
LEAD: Iterative Data Selection for Efficient LLM Instruction
Tuning

Xiaotian Lin

HKUST (GZ)

xlin420@connect.hkust-

gz.edu.cn

Yanlin Qi

Université Paris Cité

yanlinqi7@gmail.com

Yizhang Zhu

HKUST (GZ)

yzhu305@connect.hkust-

gz.edu.cn

Themis Palpanas

Université Paris Cité

themis@mi.parisdescartes.fr

Chengliang Chai

BIT

ccl@bit.edu.cn

Nan Tang

HKUST (GZ)

nantang@hkust-gz.edu.cn

Yuyu Luo
∗

HKUST (GZ)

yuyuluo@hkust-gz.edu.cn

ABSTRACT

Instruction tuning has emerged as a critical paradigm for improving

the capabilities and alignment of large language models (LLMs).

However, existing iterative model-aware data selection methods in-

cur significant computational overhead, as they rely on repeatedly

performing full-dataset model inference to estimate sample utility

for subsequent training iterations. In this paper, we propose LEAD,

a framework that LEArns to select Data iteratively by accurately

estimating sample utility entirely within the standard training loop,

eliminating the need for additional model inference. At its core,

LEAD introduces Instance-Level Dynamic Uncertainty (IDU), a

theoretically grounded utility function combining instantaneous

training loss, gradient-based approximation of loss changes, and

exponential smoothing of historical loss signals. To further scale

efficiently to large datasets, LEAD employs a two-stage, coarse-to-

fine selection strategy, adaptively prioritizing informative clusters

through a multi-armed bandit mechanism, followed by precise

fine-grained selection of high-utility samples using IDU. Exten-

sive experiments across four diverse benchmarks show that LEAD

significantly outperforms state-of-the-art methods, improving av-

erage model performance by 6.1%-10.8% while using only 2.5% of

the training data and reducing overall training time by 5-10×.

PVLDB Reference Format:

Xiaotian Lin, Yanlin Qi, Yizhang Zhu, Themis Palpanas, Chengliang Chai,

Nan Tang, and Yuyu Luo. LEAD: Iterative Data Selection for Efficient LLM

Instruction Tuning. PVLDB, 19(3): 426 - 439, 2025.

doi:10.14778/3778092.3778103

PVLDB Artifact Availability:

The source code, data, and/or other artifacts have been made available at

https://github.com/HKUSTDial/LEAD.

1 INTRODUCTION

Instruction tuning improves large language models (LLMs) by

fine-tuning on instruction–response pairs [2, 12, 37, 60, 75], aligning

∗
Yuyu Luo is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International

License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of

this license. For any use beyond those covered by this license, obtain permission by

emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights

licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 19, No. 3 ISSN 2150-8097.

doi:10.14778/3778092.3778103

Mθt-1

St ,

Estimate(, St)

(a) Ours: Estimation (b) Traditional

Infer(Mθt , Dt)

Forward

Propagation Mθt

Loss(Mθt-1) Backward

Propagation

Standard Model Training (Iteration: t)

=Selection(, TopK)

Sample Utility Estimation

St+1

Sample Selection based on Utility Scores

Full Training Data (e.g. 10M)

 Predictions obtained from inference on the full dataset Time cost

A set of selected samples (e.g. 1K)

Training lossTraining lossUtilityUtilityFine-tuned LLMFine-tuned LLMLLMLLM

Full Training Data (e.g. 10M)

 Predictions obtained from inference on the full dataset Time cost

A set of selected samples (e.g. 1K)

Training lossUtilityFine-tuned LLMLLM

 Step 3

 Step 1

 Step 2

For iteration t+1

P
a

ra
m

. U
p

d
a

te

Figure 1: Comparison of Iterative Model-Aware Solutions.

Here, 𝑆𝑡 denotes the selected training subset at iteration 𝑡 ,

and 𝐷𝑡 denotes the full training dataset.

them with user intents and task formats to improve their gener-

alization to diverse tasks such as data preparation [69], question

answering [32–35], and data analysis [44, 48–52]. Beyond scale,

data quality is the primary driver of gains [2, 74], motivating au-

tomatic selection of informative subsets using diversity or quality

metrics [4, 11, 55, 66, 72]. However, such metric-only approaches

ignore model feedback and cannot adapt to the model’s evolving

state. In response, model-aware selection leverages model-derived

signals, either in a single shot (non-iterative) or across multiple

rounds (iterative) [59, 63]. Non-iterative methods select data once

based on initial model predictions, but their effectiveness is limited

as they do not adapt to model evolution during training [37, 67, 68].

In contrast, iterative model-aware data selection methods follow

a three-step loop (Figure 1). Within each iteration 𝑡 , the process

unfolds as follows: Starting with selected samples (𝑆𝑡) and model

(𝑀𝑡−1) previously obtained in last iteration 𝑡 − 1, Step 1 fine-tunes

the model 𝑀𝑡−1 on 𝑆𝑡 to produce an updated model 𝑀𝑡 ; Step 2
estimates sample utility across the dataset using newly obtained

model𝑀𝑡 feedback (typically through full-dataset inference); and

Step 3 selects the next subset 𝑆𝑡+1 based on these utilities. This

process repeats, with the newly created 𝑆𝑡+1 and𝑀𝑡+1 serving as

inputs to iteration 𝑡 + 1.

1

https://doi.org/10.14778/3778092.3778103
https://github.com/HKUSTDial/LEAD
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3778092.3778103

As shown in Figure 1-Step 2-(b) , most existing iterative model-

aware methods rely on explicit model inference to assess the utility

of samples. Specifically, after each training iteration, these methods

perform inference on every sample in the training set to derive feed-

back signals (e.g., model uncertainty scores) for utility estimation.

For example, the IFD [37] requires approximately 98 GPU-hours to

select data from a pool of 600𝐾 samples in a single round.

This predicament leads to a natural research question: Can we
retain the benefits of iterative model-aware data selection without
repeatedly performing costly full-dataset inference?

In this work, we posit that the answer is yes. As shown in Fig-

ure 1-Step 1 , our key insight is that during standard training, the

model first conducts a forward propagation step using the current

mini-batch of samples, computes the per-sample losses based on its

predictions, and subsequently updates its parameters via backward

propagation. Crucially, this training process naturally produces a

per-sample loss for each training instance in the mini-batch. In-

tuitively, this loss indicates how challenging a sample is for the

model. If we can cleverly harness these inherent training signals across
the whole dataset, we could estimate the utility of each sample

without additional inference (inference-free) (see Figure 1-

Step 2-(a)). This idea – leveraging training-time loss signals to guide

data selection – offers the potential to eliminate the full-dataset

inference stage while still adapting to the model’s training state.

However, realizing this idea in practice is challenging.
First, although using training-time losses allows us to avoid

explicit inference, a subtle yet fundamental issue arises due to a

timing misalignment. Specifically, as shown in Figure 1-Step 1 , the
training loss observed at iteration 𝑡 reflects themodel’s performance

before updating parameters (model state𝑀𝜃𝑡−1
), whereas the utility

of selecting samples ideally should consider their usefulness after
the parameter update (i.e., 𝑀𝜃𝑡 at iteration 𝑡 + 1). This temporal

mismatch means that naively reusing pre-update loss signals may

not accurately reflect true sample utility after the next parameter

update. We term this issue as the temporal mismatch challenge (C1).
Second, raw loss signals can be noisy or unstable – they fluctuate

from one update to the next due to randomness (e.g., varying batch
composition) and the non-stationary nature of training, thus naively

trusting instantaneous loss values might lead to suboptimal choices.

This issue highlights the instability of loss signals challenge (C2).
Third, even if we eliminate separate inference steps, individually

estimating utility and selecting informative samples remains ineffi-

cient for large-scale datasets (e.g., containing millions of samples).

We denote this as the sample-level selection efficiency challenge (C3).

Our Methodology. We propose LEAD, a theoretically grounded
data selection framework that integrates the data selection process

into the model training loop and estimates sample utilities without

additional inference overhead (i.e., inference-free). To achieve this,

we first propose a sample utility estimation function called Instance-
Level Dynamic Uncertainty (IDU). IDU explicitly implements the

Estimate step depicted in Figure 1-Step 2-(a) by combining three

naturally available training signals: (1) the current training loss for

each sample, (2) gradient-based approximation, derived from gradi-

ent correlation approximations, to anticipate loss changes at the

next parameter update (addressingC1), and (3) historical loss trends

via exponential smoothing to reduce random noise and improve

 Selection Finetuning Utility Estimation

Clusters MAB

Coarse-level Cluster Selection
Fine-Grained Sample

Utility Estimation and Selection

Instance-level
Dynamic

Uncertainty

...Stage 1 Stage 2

Sample Utility
Estimation

Figure 2: A High-level Overview of LEAD.

stability (addressing C2). Importantly, IDU is computed entirely us-

ing training-time signals naturally available during model updates

(losses and logits), thus incurring no additional inference overhead.

Finally, we derive the Lagrangian function and utilize complemen-

tary slackness conditions to determine the optimal parameters for

IDU rigorously. Guided by this theoretical foundation, our LEAD

framework employs a practical coarse-to-fine data selection strat-

egy (Figure 2).

Stage 1: Coarse-level Cluster Selection. Recall our third challenge

(C3) – efficient candidate selection at scale. To address this, we

first partition the dataset offline into clusters based on two widely-

used metrics: (1) instruction-following difficulty, measuring how

challenging each instruction is for the model [37], and (2) task-
level similarity, grouping semantically related instructions [39].

This clustering step is performed only once per dataset. During

training, LEAD employs amulti-armed bandit (MAB) algorithm [62]

to dynamically identify and prioritize clusters likely to yield higher

rewards – clusters containing samples with greater potential to

significantly enhance the model’s performance (addressing C3).

Stage 2: Fine-Grained Sample Utility Estimation and Selection.
Within each selected cluster, LEAD utilizes the IDU function to

estimate the utility of individual samples precisely. Specifically,

given the IDU scores computed based on the previously discussed

training signals (losses, historical trends, and gradient predictions),

LEAD prioritizes and selects samples with the highest IDU values.

Contributions. This paper makes the following contributions:

(1) Problem Formulation.We formally introduce the problem of Itera-

tive Data Selection with Inference-Free Utility Estimation, defining

a scenario where iterative model-aware selection is performed with-

out incurring additional inference overhead (Section 2).

(2) Instance-Level Dynamic Uncertainty (IDU). We propose a new

sample utility estimation function, IDU. It addresses the temporal

mismatch and instability of loss signals by combining current losses,

gradient-based approximation of loss changes, and exponential

smoothing of historical loss signals, all computed using naturally

available training signals without extra model inference (Section 3).

(3) LEAD Framework.We propose LEAD, a theoretically grounded

and efficient iterative data selection framework seamlessly inte-

grated into the standard model training process, eliminating re-

peated costly inference steps (Section 4 and Section 5).

(4) Theoretical Analysis. We rigorously ground our framework in

a Lagrangian optimization formulation, employing complemen-

tary slackness conditions and gradient correlation approximations

to derive theoretically optimal parameters for the IDU function,

ensuring both soundness and practical effectiveness (Section 6).

(5) Extensive Experiments. Extensive experiments across four diverse

benchmarks show that LEAD significantly outperforms state-of-the-

art methods, improving average model performance by 6.1%-10.8%

while using only 2.5% of the training data and reducing overall

training time by 5-10× (Section 7).

2 PRELIMINARY & PROBLEM FORMULATION

2.1 Data Selection for Instruction Tuning

Instruction tuning adapts a pretrained LLM M𝜃 to follow in-

structions by fine-tuning on instruction–response pairs (𝑥,𝑦) ∈ D:

min𝜃 E(𝑥,𝑦)∼D [𝐿(M𝜃 (𝑥), 𝑦)] , where 𝐿 is a task-specific loss func-

tion such as cross-entropy.

