ME Definition
We first present a basic definition for ME. Intuitively, it is defined
as the minimum number of accessed points required to reach a
given recall 𝐴𝑐𝑐 on a graph 𝐺 .

Definition 2 (𝑀𝐸@𝐴𝑐𝑐). Consider a directed graph index𝐺 (𝑉 , 𝐸),
where𝑉 is formed by the vectors in 𝑑𝑏, a query 𝑞 and its 𝑘NN set 𝑁𝑘 .
Assume in the query process, one can only travel the graph along the
edges 𝐸. Then given a least recall requirement𝐴𝑐𝑐 ∈ [0, 1],𝑀𝐸@𝐴𝑐𝑐
is defined as the minimum number of accessed vertices to obtain at
least 𝐴𝑐𝑐 ∗ 𝑘 vertices in 𝑁𝑘 , from any possible entry point 𝑒𝑝 ∈ 𝑉 .

Figure 4 (a) and (b) show examples for 𝑀𝐸@𝐴𝑐𝑐 when 𝐴𝑐𝑐= 1
and 0.8 respectively. When 𝐴𝑐𝑐=1, the optimal entry point is 𝑣1

Figure 4: An illustrative example of ourME definitions with 𝑘=5.The orange points and edges form𝑌 . (a)𝐴𝑐𝑐=100%, (b)𝐴𝑐𝑐=80%,
(c) entry point is limited to be in 𝑁𝑘 , (d) 𝑝=0.4, (e) Limited range of candidates, (f)𝑀𝐸 − 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒.

and it needs to access at least 12 points in 𝐺 . When 𝐴𝑐𝑐=0.8, the
optimal entry point is changed to be 𝑣2 and it only needs to obtain
0.8 ∗ 5 = 4 points in 𝑁𝑘 to reach 80% recall@5.

Limitations of the basic ME definition. To achieve𝑀𝐸@𝐴𝑐𝑐 ,
three tough conditions should be satisfied:

¬ Optimum entry point. Every point 𝑣 ∈ 𝑉 can be the entry
point, and has a corresponding shortest routing path 𝑝𝑣3. 𝑀𝐸 is
computed by starting from the entry point 𝑣∗ with the smallest
𝑝𝑣∗ among all points 𝑣 ∈ 𝑉 . 𝑣∗ is called the optimal entry point.

 Infinite range of accessible candidates. All neighbors of a vis-
ited point can be accessed without qualification, as long as they
can provide shortcuts to the 𝑘NN. Note that the greedy search al-
gorithm requires that only vertices close enough to the query are
qualified to be accessed, as described in Section 2.

® Optimum search path and terminals. Given the optimal entry
point and the unlimited candidates that can be accessed, 𝑀𝐸 re-
quires finding the optimum search path. Moreover, since we can
select any𝐴𝑐𝑐 ∗𝑘 points in 𝑁𝑘 as terminals, we should meanwhile
select the optimum group of terminals that can be accessed with
the shortest routing path.

Although these conditions are very strict,𝑀𝐸@𝐴𝑐𝑐 is the tight-
est lower bound of the effort to answer a query on the given graph,
for any possible query algorithms, present and future. Neverthe-
less, for common greedy search algorithms (Algorithm 1), this bound
is inaccurate to represent the practical effort since these conditions
are not satisfied. Therefore, in the following section, we adjust𝑀𝐸
to the greedy search algorithm by adding three constraints.

4.2 Adapt ME for Greedy Search
To render the estimated ME closer to the actual effort of the cur-
rent greedy search algorithm, we constrain Definition 2 in three
ways: (1) the entry point should be selected from a limited range,
(2) the range of accessible points in the search path should be lim-
ited, and (3) the optimal search path should satisfy the above two
constraints. More formally:

3Actually, the accessed vertices and edges form a tree instead of a simple path as we
allow backtracking. The shortest routing path means a minimum number of nodes in
the tree. For simplicity, we still use the term “path” in the following.

(a) HNSW (b) NSG

Figure 5:Query time breakdown on 1,000 queries (𝑘=50).

Definition 3 (𝑀𝐸𝑝
𝛿
@𝐴𝑐𝑐). Consider a directed graph index𝐺 (𝑉 ,

𝐸), a query 𝑞 and its 𝑘NN set 𝑁𝑘 . Given a least recall requirement
𝐴𝑐𝑐 ∈ [0, 1], a probabilistic lower bound 𝑝 ∈ (0, 1], and a distance
threshold 𝛿 , the constrained ME, denoted by𝑀𝐸𝑝

𝛿
@𝐴𝑐𝑐 , is defined as

the number of points in a subgraph 𝑌 (𝑉𝑌 , 𝐸𝑌), where 𝑌 is induced
from𝐺 by 𝑉𝑌 , satisfying:

¬ (Entry point) There exists a set 𝑁 ′
𝑘
⊂ 𝑁𝑘 with |𝑁 ′

𝑘
| ≥ 𝑝 ∗𝑘 . For

∀𝑛 ∈ 𝑁 ′
𝑘
, there exists a path on subgraph 𝑌 from 𝑛 to at least𝐴𝑐𝑐 ∗𝑘

points in 𝑁𝑘 .
 (Range of accessible candidates) ∀𝑣 ∈ 𝑉𝑌 ,𝐷 (𝑣, 𝑞) ≤ (1+𝛿) ∗𝑑𝑘 .
® (Optimum) Among all the qualified subgraph, 𝑌 has the mini-

mum number of vertices.
For clarity, such a subgraph 𝑌 is also denoted by 𝑌𝛿𝑝 @𝐴𝑐𝑐 .

In the following, we write𝑀𝐸 for short when it does not cause
ambiguity. Note that 𝑌𝛿𝑝 @𝐴𝑐𝑐 does not always exist and in this
case we assume 𝑀𝐸𝑝

𝛿
@𝐴𝑐𝑐 = ∞. We explain the rationale of this

definition in a progressive way as shown in Figure 4(b) to (e).
¬ The entry point is constrained to be one of the 𝑘NN an-

swers of the query. In the basic ME definition, we require a glob-
ally optimal entry point, from which we can construct the shortest
search path. However, it is very hard for the current algorithm to
find such an entry point. Nonetheless, we observe that using the
current graph indexes, it is easy to obtain one of the 𝑘NN. Specif-
ically, we break the query process into two phases: Phase 1 starts
from the entry point and continues until we first access one of the
𝑘NN points; Phase 2 starts immediately afterwards, and ends at the
termination of the algorithm, as in [48, 97]. As shown in Figure 5,

Phase 1 costs less than 7% of the total query time. This indicates
that in practice the bottleneck of the query process is Phase 2, not
Phase 1. To this effect, we focus on modeling the effort in Phase 2,
we omit the effort in Phase 1, and we use one of 𝑘NN as the entry
point. The example is shown in Figure 4(c), where 𝑛2 is selected as
the optimum entry point which can reach at least 4 NNs in 𝑌 . This
change of the entry point only increases𝑀𝐸 by 1.

Since which nearest neighbor can be first accessed in Phase 1
is unknown and somewhat random, we further constrain 𝑀𝐸 by
allowing at least 𝑝 ∗ 𝑘 points in 𝑁𝑘 (i.e., points in 𝑁 ′

𝑘
) are able to

reach 𝐴𝑐𝑐 ∗ 𝑘 points in 𝑁𝑘 . That is, as long as Phase 1 accesses
one of the points in 𝑁 ′

𝑘
, the query cost in Phase 2 is bounded by

𝑀𝐸 = |𝑌∞
𝑝@𝐴𝑐𝑐 |, where the symbol ∞ means there is no constraint

on the range of accessible candidates of 𝑌 . In this case, we view
the parameter 𝑝 as a probabilistic lower bound to reach the target
recall. As shown in Figure 4(d) where 𝑝 is set to be 40%, there
are 40% ∗ 5 = 2 points who can reach at least 4 NNs. Specifically,
starting from 𝑛2 we can reach {𝑛2, 𝑛4, 𝑛3, 𝑛1}, and from 𝑛5 we can
reach {𝑛5, 𝑛4, 𝑛1, 𝑛3}. Here 𝑁 ′

𝑘
= {𝑛2, 𝑛5}.

 The accessible points in the search path are constrained
to be near to the query. In our basic𝑀𝐸 definition, all the points
in the graph are available to be accessed, as long as they can con-
tribute to a shorter search path. However, recall that in the current
greedy search algorithm, the points that are closer to the querywill
be visited first, and the points that are farther than all the points
in the 𝑒 𝑓 -sized heap 𝐻 to the query will be skipped. This greedy
procedure limits the range of accessible points in the search path,
i.e., no farther than the largest distance between the query and the
points in𝐻 . Consequently, we add a parameter 𝛿 to limit the acces-
sible points when searching within (1 + 𝛿) ∗ 𝑑𝑘 . Notice that with
a limited distance threshold, some shortcuts that contain distant
points will be given up. As shown in Figure 4(e), 𝑣3 is replaced by
two closer points while 𝑣4 and 𝑣5 are replaced by four closer points,
which increase𝑀𝐸 by 3.

Determine 𝛿 with the critical point 𝛿0. In the greedy search
algorithm, the distance threshold is determined on-the-fly by the
heap 𝐻 , which makes it impossible to model the exact case when
analyzing the effort. Nevertheless, we observe that there is a spe-
cial value for parameter 𝛿 , which is the minimum value such that
there exists one qualified subgraph 𝑌 . We name this value the crit-
ical point, denoted by 𝛿0. Formally:

Definition 4 (cRitical point 𝛿0). Given a least recall require-
ment 𝐴𝑐𝑐 ∈ [0, 1], a probabilistic lower bound 𝑝 ∈ (0, 1], the criti-
cal point 𝛿𝑝0@𝐴𝑐𝑐 is defined as the minimum distance threshold un-

der which there exists a subgraph 𝑌𝛿0𝑝 @𝐴𝑐𝑐 satisfying the three con-
straints in Definition 3.

Note that 𝛿0 describes theminimum requirement of the range of
accessible candidates. As 𝛿 increases from 𝛿0, 𝑀𝐸

𝑝
𝛿
@𝐴𝑐𝑐 is mono-

tonically non-increasing and gradually converges to𝑀𝐸𝑝∞@𝐴𝑐𝑐 . In
other words, 𝛿0 is the parameter that maximizes𝑀𝐸𝑝

𝛿
@𝐴𝑐𝑐 among

all possible𝛿 . In practice, the quality of the points in heap𝐻 quickly
increases to a stable range in Phase 1 on high-dimensional data [68].
This indicates that 𝛿 is rather small in Phase 2, on which our 𝑀𝐸

focuses. In this case, a smaller 𝛿 can better reflect the actual query-
ing situation, which is verified in the experiments in Section 7.6.
We elaborate on how to find 𝛿0 in Section 5.

