LEAD: Iterative Data Selection for Efficient LLM Instruction
Tuning

Xiaotian Lin Yanlin Qi Yizhang Zhu Themis Palpanas
HKUST (GZ) Université Paris Cité HKUST (GZ) Université Paris Cité
xlin420@connect.hkust- yanlingi7 @gmail.com yzhu305@connect.hkust- themis@mi.parisdescartes.fr
gz.edu.cn gz.edu.cn
Chengliang Chai Nan Tang Yuyu Luo
BIT HKUST (GZ) HKUST (GZ)
ccl@bit.edu.cn nantang@hkust-gz.edu.cn yuyuluo@hkust-gz.edu.cn
ABSTRACT

Instruction tuning has emerged as a critical paradigm for improving
the capabilities and alignment of large language models (LLMs).
However, existing iterative model-aware data selection methods in-
cur significant computational overhead, as they rely on repeatedly
performing full-dataset model inference to estimate sample utility
for subsequent training iterations. In this paper, we propose LEAD,
a framework that LEArns to select Data iteratively by accurately
estimating sample utility entirely within the standard training loop,
eliminating the need for additional model inference. At its core,
LEAD introduces Instance-Level Dynamic Uncertainty (IDU), a
theoretically grounded utility function combining instantaneous
training loss, gradient-based approximation of loss changes, and
exponential smoothing of historical loss signals. To further scale
efficiently to large datasets, LEAD employs a two-stage, coarse-to-
fine selection strategy, adaptively prioritizing informative clusters
through a multi-armed bandit mechanism, followed by precise
fine-grained selection of high-utility samples using IDU. Exten-
sive experiments across four diverse benchmarks show that LEAD
significantly outperforms state-of-the-art methods, improving av-
erage model performance by 6.1%-10.8% while using only 2.5% of
the training data and reducing overall training time by 5-10x.

PVLDB Reference Format:

Xiaotian Lin, Yanlin Qi, Yizhang Zhu, Themis Palpanas, Chengliang Chai,
Nan Tang, and Yuyu Luo. LEAD: Iterative Data Selection for Efficient LLM
Instruction Tuning. PVLDB, 19(3): 426 - 439, 2025.
d0i:10.14778/3778092.3778103

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/HKUSTDial/LEAD.

1 INTRODUCTION

Instruction tuning improves large language models (LLMs) by
fine-tuning on instruction-response pairs [2, 12, 37, 60, 75], aligning

“Yuyu Luo is the corresponding author.

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 19, No. 3 ISSN 2150-8097.
doi:10.14778/3778092.3778103

5 Full Training Data (e.g. 10M) A set of selected samples (e.g. 1K)

g Predictions obtained from inference on the full dataset @ Time cost

r@% LLM fgﬁ Fine-tuned LLM Utility Training loss

Standard Model Training (Iteration: t) <
= g

St s _Forward Loss(Mevs)| Backward _£ {9;} M

Fc?% Me., _Propagation Propagation

Sample Utility Estimatio ®

EEstimate(@®,DS)~=| | Infer(f=}Mo., =Dy~
CIolele

(a) Ours: Estimation [¥]

Sample Selection based on Utility Scores
v v

=Se|ecti0n(§,T0pK) —_ St+1 For iteration t+1

Figure 1: Comparison of Iterative Model-Aware Solutions.
Here, S; denotes the selected training subset at iteration ¢,
and D; denotes the full training dataset.

them with user intents and task formats to improve their gener-
alization to diverse tasks such as data preparation [69], question
answering [32-35], and data analysis [44, 48-52]. Beyond scale,
data quality is the primary driver of gains [2, 74], motivating au-
tomatic selection of informative subsets using diversity or quality
metrics [4, 11, 55, 66, 72]. However, such metric-only approaches
ignore model feedback and cannot adapt to the model’s evolving
state. In response, model-aware selection leverages model-derived
signals, either in a single shot (non-iterative) or across multiple
rounds (iterative) [59, 63]. Non-iterative methods select data once
based on initial model predictions, but their effectiveness is limited
as they do not adapt to model evolution during training [37, 67, 68].