Static Data Selection for Instruction Tuning. Given a dataset

D, it selects a fixed subset D∗ ⊆ D under budget constraint 𝐵:

minD∗⊆D, |D∗ | ≤𝐵 E(𝑥,𝑦)∼Dtarget
[𝐿(M𝜃 (𝑥), 𝑦)] , where Dtarget de-

notes the target distribution. However, static methods cannot adap-

tively select samples based on the model’s evolving capabilities to

maximize learning effectiveness during training [2].

Iterative Data Selection for Instruction Tuning. Iterative data

selection interleaves model fine-tuning and data selection across

multiple iterations. Formally, given the model parameters 𝜃𝑡 at

iteration 𝑡 , we adaptively select a subset 𝑆𝑡 ⊆ D based on a utility

function 𝑓 (𝜃𝑡 , 𝑥), which estimates the expected contribution of

each sample 𝑥 to future model improvement (e.g., loss reduction).
The iterative selection problem can thus be formulated as:

max

{𝑆1,...,𝑆𝑇 }

𝑇∑︁
𝑡=1

∑︁
𝑥 ∈𝑆𝑡

𝑓𝑡 (𝜃𝑡 , 𝑥), s.t.

𝑇∑︁
𝑡=1

|𝑆𝑡 | ≤ 𝐵, (1)

where 𝐵 is the total sample selection budget allowed during training.

Existing methods typically estimate the utility 𝑓𝑡 (𝜃𝑡 , 𝑥) by per-

forming full-dataset inference at each iteration. Specifically, after

fine-tuning the model on selected samples 𝑆𝑡 , traditional methods

explicitly run inference on the entire dataset D using the updated

model parameters 𝜃𝑡 to compute utility scores:

𝑓𝑡 (𝜃𝑡 , 𝑥) = 𝑔(Infer(𝜃𝑡 , 𝑥)), ∀𝑥 ∈ D, (2)

where Infer(𝜃𝑡 , 𝑥) denotes inference (e.g., loss or uncertainty com-

putation) and 𝑔(·) maps inference results to utility values.

Consequently, the next subset 𝑆𝑡+1 is selected as:

𝑆𝑡+1 = arg max

𝑆𝑡 ⊆D, |𝑆𝑡 |≤𝑘

∑︁
𝑥 ∈D

𝑓𝑡 (𝜃𝑡 , 𝑥), s.t. |𝑆𝑡 | ≤ 𝑘, 𝑇 · 𝑘 ≤ 𝐵. (3)

Note that in iterative data selection, we typically assume a fixed

selection size 𝑘 per iteration, constrained by the total selection

budget 𝐵. Thus, the number of iterations 𝑇 and the selection size

per iteration 𝑘 satisfy the relation 𝑇 · 𝑘 ≤ 𝐵.

2.2 Problem Formulation

Definition 2.1 (Iterative Data Selection with Inference-Free
Utility Estimation). Given a total sample selection budget 𝐵, our

objective is to identify subsets {𝑆𝑡 }𝑇𝑡=1
that maximize the cumulative

estimated utility, where the utility function 𝑓𝑡 (𝜃𝑡−1, 𝑥) is computed
exclusively from training-time signals (e.g., training losses or logits)
without incurring additional inference overhead:

max

{𝑆1,...,𝑆𝑇 }

𝑇∑︁
𝑡=1

∑︁
𝑥 ∈𝑆𝑡

𝑓𝑡 (𝜃𝑡−1, 𝑥), s.t.

𝑇∑︁
𝑡=1

|𝑆𝑡 | ≤ 𝐵, (4)

Specifically, at each iteration 𝑡 , the utility estimation 𝑓𝑡 (𝜃𝑡−1, 𝑥)
utilizes the loss signal computed using model parameters 𝜃𝑡−1 imme-
diately after the forward propagation step, but before the backward
propagation (parameter update). Thus, no additional inference is re-
quired to estimate utilities for data selection at iteration 𝑡 .

Our goal, therefore, is to design accurate and stable inference-

free utility estimation methods. For simplicity, we use 𝑓𝑡 (𝜃𝑡−1, 𝑥)
and 𝑓 (𝜃𝑡−1, 𝑥) interchangeably when the context clearly refers to

data selection at iteration 𝑡 .

3 INSTANCE-LEVEL DYNAMIC

UNCERTAINTY UTILITY

Designing an effective inference-free utility function 𝑓 (𝜃𝑡−1, 𝑥)
requires addressing two fundamental challenges as discussed in

Section 1: (C1) the temporal mismatch between pre-update loss

signals and their actual post-update utility, and (C2) the instability

of instantaneous loss signals due to random fluctuations and noise.

To tackle these challenges, we first define a baseline utility func-

tion based on a loss-based uncertainty metric, and then introduce an

improved formulation, termed Instance-Level Dynamic Uncertainty
(IDU) utility function, which explicitly addresses these limitations.

Loss-based Uncertainty Estimation. Specifically, our approach

begins by formalizing Instance-level uncertainty through a loss-

based formulation. Formally, given an instruction-response pair

(𝑥,𝑦), we define the Instance-level Uncertainty (IU) [22] at training
iteration 𝑡 as the empirical cross-entropy between the model’s

current predictive distribution and the ground-truth response:

𝐼𝑈 (𝜃𝑡 , 𝑦 |𝑥) = 𝐿 (𝜃𝑡 , 𝑥) = − 1

𝑇

𝑇∑︁
𝑗=1

log𝑝𝜃𝑡 (𝑡
𝑦

𝑗
|𝑥, 𝑡𝑦

1
, . . . , 𝑡

𝑦

𝑗−1
), (5)

where 𝑇 is response length, 𝑡
𝑦

𝑗
refers to the 𝑗-th response token,

and 𝑝𝜃𝑡 the model’s token-level predictive probability distribution.

IU naturally corresponds to the training-time negative log-likelihood

loss, providing a direct and computationally free baseline. However,

IU alone cannot effectively handle challenges (C1) and (C2).

Instance-Level Dynamic Uncertainty. To explicitly mitigate

both temporal mismatch (C1) and instability (C2) of loss signals, we

introduce the Instance-Level Dynamic Uncertainty (IDU), which in-

corporates exponential smoothing of historical losses and gradient-

based approximation of loss changes. Formally, given subset 𝑆𝑡 at

iteration 𝑡 , IDU for sample 𝑥 is recursively defined as:

𝑓 (𝜃𝑡−1, 𝑥) = 𝐼𝐷𝑈 (𝜃𝑡−1, 𝑥)
= (1 − 𝑏) · [𝐿 (𝜃𝑡−1, 𝑥)︸ ︷︷ ︸

IU at 𝜃𝑡−1

+ Δ𝐿′ (𝜃𝑡 , 𝑥)︸ ︷︷ ︸
Utility Change

]

︸ ︷︷ ︸
Estimated Utility at 𝜃𝑡

+𝑏 · 𝐼𝐷𝑈 (𝜃𝑡−2, 𝑥)︸ ︷︷ ︸
Historical Utility

,

(6)

Full
Train Data

 Task
Embedding

 Task Cluster
Based on Similarity

Difficulty
Cluster (DC)

				Weight

				Reward

Train

Update bandit weight

 Coarse-level Cluster Selection

 Training

LLM

MAB

 Two-Stage Coarse-to-Fine Data Selection (Online)

Top-K

 Fine-Grained Sample Utility Estimation and Selection

					IDU	Score

 Dual-Level Data Clustering (Offline)
B1

A
B2

C

0.80.60.2
Easy Hard

B

 ΔIDU

Constraint:
Sample Budget

maximize

D Objective

Estimate
(, ,)

𝑒𝑥𝑝𝑙𝑜𝑖𝑡𝑎𝑡𝑖𝑜𝑛 𝑒𝑥𝑝𝑙𝑜𝑟𝑎𝑡𝑖𝑜𝑛

Full Training Data Utility LLM Fine-tuned LLMA set of selected samples Training loss Computation ClusteringA sample

Figure 3: An Overview of the LEAD Framework.

where𝑏 ∈ [0, 1) controls the balance between current and historical
signals, 𝐿(𝜃𝑡−1, 𝑥) is the IU computed using model parameters 𝜃𝑡−1,

and Δ𝐿′ (𝜃𝑡 , 𝑥) is an approximation of the expected utility change,

defined as: Δ𝐿′ (𝜃𝑡 , 𝑥) = 𝐿(𝜃𝑡 , 𝑥) − 𝐿(𝜃𝑡−1, 𝑥).
We have the following key clarifications regarding Eq. (6):

• The instantaneous loss 𝐿(𝜃𝑡−1, 𝑥) is computed naturally during

forward propagation at iteration 𝑡 , requiring no extra inference.

• The Δ𝐿′ (𝜃𝑡 , 𝑥) denotes the anticipated loss change from 𝜃𝑡−1 to

𝜃𝑡 . Importantly, this estimation leverages only readily available

gradient and historical loss information collected at iteration

𝑡 − 1, ensuring no extra inference is performed at iteration 𝑡 .

IDU effectively resolves both fundamental challenges through

two carefully designed components:

• Utility Change Estimation (Gradient-Based approxima-

tion). To address temporal mismatch (C1), IDU explicitly es-

timates the expected utility change (Δ𝐿′ (𝜃𝑡 , 𝑥)) between con-

secutive iterations. Instead of performing additional inference

passes with updated parameters (𝜃𝑡), we leverage gradient-based

approximations derived from backward propagation at iteration

𝑡 − 1 to estimate the loss at iteration 𝑡 .

• Historical Utility (Exponential Smoothing). To tackle insta-

bility (C2), IDU incorporates historical uncertainty signals using

an exponential smoothing mechanism. Rather than depending

solely on instantaneous IU values, IDU maintains an exponen-

tial moving average of previous utility estimates (𝐼𝐷𝑈 (𝜃𝑡−2, 𝑥)).
This significantly reduces fluctuations caused by random noise

and local minima encountered during training.

Wewill elaborate on the details of computing IDU and optimizing

the coefficient 𝑏 of the IDU utility function in Section 5.1.

4 LEAD: LEARNING-TO-SELECT DATA

ITERATIVELY

We first present an overview of LEAD (Section 4.1), followed by

the three key components enabling inference-free iterative data

selection (Section 4.2). Finally, we describe how these components

systematically interact during iterative training (Section 4.3).

4.1 LEAD Framework: An Overview

LEAD adopts a coarse-to-fine strategy. It first performs a one-time

dual-level data clustering to cluster data by difficulty and task simi-

larity. During training, an online selector combines a Multi-Armed

Bandit (MAB) scheduler with our IDU function, enabling model-

aware selection without repeated full-dataset inference.

Dual-Level Data Clustering (Offline). As shown in Figure 3-(A),

we first partition the dataset into clusters based on two dimensions:

instruction-following difficulty [37] and task similarity [39].

The goal is to align the training data with the model’s evolving

capability while maintaining task diversity. Concretely, at each

training iteration, we first select a difficulty-level cluster that best

matches the model’s current learning capacity. This ensures that

the model is always trained on samples of appropriate challenge,

facilitating stable and efficient learning progression. Within the

selected difficulty cluster, we further sample across different task

clusters proportionally. This allows the model to be exposed to a

diverse set of tasks at the same difficulty level, helping improve

generalization and prevent overfitting to narrow task types. This

dual-level clustering is conducted offline, incurring no additional

computational overhead during online training.