4.3 Incorporate Decision Cost into ME
Besides the above constraints, there is still a major difference be-
tween 𝑀𝐸𝑝

𝛿
@𝐴𝑐𝑐 and actual query cost, i.e., the decision cost of

each step when querying. Remind that in Algorithm 1, to decide
which point as the next stop, we need to compute the distance
between each neighbor of the current point and the query. These
neighbors accessed in the greedy search algorithm are not included
in 𝑌𝛿𝑝 @𝐴𝑐𝑐 since they do not contribute to the navigability of 𝑌 ,
and thus out of the consideration of 𝑀𝐸𝑝

𝛿
@𝐴𝑐𝑐 . To this effect, we

further modify our definition of ME to reflect the decision cost.

Definition 5 (Decision cost). Given a graph index 𝐺 (𝑉 , 𝐸),
and a subgraph 𝑌 of𝐺 , the decision set of a point 𝑣 ∈ 𝑌 is defined as

𝐷𝑆 (𝑣) =
{
{𝑣} if 𝑣has no out-neighbors in 𝑌
{𝑥 |𝑥 = 𝑣 ∨ (𝑣, 𝑥) ∈ 𝐸} otherwise

(1)
Thedecision cost of 𝑣 is the cardinality of the decision set, i.e.𝐶𝑜𝑠𝑡 (𝑣) =
|𝐷𝑆 (𝑣) |. Furthermore, the decision cost of the subgraph 𝑌 is defined
as 𝐶𝑜𝑠𝑡 (𝑌) = |∪𝑣∈𝑌 𝐷𝑆 (𝑣) |.

The decision cost of a point acts as the weight of the point,
and then the definition of𝑀𝐸 is further modified as the minimum
weight of the qualified subgraph.

Definition 6 (𝑀𝐸𝑝
𝛿
@𝐴𝑐𝑐−𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒). 𝑀𝐸𝑝

𝛿
@𝐴𝑐𝑐−𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒

is defined by modifying the third constraint of𝑀𝐸𝑝
𝛿
@𝐴𝑐𝑐 , i.e.,

® (Optimumwith decision cost) Among all the qualified subgraph,
𝑌 has the minimum cost 𝐶𝑜𝑠𝑡 (𝑌).

We use𝑀𝐸−𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 for short when no ambiguity. As shown
in Figure 4(f), the neighbors in the original graph𝐺 is also counted
in 𝑀𝐸 − 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 , e.g., 𝑣3 and 𝑣4, despite that they do not con-
tribute to the reachability. This poses a punishment on the vertices
with a large out-degree which introduce higher decision costs dur-
ing querying. For example, although 𝑣5 can directly build a bridge
from 𝑛5 to 𝑛4, the large out-degree incurs a high decision cost and
thus it is replaced by three other points for the optimum.

By now, we have built the analytical framework for the ME
of query answering in graph indexes. All our definitions of ME
can be utilized to describe different query algorithms on graph in-
dexes. It’s clear that on the same graph and settings, 𝑀𝐸@𝐴𝑐𝑐 ≤
𝑀𝐸

𝑝
𝛿
@𝐴𝑐𝑐 ≤ 𝑀𝐸

𝑝
𝛿
@𝐴𝑐𝑐 − 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 . In the following, we utilize

𝑀𝐸
𝑝
𝛿0
@𝐴𝑐𝑐−𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 to describe the effort of the greedy search

algorithm.We also note that our analytical framework is flexible by
combining different constraints on the basic format of𝑀𝐸 (Defini-
tion 2) such that it can be adapted for bounding the effort of more
advanced search algorithms in the future.

4.4 Map ME Definitions to DST Problems
The core problem of solving 𝑀𝐸 is to find a qualified subgraph 𝑌 ,
which is however, an NP-hard problem [122]. To calculate it effi-
ciently, in this subsection, we prove𝑌 can be mapped to DST [122]
and its variants. Specifically, we prove the equivalence or relevance

between theDST problems and three definitions ofME, i.e.,𝑀𝐸@𝐴𝑐𝑐 ,
𝑀𝐸

𝑝
𝛿
@𝐴𝑐𝑐 and 𝑀𝐸𝑝

𝛿
@𝐴𝑐𝑐 − 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 using Theorem 1, 2 and 3,

respectively. Based on these analyses, we can calculate our 𝑀𝐸
with the help of solutions for the classical DST problems.

Map 𝑴𝑬@𝑨𝒄𝒄 to DST. We start from 𝑀𝐸@𝐴𝑐𝑐 (Definition 2)
where 𝐴𝑐𝑐=100%.

Definition 7 (DiRected SteineR TRee (DST)). Given a directed
graph 𝐺 (𝑉 , 𝐸), a root vertex 𝑟 ∈ 𝑉 , a group of terminals 𝑇 ⊂ 𝑉 ,
DST is the subgraph of𝐺 with minimum edge cost satisfying that for
∀𝑣 ∈ 𝑇 , there is a path from 𝑟 to 𝑣 on DST, denoted by 𝐷𝑆𝑇 𝑟𝑇 and the
cost is denoted by |𝐷𝑆𝑇 𝑟𝑇 |.

Note that the original DST problem is defined on edge-weighted
graphs [122], and in this paper, we only study the unweighted ver-
sion, which is a special case of the original problem.

TheoRem 1. Given a graph 𝐺 (𝑉 , 𝐸), a query 𝑞 with its 𝑘NN 𝑁𝑘 ,

𝑀𝐸@100% =𝑚𝑖𝑛𝑟 ∈𝑉 |𝐷𝑆𝑇 𝑟𝑁𝑘
| (2)

Map 𝑴𝑬
𝒑
𝜹
@𝑨𝒄𝒄 to vDSN. The constraint on the limited range

of accessible candidates () is equivalent to the minimum DST on
a subgraph, while the limitation on the entry point in 𝑁𝑘 is equiv-
alent to the minimum DST when the root 𝑟 ∈ 𝑁𝑘 . We then use
directed Steiner network (DSN) problem [23] to connect 𝑀𝐸 with
accuracy 𝐴𝑐𝑐 and probabilistic lower bound 𝑝 constraints.

Definition 8 (veRtex-focused DiRected SteineR NetwoRK
(vDSN)). Given a directed graph 𝐺 (𝑉 , 𝐸), a collection vertex pairs
𝑃 ⊂ 𝑉 × 𝑉 , vDSN is the subgraph of 𝐺 with minimum number of
vertices satisfying that for ∀(𝑣,𝑤) ∈ 𝑃 , there is a path from 𝑣 to 𝑤
on vDSN, denoted by 𝑣𝐷𝑆𝑁𝑃 and the cost is denoted by |𝑣𝐷𝑆𝑁𝑃 |.

TheoRem 2. Given a directed graph 𝐺 (𝑉 , 𝐸), a query 𝑞 with its
𝑘NN 𝑁𝑘 , a least recall 𝐴𝑐𝑐 and a probabilistic lower bound 𝑝 , then

𝑀𝐸
𝑝
∞@𝐴𝑐𝑐 =𝑚𝑖𝑛 |𝑣𝐷𝑆𝑁𝑃 | (3)

where 𝑃 ⊂ 𝑁𝑘×𝑁𝑘 , and the number of starting points in 𝑃 are at least
𝑝 ∗ 𝑘 and for each starting point, the number of different terminals
are at least 𝐴𝑐𝑐 ∗ 𝑘 .

Map 𝑴𝑬
𝒑
𝜹
@𝑨𝒄𝒄 − 𝒆𝒙𝒉𝒂𝒖𝒔𝒕 𝒊𝒗𝒆 to node-weighted vDSN. For

𝑀𝐸−𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 , there is no specific Steiner-related problemmatch-
ing the definition. However, we can upper bound it by the node-
weighted vDSN problem, that is, the target is modified to find the
minimum sum weights of vertices in the subgraph. For simplicity,
we still denote the cost by |𝑣𝐷𝑆𝑁𝑃 |.

TheoRem 3. Given a graph 𝐺 (𝑉 , 𝐸), a vertex weighting function
𝑊 (𝑣) = 𝐶𝑜𝑠𝑡 (𝑣) for 𝑣 ∈ 𝑉 , we have

𝑀𝐸
𝑝
∞@𝐴𝑐𝑐 − 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 ≤ 𝑚𝑖𝑛 |𝑣𝐷𝑆𝑁𝑃 | (4)

where 𝑃 has the same requirements as Theorem 2.

4.5 Calculate ME using Steiner Tree Solvers
Based on these theorems, the three definitions of ME is mapped to
the DST, vDSN, and node-weighted vDSN problems.

Finding the exact DST is an NP-hard and APX-hard problem [16,
44], which means that there is even no polynomial-time constant-
approximation algorithm. To the best of our knowledge, the ex-
act [85, 91] and approximate [16, 44, 107] algorithms are very time-
consuming. Meanwhile, efficient heuristic algorithms can provide

high-precision results in practice [1, 55, 91]. Therefore, we use the
shortest path-based algorithm to find the shortest paths from root
vertex 𝑟 to each of the terminals 𝑡 ∈ 𝑇 and unite them to build DST.

TheDSNproblem is harder thanDST problem.None of exact [35]
algorithms or approximate [16, 24, 28, 36] algorithms are efficient.
To this effect, we design a heuristic algorithm. We first group the
set 𝑃 of vertex pairs by the starting vertex and reduce the DSN
problem to multiple DST problems. Then we find DSTs one by one
as described above and unite them to form the final result.

Lastly, to efficiently estimate 𝑀𝐸 − 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 , we adapt the
shortest path-based algorithm with the node-weighted Dijkstra al-
gorithm [2]. The weight of a node is set to the cost defined in Def-
inition 5. We omit the algorithm details due to the lack of space.

5 FIND THE CRITICAL POINT 𝛿0
Given the solutions for ME, we still need algorithms to calculate
the critical point 𝛿0, and the optimum set of vertex pairs 𝑃 . In
this subsection, we propose an efficient exact algorithm to achieve
these targets at the same time.

The basic structure of the algorithm. To obtain 𝛿0, the ba-
sic algorithm is as follows. First, we initialize 𝑌 as empty and then
add vertices to 𝑌 in the ascending order of distance to the query
one by one. After each insertion, we check whether the current
subgraph 𝑌 is a qualified 𝑌𝛿𝑝 @𝐴𝑐𝑐 . In this process, the list of the
sorted vertices can be supported by many exact 𝑘NN indexes in
CPU [60, 66, 89] and algorithms in GPU [60, 88, 93, 94], and the
major time cost comes from the graph qualification. To check the
graph, a naive method is to iterate all the points in 𝑁𝑘 and for each
point, we use BFS to obtain their reachable points in 𝑁𝑘 . Once the
number of points that can reach at least𝐴𝑐𝑐 ∗𝑘 points in 𝑁𝑘 on𝑌 is
no less than 𝑝 ∗ 𝑘 , the current graph is qualified and 𝛿0 = 𝐷 (𝑛𝑖 , 𝑞),
where 𝑛𝑖 is the latest inserted point. Obviously, the repeated reach-
ability checking is redundant and incurs unnecessary costs.