In contrast, iterative model-aware data selection methods follow
a three-step loop (Figure 1). Within each iteration ¢, the process
unfolds as follows: Starting with selected samples (S;) and model
(M;—1) previously obtained in last iteration ¢ — 1, fine-tunes
the model M;_; on S; to produce an updated model M;;
estimates sample utility across the dataset using newly obtained
model M; feedback (typically through full-dataset inference); and
selects the next subset S;41 based on these utilities. This
process repeats, with the newly created S;4+1 and M;41 serving as
inputs to iteration t + 1.

https://doi.org/10.14778/3778092.3778103
https://github.com/HKUSTDial/LEAD
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:info@vldb.org
https://doi.org/10.14778/3778092.3778103

As shown in Figure 1-(ITPR(), most existing iterative model-
aware methods rely on explicit model inference to assess the utility
of samples. Specifically, after each training iteration, these methods
perform inference on every sample in the training set to derive feed-
back signals (e.g., model uncertainty scores) for utility estimation.
For example, the IFD [37] requires approximately 98 GPU-hours to
select data from a pool of 600K samples in a single round.

This predicament leads to a natural research question: Can we
retain the benefits of iterative model-aware data selection without
repeatedly performing costly full-dataset inference?

In this work, we posit that the answer is yes. As shown in Fig-
ure 1-P. our key insight is that during standard training, the
model first conducts a forward propagation step using the current
mini-batch of samples, computes the per-sample losses based on its
predictions, and subsequently updates its parameters via backward
propagation. Crucially, this training process naturally produces a
per-sample loss for each training instance in the mini-batch. In-
tuitively, this loss indicates how challenging a sample is for the
model. If we can cleverly harness these inherent training signals across
the whole dataset, we could estimate the utility of each sample
without additional inference (inference-free) (see Figure 1-
ETEXB)). This idea - leveraging training-time loss signals to guide
data selection — offers the potential to eliminate the full-dataset
inference stage while still adapting to the model’s training state.
However, realizing this idea in practice is challenging.

First, although using training-time losses allows us to avoid
explicit inference, a subtle yet fundamental issue arises due to a
timing misalignment. Specifically, as shown in Figure 1-§iS9p, the
training loss observed at iteration ¢ reflects the model’s performance
before updating parameters (model state M,), whereas the utility
of selecting samples ideally should consider their usefulness after
the parameter update (i.e., Mg, at iteration ¢ + 1). This temporal
mismatch means that naively reusing pre-update loss signals may
not accurately reflect true sample utility after the next parameter
update. We term this issue as the temporal mismatch challenge (C1).

Second, raw loss signals can be noisy or unstable - they fluctuate
from one update to the next due to randomness (e.g., varying batch
composition) and the non-stationary nature of training, thus naively
trusting instantaneous loss values might lead to suboptimal choices.
This issue highlights the instability of loss signals challenge (C2).

Third, even if we eliminate separate inference steps, individually
estimating utility and selecting informative samples remains ineffi-
cient for large-scale datasets (e.g., containing millions of samples).
We denote this as the sample-level selection efficiency challenge (C3).

Our Methodology. We propose LEAD, a theoretically grounded
data selection framework that integrates the data selection process
into the model training loop and estimates sample utilities without
additional inference overhead (i.e., inference-free). To achieve this,
we first propose a sample utility estimation function called Instance-
Level Dynamic Uncertainty (IDU). IDU explicitly implements the
Estimate step depicted in Figure 1-(ISRE) by combining three
naturally available training signals: (1) the current training loss for
each sample, (2) gradient-based approximation, derived from gradi-
ent correlation approximations, to anticipate loss changes at the
next parameter update (addressing C1), and (3) historical loss trends
via exponential smoothing to reduce random noise and improve

@ Finetuning @Utility Estimation

Fine-Grained Sample
Utility Estimation and Selection

EE Selection

Coarse-level Cluster Selection
Clusters MAB

L=t o)
BGERN A

sss)b
[cee\l

B |1
Dy | M-

D, 7

= @I‘\ '%

Instance-level
Dynamic

Uncertainty e

...--....-..-..----..---,
/
1
'
\
RS
m*™
1

Figure 2: A High-level Overview of LEAD.

stability (addressing C2). Importantly, IDU is computed entirely us-
ing training-time signals naturally available during model updates
(losses and logits), thus incurring no additional inference overhead.
Finally, we derive the Lagrangian function and utilize complemen-
tary slackness conditions to determine the optimal parameters for
IDU rigorously. Guided by this theoretical foundation, our LEAD
framework employs a practical coarse-to-fine data selection strat-

egy (Figure 2).