(1) Difficulty-aware Instance-level Clustering. To align training sam-

ples with the model’s current capability, we use the Instruction-

Following Difficulty (IFD) [37], a widely adopted metric [36, 43, 68]

for quantifying conditional complexity of instructions, to evaluate

instance-level difficulty. IFD evaluates instance-level difficulty by

comparing how challenging an instruction is for the model. Ad-

ditionally, PPL [36], a fundamental metric in language modeling,

quantifies how well a model predicts a sample, with lower perplex-

ity indicating a better and more confident prediction. The IFD score

leverages perplexity to assess the difficulty of instructions relative

to the model’s capacity. Formally, given an instruction-response

pair (𝑥,𝑦), the IFD is computed as: 𝐼𝐹𝐷 (𝑦 | 𝑥) = 𝑃𝑃𝐿 (𝑦 |𝑥)
𝑃𝑃𝐿 (𝑦) , where

𝑃𝑃𝐿(𝑦 | 𝑥) and 𝑃𝑃𝐿(𝑦) denote the perplexities of generating the

𝑦 with and without the 𝑥 , respectively. Using these IFD scores, we

group training samples into clusters through kmeans algorithm

and use the silhouette coefficient to determine the optimal number

of clusters 𝑘 .

(2) Similarity-based Task-level Clustering.Within each difficulty clus-

ter, we further conduct finer-grained clustering based on task simi-

larity to encourage the model to learn diverse task types of com-

parable difficulty, similar to how students study multiple subjects

within the same grade. Specifically, we extract task-specific em-

beddings from instructions by emphasizing task-defining terms

(e.g., key verbs and nouns), following the approach in [39]. We then

apply the 𝐾-means [52] to group instructions by task similarity.

Coarse-to-Fine Data Selection (Online). During the training, as

shown in Figure 3-(B), LEAD implements a coarse-to-fine selection

process designed to maximize utility and training effectiveness

under a given total sample budget.

(1) Coarse-Level Cluster Selection (via MAB). At each training iter-

ation 𝑡 , we first employ a Multi-Armed Bandit (MAB) algorithm

(specifically EXP3, detailed in Section 5.2) as a coarse-level sched-

uler to guide the exploration process. Its role is to dynamically

prioritize one difficulty-level cluster that is most beneficial to the

current model state. The MAB algorithm leverages a self-guided

IDU-based reward signal, directly measuring the reduction in IDU

scores derived from training on previously selected clusters, allow-

ing the model to adaptively focus on the most beneficial cluster for

the subsequent fine-grained selection.

(2) Fine-Grained Sample Selection (via IDU).After identifying the op-
timal difficulty-level cluster, we distribute the selection budget

across its finer-grained task clusters. Specifically, we select the most

informative samples from each task cluster based on their current

IDU values (see Section 5.1), thus ensuring efficient fine-grained

selection of training data at iteration 𝑡 .

These selected samples form the subset 𝑆𝑡 used to fine-tune

the model at iteration 𝑡 . After training, the model parameters are

updated from 𝜃𝑡−1 to 𝜃𝑡 , and the MAB rewards are updated accord-

ingly, ensuring the LEAD framework continuously improves its

data selection strategy.

4.2 LEAD Framework: Core Components

(1) Instance-Level Dynamic Uncertainty (IDU) Utility. To es-

timate sample utility efficiently without additional inference, we

introduce the Instance-Level Dynamic Uncertainty (IDU) metric.

IDU combines exponential smoothing of historical losses and a

gradient-based approximation of loss change, effectively addressing

the temporal instability and inference overhead challenges inherent

in traditional iterative selection methods (see Section 5.1).

(2) Adaptive Data Selection via MAB-Integrated Training

Scheduler. To integrate coarse and fine-grained selections seam-

lessly, we employ the EXP3 algorithm to dynamically balance ex-

ploration and exploitation among clusters. The MAB scheduler

dynamically prioritizes clusters demonstrating higher historical

utility gains, thus efficiently adapting to the model’s evolving learn-

ing capabilities (further described in Section 5.2).

(3) Self-Guided IDU-Based Reward. To guide the coarse-level

cluster selection via MAB, we propose a novel reward function

based on the reduction of IDU achieved by training on a given

ΔIDU(S1,θ1) S1(θ0→θ1)

S2(θ1→θ2)ΔIDU(S2,θ2)

Select S1 at θ0 Select S2 at θ1 Select S3 at θ2 ↓ Score decreaseSelect S1 at θ0 Select S2 at θ1 Select S3 at θ2 ↓ Score decreaseSelect S1 at θ0 Select S2 at θ1 Select S3 at θ2 ↓ Score decrease

↓ ↓ ↓ S3 S3 ↓ -θ2

↓ S2 S2 ↓ - S2 -θ1

S1 S1

x1 x2 x3 x4 x5 x6 x7
θ0

Figure 4: Iterative Sample Selection Guided by IDU Scores.

cluster without the need for external validation steps and additional

inference (Please refer to Section 5.3 for details).

4.3 Training Iteration Workflow of LEAD

The LEAD integrates iterative data selection with LLM instruction

tuning. Each training iteration 𝑡 within LEAD comprises four steps.

Step 1: Difficulty-Aware Cluster Selection. Select the optimal

coarse-level difficulty cluster 𝐶𝑖∗ via the MAB-EXP3 algorithm,

guided by the reward derived from previous training iterations,

reflecting the cluster’s historical effectiveness.

Step 2: Fine-Grained Sample Selection.Within the cluster 𝐶𝑖∗ ,

utilize the IDU function to select the top 𝑛𝑖∗ most informative

samples. These samples form the training subset 𝑆𝑡 . For example, in

Figure 4, at iteration 𝜃0, samples with the highest initial IDU scores

(labeled as 𝑆1) are chosen for training.

Step 3: LLM Instruction Tuning. The selected samples (𝑆𝑡) are

used to fine-tune the model parameters, transitioning from the

current parameters 𝜃𝑡−1 to the updated parameters 𝜃𝑡 .

Step 4: Reward and Utility Updates. After fine-tuning, trained

samples typically show decreased IDU scores, reflecting reduced

informativeness. This reduction serves as the training reward. As

shown in Figure 4, lowered IDU scores of previously selected sam-

ples (e.g., 𝑆1 at 𝜃0 and 𝑆2 at 𝜃1) prompt dynamic selection of new,

more informative samples for subsequent iterations (e.g., 𝑆2 to 𝑆3).

Finally, both IDU scores and the MAB weights are updated accord-

ingly, guiding the sample selection process in future iterations.

Through this structured workflow, LEAD continuously and adap-

tively selects the most beneficial samples at each training step.

5 THE DESIGN DETAILS OF LEAD

We first show how to optimize our IDU utility under a budget con-

straint (Section 5.1), followed by an adaptive data selection sched-

uler via MAB algorithms (Section 5.2), and finally, a self-guided

IDU-based reward for cluster evaluation (Section 5.3).

5.1 Instance-Level Dynamic Uncertainty

Optimization under the Budget Constraint

In Section 3, we introduced the 𝐼𝐷𝑈 utility (Eq. (6)) for estimating

sample utilities in iterative data selection. Note that our LEAD aims

to iteratively select subsets of samples with the highest cumulative

utility gain, defined as the expected reduction in average 𝐼𝐷𝑈 at

each iteration (Δ𝐼𝐷𝑈𝑡) under a total budget constraint 𝐵. Formally,

our optimization problem can be defined as follows.

Problem 1 (Budget-Constrained IDU Utility Optimization).

Given a total selection budget 𝐵, our goal is to maximize the cumula-
tive expected utility over 𝑇 training iterations:

max

𝑏,𝑇

𝑇∑︁
𝑡=1

E[Δ𝐼𝐷𝑈𝑡], s.t.
𝑇∑︁
𝑡=1

E[𝑛𝑡] ≤ 𝐵 (7)

where E[𝑛𝑡] = 𝛼 · (1 − 𝑏) · |𝐶 | · (1 + CV2) · (1 + O(𝛾)) (8)

Here, 𝑛𝑡 denotes the number of samples selected at iteration 𝑡 , 𝛼 is
the sampling ratio, 𝑏 ∈ [0, 1) is the smoothing parameter controlling
the influence of historical utility, |𝐶 | is the average cluster size, and
CV2 = 1

𝐾

∑𝐾
𝑖=1

(|𝐶𝑖 |− |𝐶 |)2

|𝐶 |2
quantifies variability among cluster sizes.

To solve this problem, we construct a Lagrangian function in-

corporating the budget constraint and apply the complementary

slackness condition to derive the optimal smoothing parameter 𝑏∗.
Specifically, the optimal smoothing coefficient 𝑏∗ that maximizes

cumulative utility gain under the budget constraint is given by:

𝑏∗ = 1 − 𝐵

𝛼 · |𝐶 | ·𝑇 · (1+CV2)
. The detailed derivation and theoretical

justification of 𝑏∗ are provided in Theorem 6.1 (Section 6).

In practice, to effectively implement the optimal solution to our

budget-constrained utility maximization problem, we first derive

the optimal smoothing coefficient 𝑏∗ from the theoretical analy-

sis above. However, to fully instantiate our IDU utility function,

we must also efficiently estimate the utility changes (Δ𝐿′ (𝜃𝑡 , 𝑆𝑡))
between consecutive training iterations, as this term directly con-

tributes to computing the cumulative utility gain Δ𝐼𝐷𝑈𝑡 . Directly
calculating these utility changes would typically require additional

inference steps, violating our zero-cost constraint.

To address this, we introduce the gradient-based approximation

of utility change, as discussed below.

Gradient-Based Approximation of Utility Change. Our ap-

proach efficiently utilizes gradient information computed during

standard model training, thus requiring no extra computational

resources beyond regular forward-backward propagation.

Formally, consider a subset of samples 𝑆𝑖 . When model parame-

ters are updated from 𝜃𝑡−1 to 𝜃𝑡 , the average uncertainty change

(utility change) Δ𝐿(𝜃𝑡 , 𝑆𝑖) can be approximated as follows:

Theorem 5.1 (Utility Change Approximation). For a given
sample subset 𝑆𝑖 , the utility change from parameter update 𝜃𝑡−1 to
𝜃𝑡 can be approximated as:

Δ𝐿′ (𝜃𝑡 , 𝑆𝑖) ≡
1

|𝑆𝑖 |
∑︁
𝑥∈𝑆𝑖

(𝐿(𝜃𝑡 , 𝑥) − 𝐿(𝜃𝑡−1, 𝑥))

≈ −𝜂
[
𝛽2𝛿𝑡𝑘 + (1 − 𝛽)2𝛿𝑡−1 + 2𝛽 (1 − 𝛽)

√︁
𝛿𝑡𝑘𝛿𝑡−1 cos𝜙

]
(9)

where 𝜂 is the learning rate, 𝛿𝑡𝑘 and 𝛿𝑡−1 denote historical gradient
norms, and 𝜙 is the angle between consecutive gradient directions,

given by: cos𝜙 =
Δ𝜃⊤𝑡𝑘

Δ𝜃𝑡−1

∥Δ𝜃𝑡𝑘 ∥ · ∥Δ𝜃𝑡−1 ∥ .

This approach ensures that our utility estimation remains effi-

cient, accurate, and fully integrated into standard model training

workflows. The complete derivation of this gradient-based approxi-

mation method is presented in Theorem 6.4 (Section 6).

While the above approximation method significantly enhances

efficiency, its accuracy critically depends on selecting an appro-

priate approximation coefficient 𝛽 . To further refine our method,

we analytically derive the optimal approximation weight 𝛽∗ that
minimizes approximation error.

Optimal Approximation Coefficient 𝛽∗. Formally, we define the

approximation error function as: 𝐽 (𝛽) = ∥Δ𝐿(𝜃𝑡 , 𝑆𝑖)−Δ𝐿′ (𝜃𝑡 , 𝑆𝑖)∥2
.