Avoid redundant computation by maintaining reachabil-
ity information on the fly.we design a novel algorithm to main-
tain the reachability information of all inserted points on the fly.
The basic idea is to group together the points that are reachable
to each other in 𝑌 as a union-find set, (i.e., the reachable group),
and maintain the reachability between different reachable groups
through a graph (i.e., union-find set graph (USG)). When we check
the reachability of a point, we can directly apply BFS on the small
USG instead of the complete subgraph 𝑌 to reduce the complexity.

Update USG by loop detection. To minimize the size of USG
and thus the complexity of the reachability check, we merge all
the reachable groups belonging to a loop in USG as a single one.
That is, after updating, USG will be a directed acyclic graph (DAG).
See Figure 6 as an example, where 𝑣10 is newly inserted. We first
add 𝑣10 as an individual reachable group into USG, along with cor-
responding edges. After that, we detect a new loop in USG that
contains three reachable groups (i.e., 𝑅𝐺1, 𝑅𝐺2, and 𝑅𝐺3). Then
we merge these three reachable groups into a single one in USG
(i.e., 𝑅𝐺5), and also unite their corresponding union-find sets. Note
that the edges inside the loop will be removed while the edges that
connect reachable groups outside the loop will be reserved for the
new reachable group (e.g., the edge connecting 𝑅𝐺1). In this way,
the subgraph with 16 vertices and 19 edges is reduced to the USG

Figure 6: The updates of USG when adding a new vertex 𝑣10
into the subgraph. In (b), the vertices in the same circle form
a reachable group.

with 6 vertices (i.e., reachable groups) and 4 edges. The following
theorems prove that the loop merge can keep the property of a
reachable group. The proof is omitted due to lack of space.

TheoRem 4. Given a subgraph 𝐺𝑖 (𝑁𝑖 , 𝐸𝑖), two reachable groups
𝑅𝐺1, 𝑅𝐺2 ⊂ 𝑁𝑖 , 𝑅𝐺1 ∩ 𝑅𝐺2 = ∅, then if ∃𝑣1 ∈ 𝑅𝐺1, 𝑣2 ∈ 𝑅𝐺2, and
𝑣1 can reach 𝑣2 in𝐺𝑖 , then ∀𝑣 ∈ 𝑅𝐺1,𝑤 ∈ 𝑅𝐺2, 𝑣 can reach𝑤 in𝐺𝑖 .

CoRollaRy 1. In a USG of a subgraph 𝐺𝑖 , if there exists a loop,
𝑅𝐺𝑖 → 𝑅𝐺𝑖+1 → . . . 𝑅𝐺 𝑗 → 𝑅𝐺𝑖 , then for ∀𝑣,𝑤 ∈ 𝑅𝐺𝑡 , 𝑖 ≤ 𝑡 ≤ 𝑗 , 𝑣
can reach𝑤 in 𝐺𝑖 .

In the implementation, we use the classical Depth-First-Search
(DFS) algorithm to detect whether there is a loop on USG.This loop
detection is executed every time a new point is inserted into USG.
After detecting the loop, we collect all the incoming and outcom-
ing edges that point to and start from the reachable groups in the
loop, respectively. Then we remove all these reachable groups and
related edges from USG, and insert a new vertex into USG, along
with the collected edges beforehand for this new vertex.

The details of the algorithm are shown in Algorithm 2. After
preparing the NN list and initialization (lines 1-3), the main body
of the algorithm is a loop that takes one NN to increment the sub-
graph each time (lines 5-7). The loop can be divided into three
stages. In the first stage (lines 8-12), we locate the in- and out-
neighbors of the new point and add edges on USG. In the second
stage (lines 13-15), we detect and merge the loops in USG. The
union-find sets are also updated accordingly. In the third stage
(lines 16-23), we check the reachability on USG.Then for each root,
we use BFS to find which points in 𝑁𝑘 are reachable from the root
and count qualified points (lines 19-25). Finally,𝐷 (𝑛𝑖 , 𝑞) is returned
as 𝛿0 along with the found vertex pairs set 𝑃 (line 27).

Complexity Analysis. Assuming the average number of iter-
ations is 𝑖𝑡 , the complexity of the first stage is O(𝑖𝑡) since 𝑖𝑡 will
be the expected size of 𝐼𝑛𝑠 , and also the number of vertices in the
complete subgraph. For the second stage, the loop detection costs
O(|𝑈𝑆𝐺 |) where |𝑈𝑆𝐺 | denotes the sum number of vertices and
edges in USG, usually ranging from tens to a few hundred, while
loopmerge needs only constant time.The third stage needs at most
𝑘 times of BFS search, so the complexity is O(𝑘 |𝑈𝑆𝐺 |). Overall, the
time complexity is O(𝑖𝑡 (𝑖𝑡 + 𝑘 |𝑈𝑆𝐺 |)). In contrast, the complexity
of the naive method is O(𝑘𝑀𝑖𝑡2), where𝑀 is the expected average
out-degree of the subgraph, usually ranging from tens to hundreds.
Given that 𝑖𝑡 usually ranges from hundreds to tens of thousands,

Algorithm2 Find 𝛿0 and 𝑃 (graph𝐺 , query𝑞, reversed graph 𝑟𝑒𝑣𝐺 ,
𝑘 , recall target 𝐴𝑐𝑐 , probabilistic lower bound 𝑝)
1: Get sufficient number of 𝑁𝑁 of 𝑞.
2: Initialize an empty union-find set𝑈𝐹 , an empty union-find set graph𝑈𝑆𝐺 , and an empty hash

set 𝐼𝑛𝑠 .
3: Initialize the result vertex pair set 𝑃 .
4: while True do
5: 𝑛𝑖 = pop the first element from 𝑁𝑁 .
6: Add 𝑛𝑖 as an individual union-find set to𝑈𝐹 .
7: Add 𝑛𝑖 as an individual vertex in𝑈𝑆𝐺 .

⊲ (1) Subgraph construction.
8: 𝑁𝑜𝑢𝑡 = 𝐺 [𝑛𝑖] ∩ 𝐼𝑛𝑠 , 𝑁𝑖𝑛 = 𝑟𝑒𝑣𝐺 [𝑛𝑖] ∩ 𝐼𝑛𝑠 .
9: for 𝑛𝑜𝑢𝑡 in 𝑁𝑜𝑢𝑡 do

10: Add an directed edge from 𝑛𝑖 to𝑈𝐹 [𝑛𝑜𝑢𝑡] in𝑈𝑆𝐺 , if not exists.
11: for 𝑛𝑖𝑛 in 𝑁𝑖𝑛 do
12: Add an directed edge from𝑈𝐹 [𝑛𝑖𝑛] to 𝑛𝑖 in𝑈𝑆𝐺 , if not exists.

⊲ (2) Reduce𝑈𝑆𝐺 to a DAG by loop detection.
13: while there exists a loop in𝑈𝑆𝐺 do
14: Unite all the 𝑅𝐺 in this loop as a single 𝑅𝐺 .
15: Unite all the union-find sets in this loop in𝑈𝐹 .

⊲ (3) Qualification check: the reachability of 𝑘NN.
16: Initialize 𝑅𝑘 as an empty hash map, where key is the root of a union-find set, and the value

is a set containing the elements in this union-find set.
17: for 1 ≤ 𝑗 ≤ 𝑚𝑖𝑛 (𝑘, 𝑖) do
18: 𝑅𝑘 [𝑈𝐹 [𝑛 𝑗]].add(𝑛 𝑗)
19: for (𝑠, 𝑆𝑒𝑡) ∈ 𝑅𝑘 do
20: Use BFS to find which keys in 𝑅𝑘 are reachable in𝑈𝑆𝐺 from 𝑠 , and store them into a

set 𝑟𝑒𝑎𝑐ℎ.
21: 𝑟𝑒𝑎𝑐ℎ = 𝑟𝑒𝑎𝑐ℎ ∪ 𝑆𝑒𝑡
22: if |𝑟𝑒𝑎𝑐ℎ | ≥ 𝐴𝑐𝑐 ∗ 𝑘 then
23: 𝑃 .add((𝑠, 𝑡)), for ∀𝑡 ∈ 𝑟𝑒𝑎𝑐ℎ
24: if |𝑃.𝑘𝑒𝑦𝑠 () .𝑑𝑖𝑠𝑡𝑖𝑛𝑐𝑡 () | ≥ 𝑝 ∗ 𝑘 then
25: break
26: Add 𝑛𝑖 into 𝐼𝑛𝑠 and clear 𝑃 .
27: return 𝐷 (𝑛𝑖 , 𝑞) as 𝛿0 , and 𝑃

our algorithm can provide 𝑘 ∗ 𝑀 times speedup according to this
complexity analysis.

6 𝑺𝒕𝒆 𝒊𝒏𝒆𝒓-HARDNESS
Nowwe describe our index-independent 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness for queries
on all current graph indexes, based on our definitions ofME. Specif-
ically, we use 𝑀𝐸𝑝

𝛿0
@𝐴𝑐𝑐 − 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 on a representative graph

structure, (approximate) MRNG to define 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness.

Definition 9 (𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -haRdness). Given a dataset 𝑑𝑏 we build
approximate 𝑀𝑅𝑁𝐺 on 𝑑𝑏 with a parameter 𝑒 𝑓 𝐶 . Then, 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -
hardness for a query 𝑞 is defined as

𝑆𝑡𝑒𝑖𝑛𝑒𝑟𝑞 = 𝑀𝐸𝑝
𝛿0
@𝐴𝑐𝑐 − 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 on MRNG (5)

where 𝐴𝑐𝑐 is the given recall requirement, and 𝑝 is the probabilistic
lower bound, as in Definition 6.

To build MRNG, for any point 𝑣 , all other points in 𝑑𝑏 are sorted
according to the distance to 𝑣 in ascent. Then we insert edges from
𝑣 to these points one by one, as long as the angle between the new
edge and all existing edges are no smaller than 60°. Since all the
current graph indexes only select neighbors from a pool of NNs
of limited size 𝑒 𝑓 𝐶 4, we approximate MRNG by also consider-
ing only 𝑒 𝑓 𝐶 NNs rather than all points. In this case, the approxi-
mate MRNG can be viewed as a pruned version of 𝐾Graph where
𝐾 = 𝑒 𝑓 𝐶 . The reasons for selecting approximate MRNG as the rep-
resentative graph are as follows.

(1) Approximate MRNG and current graph indexes are all pruned
versions of a large 𝐾Graph. As shown in Figure 7, we count the
percentage of the edges in graph indexes that occur in𝐾Graph.The
results show that over 80% of the edges of current graph indexes
4It is denoted by 𝑒 𝑓 𝐶 in HNSW,𝐶 in NSG and 𝜏-MNG, and 𝑘𝑒𝑥𝑡 in DEG.

(a) Deep (b) Gauss

Figure 7: Overlap ratio of edges in current graph indexes and
𝐾Graph with varying 𝐾 .

are in a 𝐾Graph with 𝐾 ≥ 500. Therefore, approximate MRNG
represents a common structure for advanced graph indexes.