Stage 1: Coarse-level Cluster Selection. Recall our third challenge
(C3) - efficient candidate selection at scale. To address this, we
first partition the dataset offline into clusters based on two widely-
used metrics: (1) instruction-following difficulty, measuring how
challenging each instruction is for the model [37], and (2) task-
level similarity, grouping semantically related instructions [39].
This clustering step is performed only once per dataset. During
training, LEAD employs a multi-armed bandit (MAB) algorithm [62]
to dynamically identify and prioritize clusters likely to yield higher
rewards — clusters containing samples with greater potential to
significantly enhance the model’s performance (addressing C3).

Stage 2: Fine-Grained Sample Utility Estimation and Selection.
Within each selected cluster, LEAD utilizes the IDU function to
estimate the utility of individual samples precisely. Specifically,
given the IDU scores computed based on the previously discussed
training signals (losses, historical trends, and gradient predictions),
LEAD prioritizes and selects samples with the highest IDU values.

Contributions. This paper makes the following contributions:

(1) Problem Formulation. We formally introduce the problem of Itera-
tive Data Selection with Inference-Free Utility Estimation, defining
a scenario where iterative model-aware selection is performed with-
out incurring additional inference overhead (Section 2).

(2) Instance-Level Dynamic Uncertainty (IDU). We propose a new
sample utility estimation function, IDU. It addresses the temporal
mismatch and instability of loss signals by combining current losses,
gradient-based approximation of loss changes, and exponential
smoothing of historical loss signals, all computed using naturally
available training signals without extra model inference (Section 3).

(3) LEAD Framework. We propose LEAD, a theoretically grounded
and efficient iterative data selection framework seamlessly inte-
grated into the standard model training process, eliminating re-
peated costly inference steps (Section 4 and Section 5).

(4) Theoretical Analysis. We rigorously ground our framework in
a Lagrangian optimization formulation, employing complemen-
tary slackness conditions and gradient correlation approximations
to derive theoretically optimal parameters for the IDU function,
ensuring both soundness and practical effectiveness (Section 6).

(5) Extensive Experiments. Extensive experiments across four diverse
benchmarks show that LEAD significantly outperforms state-of-the-
art methods, improving average model performance by 6.1%-10.8%
while using only 2.5% of the training data and reducing overall
training time by 5-10x (Section 7).

2 PRELIMINARY & PROBLEM FORMULATION
2.1 Data Selection for Instruction Tuning

Instruction tuning adapts a pretrained LLM My to follow in-
structions by fine-tuning on instruction-response pairs (x,y) € D:
ming By)~ [L(Mg(x),y)], where L is a task-specific loss func-
tion such as cross-entropy.

Static Data Selection for Instruction Tuning. Given a dataset
D, it selects a fixed subset D* C D under budget constraint B:
mingp«c p, | p*|<B E(xay)"‘Dtarget [L(Mg(x),y)], where Diarget de-
notes the target distribution. However, static methods cannot adap-
tively select samples based on the model’s evolving capabilities to
maximize learning effectiveness during training [2].

Iterative Data Selection for Instruction Tuning, Iterative data
selection interleaves model fine-tuning and data selection across
multiple iterations. Formally, given the model parameters ; at
iteration t, we adaptively select a subset S; C D based on a utility
function f(6;, x), which estimates the expected contribution of
each sample x to future model improvement (e.g., loss reduction).
The iterative selection problem can thus be formulated as:

T T
max Z Z fi(6r,%), st Z IS¢| < B, (1)
{S1.-..51} =

""" t=1 xeS;

where B is the total sample selection budget allowed during training.

Existing methods typically estimate the utility f;(6;, x) by per-
forming full-dataset inference at each iteration. Specifically, after
fine-tuning the model on selected samples S;, traditional methods
explicitly run inference on the entire dataset O using the updated
model parameters 6; to compute utility scores:

f:(6:,x) = g(Infer(0;, x)), Vx € D, 2)

where Infer(6;, x) denotes inference (e.g., loss or uncertainty com-
putation) and g(-) maps inference results to utility values.

Consequently, the next subset S;11 is selected as:

St+1 = argmax Z ft(0r,x), st |Si/ <k, T-k<B. (3)
StCD, \53|Skxez)

Note that in iterative data selection, we typically assume a fixed
selection size k per iteration, constrained by the total selection
budget B. Thus, the number of iterations T and the selection size
per iteration k satisfy the relation T - k < B.