Minimizing this error function leads us to the theoretical 𝛽∗:

Theorem 5.2 (Optimal Weight 𝛽∗). The optimal approximation
weight 𝛽∗ minimizing the error function 𝐽 (𝛽) is given by:

𝛽∗ =
𝛿𝑡−1 −

√︁
𝛿𝑡𝑘𝛿𝑡−1 cos𝜙

𝛿𝑡𝑘 + 𝛿𝑡−1 − 2

√︁
𝛿𝑡𝑘𝛿𝑡−1 cos𝜙

. (10)

Detailed proofs and analyses regarding the derivation of this

optimal coefficient are provided in Theorem 6.4 (Section 6).

Finally, to rigorously evaluate the theoretical guarantees and

practical utility of our gradient-based approximation, we establish

a formal approximation error bound as follows.

Approximation Error Bound.We bound the approximation error

between the approximated loss 𝐿′ and the true loss 𝐿.

Theorem 5.3 (Approximation Error Bound). With the optimal
weight 𝛽∗, the error between the approximated loss 𝐿′ and the true
loss 𝐿 satisfies:

∥𝐿′ (𝜃𝑡 , 𝑥) − 𝐿(𝜃𝑡 , 𝑥)∥ ≤ 𝜖taylor + 𝜖approx ,
where:
• 𝐿′ (𝜃𝑖 , 𝑥) = 𝐿(𝜃𝑖−1, 𝑥) + Δ𝐿′ (𝜃𝑡 , 𝑆𝑡)
• 𝜖𝑡𝑎𝑦𝑙𝑜𝑟 = 1

2
𝜂2 · max𝜃 ∥∇2𝐿(𝜃, 𝑥)∥ · ∥∇𝐿(𝑆𝑖 , 𝜃𝑖−1)∥2 is the error

from Taylor expansion.
• 𝜖𝑎𝑝𝑝𝑟𝑜𝑥 = 𝜂 · ∥∇𝐿(𝑆𝑖 , 𝜃𝑖−1) − (𝛽∗ · ∇𝐿(𝑆𝑖𝑘 , 𝜃𝑖𝑘−1) + (1 − 𝛽∗) ·

∇𝐿(𝑆𝑖−1, 𝜃𝑖−2))∥2 is the error from gradient approximation.

5.2 Adaptive Data Selection via MAB-Integrated

Training Scheduler

In this section, we propose a novel training scheduler for the LEAD

framework that integrates the Multi-Armed Bandit (MAB) algo-

rithm with our IDU utility function. The scheduler adaptively se-

lects training data clusters based on their evolving informativeness.

Step 1: Difficulty-Aware Cluster Selection. Initially, we set the

weights𝑊 = {𝑤1,𝑤2,,𝑤𝐾 } for all clusters categorized by diffi-

culty level, where𝑤𝑖 denotes the weight of cluster 𝐶𝑖 and 𝐾 is the

number of clusters. To assess the difficulty score of each cluster, we

employ the EXP3 [3] algorithm for the cluster selection. Specifically,

for each iteration 𝑡 , we first calculate the cluster score 𝐷𝐶𝑡 (𝑖) of the
cluster 𝐶𝑖 based on the cluster weight𝑤𝑖 , and then select a cluster

(arm) 𝐷𝐶∗
𝑡 with the highest score 𝐷𝐶 . The 𝐷𝐶𝑡 (𝑖) can be computed

as:

𝐷𝐶𝑡 (𝑖) = (1 − 𝛾)
𝑤

(𝑡)
𝑖∑𝐾

𝑗=1
𝑤

(𝑡)
𝑗

+ 𝛾

𝐾
(11)

where 𝛾 controls the exploration-exploitation trade-off.

The selected cluster at iteration 𝑡 is the one with the highest

probability: 𝐶𝑖∗ = arg max𝑖∈[1,𝐾] 𝐷𝐶𝑡 (𝑖).
Step 2: Sample Selection with IDU. After selecting a cluster 𝐶𝑖
with the highest 𝐷𝐶 score, we apply our previously introduced

IDU utility function to sample the most informative subset 𝐵𝐶𝑖
within the selected cluster 𝐶𝑖 . Specifically, we select samples with

the highest IDU scores to maximize utility gain at each iteration.

Step 3: Model Training and Reward Computation. Using the

selected subset 𝐵𝐶𝑖 , we train the large language model during it-

eration 𝑡 . Once training is complete, we compute a reward 𝑟
(𝑡)
𝑖

to quantify the model’s improvement resulting from the selected

samples (Please refer to Section 5.3 for details).

Step 4: Cluster Weight Updates for Next Round Selection.

After obtaining the reward 𝑟
(𝑡)
𝑖

, we update the cluster weights

𝑤
(𝑡+1)
𝑖

according to EXP3 update rule:

𝑤
(𝑡+1)
𝑖

=

{
𝑤

(𝑡)
𝑖

exp

(
𝛾

𝐾
𝑟 (𝑡)
𝐷𝐶𝑡 (𝑖)

)
, 𝑖 = 𝑖𝑡

𝑤
(𝑡)
𝑖
, otherwise

(12)

This adaptive weight-update mechanism ensures clusters that

consistently yield high utility are progressively favored in subse-

quent iterations, achieving adaptive training data selection.

5.3 Self-Guided IDU-Based Reward

An effective reward function is critical to guiding effective clus-

ter selection within the MAB framework. Ideally, such a reward

should precisely capture each cluster’s direct contribution to model

improvement, while remaining computationally efficient and fully

integrated into the training process.

Hence, we propose a Self-Guided IDU-Based Reward, leveraging
our IDU utility to quantify each cluster’s contribution to model

improvement without additional inference overhead. Formally, the

reward for training on cluster 𝐶𝑖 at iteration 𝑡 is computed as:

𝑟
(𝑡)
𝑖

= 𝐼𝑛𝑓 𝑜𝐺𝑎𝑖𝑛 (𝐶𝑖 , 𝑡) = E𝑥𝑖 ∈𝐶𝑖 [𝐼𝐷𝑈 (𝜃𝑡−1, 𝑥𝑖) − 𝐼𝐷𝑈 (𝜃𝑡 , 𝑥𝑖)] , (13)

where 𝜃𝑡−1 and 𝜃𝑡 represent the model parameters before and after

training, respectively. To maintain numerical stability and consis-

tent scaling, rewards are further normalized to the range [−1, 1]
via min-max normalization.

Compared to traditional reward designs [9], our self-guided re-

ward integrates into the standard training loop, accurately reflects

dynamic model improvements at no additional inference cost, and

significantly simplifies the reward computation.

6 THEORETICAL GUARANTEES

In this section, we analyze the theoretical guarantees of our IDU

utility and the LEAD framework.

6.1 Optimal Smoothing Coefficient

We now analyze the optimal smoothing coefficient for the budget-

constrained IDU optimization (Problem 1, presented in Section 5.1).

Theorem 6.1 (Optimal Smoothing Coefficient). The opti-
mal smoothing coefficient 𝑏∗:

𝑏∗ = 1 − 𝐵

𝑛0𝑇 · (1 + CV2)
(14)

where 𝑛0 = 𝛼 · |𝐶 | is the expected batch size without smoothing and
heterogeneity effects.

Under a total budget 𝐵, we propose the optimization problem:

max

𝑏,𝑇

𝑇∑︁
𝑡=1

Δ𝐼𝐷𝑈𝑡 , s.t.

𝑇∑︁
𝑡=1

𝑛𝑡 ≤ 𝐵 (15)

𝑅 (𝑡) = Δ𝐼𝐷𝑈𝑡 = −(1 − 𝑏)𝜂𝑡 |𝑆𝑡 |Ψ𝑡 . (16)

The specific simplification process can be referred to as Lemma 6.2.

Step 1: Estimate sample size selected in the t-th round 𝑛𝑡 .

E[𝑛𝑡] can be simplified as follows (see Lemma 6.3 for details):

E[𝑛𝑡] = 𝛼 · (1 − 𝑏) ·
∑𝐾
𝑖=1

|𝐶𝑖 |2∑𝐾
𝑖=1

|𝐶𝑖 |
· (1 + O(𝛾)) (17)

Step 2: Estimate the expectation of utility gain Δ𝐼𝐷𝑈𝑡 . Accord-
ing to the Eq. (16) and Eq. (17), we can further obtain E[Δ𝐼𝐷𝑈𝑡].

𝑇∑︁
𝑡=1

E[Δ𝐼𝐷𝑈𝑡] = −𝑛0 · (1 − 𝑏)2 · (1 + CV
2) ·

𝑇∑︁
𝑡=1

𝜂𝑡𝛿𝑡 (18)

Step 3: Redefine objective and constrained condition.

max

𝑏,𝑇

𝑇∑︁
𝑡=1

E[Δ𝐼𝐷𝑈𝑡], s.t.

𝑇∑︁
𝑡=1

E[𝑛𝑡] ≤ 𝐵 (19)

where E[𝑛𝑡] = 𝛼 · (1 − 𝑏) · |𝐶 | · (1 + CV
2) · (1 + O(𝛾)) (20)

Let 𝜂𝛿 = 1

𝑇

∑𝑇
𝑡=1

𝜂𝑡𝛿𝑡 , The budget constraint becomes:

𝑇∑︁
𝑡=1

E[𝑛𝑡] =
𝑇∑︁
𝑡=1

𝑛0 · (1 − 𝑏) · (1 + CV
2) ≤ 𝐵 (21)

Step 4: Solving optimal 𝑏∗ and𝑇 ∗
.We formulate the Lagrangian:

L(𝑏, 𝜆) = E[Δ𝐼𝐷𝑈𝑡] − 𝜆(E[𝑛𝑡] − 𝐵) (22)

𝜕L
𝜕𝑏

= 0 ⇒ 2𝜂𝛿 · (1 − 𝑏) = 𝜆 (23)

We require 0 ≤ 𝑏∗ < 1, which implies:

𝑇min =

⌈
𝐵

𝑛0 · (1 + CV
2)

⌉
+ 1 (24)

Lemma 6.2 (Batch Utility Change Decomposition). The
utility change for batch 𝑆𝑡 under the smoothed utility function can
be expressed as:

Δ𝐼𝐷𝑈𝑡 =

{
−(1 − 𝑏)𝜂𝑡 |𝑆𝑡 |Ψ𝑡 + 𝑏 |𝑆𝑡 |𝛿𝑡−1 (1 − 𝑏𝑡−1), 𝑡 ≤ 5

−(1 − 𝑏)𝜂𝑡 |𝑆𝑡 |Ψ𝑡 , 𝑡 > 5

(25)

where Ψ𝑡 denotes the gradient alignment term:

Ψ𝑡 = 𝛽
2

𝑡𝛿𝑡𝑘 + (1 − 𝛽𝑡)2𝛿𝑡−1 + 2𝛽𝑡 (1 − 𝛽𝑡)
√︃
𝛿𝑡𝑘𝛿𝑡−1 cos𝜙𝑡 (26)

Proof. For any 𝑥 ∈ 𝑆𝑡 , Δ𝐼𝐷𝑈𝑡 (𝑥) can be decomposed as:

Δ𝐼𝐷𝑈𝑡 (𝑥) = (1 − 𝑏)Δ𝐿(𝜃𝑡 , 𝑥) + 𝑏 (1 − 𝑏)
𝑡−3∑︁
𝑘=0

𝑏𝑘Δ𝐿(𝜃𝑡−2−𝑘 , 𝑥)

+ (1 − 𝑏)𝑏𝑡−1𝐼𝐷𝑈 (𝜃0, 𝑥) (27)

When 𝑡 > 5, the exponential decay term𝑏𝑡−1
becomes negligible:

Δ𝐼𝐷𝑈𝑡 ≈ −(1 − 𝑏)𝜂𝑡 |𝑆𝑡 |Ψ𝑡 (28)

□

Lemma 6.3 (Expected Sample Size Under MAB mecha-

nism). In the MAB framework using EXP3 for cluster selection with
smoothed utility, the expected sample size per round E[𝑛𝑡] satisfies:

E[𝑛𝑡] = 𝛼 · (1 − 𝑏) · |𝐶 | · (1 + CV2) · (1 + O(𝛾)) (29)

where 𝛼 is the sampling rate, 𝑏 is the smoothing coefficient, |𝐶𝑖 | is the
size of cluster 𝑖 , and 𝛾 is the exploration rate in function 11.