(2) Both approximate MRNG and other graph indexes limit the
number of edges. Approximate MRNG selects edges according to
the spatial distributionwith bounded out-degree. Furthermore, it is
proved to own a nice navigability [120]. Thus, approximate MRNG
reaches a balance of sparsity-navigability trade-off, whichmatches
the rationale of current graph indexes.

(3) The structure of MRNG only relies on the data distribution in
high-d space and is not influenced by randomness or any particular
index-building strategy.

6.1 Unbiased Workload Generation
Based on our 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness, we can build unbiased query work-
loads for evaluating graph indexes. To comprehensively and fairly
evaluate the graph index, the produced queries must follow the
following two principles:

(1) Validity. The queries should follow the distribution of the
dataset.

(2) Uniformness. The hardness of the queries should follow
a uniform distribution across the hardness spectrum.

Validity avoids the queries which are out of the distribution
of the dataset. For example, in a dataset where the values in the
vectors are between 0 and 1, a query vector with values beyond
100 is meaningless for evaluation. Uniformness guarantees that
the workload will not exhibit bias neither for simple, nor for hard
queries. Based on these two principles, the core idea of our ap-
proach is a generation-and-check method. That is, we first gen-
erate sufficient vectors by over-sampling from the dataset 5 and
then check the hardness of these vectors. Finally we preserve the
vectors that satisfy the uniformness principle.

Specifically, we use GaussianMixture Model (GMM) [3] to learn
the data distribution of the dataset. According to our pre-experime-
nts, the distribution of the Mahalanobis distance [5] – which is
adopted to test whether two groups of vectors are in the same dis-
tribution [57] – on generated data is very similar to the dataset. It
verifies the effectiveness of GMM. We use the GMM model to pro-
duce sufficient candidate vectors, and compute 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness of
them. Secondly, we build histograms on the new data w.r.t. their
𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness. Specifically, we remove the extreme values, i.e.,
too simple and hard queries, and then uniformly split the range of
hardness by ℎ equi-length segments. Given the cardinality of the
5In the query set of the original workload, the hard query is usually insufficient for
evaluation. So we need to generate more queries as candidates.

Table 1: Dataset statistics.

Base size Query size Dim. Source Type
Deep 1,000,000 10,000 96 [22] Image
GIST 1,000,000 1,000 960 [8] Image
Glove 1,183,514 10,000 100 [81] Text
Rand 1,000,000 10,000 100 𝑈 (−1, 1) Syn.
Gauss 1,000,000 10,000 100 𝑁 (0, 1) Syn.

Tiny10M 10,000,000 1,000 150 [73] Image
Deep1B 1,000,000,000 10,000 96 [14] Image

new workload as𝑄 , we randomly sample ⌈𝑄/ℎ⌉ queries from each
segment to build the workload. In this way, the new workload en-
compasses the entire spectrum of 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness.

7 EXPERIMENTS
7.1 Experimental Setup
Experiments were conducted on an machine with two 40-core In-
tel(R) Xeon(R) Platinum 8383C 2.70GHz CPUs and 1TBDDR4main
memory. All the codes are implemented in C/C++, compiled by
g++ 10.1.0 with -O3 optimization. We use five public datasets and
two synthetic dataset with varying sizes and dimensionalities, as
shown in Table 1. The results of Gauss dataset are omitted since
they are similar to Rand dataset. Other omitted datasets are shown
in our code repository. Since only HNSW and 𝐾Graph can be built
on Deep1B in our machine due to memory limitations, in this pa-
per, we only use Deep1B to test the scalability of our approaches.

Algorithms and parameters.We select five representative gr-
aph indexes for evaluation, including four advanced indexes and
the 𝐾Graph as a baseline. HNSW [76] and NSG [38] are the state-
of-the-arts according to previous benchmarks [96]. We only test
the base layer of HNSW for evaluation, since the upper layers of
HNSW only provide benefits in very low dimensionality [68, 103].
We select 𝜏-MNG [80] and DEG [48] as the latest indexes. We dis-
able the dynamic edge optimization of DEG to control the con-
struction time as in the original paper. The parameters for build-
ing these indexes are tuned for the best query performance. When
evaluating our analytical framework, 𝐴𝑐𝑐 and 𝑘 are set to 98% and
50, respectively by default. 𝑒 𝑓 𝐶 is set to 2048. The default dataset
and index are Deep and HNSW. We tune 𝑝 in the range 0.85~1 to
achieve the optimal correlation.

7.2 Effectiveness of ME
We first evaluate whether 𝑀𝐸𝑝

𝛿0
@𝐴𝑐𝑐 − 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 can describe

the actual query effort on the graph indexes. Given a query and a
recall target, we use the least NDC to reach the recall as the query
effort, As shown in Figure 8, the correlation coefficients of 𝜖-effort
are on average 0.66, 0.17, 0.70, and 0.74 in GIST, Rand, Glove and
Tiny10M datasets for all evaluated indexes6, whereas our 𝑀𝐸 −
𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 is 0.95, 0.98, 0.92 and 0.98 respectively. Clearly,𝑀𝐸 −
𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 can describe the query effort more precisely than 𝜖-
hardness due to the focus on the graph connections.

6𝜏-MNG and DEG indexes and Deep dataset are omitted due to lack of space, whose
results are similar to other settings.

(a) GIST (b) Rand (c) Glove (d) Tiny10M

Figure 8: Pearson correlation coefficients between𝑀𝐸𝑝
𝛿0

− 𝑒𝑥ℎ𝑎𝑢𝑠𝑡𝑖𝑣𝑒 and actual query effort (NDC).

(a) Deep (b) GIST (c) Rand (d) Glove (e) Tiny10M

Figure 9: Correlation coefficients between different hardness measures and the average query effort (NDC)
.

(a) Varying𝐴𝑐𝑐 (b) Varying 𝑘

Figure 10: Correlation coefficients of hardness measures un-
der different parameters.

7.3 Effectiveness of 𝑺𝒕𝒆 𝒊𝒏𝒆𝒓-hardness
We then study the effectiveness of our index-independent 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -
hardness. That is, whether a query with larger 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness
requires more effort to be answered for graph indexes. As studied
in [71, 103], the insertion order when building graph indexes sig-
nificantly impacts the effort to answer a given query. Therefore, to
mitigate randomness, we shuffle the dataset and build multiple in-
dexes with different insertion orders on the same dataset, and take
the average query effort on these indexes as the actual effort.

Figure 9 shows the correlation coefficients between the query
effort and different hardness measures on different datasets and in-
dexes7.Our 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness shows the strongest correlation among
all the hardness measures, with on average 0.75 correlation coef-
ficient, whereas 𝜖-hardness, LID, QE and RC are 0.50, 0.42, 0.26

7DEG fails to be built on Tiny10M due to logic errors.

and 0.31, respectively, far smaller than 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness. These re-
sults demonstrate that 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness can effectively represent
the intrinsic hardness of the query on graph indexes.

It is observed that the correlation on real datasets is stronger
than synthetic datasets. It might because that real datasets are of-
ten distributed in a clustered manner [83, 84] and the 𝑘NN of the
query are often highly interconnected in the graph [103], which
indicates that they will be visited together when querying. In this
way, the number of close points correlates more to the actual query
effort than in the synthetic datasets.

7.4 Comparison of Old and NewWorkloads
Wefirst check the hardness distribution of the queries in our newly
generatedworkloadswhich are produced by adopting the approach
described in Section 6.1 The new workload contains 1,000 queries,
constructed by randomly selecting 50 queries from 20 hardness seg-
ments, i.e., ℎ=20. The result is shown in Figure 11, where we com-
pare our new unbiased workload against the original workload on
three representative datasets8. Assume simple queries are the ones
with hardness in the 20% lowest range of the whole hardness spec-
trum. Then the percentage of simple queries on the original work-
load is 78%, 80%, and 82% on the three datasets respectively, while
20% on the new unbiased workloads. This verifies our workloads
do not show bias for simple or hard queries.

In Figure 12, we compare the query accuracy under old and new
workloads using HNSW. To fairly display the difference, we set
NDC of each query as a fixed number and calculate the recall. In
the original workloads, the simple queries which cover the most of
the workload, can quickly be answered with a high recall. While
8The box plot is shown in the most popular way with outliers [4].

(a) Deep (b) Glove (c) Tiny10M

Figure 11: Distribution of query hardness in the workloads.

(a) Deep (b) Glove (c) Tiny10M

Figure 12: Distribution of recall in the workloads.

(a) Deep (b) Glove (c) Rand

Figure 13: Evaluate indexes on original query workloads.

(a) Deep (b) Glove (c) Rand

Figure 14: Evaluate indexes on unbiased query workloads.

the recall of hard queries is gradually improved as NDC increases.
On the contrary, in our unbiased workload, when NDC is small,
the recall values of the queries are uniformly distributed.

7.5 Index Evaluation on NewWorkloads
To comprehensively show the query performance, we design a new
metric that shows the distribution of NDC when all the queries in
the workload reach a certain recall in Figure 13 and 14, for the old
and the new unbiased workloads, respectively. The best method
w.r.t. the median value under each setting is marked with a star.
We summarize the major insights as follows.
(1) The performance significantly downgrades when using new unbi-
ased workloads compared to the old one on real datasets. The NDC
range (in y-axis) increases >10 and >3 times on Deep and Glove
datasets respectively, from Figure 13 to 14.
(2) As the recall target increases, the performance variance of graph
indexes goes larger. For example, on Deep dataset and HNSW in-
dex, after removing outliers, when recall=86%, the range of NDC
spans from 491 to 14,765, and 718 to 38,288 when recall=86%. This
indicates that high recall targets can lead to a significant effort for
the graph index, as has been observed before [71, 97].
(3) Latest indexes show improvement on old workloads, but can be
beaten by HNSW or NSG on unbiased workloads. In Figure 13, 𝜏-
MNG or DEG wins the first or second place on most settings on
real datasets even with our new metric. While in Figure 14, they
become inferior to HNSW and NSG w.r.t. the median value or the
variance. This indicates that latest indexes might “overfit” to the
old biased workloads, while the classical HNSW and NSG remain
in the pool of graph index choices.

(4) Advanced indexes do not always outperform 𝐾Graph. On some
settings of Rand and Tiny10M datasets, 𝐾Graph is a strong com-
petitor. Although the number of edges in𝐾Graph is 2.5x more than
the other graphs to reach the best performance, its better naviga-
bility leads to a superior overall query performance.

Performance comparison between simple andhard queries.
We select 1,000 simplest and hardest queries from the new work-
load and benchmark the indexes. As shown in Figure 15, even though
all the indexes can answer hard queries, the time cost is higher than
simple queries from 10 to 50 times (see the differences of the x-
axis). For the ranking result of simple queries, all indexes perform
well on three datasets, except for𝐾Graph onDeep and GIST.While
for hard queries, 𝜏-MNG and DEG show unstable performance on
some cases. HNSW is the most robust followed by NSG.

Discussion. According to our evaluation, the major problem
of current graph indexes is the stability on hard queries. The huge
performance variance hinders their effects in practice.𝐾Graph sur-
prisingly works well on hard datasets, demonstrating that current
edge pruning rules might not always work well. Besides, since the
same hard query could be answered with variable efficiency on dif-
ferent index instances, combining multiple index instances is also
a promising idea to improve the reachability of the graph.