2.2 Problem Formulation

Definition 2.1 (Iterative Data Selection with Inference-Free
Utility Estimation). Given a total sample selection budget B, our

objective is to identify subsets {St}thl that maximize the cumulative
estimated utility, where the utility function f;(0;—1,x) is computed
exclusively from training-time signals (e.g., training losses or logits)
without incurring additional inference overhead:

T T
mas D3 filbenx), st YISISB @
(8157} t=1

""" t=1 xeSy
Specifically, at each iteration t, the utility estimation f;(6;—1,x)
utilizes the loss signal computed using model parameters 0;_1 imme-
diately after the forward propagation step, but before the backward
propagation (parameter update). Thus, no additional inference is re-
quired to estimate utilities for data selection at iteration t.

Our goal, therefore, is to design accurate and stable inference-
free utility estimation methods. For simplicity, we use f; (6;—1, x)
and f(0;-1, x) interchangeably when the context clearly refers to
data selection at iteration ¢.

3 INSTANCE-LEVEL DYNAMIC
UNCERTAINTY UTILITY

Designing an effective inference-free utility function f(6;-1,x)
requires addressing two fundamental challenges as discussed in
Section 1: (C1) the temporal mismatch between pre-update loss
signals and their actual post-update utility, and (C2) the instability
of instantaneous loss signals due to random fluctuations and noise.

To tackle these challenges, we first define a baseline utility func-
tion based on a loss-based uncertainty metric, and then introduce an
improved formulation, termed Instance-Level Dynamic Uncertainty
(IDU) utility function, which explicitly addresses these limitations.

Loss-based Uncertainty Estimation. Specifically, our approach
begins by formalizing Instance-level uncertainty through a loss-
based formulation. Formally, given an instruction-response pair
(x,y), we define the Instance-level Uncertainty (IU) [22] at training
iteration t as the empirical cross-entropy between the model’s
current predictive distribution and the ground-truth response:

T
1
IU (0, ylx) = L(0r,x) = = 3 log po, (1 Ix. 1.t). (5)
j=1

where T is response length, tjy refers to the j-th response token,
and pg, the model’s token-level predictive probability distribution.

IU naturally corresponds to the training-time negative log-likelihood

loss, providing a direct and computationally free baseline. However,
IU alone cannot effectively handle challenges (C1) and (C2).

Instance-Level Dynamic Uncertainty. To explicitly mitigate
both temporal mismatch (C1) and instability (C2) of loss signals, we
introduce the Instance-Level Dynamic Uncertainty (IDU), which in-
corporates exponential smoothing of historical losses and gradient-
based approximation of loss changes. Formally, given subset S; at
iteration ¢, IDU for sample x is recursively defined as:

f(0t-1,x) =IDU (6;-1,x)
= (1-b) - [L(Os_1,%) + AL’ (0, %) | +b - IDU (6,5, x)

—_— —— —— —_—
IU at 6,4 Utility Change Historical Utility

Estimated Utility at 6,

(©)

g Full Training Data [E A set of selected samples @A sample Utility Training loss Computation Clustering F;'} LLM {');‘1 Fine-tuned LLM

@ ------------moommoe- m Two-Stage Coarse-to-Fine Data Selection (Online) -----=----ccccceccaaa- 00------ Training ----- E
e e s S\ i i
WEgGitation exploraiiaill O ; '_Update bandit weight i
, o i e : w — ¥ exp < ~R®) i
f N “e d] | i = Wi © |
: ® ; i oy £ i | i Kp;") |
L DC() = (1~) + & = ® Es""‘ite > g vieieht !
'm Ly, i i (®.3.2) f
! ; ' i !
> | Ry =Eqeq, [IDU(B,1,2:) |
m Coarse-level Cluster Selection Fine-Grained Sample Utility Estimation and Selection i — IDU(6y, ;)] |
@ --------------oooe Dual-Level Data Clustering (Offline) -----==========-= -QQ———E Objective---@ | * e Rewal i]
02 06 08 B =% — :
[)] P Constraint: L
%) Difficult d 5 Bt
] Ciulsctlé")EDC) 2 ETask B &2 Task Cluster Slample.Bu.dget "
-_— ——> A - i
Full == Embedding = I Similarity y maximize Train
u
Train Data X AIDU fxui LLM

Figure 3: An Overview of the LEAD Framework.

where b € [0, 1) controls the balance between current and historical
signals, L(6;—1, x) is the IU computed using model parameters 6;_1,
and AL’(6;, x) is an approximation of the expected utility change,
defined as: AL’ (6;,x) = L(0¢, x) — L(0;-1, x).
We have the following key clarifications regarding Eq. (6):
o The instantaneous loss L(6;—1, x) is computed naturally during
forward propagation at iteration ¢, requiring no extra inference.
e The AL’(6;,x) denotes the anticipated loss change from 0;_; to
0;. Importantly, this estimation leverages only readily available
gradient and historical loss information collected at iteration
t — 1, ensuring no extra inference is performed at iteration t.