Proof. The reward signal for selecting cluster 𝑖 at time 𝑡 is:

𝑅
(𝑡)
𝑖

= Δ𝐼𝐷𝑈𝑡 ∝ (1 − 𝑏) |𝐶𝑖 | (30)

From the weight update Eq. (11) and Eq. (12) in the MAB EXP3

algorithm. As the algorithm converges to steady state, the weights

stabilize such that:

𝑤
(𝑡)
𝑖∑𝐾

𝑗=1
𝑤

(𝑡)
𝑗

∝ exp

(
𝑡−1∑︁
𝜏=1

𝛾

𝐾

𝑅
(𝜏)
𝑖

𝑝
(𝜏)
𝑖

)
(31)

𝑝
(𝑡)
𝑖

≈ (1 − 𝛾) (1 − 𝑏) |𝐶𝑖 |∑𝐾
𝑗=1

(1 − 𝑏) |𝐶 𝑗 |
+ 𝛾

𝐾
≈ (1 − 𝑏) |𝐶𝑖 |∑𝐾

𝑗=1
|𝐶 𝑗 |

+ O(𝛾) (32)

The expected sample size in round 𝑡 is:

E[𝑛𝑡] = 𝛼
𝐾∑︁
𝑖=1

𝑝
(𝑡)
𝑖

|𝐶𝑖 | = 𝛼 (1 − 𝑏)
∑𝐾
𝑖=1

|𝐶𝑖 |2∑𝐾
𝑗=1

|𝐶 𝑗 |
+ O(𝛾) (33)

Since

∑𝐾
𝑖=1

|𝐶𝑖 | = 𝑁 (total dataset size), we can express this as:

E[𝑛𝑡] = 𝛼 · (1 − 𝑏) ·
∑𝐾
𝑖=1

|𝐶𝑖 |2∑𝐾
𝑖=1

|𝐶𝑖 |
· (1 + O(𝛾)) (34)

□

6.2 Loss Changes in Gradient-Based Approximation

Recap that we have introduced utility function Eq. (6) in Section 3,

In this section, we try to approximate the loss reduction Δ𝐿′ (𝜃𝑡 , 𝑥).

Theorem 6.4 (IU Change Approximation). For any sam-
ple set 𝑆𝑡 , the average uncertainty change Δ𝐿′ (𝜃𝑡 , 𝑆𝑡) when model
parameters update from 𝜃𝑡−1 to 𝜃𝑡 can be approximated as:

𝛿𝑡 ≡ Δ𝐿′ (𝜃𝑡 , 𝑆𝑡) (35)

= −𝜂
[
𝛽2𝛿𝑡𝑘 + (1 − 𝛽)2𝛿𝑡−1 + 2𝛽 (1 − 𝛽)

√︁
𝛿𝑡𝑘𝛿𝑡−1 cos𝜙

]
(36)

where 𝜙 is the angle between parameter update directions Δ𝜃𝑡𝑘 and

Δ𝜃𝑡−1, with cos𝜙 =
Δ𝜃⊤𝑡𝑘

Δ𝜃𝑡−1

∥Δ𝜃𝑡𝑘 ∥ ∥Δ𝜃𝑡−1 ∥ .

𝛽∗ =
𝛿𝑡−1 −

√︁
𝛿𝑡𝑘𝛿𝑡−1 cos𝜙

𝛿𝑡𝑘 + 𝛿𝑡−1 − 2

√︁
𝛿𝑡𝑘𝛿𝑡−1 cos𝜙

(37)

Step 1: Simplify the loss change.

𝐿 (𝜃𝑡 , 𝑥) ≈ 𝐿 (𝜃𝑡−1, 𝑥) + ∇𝐿 (𝜃𝑡−1, 𝑥)⊤ (𝜃𝑡 − 𝜃𝑡−1) (38)

Averaging over all samples in 𝑆𝑡 :

𝛿𝑡 = Δ𝐿′ (𝜃𝑡 , 𝑆𝑡) = −𝜂𝑡 ∥∇𝐿(𝜃𝑡−1, 𝑆𝑡)∥2
(39)

Step 2: Approximate the gradient.

∇𝐿′ (𝑆𝑡 , 𝜃𝑡−1) ≡ 𝛽 · ∇𝐿 (𝑆𝑡𝑘 , 𝜃𝑡𝑘 −1) + (1 − 𝛽) · ∇𝐿 (𝑆𝑡−1, 𝜃𝑡−2), (40)

where 𝑡𝑘 is the most recent step when 𝐶𝑘 was previously selected,

𝐶𝑘 is the cluster selected at step 𝑡 .

Step 3: Solving optimal 𝛽∗ to obtain final IU Change Approx-

imation Δ𝐿′ (𝜃𝑡 , 𝑆𝑡).
𝐽 (𝛽) = ∥∇𝐿𝑡 − (𝛽∇𝐿𝑡𝑘 + (1 − 𝛽)∇𝐿𝑡−1) ∥2

(41)

Setting
𝑑 𝐽

𝑑𝛽
= 0 yields the optimal coefficient:

𝛽∗ =
𝛿𝑡−1 −

√︁
𝛿𝑡𝑘𝛿𝑡−1 cos𝜙

𝛿𝑡𝑘 + 𝛿𝑡−1 − 2

√︁
𝛿𝑡𝑘𝛿𝑡−1 cos𝜙

. (42)

The loss change is then approximated as:

𝛿𝑡 = −𝜂
[
(𝛽∗)2 𝛿𝑡𝑘 + (1 − 𝛽∗)2 𝛿𝑡−1 + 2 𝛽∗ (1 − 𝛽∗)

√︁
𝛿𝑡𝑘𝛿𝑡−1 cos𝜙

]
.

(43)

7 EXPERIMENTS

7.1 Experimental Setup

Data Pool. To simulate realistic and diverse training scenarios,

we construct two large-scale and heterogeneous data pools corre-

sponding to different modalities.

(1) Text Data Pool comprises approximately 600,000 samples.

Our dataset integrates multiple well-established public sources,

including WizardLM (ShareGPT) [45], WizardLM (Alpaca) [45], Ul-

traChat [21], Standard Alpaca [61], unnatural [28], Alpaca code [13],

MATH [27], GSM8K [20]. We closely follow Tulu [64] to process

these datasets. All methods will select data from this pool for LLMs’

instruction tuning.

Benchmarks and Metrics.We evaluate our method on four repre-

sentative tasks aligned with the multi-task training pool but drawn

from distinct distributions, reflecting key LLM capabilities.

• Code Generation.We use HumanEval [16] to evaluate the code-
writing capabilities of LLMs. Performance is measured via the

widely adopted pass@1, pass@5 and pass@10 metric.

• Math Reasoning.We use GSM8k [20] to evaluate the mathemat-

ical abilities of models. We adopt an 8-shot setting and evaluate

performance using the exact match accuracy metric.

• Multi-task Knowledge and Reasoning. We evaluate on

MMLU [26], which consists of a range of multiple-choice academic

questions. We report accuracy as the metric.

• Cross-lingual Question Answering. To assess multilingual

understanding, we utilize the TYDIQA [19]. We report F1 scores
for passage selection and answer span extraction tasks.

Baselines.We study several existing state-of-the-art methods as

our baselines for data selection.

(1) Full Data: Train the model using the entire data pool.

(2) Random Selection [68]: Randomly selects training samples.

(3) Instruction-Following Difficulty (IFD) [37]: Selects samples based

on a complexity metric measuring instruction-following difficulty.

(4) Perplexity (PPL) [36]: Prioritizes uncertain samples with high

perplexity.

(5) K-Center-Greedy (KCG) [57]: Maximizes diversity by iteratively

choosing the sample farthest from the current selection.

(6) SelectIT [42]: Selects samples via uncertainty-aware self-reflection

during instruction tuning.

(7) Token Length (TL) [68]: Selects sampleswith the longest response.

(8) ZIP [71]: prompting a strong LLM to estimate and select samples

based on quality, relevance, and complexity scores.

(9) DiverseEvol [66]: Iteratively selects the most diverse samples

using a K-Center-based strategy to self-evolve model performance.

(10) MIG [17]: Selects samples by maximizing information gain in

semantic space using a label graph to balance quality and diversity.

ImplementationDetails of LEAD.We evaluate LEADusing three

foundational models (LLAMA-3.1-8B, Mistral-7B and Qwen2-7B)

and utilize Low-Rank Adaption (LoRA) [29] for parameter-efficient

fine-tuning. The maximum learning rate is set as 2 × 10
−5

with

a linear decay schedule, and the batch size is 8. We also fix the

maximum input sequence length to 3080. Models are trained for 4

epochs on 4 H800 GPUs. For the MAB setting, the number of arms

is set to 7. The maximum sampling budget of LEAD is 15𝐾 .

7.2 Exp-1: Overall Performance

We first evaluate LEAD and all baseline methods using the same

budget of 15𝐾 samples, corresponding to 2.5% of the data pool.

Table 1 summarizes the evaluation results across four bench-

marks and model architectures (LLaMA3.1-8B, Mistral-7B, and

Qwen2-7B). Overall, LEAD consistently outperforms state-of-the-

art baselines on most benchmarks, demonstrating its effectiveness.

(1) Consistent Effectiveness of LEAD across LLMs. LEAD consis-

tently improves performance across LLMs: on LLaMA3.1-8B it

reaches 66.62 (+6.31 over full data), with similar gains on Mistral-7B

(+10.75) and Qwen2-7B (+6.09), confirming its robustness across

architectures. Interestingly, we observe that perplexity-based selec-

tion performs well on GSM8K for stronger models like LLaMA3.1-

8B and Qwen2-7B, but degrades on Mistral. This is likely due to

its tendency to sample from uncertain regions of the data pool:

strong models may already be confident on general-domain tasks

and thus focus on math-relevant instructions, while weaker models

like Mistral exhibit uncertainty across all domains, leading to task

conflicts and catastrophic forgetting. LEAD avoids this issue by

balancing instruction difficulty and task diversity, resulting in more

stable gains across models.

(2) 2.5% of Data is All You Need. LEAD achieves these gains us-

ing only 2.5% of data, challenging the conventional assumption that

larger datasets produce superior results. Specifically, our method

outperforms full dataset training (Full Data baseline) across all

model and benchmark settings. For example, On TYDIQA, it im-

proves by 22.33, 29.15, and 12.63 points across the three models,

respectively, demonstrating that selected instruction samples can

lead to more effective learning.

(3) Outperforming State-of-the-art Baselines. LEADoutperforms

both static and iterative selection methods with consistent effective-

ness across models and benchmarks. While certain static methods

demonstrate competitive performance in isolated settings (e.g., Se-
lectIT on LLaMA3.1-8B and PPL on Qwen2-7B), their effectiveness

is often inconsistent across beckbones. Iterative methods generally

achieve more stable results, yet LEAD attains the highest average

performance. Although random sampling appears competitive in

some cases, it suffers from high performance variance across runs.

Figure 5: Inference time (Full Data) and training time (Se-

lected Data) per iteration across different methods.

In contrast, our approach maintains consistent high performance

across the benchmarks.