7.6 Ablation Study of ME
In Figure 16, we present ablation study results to understand the
effect of the three constraints of𝑀𝐸 in Section 4.2. Figure 16 (b)-(d)
show the deterioration of the correlation between the estimated ef-
fort and the actual query effort. We first remove the constraint on
entry points (Constraint ¬) by setting 𝑝 = 1/𝑘 , that is, using the
optimal entry point in 𝑁𝑘 to get the ME. As shown in Figure 16(b),

(a) Deep (simple) (b) Deep (hard)

(c) GIST (simple) (d) GIST (hard)

(e) Glove (simple) (f) Glove (hard)

Figure 15: Benchmark results on 1,000 simple and hard
queries from our unbiased workloads, respectively.

(a) Eventual performance (b) Arbitrary entry point

(c) Unlimited range of candidates (d) Remove decision cost

Figure 16: Ablation studies on the definitions of ME.

the correlation becomes weak for hard queries. Figure 16(c) shows
a similar result where the limitation on the accessible candidates
(Constraint) is removed. When removing the decision cost (i.e.,
Definition 3), as shown in Figure 16(d), simple queries cannot be
distinguished. In brevity, the three proposed constraints are all nec-
essary to describe the query effort.

Table 2: One-off pre-processing time of Steiner-hardness

Deep GIST Rand Glove Tiny10M Deep1B

Time (min) 0.9 3.4 9.6 66.8 34.5 16.9 hrs

(a) Million-sized datasets (b) Deep1B

Figure 17:The time of calculating the hardness 1,000 queries.

7.7 Efficiency and Scalability
We finally test the efficiency and the scalability of our approach.

One-offpre-processing.To calculate 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness, for each
dataset, we need to build the approximate MRNG and its reversed
graph as pre-processing. This one-off pre-processing time is re-
ported in Table 2. This time is dominated by building a 𝐾Graph
(>90%) while building MRNG from the 𝐾Graph is very fast.

Hardness calculation. We report the overall time of calculat-
ing the 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness of 1,000 queries in Figure 17(a), and com-
pare it against the baselines on all the datasets. It is observed that
on five million-sized datasets, the time to compute different hard-
ness measures is very close except for RC. Figure 17(b) shows all
the hardness measures can be computed with a linear scalability.

Workload generation.Generating the newunbiasedworkload
includes three steps: (1) GMM training and inference, (2) hardness
calculation, and (3) query selection. The first step can be done on
a million-sized sample or smaller, which costs several to tens of
minutes. The time cost of the second step is shown in Figure 17(a)
while the third step only costs a constant time.

8 CONCLUSIONS AND FUTUREWORK
In this paper, we propose a practical query effort analyses frame-
work for graph-base ANN indexes. This framework effectively de-
scribes the minimum effort under different recall targets and 𝑘 on
a given graph. We further design a novel connection-based query
hardness measure, 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -hardness, based on the framework for
graph indexes with efficient algorithms. Moreover, we build un-
biased workloads encompassing the entire spectrum of 𝑆𝑡𝑒𝑖𝑛𝑒𝑟 -
hardness to fairly stress-test current graph-based indexes.

In our future work, we plan to conduct a more comprehensive
evaluationwith unbiased queryworkloads to benchmark both graph-
and partition-based indexes, and recommend indexes based on dif-
ferent user requirements.

ACKNOWLEDGMENTS
Thisworkwas partially funded by EUproject AI4Europe (101070000).

REFERENCES
[1] 2018. PACE (Parameterized Algorithms and Computational Experiments) 2018-

Steiner Tree . https://pacechallenge.org/2018/steiner-tree/. Accessed on Janu-
ary 30, 2024.

[2] 2023. Dijkstra’s algorithm. https://en.wikipedia.org/w/index.php?title=
Dijkstra%27s_algorithm&oldid=1189493285 [Online; accessed 11-January-
2024].

[3] 2023. Mixture model. https://en.wikipedia.org/w/index.php?title=Mixture_
model&oldid=1166525726. [Online; accessed 7-January-2024].

[4] 2024. Box plot — Wikipedia, The Free Encyclopedia. https://en.wikipedia.
org/w/index.php?title=Box_plot&oldid=1225026016. [Online; accessed 1-June-
2024].

[5] 2024. Mahalanobis distance. https://en.wikipedia.org/w/index.php?
title=Mahalanobis_distance&oldid=1193836393 [Online; accessed 12-January-
2024].

[6] Thomas D. Ahle, Martin Aumüller, and Rasmus Pagh. [n.d.]. Parameter-free
Locality Sensitive Hashing for Spherical Range Reporting. 239–256. https:
//doi.org/10.1137/1.9781611974782.16

[7] Laurent Amsaleg, Oussama Chelly, Teddy Furon, Stéphane Girard, Michael E.
Houle, Ken-ichi Kawarabayashi, and Michael Nett. 2015. Estimating Local In-
trinsic Dimensionality. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining (Sydney, NSW, Australia).
29–38.

[8] Laurent Amsaleg and Jégou Hervé. [n.d.]. Evaluation of Approximate nearest
neighbors: large datasets. http://corpus-texmex.irisa.fr/ [Online; accessed
15-May-2024].

[9] Akhil Arora, Sakshi Sinha, Piyush Kumar, and Arnab Bhattacharya. 2018.
HD-Index: Pushing the Scalability-Accuracy Boundary for Approximate kNN
Search in High-Dimensional Spaces. PVLDB 11, 8 (2018).

[10] Martin Aumüller and Matteo Ceccarello. 2023. Recent Approaches and Trends
in Approximate Nearest Neighbor Search, with Remarks on Benchmarking.
IEEE Data Eng. Bull. 46, 3 (2023), 89–105.

[11] Martin Aumüller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-
Benchmarks: A benchmarking tool for approximate nearest neighbor algo-
rithms. Information Systems 87 (2020), 101374. https://doi.org/10.1016/j.is.2019.
02.006

[12] Martin Aumüller and Matteo Ceccarello. 2021. The role of local dimensionality
measures in benchmarking nearest neighbor search. Information Systems 101
(2021), 101807. https://doi.org/10.1016/j.is.2021.101807

[13] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. Elpis: Graph-Based
Similarity Search for Scalable Data Science. Proc. VLDB Endow. 16, 6 (2023),
1548–1559. https://doi.org/10.14778/3583140.3583166

[14] Dmitry Baranchuk and Artem Babenko. [n.d.]. Benchmarks for Billion-Scale
Similarity Search. https://research.yandex.com/blog/benchmarks-for-billion-
scale-similarity-search [Online; accessed 15-May-2024].

[15] Eric Bernhardsson. [n.d.]. Annoy. https://github.com/spotify/. [Online; ac-
cessed 7-January-2024].

[16] Moses Charikar, Chandra Chekuri, To yat Cheung, Zuo Dai, Ashish Goel,
Sudipto Guha, and Ming Li. 1999. Approximation Algorithms for Directed
Steiner Problems. Journal of Algorithms 33, 1 (1999), 73–91. https://doi.org/
10.1006/jagm.1999.1042

[17] Manos Chatzakis, Panagiota Fatourou, Eleftherios Kosmas, Themis Palpanas,
and Botao Peng. 2023. Odyssey: A Journey in the Land of Distributed Data
Series Similarity Search. Proc. VLDB Endow. 16, 5 (2023), 1140–1153. https:
//doi.org/10.14778/3579075.3579087

[18] Lu Chen, Yunjun Gao, Xinhan Li, Christian S Jensen, and Gang Chen. 2015.
Efficient metric indexing for similarity search. In ICDE. 591–602.

[19] Lu Chen, Yunjun Gao, Baihua Zheng, Christian S. Jensen, Hanyu Yang, and
Keyu Yang. 2017. Pivot-Based Metric Indexing. Proc. VLDB Endow. 10, 10 (jun
2017), 1058–1069. https://doi.org/10.14778/3115404.3115411

[20] Patrick Chen, Wei-Cheng Chang, Jyun-Yu Jiang, Hsiang-Fu Yu, Inderjit
Dhillon, and Cho-Jui Hsieh. 2023. FINGER: Fast Inference for Graph-Based
Approximate Nearest Neighbor Search. In Proceedings of the ACM Web Confer-
ence 2023 (Austin, TX, USA) (WWW ’23). ACM, New York, NY, USA, 3225–3235.
https://doi.org/10.1145/3543507.3583318

[21] Qi Chen, Bing Zhao, Haidong Wang, Mingqin Li, Chuanjie Liu, Zengzhong Li,
Mao Yang, and Jingdong Wang. 2021. SPANN: Highly-efficient Billion-scale
Approximate Nearest Neighborhood Search. InAdvances in Neural Information
Processing Systems, Vol. 34. Curran Associates, Inc., 5199–5212.

[22] James Cheng, Xinyan Dai, Bao Ergute, Ti-chung Cheng, Haopeng Sun, Bin Hu,
Xiao Yan, Jinfei Li, and Jie Liu. [n.d.]. GQR: A General and Efficient Querying
Method for Learning to Hash. https://www.cse.cuhk.edu.hk/systems/hash/
gqr/datasets.html [Online; accessed 15-May-2024].

[23] Eden Chlamtáč, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. 2020.
Approximating Spanners and Directed Steiner Forest: Upper and Lower
Bounds. ACM Trans. Algorithms 16, 3, Article 33 (jun 2020), 31 pages. https:
//doi.org/10.1145/3381451

[24] Eden Chlamtáč, Michael Dinitz, Guy Kortsarz, and Bundit Laekhanukit. 2020.
Approximating Spanners and Directed Steiner Forest: Upper and Lower
Bounds. ACM Trans. Algorithms 16, 3, Article 33 (jun 2020), 31 pages. https:
//doi.org/10.1145/3381451

[25] Sanjoy Dasgupta and Yoav Freund. 2008. Random Projection Trees and Low
Dimensional Manifolds. In Proceedings of the Fortieth Annual ACM Symposium
on Theory of Computing (Victoria, British Columbia, Canada) (STOC ’08). ACM,
New York, NY, USA, 537–546. https://doi.org/10.1145/1374376.1374452

[26] D.W. Dearholt, N. Gonzales, and G. Kurup. 1988. Monotonic Search Networks
For Computer Vision Databases. In Twenty-Second Asilomar Conference on Sig-
nals, Systems and Computers, Vol. 2. 548–553. https://doi.org/10.1109/ACSSC.
1988.754602

[27] D.W. Dearholt, N. Gonzales, and G. Kurup. 1988. Monotonic Search Networks
For Computer Vision Databases. In Twenty-Second Asilomar Conference on Sig-
nals, Systems and Computers, Vol. 2. 548–553. https://doi.org/10.1109/ACSSC.
1988.754602

[28] Michael Dinitz, Guy Kortsarz, and Zeev Nutov. 2017. Improved Approximation
Algorithm for Steiner K-Forest with Nearly Uniform Weights. ACM Trans. Al-
gorithms 13, 3, Article 40 (jul 2017), 16 pages. https://doi.org/10.1145/3077581

[29] Magdalen Dobson, Zheqi Shen, Guy E. Blelloch, Laxman Dhulipala, Yan
Gu, Harsha Vardhan Simhadri, and Yihan Sun. 2023. Scaling Graph-
Based ANNS Algorithms to Billion-Size Datasets: A Comparative Analysis.
arXiv:2305.04359 [cs.IR]

[30] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient K-Nearest Neighbor
Graph Construction for Generic Similarity Measures. In Proceedings of the
20th International Conference on World Wide Web (Hyderabad, India). 577–586.
https://doi.org/10.1145/1963405.1963487

[31] Ishita Doshi, Dhritiman Das, Ashish Bhutani, Rajeev Kumar, Rushi Bhatt, and
Niranjan Balasubramanian. 2021. LANNS: A Web-Scale Approximate Near-
est Neighbor Lookup System. Proc. VLDB Endow. 15, 4 (dec 2021), 850–858.
https://doi.org/10.14778/3503585.3503594

[32] Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas,
and Houda Benbrahim. 2022. Hercules Against Data Series Similarity Search.
PVLDB 15, 10 (2022).