IDU effectively resolves both fundamental challenges through
two carefully designed components:

e Utility Change Estimation (Gradient-Based approxima-
tion). To address temporal mismatch (C1), IDU explicitly es-
timates the expected utility change (AL’ (6;, x)) between con-
secutive iterations. Instead of performing additional inference
passes with updated parameters (6;), we leverage gradient-based
approximations derived from backward propagation at iteration
t — 1 to estimate the loss at iteration ¢.

Historical Utility (Exponential Smoothing). To tackle insta-
bility (C2), IDU incorporates historical uncertainty signals using
an exponential smoothing mechanism. Rather than depending
solely on instantaneous IU values, IDU maintains an exponen-
tial moving average of previous utility estimates (IDU (6; -2, x)).
This significantly reduces fluctuations caused by random noise
and local minima encountered during training.

We will elaborate on the details of computing IDU and optimizing
the coefficient b of the IDU utility function in Section 5.1.

4 LEAD: LEARNING-TO-SELECT DATA
ITERATIVELY

We first present an overview of LEAD (Section 4.1), followed by
the three key components enabling inference-free iterative data
selection (Section 4.2). Finally, we describe how these components
systematically interact during iterative training (Section 4.3).

4.1 LEAD Framework: An Overview

LEAD adopts a coarse-to-fine strategy. It first performs a one-time
dual-level data clustering to cluster data by difficulty and task simi-
larity. During training, an online selector combines a Multi-Armed
Bandit (MAB) scheduler with our IDU function, enabling model-
aware selection without repeated full-dataset inference.

Dual-Level Data Clustering (Offline). As shown in Figure 3-(A),
we first partition the dataset into clusters based on two dimensions:
instruction-following difficulty [37] and task similarity [39].

The goal is to align the training data with the model’s evolving
capability while maintaining task diversity. Concretely, at each
training iteration, we first select a difficulty-level cluster that best
matches the model’s current learning capacity. This ensures that
the model is always trained on samples of appropriate challenge,
facilitating stable and efficient learning progression. Within the
selected difficulty cluster, we further sample across different task
clusters proportionally. This allows the model to be exposed to a
diverse set of tasks at the same difficulty level, helping improve
generalization and prevent overfitting to narrow task types. This
dual-level clustering is conducted offline, incurring no additional
computational overhead during online training.

(1) Difficulty-aware Instance-level Clustering. To align training sam-

ples with the model’s current capability, we use the Instruction-
Following Difficulty (IFD) [37], a widely adopted metric [36, 43, 68]
for quantifying conditional complexity of instructions, to evaluate
instance-level difficulty. IFD evaluates instance-level difficulty by
comparing how challenging an instruction is for the model. Ad-
ditionally, PPL [36], a fundamental metric in language modeling,
quantifies how well a model predicts a sample, with lower perplex-
ity indicating a better and more confident prediction. The IFD score
leverages perplexity to assess the difficulty of instructions relative

to the model’s capacity. Formally, given an instruction-response
PPL(yl|x)
PPL(y)
PPL(y | x) and PPL(y) denote the perplexities of generating the
y with and without the x, respectively. Using these IFD scores, we

group training samples into clusters through kmeans algorithm

pair (x,y), the IFD is computed as: IFD(y | x) = , where

and use the silhouette coefficient to determine the optimal number
of clusters k.

(2) Similarity-based Task-level Clustering. Within each difficulty clus-
ter, we further conduct finer-grained clustering based on task simi-
larity to encourage the model to learn diverse task types of com-
parable difficulty, similar to how students study multiple subjects
within the same grade. Specifically, we extract task-specific em-
beddings from instructions by emphasizing task-defining terms
(e.g., key verbs and nouns), following the approach in [39]. We then
apply the K-means [52] to group instructions by task similarity.

Coarse-to-Fine Data Selection (Online). During the training, as
shown in Figure 3-(B), LEAD implements a coarse-to-fine selection
process designed to maximize utility and training effectiveness
under a given total sample budget.