7.3 Exp-2: The Efficiency of LEAD

We evaluate the efficiency of LEAD compared to baseline methods

(PPL, KCG, IFD, SelectIT, and ZIP) across four benchmarks. Note

that we exclude Random and TL from this comparison, as these

methods incur minimal computational overhead and were shown to

perform significantly worse in Exp-1. We report the overall latency

of all methods with one round of selection iteration on average.

Exp-2.1: Performance vs. Latency. We compare performance

and inference latency (in 𝑙𝑜𝑔2 scale) across different methods. As

shown in Figure 8, LEAD (marked with a star) consistently achieves

the best performance-latency trade-off, occupying the upper-left

region of each plot. LEAD delivers a roughly 5× faster inference

time compared to baselines, while maintaining top performance on

benchmarks like TYDIQA, GSM8K, and HumanEval.

Exp-2.2: Analysis of Latency Composition. Figure 5 compares

latency components (inference and training) of different methods.

Inference time constitutes the computational bottleneck for tradi-

tional methods (e.g., IFD: 98.0 hours), due to repeated full-dataset

inference at each selection iteration. In contrast, LEAD requires

inference only once (10.3 hours) for initial selection, eliminating

subsequent inference overhead via inference-free IDU estimation.

7.4 Exp-3: Static vs. Iterative Data Selection

These experiments validate the necessity of iterative data selection.

Exp-3.1: Dynamics of Sample Utility over Training.We first

track the overlap of samples initially identified as valuable (iteration

0) with the top-𝑘 samples in later iterations (1, 4, 7, and 10). As

illustrated in Figure 6, the coverage rate for 𝑘=15,000 increases

initially (from 0.77 to 0.98 at iteration 4), but significantly declines

(to 0.67) in later iterations. These results underscore the dynamic

nature of sample utility and the necessity of adapting data selection

to the model’s evolving state.

Exp-3.2: Performance of Static and Iterative Selection. We

further compare the performance between one-round (static) and

iterative selection strategies (Table 2). Iterative LEAD (IU) con-

sistently surpasses One-round LEAD (IU), achieving an average

improvement of 1.17 points (64.33 vs. 63.16). This performance gap

confirms that iterative data selection is essential, as the utility of

training samples dynamically changes throughout model training.

Table 1: Comparison of performance across different benchmarks with static data selection methods and iterative methods.

indicates improvements over the second-best baseline.

Benchmark (Metric)

Static Data Selection Methods Iterative Methods

Full Data Random PPL TL IFD SelectIT ZIP MIG KCG DiverseEvol LEAD (Ours)

LLaMA3.1-8B

MMLU (Acc) 65.13 64.30 63.27 64.10 64.48 64.93 63.45 64.02 61.39 64.78 65.40

TYDIQA (F1) 50.94 40.91 41.89 46.47 55.66 61.33 45.41 49.93 43.12 48.84 63.24

GSM8K (EM) 56.63 54.80 56.32 54.28 43.52 54.89 57.32 53.76 51.73 53.96 60.88

HumanEval (Pass@10) 68.52 70.24 71.44 73.99 70.40 69.33 67.68 70.02 69.80 73.45 76.95

Average 56.41 55.09 49.95 56.80 56.10 57.86 54.84 55.86 53.74 57.04 61.69 (+3.83)

Mistral-7B

MMLU (Acc) 61.45 61.68 62.38 61.93 61.65 64.93 61.93 61.47 61.02 61.32 62.10

TYDIQA (F1) 49.63 38.02 52.72 39.88 41.41 36.79 42.04 40.02 39.79 42.19 67.17

GSM8K (EM) 40.56 33.51 22.82 37.76 31.77 35.86 41.17 35.71 33.89 34.46 45.26

HumanEval (Pass@10) 58.37 57.35 54.68 60.54 52.05 58.15 61.91 57.12 59.96 55.17 59.01

Average 47.04 43.34 43.87 46.46 43.34 45.60 47.67 45.01 45.14 43.99 51.73 (+4.06)

Qwen2-7B

MMLU (Acc) 70.54 69.85 70.70 70.52 70.03 70.32 70.54 70.26 70.64 70.36 70.19

TYDIQA (F1) 42.94 43.43 42.63 38.91 35.00 43.80 34.51 40.92 40.92 39.61 56.06

GSM8K (EM) 73.16 73.16 79.00 78.53 74.91 74.60 75.66 76.18 76.04 78.57 79.83

HumanEval (Pass@10) 82.56 79.51 78.44 80.79 81.94 78.14 83.91 78.81 78.81 79.73 84.22

Average 62.20 61.69 62.37 62.34 61.40 62.05 61.68 61.66 61.93 62.21 66.38 (+4.01)

Table 2: Comparison between IU and IDU. LEAD (IDU) refers

to LEAD using IDU as the utility function. One-round and

Iterative LEAD (IU) denote non-iterative and iterative vari-

ants of the IU approach.

Method

Benchmarks

Average

MMLU TYDIQA GSM8K HumanEval

LEAD (IDU) 65.40 63.24 60.88 76.95 66.62

One-round LEAD (IU) 63.92 59.13 57.47 72.13 63.16

Iterative LEAD (IU) 64.72 60.15 57.99 74.46 64.33

Figure 6: Coverage of Top-𝑘

samples between iter. 𝑡 and

iter. 0.

Figure 7: Avg performance by

varying training budgets.

7.5 Exp-4: Ablation Study of LEAD

Exp-4.1: Ablation Study on LEAD Components. To validate the

effectiveness of our proposed framework, we conduct an ablation

study on the LLaMA3.1-8B model and Qwen2-7B by systematically

removing individual modules of our LEAD framework.

As shown in Table 3, removing any module leads to a perfor-

mance drop: average metric decreases by 1.78 (MAB), 1.23 (TC),

and 3.27 (IDU). The IDU module has the most pronounced impact,

particularly on TYDIQA (-7.36), underscoring its role in identifying

Table 3: Ablation study of different modules on LLaMA3.1-8B

and Qwen2-7B.

Models

Module Benchmarks

Average

MAB TC IDU MMLU TYDIQA GSM8K HumanEval

LLaMA3.1-8B

✓ 64.83 59.84 54.81 72.13 62.90

✓ 62.71 61.31 51.48 74.25 62.44

✓ 64.13 61.47 57.92 74.93 64.61

✓ ✓ 65.10 55.88 57.99 74.41 63.35

✓ ✓ 64.70 66.46 55.95 74.46 65.39

✓ ✓ 65.30 64.29 56.40 73.38 64.84

✓ ✓ ✓ 65.40 63.24 60.88 76.95 66.62

Qwen2-7B

✓ 69.17 42.61 78.09 75.10 66.24

✓ 69.87 39.17 77.10 73.05 64.80

✓ 70.05 43.98 79.00 79.16 68.05

✓ ✓ 70.01 45.85 77.41 72.89 66.54

✓ ✓ 70.54 50.16 79.21 80.07 69.89

✓ ✓ 70.16 48.14 78.43 77.13 68.47

✓ ✓ ✓ 70.19 56.06 79.83 84.22 72.58

Table 4: Ablation study of LEAD framework.

Method Replace Strategy

Benchmarks

Average

MMLU TYDIQA GSM8K HumanEval

Reward

Function

IFD-MAB 65.29 65.31 51.02 72.13 63.44

PPL-MAB 65.52 67.17 51.71 72.11 64.13

IDU

Random 65.10 55.88 57.99 74.41 63.35

PPL 64.13 49.40 52.53 68.17 59.59

IU 64.72 60.15 57.99 74.46 63.56

IFD 64.92 54.98 51.86 70.71 60.62

MAB

Random 64.17 61.46 55.95 74.00 63.90

Easy2Hard 64.73 60.32 58.98 71.81 63.96

Hard2Easy 64.29 61.96 56.65 74.54 64.36

TC General-Purpose 64.82 62.14 56.28 74.25 64.37

Ours - 65.40 63.24 60.88 76.95 66.62

informative samples. Removing the TC module also degrades per-

formance across all benchmarks, confirming the value of semantic

clustering. The removal of the MAB module significantly affects

performance on the challenging GSM8K (-4.48), demonstrating its

role in balancing exploration and exploitation. For Qwen2-7B, the

same trend holds: removing IDU yields the largest drop (-4.52), fol-

lowed by MAB (-2.34) and TC (-1.92). Overall, the ablation study

highlights the effectiveness of each component within the LEAD

framework.

Exp-4.2: The Effectiveness of IDU Utility. To demonstrate the

effectiveness of IDU, we conducted comprehensive experiments

examining its performance from two perspectives.

First, to verify that IDU effectively smooths the instability issues

during iterative selection, we compared LEAD (IDU) against LEAD

(IU) on LLaMA3.1-8B. As shown in Table 2, LEAD (IDU) consis-

tently outperforms LEAD (IU) across benchmarks (+3.06%, 66.62

vs. 63.56), confirming its smoothing design effectively mitigates in-

stability. Second, to validate IDU’s superiority as a utility function,

we compared it against alternative utility metrics while keeping

other LEAD components intact. The results in Table 4 show that

replacing IDU with conventional metrics like PPL leads to dramatic

performance degradation (from 66.62 to 59.59). These findings high-

light IDU’s robustness as a reliable criterion for selecting high-value

samples across diverse tasks.

Exp-4.3: The Effectiveness of MAB Module. To assess the MAB

module’s contribution, we compare it against three baselines: (1)

Random-LEAD: random selection of difficulty-aware clusters per

iteration; (2) Easy2Hard-LEAD: iterative training from easy to hard

clusters based on difficulty scores; and (3) Hard2Easy-LEAD: itera-

tive training from hard to easy. For a fair comparison, all modules

except the training strategy remained consistent with the LEAD.

As shown in Table 4, ourMAB training schedule significantly out-

performs the other three strategies, confirming its effectiveness in

dynamically balancing exploration and exploitation. By adaptively

selecting difficulty-aware clusters, MAB enhances both overall per-

formance and generalizability. In contrast, Easy2Hard-LEAD yields

the low score (63.96), highlighting the limitations of traditional cur-

riculum learning in instruction tuning, as a fixed progression from

easy to hard can hinder learning dynamics and lead to premature

convergence. Hard2Easy-LEAD performs slightly better (64.36), yet

still underperforms compared to MAB, indicating that prioritizing

difficult clusters does not guarantee optimal results.

Exp-4.4: The Effectiveness of Reward Function. We assess the

effectiveness of our proposed IDU-based reward by comparing it

with two widely-used reward metrics: IFD [37] and PPL [36]. As

shown in Table 4, our IDU-based reward consistently achieves the

best overall performance (average 66.62), surpassing IFD (63.44)

and PPL (64.13). This demonstrates that directly measuring the

reduction in instance-level dynamic uncertainty provides more

effective guidance for cluster selection than traditional metrics.

Exp-4.5: The Effectiveness of Task-Specific Clustering. We

evaluate task-specific clustering via two ablations: (1) removing

the clustering module, and (2) replacing task-specific with general-

purpose embeddings.

The results presented in Table 3 and Table 4 show that module

removal causes greater degradation than embedding replacement,

underscoring its key role in organizing data by task relevance.While

general-purpose embeddings capture broad semantics, they fail to

represent task-specific nuances, yielding less effective clustering.

7.6 Exp-5: Effect of Sample Size on Performance

To examine the impact of data selection strategies on data budgets’

effectiveness, we conduct experiments using subsets with varying

budgets. As illustrated in Figure 7, LEAD consistently presents

higher average performance than alternative selection methods

across all data budgets, achieving peak performance with only 15K

samples. Even the second-best method with a 25K sample budget

still underperforms LEAD at 15K, highlighting the superior sample

efficiency and effectiveness of our approach. Notably, we observe a

non-linear performance curve: gains taper and eventually decline

beyond a certain data threshold, which reveals a crucial insight:

“alignment-suitable data” is inherently limited. This finding chal-

lenges the conventional wisdom that more data automatically yields

better results, underscoring the critical importance of strategic data

selection over mere quantity.