[33] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Ben-
brahim. 2018. The Lernaean Hydra of Data Series Similarity Search: An Ex-
perimental Evaluation of the State of the Art. Proc. VLDB Endow. 12, 2 (2018),
112–127. https://doi.org/10.14778/3282495.3282498

[34] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Ben-
brahim. 2019. Return of the Lernaean Hydra: Experimental Evaluation of Data
Series Approximate Similarity Search. PVLDB 13, 3 (2019), 403–420.

[35] Jon Feldman and Matthias Ruhl. 2006. The Directed Steiner Network Problem
is Tractable for a Constant Number of Terminals. SIAM J. Comput. 36, 2 (2006),
543–561. https://doi.org/10.1137/S0097539704441241

[36] Moran Feldman, Guy Kortsarz, and Zeev Nutov. 2012. Improved approxima-
tion algorithms for Directed Steiner Forest. J. Comput. System Sci. 78, 1 (2012),
279–292. https://doi.org/10.1016/j.jcss.2011.05.009 JCSS Knowledge Represen-
tation and Reasoning.

[37] Cong Fu, Changxu Wang, and Deng Cai. 2022. High Dimensional Similar-
ity Search With Satellite System Graph: Efficiency, Scalability, and Unindexed
Query Compatibility. IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 44, 8 (2022), 4139–4150. https://doi.org/10.1109/TPAMI.2021.3067706

[38] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2019. Fast Approximate
Nearest Neighbor Search with the Navigating Spreading-out Graph. PVLDB
12, 5 (2019), 461–474.

[39] Junhao Gan, Jianlin Feng, Qiong Fang, andWilfred Ng. 2012. Locality-sensitive
hashing scheme based on dynamic collision counting. In SIGMOD. 541–552.

[40] Jianyang Gao and Cheng Long. 2023. High-Dimensional Approximate Near-
est Neighbor Search: With Reliable and Efficient Distance Comparison Oper-
ations. Proc. ACM Manag. Data 1, 2, Article 137 (jun 2023), 27 pages. https:
//doi.org/10.1145/3589282

[41] Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional
Vectors with a Theoretical Error Bound for Approximate Nearest Neighbor
Search. Proc. ACM Manag. Data 2, 3, Article 167 (may 2024), 27 pages. https:
//doi.org/10.1145/3654970

[42] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In PVLDB. 518–529.

[43] Zhen Gong, Xin Wu, Lei Chen, Zhenzhe Zheng, Shengjie Wang, Anran Xu,
Chong Wang, and Fan Wu. 2023. Full Index Deep Retrieval: End-to-End User
and Item Structures for Cold-start and Long-tail Item Recommendation. In Pro-
ceedings of the 17th ACM Conference on Recommender Systems (Singapore, Sin-
gapore) (RecSys ’23). Association for Computing Machinery, New York, NY,
USA, 47–57.

[44] Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. 2019. O(Log2 k / Log
Log k)-Approximation Algorithm for Directed Steiner Tree: A Tight Quasi-
Polynomial-Time Algorithm. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing (Phoenix, AZ, USA) (STOC 2019). 253–264.
https://doi.org/10.1145/3313276.3316349

https://pacechallenge.org/2018/steiner-tree/
https://en.wikipedia.org/w/index.php?title=Dijkstra%27s_algorithm&oldid=1189493285
https://en.wikipedia.org/w/index.php?title=Dijkstra%27s_algorithm&oldid=1189493285
https://en.wikipedia.org/w/index.php?title=Mixture_model&oldid=1166525726
https://en.wikipedia.org/w/index.php?title=Mixture_model&oldid=1166525726
https://en.wikipedia.org/w/index.php?title=Box_plot&oldid=1225026016
https://en.wikipedia.org/w/index.php?title=Box_plot&oldid=1225026016
https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=1193836393
https://en.wikipedia.org/w/index.php?title=Mahalanobis_distance&oldid=1193836393
https://doi.org/10.1137/1.9781611974782.16
https://doi.org/10.1137/1.9781611974782.16
http://corpus-texmex.irisa.fr/
https://doi.org/10.1016/j.is.2019.02.006
https://doi.org/10.1016/j.is.2019.02.006
https://doi.org/10.1016/j.is.2021.101807
https://doi.org/10.14778/3583140.3583166
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://research.yandex.com/blog/benchmarks-for-billion-scale-similarity-search
https://github.com/spotify/
https://doi.org/10.1006/jagm.1999.1042
https://doi.org/10.1006/jagm.1999.1042
https://doi.org/10.14778/3579075.3579087
https://doi.org/10.14778/3579075.3579087
https://doi.org/10.14778/3115404.3115411
https://doi.org/10.1145/3543507.3583318
https://www.cse.cuhk.edu.hk/systems/hash/gqr/datasets.html
https://www.cse.cuhk.edu.hk/systems/hash/gqr/datasets.html
https://doi.org/10.1145/3381451
https://doi.org/10.1145/3381451
https://doi.org/10.1145/3381451
https://doi.org/10.1145/3381451
https://doi.org/10.1145/1374376.1374452
https://doi.org/10.1109/ACSSC.1988.754602
https://doi.org/10.1109/ACSSC.1988.754602
https://doi.org/10.1109/ACSSC.1988.754602
https://doi.org/10.1109/ACSSC.1988.754602
https://doi.org/10.1145/3077581
https://arxiv.org/abs/2305.04359
https://doi.org/10.1145/1963405.1963487
https://doi.org/10.14778/3503585.3503594
https://doi.org/10.14778/3282495.3282498
https://doi.org/10.1137/S0097539704441241
https://doi.org/10.1016/j.jcss.2011.05.009
https://doi.org/10.1109/TPAMI.2021.3067706
https://doi.org/10.1145/3589282
https://doi.org/10.1145/3589282
https://doi.org/10.1145/3654970
https://doi.org/10.1145/3654970
https://doi.org/10.1145/3313276.3316349

[45] Rentong Guo, Xiaofan Luan, Long Xiang, Xiao Yan, Xiaomeng Yi, Jigao Luo,
Qianya Cheng, Weizhi Xu, Jiarui Luo, Frank Liu, Zhenshan Cao, Yanliang Qiao,
TingWang, Bo Tang, and Charles Xie. 2022. Manu: ACloudNative Vector Data-
base Management System. Proc. VLDB Endow. 15, 12 (aug 2022), 3548–3561.
https://doi.org/10.14778/3554821.3554843

[46] Ben Harwood and Tom Drummond. 2016. Fanng: Fast approximate nearest
neighbour graphs. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition. 5713–5722.

[47] M Hauptmann and M Karpinski. 2013. A Compendium on Steiner Tree Prob-
lems. (2013).

[48] Nico Hezel, Kai Uwe Barthel, Konstantin Schall, and Klaus Jung. 2023. Fast Ap-
proximate Nearest Neighbor Search with a Dynamic Exploration Graph using
Continuous Refinement. arXiv:2307.10479 [cs.IR]

[49] Kohei Hirata, Daichi Amagata, Sumio Fujita, and Takahiro Hara. 2022. Solving
Diversity-Aware Maximum Inner Product Search Efficiently and Effectively.
In Proceedings of the 16th ACM Conference on Recommender Systems (RecSys
’22). Association for Computing Machinery, New York, NY, USA, 198–207.
https://doi.org/10.1145/3523227.3546779

[50] Michael E. Houle. 2013. Dimensionality, Discriminability, Density and Dis-
tance Distributions. In 2013 IEEE 13th International Conference on Data Mining
Workshops. 468–473. https://doi.org/10.1109/ICDMW.2013.139

[51] Michael E. Houle. 2017. Local Intrinsic Dimensionality I: An Extreme-Value-
Theoretic Foundation for Similarity Applications. In Similarity Search and Ap-
plications. Springer International Publishing, Cham, 64–79.

[52] Michael E. Houle, Hisashi Kashima, and Michael Nett. 2012. Generalized Ex-
pansion Dimension. In 2012 IEEE 12th International Conference on Data Mining
Workshops. 587–594. https://doi.org/10.1109/ICDMW.2012.94

[53] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015.
Query-aware locality-sensitive hashing for approximate nearest neighbor
search. PVLDB 9, 1 (2015), 1–12.

[54] Piotr Indyk and Haike Xu. 2023. Worst-case Performance of Popular Approx-
imate Nearest Neighbor Search Implementations: Guarantees and Limitations.
In Thirty-seventh Conference on Neural Information Processing Systems.

[55] Ishindanil. [n.d.]. directed-steiner-tree. https://github.com/ishindanil/
directed-steiner-tree. Accessed: 2024-01-30.

[56] Masajiro Iwasaki and Daisuke Miyazaki. 2018. Optimization of Indexing Based
on k-Nearest Neighbor Graph for Proximity Search in High-dimensional Data.
arXiv:1810.07355 [cs.DB]

[57] Shikhar Jaiswal, Ravishankar Krishnaswamy, Ankit Garg, Harsha Vardhan
Simhadri, and Sheshansh Agrawal. 2022. OOD-DiskANN: Efficient and Scal-
able Graph ANNS for Out-of-Distribution Queries. arXiv:2211.12850 [cs.LG]

[58] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravis-
hankar Krishnawamy, and Rohan Kadekodi. 2019. DiskANN: Fast Accurate
Billion-point Nearest Neighbor Search on a Single Node. In Advances in Neu-
ral Information Processing Systems, Vol. 32. Curran Associates, Inc.

[59] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization
for nearest neighbor search. TPAMI 33, 1 (2010).