(1) Coarse-Level Cluster Selection (via MAB). At each training iter-
ation t, we first employ a Multi-Armed Bandit (MAB) algorithm
(specifically EXP3, detailed in Section 5.2) as a coarse-level sched-
uler to guide the exploration process. Its role is to dynamically
prioritize one difficulty-level cluster that is most beneficial to the
current model state. The MAB algorithm leverages a self-guided
IDU-based reward signal, directly measuring the reduction in IDU
scores derived from training on previously selected clusters, allow-
ing the model to adaptively focus on the most beneficial cluster for
the subsequent fine-grained selection.

(2) Fine-Grained Sample Selection (via IDU). After identifying the op-
timal difficulty-level cluster, we distribute the selection budget
across its finer-grained task clusters. Specifically, we select the most
informative samples from each task cluster based on their current
IDU values (see Section 5.1), thus ensuring efficient fine-grained
selection of training data at iteration t.

These selected samples form the subset S; used to fine-tune
the model at iteration ¢. After training, the model parameters are
updated from 6;_1 to 6;, and the MAB rewards are updated accord-
ingly, ensuring the LEAD framework continuously improves its
data selection strategy.

4.2 LEAD Framework: Core Components

(1) Instance-Level Dynamic Uncertainty (IDU) Utility. To es-
timate sample utility efficiently without additional inference, we
introduce the Instance-Level Dynamic Uncertainty (IDU) metric.
IDU combines exponential smoothing of historical losses and a
gradient-based approximation of loss change, effectively addressing
the temporal instability and inference overhead challenges inherent
in traditional iterative selection methods (see Section 5.1).

(2) Adaptive Data Selection via MAB-Integrated Training
Scheduler. To integrate coarse and fine-grained selections seam-
lessly, we employ the EXP3 algorithm to dynamically balance ex-
ploration and exploitation among clusters. The MAB scheduler
dynamically prioritizes clusters demonstrating higher historical
utility gains, thus efficiently adapting to the model’s evolving learn-
ing capabilities (further described in Section 5.2).

(3) Self-Guided IDU-Based Reward. To guide the coarse-level
cluster selection via MAB, we propose a novel reward function
based on the reduction of IDU achieved by training on a given

6 SO CICOGC IO
AIDUGS1.0) Si(0—0))

6 () W6)

AIDU(S,,0,) Sa(6,—6,)

0.) () O] G)] ()

DSeIect S at 6, DSeIect S, at 6, DSeIect S; at 6, Score decrease |

Figure 4: Iterative Sample Selection Guided by IDU Scores.

cluster without the need for external validation steps and additional
inference (Please refer to Section 5.3 for details).

4.3 Training Iteration Workflow of LEAD

The LEAD integrates iterative data selection with LLM instruction
tuning. Each training iteration t within LEAD comprises four steps.

Step 1: Difficulty-Aware Cluster Selection. Select the optimal
coarse-level difficulty cluster C; via the MAB-EXP3 algorithm,
guided by the reward derived from previous training iterations,
reflecting the cluster’s historical effectiveness.

Step 2: Fine-Grained Sample Selection. Within the cluster C;-,
utilize the IDU function to select the top n; most informative
samples. These samples form the training subset S;. For example, in
Figure 4, at iteration 6y, samples with the highest initial IDU scores
(labeled as S7) are chosen for training.

Step 3: LLM Instruction Tuning. The selected samples (S;) are
used to fine-tune the model parameters, transitioning from the
current parameters 6;_1 to the updated parameters 6;.

Step 4: Reward and Utility Updates. After fine-tuning, trained
samples typically show decreased IDU scores, reflecting reduced
informativeness. This reduction serves as the training reward. As
shown in Figure 4, lowered IDU scores of previously selected sam-
ples (e.g., S1 at 6y and Sy at 01) prompt dynamic selection of new,
more informative samples for subsequent iterations (e.g., Sz to S3).
Finally, both IDU scores and the MAB weights are updated accord-
ingly, guiding the sample selection process in future iterations.
Through this structured workflow, LEAD continuously and adap-
tively selects the most beneficial samples at each training step.

5 THE DESIGN DETAILS OF LEAD

We first show how to optimize our IDU utility under a budget con-
straint (Section 5.1), followed by an adaptive data selection sched-
uler via MAB algorithms (Section 5.2), and finally, a self-guided
IDU-based reward for cluster evaluation (Section 5.3).