7.7 Exp-6: Parameter Sensitivity Analysis

Exp-6.1: Effect of Sampling Threshold 𝛼 . As shown in Figure 9,

performance peaks when 𝛼 is between 0.15 and 0.20, reaching a bal-

ance between iteration quantity and quality. Higher 𝛼 values yield

more samples per round but fewer iterations, limiting adaptability.

Lower values allow more iterations but provide weaker signals.

Exp-6.2: Effect of Smoothing Coefficient 𝑏 of IDU. Figure 10(a)

shows optimal performance at 𝑏=0.1, which effectively balances

stability and responsiveness. Smaller values (b < 0.1) overemphasize

current fluctuations, leading to noise susceptibility, whereas larger

values (b > 0.2) overweight historical signals, reducing adaptability.

Exp-6.3: Effect of Exploration Rate 𝛾 of MAB. Figure 10(b)

shows that our MAB algorithm achieves optimal performance

at moderate exploration rates (𝛾=0.05-0.07). Minimal exploration

(𝛾=0.01) limits discovery of new clusters, whereas excessive explo-

ration (𝛾=0.12) hinders focus on promising clusters.

Exp-6.4: Effect of Different Clustering Algorithm of LEAD.

We compared Agglomerative Clustering, DBSCAN, and K-Means.

The results in Figure 10 (c) show minimal differences (66.42–67.02),

suggesting that LEAD is not sensitive to the choice of clustering

algorithm and is robust across methods.

Exp-6.5: Effect of the Number of Clusters 𝑘 (MAB Arms). In

this experiment, we evaluate the impact of varying the number of

clusters (𝑘) on LEAD’s performance, where 𝑘 also represents the

number of arms in the MAB algorithm. The results presented in

Figure 10 (d) show that the performance fluctuates as 𝑘 changes.

The best average performance (67.02) is observed when 𝑘 = 7. As

𝑘 increases further, the performance begins to decline, with 𝑘 =

15 achieving the lowest average score of 60.03. This indicates that

a moderate number of clusters (arms) provides the best balance

between selection diversity and efficiency.

Figure 8: Comparison of Performance(𝑦-axis) and Latency(𝑥-axis) across six data selection methods.

Figure 9: Performance on sample ratios of each iteration.

Figure 10: Parameter sensitivity analysis.

8 RELATEDWORK

Data Selection for Instruction Tuning. Previous works on data

selection [10, 25, 67, 74] can be broadly categorized into two key

approaches: model-agnostic methods and model-aware methods.

Model-agnostic methods operate independently of the target

model, including rule-based approaches [5, 6, 30, 45, 54, 58, 76] that

are computationally efficient but lack semantic understanding. Ad-

vancedmodel-basedmethods [14, 15, 40] like GPT-4 [1] that provide

nuanced assessment at high computational cost, and proxy model-

based methods [36, 70] that balance efficiency and quality. However,

these methods cannot adapt to the specific learning characteristics

of the target model. Model-aware methods [5, 8, 9, 41, 46, 47, 73] ad-

dress this limitation by customizing selection based on the model’s

learning dynamics, though they introduce higher computational

costs through required model inference or fine-tuning. In contrast,

LEAD proposes a two-stage adaptive approach that efficiently com-

bines model-aware adaptiveness with zero computational overhead,

effectively addressing the challenge of balancing effectiveness and

efficiency in instruction tuning data selection.

Sample Utility Estimation. Sample utility scoring is central to

data selection, leveraging diverse metrics [8, 56, 65]. Perplexity-

based metrics [36, 53] prefer simple patterns, whereas diversity-

aware strategies [66, 72] broaden coverage but always hinge on

embedding quality. Quality-oriented metrics, such as influence

scoring [18, 23, 31, 67], external model [38] and gradient match-

ing [7, 8], are principled but gradient-expensive. Complexity-based

selection [37, 43] risks noisy samples, while uncertainty-driven

metrics [24, 42] suffer from loss landscape instability. Recent ad-

vances like Quad [73] enhance efficiency via MAB-driven utility

estimation, yet still depend on extra inference and lack difficulty-

aware adaptation. In contrast, we introduce IDU, an inference-free

utility function that achieves zero-cost estimation while preserving

selection effectiveness.

9 CONCLUSION

In this paper, we proposed LEAD, an iterative data selection frame-

work for LLMs instruction tuning. LEAD introduces an Instance-

Level Dynamic Uncertainty utility function, enabling accurate util-

ity estimation without extra inference. In addition, we developed a

coarse-to-fine selection approach guided by a multi-armed bandit

mechanism. Experiments show LEAD achieves 6.1%-10.8% perfor-

mance improvement using only 2.5% training data and reduces

training costs by 5-10×.

ACKNOWLEDGMENTS

This paper was supported by National Key R&D Program of China

(2024YFA1012700); the NSF of China (62402409); EUHorizon project

DataGEMS (101188416); Youth S&T Talent Support Programme of

Guangdong Provincial Association for Science and Technology

(SKXRC2025461); the Young Talent Support Project of Guangzhou

Association for Science and Technology (QT-2025-001); Guangzhou-

HKUST(GZ) Joint Funding Program (2025A03J3714); Guangzhou

Basic and Applied Basic Research Foundation (2025A04J3935); and

Guangdong Provincial Project (2023CX10X008).

REFERENCES

[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-

cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal

Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

[2] Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert,

Xinyi Wang, Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong,

et al. [n. d.]. A Survey on Data Selection for Language Models. Transactions on
Machine Learning Research ([n. d.]).

[3] Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The

nonstochastic multiarmed bandit problem. SIAM journal on computing 32, 1

(2002), 48–77.

[4] Alexander Bukharin, Shiyang Li, Zhengyang Wang, Jingfeng Yang, Bing Yin,

Xian Li, Chao Zhang, Tuo Zhao, and Haoming Jiang. 2024. Data Diversity Matters

for Robust Instruction Tuning. In Findings of the Association for Computational
Linguistics: EMNLP 2024. 3411–3425.

[5] Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. 2023. Instruction mining:

Instruction data selection for tuning large language models. arXiv preprint
arXiv:2307.06290 (2023).

[6] Chengliang Chai, Lei Cao, Guoliang Li, Jian Li, Yuyu Luo, and Samuel Madden.

2020. Human-in-the-loopOutlier Detection. In SIGMODConference. ACM, 19–33.

[7] Chengliang Chai, Kaisen Jin, Nan Tang, Ju Fan, Dongjing Miao, Jiayi Wang, Yuyu

Luo, Guoliang Li, Ye Yuan, and Guoren Wang. 2025. Cost-effective Missing Value

Imputation for Data-effective Machine Learning. ACM Transactions on Database
Systems 50, 3 (2025), 1–36.

[8] Chengliang Chai, Jiabin Liu, Nan Tang, Ju Fan, Dongjing Miao, Jiayi Wang, Yuyu

Luo, and Guoliang Li. 2023. Goodcore: Data-effective and data-efficient machine

learning through coreset selection over incomplete data. Proceedings of the ACM
on Management of Data 1, 2 (2023), 1–27.

[9] Chengliang Chai, Jiabin Liu, Nan Tang, Guoliang Li, and Yuyu Luo. 2022. Selec-

tive data acquisition in the wild for model charging. Proceedings of the VLDB
Endowment 15, 7 (2022), 1466–1478.

[10] Chengliang Chai, Nan Tang, Ju Fan, and Yuyu Luo. 2023. Demystifying Artificial

Intelligence for Data Preparation. In SIGMOD Conference Companion. ACM,

13–20.

[11] Chengliang Chai, Jiayi Wang, Yuyu Luo, Zeping Niu, and Guoliang Li. 2023. Data

Management for Machine Learning: A Survey. IEEE Trans. Knowl. Data Eng. 35,
5 (2023), 4646–4667.

[12] Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao

Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2024. A survey on

evaluation of large language models. ACM Transactions on Intelligent Systems
and Technology 15, 3 (2024), 1–45.

[13] Sahil Chaudhary. 2023. Code alpaca: An instruction-following llama model for

code generation.

[14] Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav,

Zheng Tang, Vijay Srinivasan, Tianyi Zhou, Heng Huang, et al. [n. d.]. AlpaGasus:

Training a Better Alpaca with Fewer Data. In The Twelfth International Conference
on Learning Representations.

[15] Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav,

Zheng Tang, Vijay Srinivasan, Tianyi Zhou, Heng Huang, et al. 2023. Alpagasus:

Training a better alpaca with fewer data. arXiv preprint arXiv:2307.08701 (2023).
[16] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde

De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,

Greg Brockman, et al. 2021. Evaluating large language models trained on code.

arXiv preprint arXiv:2107.03374 (2021).
[17] Yicheng Chen, Yining Li, Kai Hu, Zerun Ma, Haochen Ye, and Kai Chen. 2025.

Mig: Automatic data selection for instruction tuning by maximizing information

gain in semantic space. arXiv preprint arXiv:2504.13835 (2025).
[18] Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang,

Youngseog Chung, Adithya Pratapa, Willie Neiswanger, Emma Strubell, Teruko

Mitamura, et al. 2024. What is your data worth to gpt? llm-scale data valuation

with influence functions. arXiv preprint arXiv:2405.13954 (2024).
[19] Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski,

Vitaly Nikolaev, and Jennimaria Palomaki. 2020. TyDi QA: A Benchmark for

Information-Seeking Question Answering in Typologically Diverse Languages.

Transactions of the Association for Computational Linguistics 8 (2020), 454–470.
[20] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,

Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,

et al. 2021. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168 (2021).

[21] Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu,

Maosong Sun, and Bowen Zhou. 2023. Enhancing Chat Language Models by

Scaling High-quality Instructional Conversations. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing. 3029–3051.

[22] Everette S Gardner Jr. 1985. Exponential smoothing: The state of the art. Journal
of forecasting 4, 1 (1985), 1–28.

[23] Amirata Ghorbani and James Zou. 2019. Data shapley: Equitable valuation of

data for machine learning. In International conference on machine learning. PMLR,

2242–2251.

[24] Jindong Han, Hao Liu, Jun Fang, Naiqiang Tan, and Hui Xiong. [n. d.]. Automatic

Instruction Data Selection for Large Language Models via Uncertainty-Aware

Influence Maximization. In THE WEB CONFERENCE 2025.
[25] LIU Hanmo, DI Shimin, LI Haoyang, LI Shuangyin, CHEN Lei, and ZHOU Xi-

aofang. 2024. Effective Data Selection and Replay for Unsupervised Continual

Learning. In 2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 1449–1463.

[26] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn

Song, and Jacob Steinhardt. [n. d.]. Measuring Massive Multitask Language

Understanding. In International Conference on Learning Representations.
[27] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric

Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring mathematical problem

solving with the math dataset. arXiv preprint arXiv:2103.03874 (2021).
[28] Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. 2022. Unnatural

instructions: Tuning language models with (almost) no human labor. arXiv
preprint arXiv:2212.09689 (2022).

[29] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean

Wang, Lu Wang, Weizhu Chen, et al. 2022. Lora: Low-rank adaptation of large

language models. ICLR 1, 2 (2022), 3.

[30] Andreas Köpf, Yannic Kilcher, Dimitri Von Rütte, Sotiris Anagnostidis, Zhi Rui

Tam, Keith Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richárd

Nagyfi, et al. 2023. Openassistant conversations-democratizing large language

model alignment. Advances in Neural Information Processing Systems 36 (2023),
47669–47681.