[60] Jeff Johnson, Matthijs Douze, and Hervé Jégou. 2021. Billion-Scale Similar-
ity Search with GPUs. IEEE Transactions on Big Data 7, 3 (2021), 535–547.
https://doi.org/10.1109/TBDATA.2019.2921572

[61] David R. Karger and Matthias Ruhl. 2002. Finding Nearest Neighbors in
Growth-Restricted Metrics. In Proceedings of the Thiry-Fourth Annual ACM
Symposium on Theory of Computing (Montreal, Quebec, Canada) (STOC ’02).
ACM, New York, NY, USA, 741–750. https://doi.org/10.1145/509907.510013

[62] Jon Kleinberg. 2000. The small-world phenomenon: An algorithmic perspec-
tive. In Proceedings of the thirty-second annual ACM symposium on Theory of
computing. 163–170.

[63] Thijs Laarhoven. 2017. Graph-based time-space trade-offs for approximate near
neighbors. CoRR abs/1712.03158 (2017).

[64] Elizaveta Levina and Peter Bickel. 2004. Maximum Likelihood Estimation
of Intrinsic Dimension. In Advances in Neural Information Processing Systems,
Vol. 17. MIT Press.

[65] Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. 2020. Improv-
ing Approximate Nearest Neighbor Search through Learned Adaptive Early
Termination. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data (Portland, OR, USA) (SIGMOD ’20). ACM, New York,
NY, USA, 2539–2554. https://doi.org/10.1145/3318464.3380600

[66] Ke Li and JitendraMalik. 2017. Fast k-Nearest Neighbour Search via Prioritized
DCI. In Proceedings of the 34th International Conference on Machine Learning
(Proceedings of Machine Learning Research), Vol. 70. PMLR, 2081–2090.

[67] Wen Li, Ying Zhang, Yifang Sun, Wei Wang, Mingjie Li, Wenjie Zhang, and
Xuemin Lin. 2020. Approximate Nearest Neighbor Search on High Dimen-
sional Data — Experiments, Analyses, and Improvement. IEEE Transactions on
Knowledge and Data Engineering 32, 8 (2020), 1475–1488. https://doi.org/10.
1109/TKDE.2019.2909204

[68] Peng-Cheng Lin and Wan-Lei Zhao. 2019. Graph based Nearest Neighbor
Search: Promises and Failures. arXiv:1904.02077 [cs.IR]

[69] Michele Linardi and Themis Palpanas. 2018. Scalable, Variable-Length Simi-
larity Search in Data Series: The ULISSE Approach. Proc. VLDB Endow. 11, 13
(2018), 2236–2248.

[70] Michele Linardi and Themis Palpanas. 2020. Scalable data series subsequence
matching with ULISSE. VLDB J. 29, 6 (2020), 1449–1474.

[71] Jun Liu, Zhenhua Zhu, Jingbo Hu, Hanbo Sun, Li Liu, Lingzhi Liu, Guohao
Dai, Huazhong Yang, and Yu Wang. 2022. Optimizing Graph-based Approx-
imate Nearest Neighbor Search: Stronger and Smarter. In 2022 23rd IEEE In-
ternational Conference on Mobile Data Management (MDM). 179–184. https:
//doi.org/10.1109/MDM55031.2022.00045

[72] Kejing Lu and Mineichi Kudo. 2020. R2LSH: A Nearest Neighbor Search
Scheme Based on Two-dimensional Projected Spaces. In ICDE. 1045–1056.

[73] Kejing Lu, Mineichi Kudo, Chuan Xiao, and Yoshiharu Ishikawa. 2021. HVS:
Hierarchical Graph Structure Based on Voronoi Diagrams for Solving Approx-
imate Nearest Neighbor Search. Proc. VLDB Endow. 15, 2 (oct 2021), 246–258.
https://doi.org/10.14778/3489496.3489506

[74] Malte Ludewig, Iman Kamehkhosh, Nick Landia, and Dietmar Jannach. 2018.
Effective Nearest-Neighbor Music Recommendations. In Proceedings of the
ACM Recommender Systems Challenge 2018 (Vancouver, BC, Canada) (RecSys
Challenge ’18). Article 3, 6 pages. https://doi.org/10.1145/3267471.3267474

[75] Yury Malkov, Alexander Ponomarenko, Andrey Logvinov, and Vladimir
Krylov. 2014. Approximate nearest neighbor algorithm based on navigable
small world graphs. Inf. Syst. 45 (2014), 61–68.

[76] Yu A. Malkov and D. A. Yashunin. 2020. Efficient and Robust Approximate
Nearest Neighbor Search Using Hierarchical Navigable Small World Graphs.
IEEE Transactions on Pattern Analysis andMachine Intelligence 42, 4 (2020), 824–
836. https://doi.org/10.1109/TPAMI.2018.2889473

[77] Marius Muja and David G. Lowe. 2014. Scalable Nearest Neighbor Algorithms
for High Dimensional Data. IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 36, 11 (2014), 2227–2240. https://doi.org/10.1109/TPAMI.
2014.2321376

[78] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. Fast data se-
ries indexing for in-memory data. VLDB J. 30, 6 (2021), 1041–1067. https:
//doi.org/10.1007/S00778-021-00677-2

[79] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. SING: Sequence
Indexing Using GPUs. In 37th IEEE International Conference on Data Engineer-
ing, ICDE 2021, Chania, Greece, April 19-22, 2021. IEEE, 1883–1888. https:
//doi.org/10.1109/ICDE51399.2021.00171

[80] Yun Peng, Byron Choi, Tsz Nam Chan, Jianye Yang, and Jianliang Xu. 2023. Ef-
ficient Approximate Nearest Neighbor Search inMulti-Dimensional Databases.
Proc. ACM Manag. Data 1, 1, Article 54 (may 2023), 27 pages. https://doi.org/
10.1145/3588908

[81] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. GloVe:
Global Vectors for Word Representation. In Empirical Methods in Natural Lan-
guage Processing (EMNLP). 1532–1543. http://www.aclweb.org/anthology/
D14-1162

[82] Liudmila Prokhorenkova and Aleksandr Shekhovtsov. 2020. Graph-based
Nearest Neighbor Search: From Practice to Theory. In Proceedings of the 37th
International Conference onMachine Learning (Proceedings of Machine Learning
Research), Vol. 119. 7803–7813.

[83] Miloš Radovanović, Alexandros Nanopoulos, andMirjana Ivanović. 2009. Near-
est neighbors in high-dimensional data: the emergence and influence of hubs.
In Proceedings of the 26th Annual International Conference on Machine Learning
(Montreal,Quebec, Canada) (ICML ’09). Association for ComputingMachinery,
New York, NY, USA, 865–872. https://doi.org/10.1145/1553374.1553485

[84] Miloš Radovanović, Alexandros Nanopoulos, andMirjana Ivanović. 2010. Hubs
in Space: Popular Nearest Neighbors inHigh-Dimensional Data. J. Mach. Learn.
Res. 11 (dec 2010), 2487–2531.

[85] Thomas Rothvoß. 2012. Directed Steiner Tree and the Lasserre Hierarchy.
arXiv:1111.5473 [cs.DS]

[86] A. Rozza, G. Lombardi, C. Ceruti, E. Casiraghi, and P. Campadelli. 2012. Novel
High Intrinsic Dimensionality Estimators. Mach. Learn. 89, 1–2 (oct 2012), 37–
65. https://doi.org/10.1007/s10994-012-5294-7

[87] Jin Shieh and Eamonn Keogh. 2008. iSAX: indexing and mining terabyte sized
time series. In SIGKDD. 623–631.

[88] Xiaoxin Tang, Zhiyi Huang, David Eyers, Steven Mills, and Minyi Guo. 2015.
Efficient Selection Algorithm for Fast k-NN Search on GPUs. In 2015 IEEE
International Parallel and Distributed Processing Symposium. 397–406. https:
//doi.org/10.1109/IPDPS.2015.115

[89] Yao Tian, Tingyun Yan, Xi Zhao, Kai Huang, and Xiaofang Zhou. 2023. A
Learned Index for Exact Similarity Search in Metric Spaces. IEEE Transac-
tions on Knowledge and Data Engineering 35, 8 (2023), 7624–7638. https:
//doi.org/10.1109/TKDE.2022.3206441

[90] Godfried T. Toussaint. 1980. The relative neighbourhood graph of a finite pla-
nar set. Pattern Recognition 12, 4 (1980), 261–268. https://doi.org/10.1016/0031-
3203(80)90066-7

[91] Saskia van derHoeven. 2023. Efficient solutionmethods for the directed Steiner
tree problem.

https://doi.org/10.14778/3554821.3554843
https://arxiv.org/abs/2307.10479
https://doi.org/10.1145/3523227.3546779
https://doi.org/10.1109/ICDMW.2013.139
https://doi.org/10.1109/ICDMW.2012.94
https://github.com/ishindanil/directed-steiner-tree
https://github.com/ishindanil/directed-steiner-tree
https://arxiv.org/abs/1810.07355
https://arxiv.org/abs/2211.12850
https://doi.org/10.1109/TBDATA.2019.2921572
https://doi.org/10.1145/509907.510013
https://doi.org/10.1145/3318464.3380600
https://doi.org/10.1109/TKDE.2019.2909204
https://doi.org/10.1109/TKDE.2019.2909204
https://arxiv.org/abs/1904.02077
https://doi.org/10.1109/MDM55031.2022.00045
https://doi.org/10.1109/MDM55031.2022.00045
https://doi.org/10.14778/3489496.3489506
https://doi.org/10.1145/3267471.3267474
https://doi.org/10.1109/TPAMI.2018.2889473
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1109/TPAMI.2014.2321376
https://doi.org/10.1007/S00778-021-00677-2
https://doi.org/10.1007/S00778-021-00677-2
https://doi.org/10.1109/ICDE51399.2021.00171
https://doi.org/10.1109/ICDE51399.2021.00171
https://doi.org/10.1145/3588908
https://doi.org/10.1145/3588908
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1145/1553374.1553485
https://arxiv.org/abs/1111.5473
https://doi.org/10.1007/s10994-012-5294-7
https://doi.org/10.1109/IPDPS.2015.115
https://doi.org/10.1109/IPDPS.2015.115
https://doi.org/10.1109/TKDE.2022.3206441
https://doi.org/10.1109/TKDE.2022.3206441
https://doi.org/10.1016/0031-3203(80)90066-7
https://doi.org/10.1016/0031-3203(80)90066-7

[92] Javier Vargas Muñoz, Marcos A. Gonçalves, Zanoni Dias, and Ricardo da S.
Torres. 2019. Hierarchical Clustering-Based Graphs for Large Scale Approxi-
mate Nearest Neighbor Search. Pattern Recognition 96 (2019), 106970. https:
//doi.org/10.1016/j.patcog.2019.106970

[93] Polychronis Velentzas, Panagiotis Moutafis, and George Mavrommatis. 2021.
An Improved GPU-Based Algorithmfor Processing the k Nearest Neighbor
Query. In Proceedings of the 24th Pan-Hellenic Conference on Informatics
(Athens, Greece) (PCI ’20). ACM, New York, NY, USA, 372–375. https://doi.
org/10.1145/3437120.3437343

[94] Polychronis Velentzas, Michael Vassilakopoulos, and Antonio Corral. 2021.
GPU-aided edge computing for processing the k nearest-neighbor query on
SSD-resident data. Internet of Things 15 (2021), 100428. https://doi.org/10.
1016/j.iot.2021.100428

[95] Skoltech Computer Vision. [n.d.]. Deep billion-scale indexing. http://sites.
skoltech.ru/compvision/noimi Accessed March 14, 2022.

[96] Hui Wang, Yong Wang, and Wan-Lei Zhao. 2022. Graph-based Approximate
NN Search: A Revisit. arXiv:2204.00824 [cs.IR]

[97] Hongya Wang, Zhizheng Wang, Wei Wang, Yingyuan Xiao, Zeng Zhao, and
Kaixiang Yang. 2020. A Note on Graph-Based Nearest Neighbor Search.
arXiv:2012.11083 [cs.LG]

[98] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li,
Xiangyu Wang, Xiangzhou Guo, Chengming Li, Xiaohai Xu, Kun Yu, Yuxing
Yuan, Yinghao Zou, Jiquan Long, Yudong Cai, Zhenxiang Li, Zhifeng Zhang, Yi-
hua Mo, Jun Gu, Ruiyi Jiang, Yi Wei, and Charles Xie. 2021. Milvus: A Purpose-
Built Vector Data Management System. In Proceedings of the 2021 International
Conference on Management of Data (Virtual Event, China) (SIGMOD ’21). ACM,
New York, NY, USA, 2614–2627. https://doi.org/10.1145/3448016.3457550

[99] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A Com-
prehensive Survey and Experimental Comparison of Graph-Based Approxi-
mate Nearest Neighbor Search. Proc. VLDB Endow. 14, 11 (jul 2021), 1964–1978.
https://doi.org/10.14778/3476249.3476255

[100] QitongWang andThemis Palpanas. 2021. Deep Learning Embeddings for Data
Series Similarity Search. In KDD ’21: The 27th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, Virtual Event, Singapore, August 14-18,
2021, Feida Zhu, Beng Chin Ooi, and Chunyan Miao (Eds.). ACM, 1708–1716.
https://doi.org/10.1145/3447548.3467317

[101] Qitong Wang and Themis Palpanas. 2023. SEAnet: A Deep Learning Archi-
tecture for Data Series Similarity Search. IEEE Trans. Knowl. Data Eng. 35, 12
(2023), 12972–12986. https://doi.org/10.1109/TKDE.2023.3270264

[102] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. 2013. A data-
adaptive and dynamic segmentation index for whole matching on time series.
PVLDB 6, 10 (2013), 793–804.

[103] Zeyu Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2023. Graph-and
Tree-based Indexes for High-dimensional Vector Similarity Search: Analyses,
Comparisons, and Future Directions. IEEE Data Eng. Bull. 46, 3 (2023), 3–21.

[104] Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas, and Wei Wang.
2023. Dumpy: A Compact and Adaptive Index for Large Data Series Col-
lections. Proc. ACM Manag. Data 1, 1, Article 111 (may 2023), 27 pages.
https://doi.org/10.1145/3588965

[105] Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2024.
DumpyOS: A data-adaptive multi-ary index for scalable data series similarity
search. The VLDB Journal (2024), 1–25.

[106] Zeyu Wang, Haoran Xiong, Zhenying He, Peng Wang, and Wei wang. 2024.
Distance Comparison Operators for Approximate Nearest Neighbor Search:
Exploration and Benchmark. arXiv:2403.13491 [cs.DB] https://arxiv.org/abs/
2403.13491

[107] Dimitri Watel and Marc-Antoine Weisser. 2016. A Practical Greedy Approxi-
mation for the Directed Steiner Tree Problem. J. Comb. Optim. 32, 4 (nov 2016),
1327–1370. https://doi.org/10.1007/s10878-016-0074-0

[108] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li,
and Yuanzhe Cai. 2020. AnalyticDB-V: A Hybrid Analytical Engine towards
Query Fusion for Structured and Unstructured Data. Proc. VLDB Endow. 13, 12

(aug 2020), 3152–3165. https://doi.org/10.14778/3415478.3415541
[109] Jiuqi Wei, Botao Peng, Xiaodong Lee, and Themis Palpanas. 2024. DET-LSH:

A Locality-Sensitive Hashing Scheme with Dynamic Encoding Tree for Ap-
proximate Nearest Neighbor Search. Proceedings of the VLDB Endowment 17,
9 (2024), 2241–2254.

[110] Haoran Xiong, Hang Zhang, Zeyu Wang, Zhenying He, Peng Wang, and
X. Sean Wang. 2024. CIVET: Exploring Compact Index for Variable-Length
Subsequence Matching on Time Series. Proc. VLDB Endow. 17, 9 (aug 2024),
2123–2135.

[111] Yuming Xu, Hengyu Liang, Jin Li, Shuotao Xu, Qi Chen, Qianxi Zhang, Cheng
Li, Ziyue Yang, Fan Yang, Yuqing Yang, Peng Cheng, and Mao Yang. 2023.
SPFresh: Incremental In-Place Update for Billion-Scale Vector Search. In Pro-
ceedings of the 29th Symposium on Operating Systems Principles (Koblenz, Ger-
many) (SOSP ’23). ACM, New York, NY, USA, 545–561. https://doi.org/10.1145/
3600006.3613166

[112] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Pal-
panas. 2017. DPiSAX: Massively Distributed Partitioned iSAX. In ICDM.

[113] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Pal-
panas. 2020. Massively Distributed Time Series Indexing and Querying. IEEE
Trans. Knowl. Data Eng. (TKDE) 32, 1 (2020), 108–120.

[114] Minjia Zhang, Wenhan Wang, and Yuxiong He. 2022. GraSP: Optimizing
Graph-Based Nearest Neighbor Search with Subgraph Sampling and Pruning.
In Proceedings of the Fifteenth ACM International Conference on Web Search and
Data Mining (Virtual Event, AZ, USA) (WSDM ’22). ACM, New York, NY, USA,
1395–1405. https://doi.org/10.1145/3488560.3498425

[115] Pengcheng Zhang, Bin Yao, Chao Gao, Bin Wu, Xiao He, Feifei Li, Yuanfei Lu,
Chaoqun Zhan, and Feilong Tang. 2023. Learning-based query optimization
for multi-probe approximate nearest neighbor search. The VLDB Journal 32, 3
(2023), 623–645.

[116] Qianxi Zhang, Shuotao Xu, Qi Chen, Guoxin Sui, Jiadong Xie, Zhizhen Cai,
Yaoqi Chen, Yinxuan He, Yuqing Yang, Fan Yang, Mao Yang, and Lidong Zhou.
2023. VBASE: Unifying Online Vector Similarity Search and RelationalQueries
via Relaxed Monotonicity. In 17th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 23). USENIX Association, Boston, MA, 377–
395.

[117] Xi Zhao, Yao Tian, Kai Huang, Bolong Zheng, and Xiaofang Zhou. 2023. To-
wards Efficient Index Construction and Approximate Nearest Neighbor Search
in High-Dimensional Spaces. Proc. VLDB Endow. 16, 8 (apr 2023), 1979–1991.
https://doi.org/10.14778/3594512.3594527

[118] Bolong Zheng, Xi Zhao, Lianggui Weng, Nguyen Quoc Viet Hung, Hang Liu,
and Christian S. Jensen. 2020. PM-LSH: A Fast and Accurate LSH Framework
for High-Dimensional Approximate NN Search. Proc. VLDB Endow. 13, 5 (jan
2020), 643–655. https://doi.org/10.14778/3377369.3377374

[119] Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig.
2023. DocPrompting: Generating Code by Retrieving the Docs. In The Eleventh
International Conference on Learning Representations.

[120] Dantong Zhu and Minjia Zhang. 2021. Understanding and Generalizing
Monotonic Proximity Graphs for Approximate Nearest Neighbor Search.
arXiv:2107.13052 [cs.IR]

[121] Yifan Zhu, Lu Chen, Yunjun Gao, and Christian S Jensen. 2022. Pivot selec-
tion algorithms in metric spaces: a survey and experimental study. The VLDB
Journal (2022), 1–25.

[122] Leonid Zosin and Samir Khuller. 2002. On Directed Steiner Trees. In Proceed-
ings of the Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(San Francisco, California) (SODA ’02). 59–63.

[123] Kostas Zoumpatianos, Yin Lou, Ioana Ileana, Themis Palpanas, and Johannes
Gehrke. 2018. Generating data series query workloads. The VLDB Journal 27
(2018), 823–846.

[124] Kostas Zoumpatianos, Yin Lou, Themis Palpanas, and Johannes Gehrke. 2015.
Query Workloads for Data Series Indexes. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(Sydney, NSW, Australia). 1603–1612.

https://doi.org/10.1016/j.patcog.2019.106970
https://doi.org/10.1016/j.patcog.2019.106970
https://doi.org/10.1145/3437120.3437343
https://doi.org/10.1145/3437120.3437343
https://doi.org/10.1016/j.iot.2021.100428
https://doi.org/10.1016/j.iot.2021.100428
http://sites.skoltech.ru/compvision/noimi
http://sites.skoltech.ru/compvision/noimi
https://arxiv.org/abs/2204.00824
https://arxiv.org/abs/2012.11083
https://doi.org/10.1145/3448016.3457550
https://doi.org/10.14778/3476249.3476255
https://doi.org/10.1145/3447548.3467317
https://doi.org/10.1109/TKDE.2023.3270264
https://doi.org/10.1145/3588965
https://arxiv.org/abs/2403.13491
https://arxiv.org/abs/2403.13491
https://arxiv.org/abs/2403.13491
https://doi.org/10.1007/s10878-016-0074-0
https://doi.org/10.14778/3415478.3415541
https://doi.org/10.1145/3600006.3613166
https://doi.org/10.1145/3600006.3613166
https://doi.org/10.1145/3488560.3498425
https://doi.org/10.14778/3594512.3594527
https://doi.org/10.14778/3377369.3377374
https://arxiv.org/abs/2107.13052

	Abstract
	1 Introduction
	2 Preliminaries
	3 Related Work
	3.1 ANN indexes
	3.2 Hardness Measures
	3.3 Theoretical Study of Query Complexity on Graph Indexes

	4 Characterize the Effort of Answering a Query
	4.1 Basic ME Definition
	4.2 Adapt ME for Greedy Search
	4.3 Incorporate Decision Cost into ME
	4.4 Map ME Definitions to DST Problems
	4.5 Calculate ME using Steiner Tree Solvers

	5 Find the Critical Point 0
	6 bold0mu mumu SteinerSteinerSteinerSteinerSteinerSteiner-Hardness
	6.1 Unbiased Workload Generation

	7 Experiments
	7.1 Experimental Setup
	7.2 Effectiveness of ME
	7.3 Effectiveness of bold0mu mumu SteinerSteinerSteinerSteinerSteinerSteiner-hardness
	7.4 Comparison of Old and New Workloads
	7.5 Index Evaluation on New Workloads
	7.6 Ablation Study of ME
	7.7 Efficiency and Scalability

	8 Conclusions and Future Work
	Acknowledgments
	References