[31] Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. [n. d.]. DataInf: Efficiently

Estimating Data Influence in LoRA-tuned LLMs and Diffusion Models. In The
Twelfth International Conference on Learning Representations.

[32] Boyan Li, Chong Chen, Zhujun Xue, Yinan Mei, and Yuyu Luo. 2025.

DeepEye-SQL: A Software-Engineering-Inspired Text-to-SQL Framework. CoRR
abs/2510.17586 (2025).

[33] Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. 2024. The

Dawn of Natural Language to SQL: Are We Fully Ready? [Experiment, Analysis

& Benchmark]. Proc. VLDB Endow. 17, 11 (2024), 3318–3331.
[34] Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu

Luo. 2025. Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search.

In ICML. OpenReview.net.
[35] Changlun Li, Chenyu Yang, Yuyu Luo, Ju Fan, and Nan Tang. 2025. Weak-to-

Strong Prompts with Lightweight-to-Powerful LLMs for High-Accuracy, Low-

Cost, and Explainable Data Transformation. Proc. VLDB Endow. 18, 8 (2025),

2371–2384.

[36] Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning

Cheng, and Tianyi Zhou. 2024. Superfiltering: Weak-to-Strong Data Filtering

for Fast Instruction-Tuning. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 14255–14273.

[37] Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, LichangChen, Ning Cheng, Jianzong

Wang, Tianyi Zhou, and Jing Xiao. 2024. From Quantity to Quality: Boosting

LLM Performance with Self-Guided Data Selection for Instruction Tuning. In

Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers). 7595–7628.

[38] Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng

Si, Ling-Hao Chen, Junhao Liu, Tongliang Liu, et al. 2024. One-Shot Learning as

Instruction Data Prospector for Large Language Models. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 4586–4601.

[39] Yiwei Li, Jiayi Shi, Shaoxiong Feng, Peiwen Yuan, Xinglin Wang, Boyuan Pan,

Heda Wang, and Yao Hu. 2024. Instruction Embedding: Latent Representations

of Instructions Towards Task Identification. Advances in Neural Information
Processing Systems 37 (2024), 87683–87711.

[40] W Lian et al. 2023. SlimOrca: An Open Dataset of GPT-4 Augmented FLAN

Reasoning Traces, with Verification.

[41] Jiabin Liu, Chengliang Chai, Yuyu Luo, Yin Lou, Jianhua Feng, and Nan Tang.

2022. Feature augmentation with reinforcement learning. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 3360–3372.

[42] Liangxin Liu, Xuebo Liu, Derek F Wong, Dongfang Li, Ziyi Wang, Baotian Hu,

and Min Zhang. 2024. Selectit: Selective instruction tuning for large language

models via uncertainty-aware self-reflection. arXiv preprint arXiv:2402.16705
(2024).

[43] Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. 2024. What

Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Se-

lection in Instruction Tuning. In The Twelfth International Conference on Learning
Representations. https://openreview.net/forum?id=BTKAeLqLMw

[44] Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju

Fan, Guoliang Li, Nan Tang, and Yuyu Luo. 2025. A Survey of Text-to-SQL in

the Era of LLMs: Where Are We, and Where Are We Going? IEEE Trans. Knowl.
Data Eng. 37, 10 (2025), 5735–5754.

https://openreview.net/forum?id=BTKAeLqLMw

[45] Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan,

Chang Zhou, and Jingren Zhou. [n. d.]. # InsTag: Instruction Tagging for Ana-

lyzing Supervised Fine-tuning of Large Language Models. In The Twelfth Inter-
national Conference on Learning Representations.

[46] Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and Guoliang Li. 2020. Inter-

active Cleaning for Progressive Visualization through Composite Questions. In

ICDE. IEEE, 733–744.
[47] Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and Guoliang Li. 2020. Vis-

Clean: Interactive Cleaning for Progressive Visualization. Proc. VLDB Endow. 13,
12 (2020), 2821–2824.

[48] Yuyu Luo, Guoliang Li, Ju Fan, Chengliang Chai, and Nan Tang. 2025. Natural

Language to SQL: State of the Art and Open Problems. Proc. VLDB Endow. 18, 12
(2025), 5466–5471.

[49] Yuyu Luo, Xuedi Qin, Chengliang Chai, Nan Tang, Guoliang Li, and Wenbo Li.

2022. Steerable Self-Driving Data Visualization. IEEE Trans. Knowl. Data Eng. 34,
1 (2022), 475–490.

[50] Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. DeepEye: Towards

Automatic Data Visualization. In ICDE. IEEE Computer Society, 101–112.

[51] Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin.

2021. Synthesizing Natural Language to Visualization (NL2VIS) Benchmarks

from NL2SQL Benchmarks. In SIGMOD Conference. ACM, 1235–1247.

[52] Yuyu Luo, Yihui Zhou, Nan Tang, Guoliang Li, Chengliang Chai, and Leixian

Shen. 2023. Learned Data-aware Image Representations of Line Charts for

Similarity Search. Proc. ACM Manag. Data 1, 1 (2023), 88:1–88:29.
[53] Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and

Sara Hooker. 2023. When less is more: Investigating data pruning for pretraining

llms at scale. arXiv preprint arXiv:2309.04564 (2023).
[54] Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui,

Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne

Longpre. 2023. Octopack: Instruction tuning code large language models. In

NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following.
[55] Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. 2020. Making data visualization

more efficient and effective: a survey. VLDB J. 29, 1 (2020), 93–117.
[56] Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu,

and Christopher Ré. 2017. Snorkel: Rapid training data creation with weak

supervision. In Proceedings of the VLDB endowment. International conference on
very large data bases, Vol. 11. 269.

[57] Ozan Sener and Silvio Savarese. 2018. Active Learning for Convolutional Neu-

ral Networks: A Core-Set Approach. In International Conference on Learning
Representations.

[58] Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson,

Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al.

2024. Dolma: an Open Corpus of Three Trillion Tokens for Language Model

Pretraining Research. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 15725–15788.

[59] Jielin Song, Siyu Liu, Bin Zhu, and Yanghui Rao. 2024. IterSelectTune: An

Iterative Training Framework for Efficient Instruction-Tuning Data Selection.

arXiv preprint arXiv:2410.13464 (2024).
[60] Wangtao Sun, Haotian Xu, Xuanqing Yu, Pei Chen, Shizhu He, Jun Zhao, and

Kang Liu. 2024. ItD: Large Language Models Can Teach Themselves Induction

through Deduction. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 2719–2731.

[61] Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos

Guestrin, Percy Liang, and Tatsunori B Hashimoto. 2023. Stanford alpaca: An

instruction-following llama model.

[62] Joannes Vermorel and Mehryar Mohri. 2005. Multi-armed bandit algorithms

and empirical evaluation. In European conference on machine learning. Springer,
437–448.

[63] Jiachen TianhaoWang, TongWu, Dawn Song, Prateek Mittal, and Ruoxi Jia. 2024.

GREATS: Online selection of high-quality data for llm training in every iteration.

Advances in Neural Information Processing Systems 37 (2024), 131197–131223.
[64] YizhongWang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi

Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al.

2023. How far can camels go? exploring the state of instruction tuning on

open resources. Advances in Neural Information Processing Systems 36 (2023),
74764–74786.

[65] YongWang, Kaiyu Li, Yuyu Luo, Guoliang Li, Yunyan Guo, and ZhuoWang. 2024.

Fast, Robust and Interpretable Participant Contribution Estimation for Federated

Learning. In 2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 2298–2311.

[66] Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin, Qi Su, and Chang Zhou.

2023. Self-evolved diverse data sampling for efficient instruction tuning. arXiv
preprint arXiv:2311.08182 (2023).

[67] Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi

Chen. 2024. Less: Selecting influential data for targeted instruction tuning. arXiv
preprint arXiv:2402.04333 (2024).

[68] Tingyu Xia, Bowen Yu, Kai Dang, An Yang, Yuan Wu, Yuan Tian, Yi Chang, and

Junyang Lin. 2024. Rethinking data selection at scale: Random selection is almost

all you need. arXiv preprint arXiv:2410.09335 (2024).
[69] Chenyu Yang, Yuyu Luo, Chuanxuan Cui, Ju Fan, Chengliang Chai, and Nan

Tang. 2025. Data Imputation with Limited Data Redundancy Using Data Lakes.

Proc. VLDB Endow. 18, 10 (2025), 3354–3367.
[70] Yu Yang, Siddhartha Mishra, Jeffrey Chiang, and Baharan Mirzasoleiman. 2024.

Smalltolarge (s2l): Scalable data selection for fine-tuning large language mod-

els by summarizing training trajectories of small models. Advances in Neural
Information Processing Systems 37 (2024), 83465–83496.

[71] Mingjia Yin, ChuhanWu, Yufei Wang, HaoWang, Wei Guo, YashengWang, Yong

Liu, Ruiming Tang, Defu Lian, and Enhong Chen. 2024. Entropy law: The story

behind data compression and llm performance. arXiv preprint arXiv:2407.06645
(2024).

[72] Simon Yu, Liangyu Chen, Sara Ahmadian, and Marzieh Fadaee. 2024. Diversify

and Conquer: Diversity-Centric Data Selection with Iterative Refinement. arXiv
preprint arXiv:2409.11378 (2024).

[73] Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang Chai, Rui Wang, Xinlin

Zhuang, Tianyi Bai, Jiantao Qiu, Lei Cao, Ju Fan, et al. 2024. Harnessing Diversity

for Important Data Selection in Pretraining Large Language Models. arXiv
preprint arXiv:2409.16986 (2024).

[74] Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao,

Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, et al. 2023. Lima: Less is more for

alignment. Advances in Neural Information Processing Systems 36 (2023), 55006–
55021.

[75] Yizhang Zhu, Liangwei Wang, Chenyu Yang, Xiaotian Lin, Boyan Li, Wei Zhou,

Xinyu Liu, Zhangyang Peng, Tianqi Luo, Yu Li, Chengliang Chai, Chong Chen,

Shimin Di, Ju Fan, Ji Sun, Nan Tang, Fugee Tsung, Jiannan Wang, Chenglin Wu,

Yanwei Xu, Shaolei Zhang, Yong Zhang, Xuanhe Zhou, Guoliang Li, and Yuyu

Luo. 2025. A Survey of Data Agents: Emerging Paradigm or Overstated Hype?

CoRR abs/2510.23587 (2025).

[76] Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppattarachai, Leandro von

Werra, Harm de Vries, Qian Liu, and Niklas Muennighoff. 2024. Astraios:

Parameter-efficient instruction tuning code large language models. arXiv preprint
arXiv:2401.00788 (2024).

	Abstract
	1 Introduction
	2 Preliminary & Problem Formulation
	2.1 Data Selection for Instruction Tuning
	2.2 Problem Formulation

	3 Instance-Level Dynamic Uncertainty Utility
	4 LEAD: LEArning-to-Select Data Iteratively
	4.1 LEAD Framework: An Overview
	4.2 LEAD Framework: Core Components
	4.3 Training Iteration Workflow of LEAD

	5 The Design Details of LEAD
	5.1 Instance-Level Dynamic Uncertainty Optimization under the Budget Constraint
	5.2 Adaptive Data Selection via MAB-Integrated Training Scheduler
	5.3 Self-Guided IDU-Based Reward

	6 Theoretical Guarantees
	6.1 Optimal Smoothing Coefficient
	6.2 Loss Changes in Gradient-Based Approximation

	7 Experiments
	7.1 Experimental Setup
	7.2 Exp-1: Overall Performance
	7.3 Exp-2: The Efficiency of LEAD
	7.4 Exp-3: Static vs. Iterative Data Selection
	7.5 Exp-4: Ablation Study of LEAD
	7.6 Exp-5: Effect of Sample Size on Performance
	7.7 Exp-6: Parameter Sensitivity Analysis

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