5.1 Instance-Level Dynamic Uncertainty
Optimization under the Budget Constraint

In Section 3, we introduced the IDU utility (Eq. (6)) for estimating
sample utilities in iterative data selection. Note that our LEAD aims
to iteratively select subsets of samples with the highest cumulative
utility gain, defined as the expected reduction in average IDU at
each iteration (AIDU;) under a total budget constraint B. Formally,
our optimization problem can be defined as follows.

PROBLEM 1 (BUDGET-CONSTRAINED IDU UTILITY OPTIMIZATION).
Given a total selection budget B, our goal is to maximize the cumula-
tive expected utility over T training iterations:

T T
IgaTxZE[AIDUt], s.t.ZE[nt] <B @)
’ t=1 t=1

where E[n;]=a-(1-b)-[C|- (1+CV?) - (1+0(y)) (8)

Here, n; denotes the number of samples selected at iteration t, a is
the sampling ratio, b € [0,1) is the smoothing parameter controlling
the influence of historical utility, |C| is the average cluster size, and

CV2 = % Zf:l % quantifies variability among cluster sizes.
To solve this problem, we construct a Lagrangian function in-
corporating the budget constraint and apply the complementary
slackness condition to derive the optimal smoothing parameter b*.
Specifically, the optimal smoothing coefficient b* that maximizes
cumulative utility gain under the budget constraint is given by:
% B
br=1- «-|C|-T-(1+CV2)
justification of b* are provided in Theorem 6.1 (Section 6).

In practice, to effectively implement the optimal solution to our
budget-constrained utility maximization problem, we first derive
the optimal smoothing coefficient b* from the theoretical analy-
sis above. However, to fully instantiate our IDU utility function,
we must also efficiently estimate the utility changes (AL’ (6;, St))
between consecutive training iterations, as this term directly con-
tributes to computing the cumulative utility gain AIDU;. Directly
calculating these utility changes would typically require additional
inference steps, violating our zero-cost constraint.

To address this, we introduce the gradient-based approximation
of utility change, as discussed below.

. The detailed derivation and theoretical

Gradient-Based Approximation of Utility Change. Our ap-
proach efficiently utilizes gradient information computed during
standard model training, thus requiring no extra computational
resources beyond regular forward-backward propagation.

Formally, consider a subset of samples S;. When model parame-
ters are updated from 6;_; to 6;, the average uncertainty change
(utility change) AL(6;, S;) can be approximated as follows:

THEOREM 5.1 (UTILITY CHANGE APPROXIMATION). For a given
sample subset S;, the utility change from parameter update 6;_1 to
0; can be approximated as:

AL (00.50) = 757 3 (L0k3) = L(0p-1.)

xX€S;

~ = | B0, + (1= B)261-1 + 28(1 — H)B1. 511 cos |
©

where 1) is the learning rate, 8y, and ;—1 denote historical gradient

norms, and ¢ is the angle between consecutive gradient directions,
AQZTI(ABI,I

given by: cos ¢ = rgRg, -

This approach ensures that our utility estimation remains effi-
cient, accurate, and fully integrated into standard model training
workflows. The complete derivation of this gradient-based approxi-
mation method is presented in Theorem 6.4 (Section 6).

While the above approximation method significantly enhances
efficiency, its accuracy critically depends on selecting an appro-
priate approximation coefficient . To further refine our method,
we analytically derive the optimal approximation weight f* that
minimizes approximation error.

Optimal Approximation Coefficient *. Formally, we define the
approximation error function as: J(f) = ||AL(6;, S;) = AL’ (6, S:)||%.
Minimizing this error function leads us to the theoretical f*:

THEOREM 5.2 (OpTIMAL WEIGHT f*). The optimal approximation
weight f* minimizing the error function J(f) is given by:

5 = St—1 = /01 Or-1c08 @
Sty +81-1 — 24/8,,8¢—1 cos ¢

Detailed proofs and analyses regarding the derivation of this
optimal coefficient are provided in Theorem 6.4 (Section 6).

Finally, to rigorously evaluate the theoretical guarantees and
practical utility of our gradient-based approximation, we establish
a formal approximation error bound as follows.

(10)

Approximation Error Bound. We bound the approximation error
between the approximated loss L” and the true loss L.

THEOREM 5.3 (APPROXIMATION ERROR BOUND). With the optimal
weight [3*, the error between the approximated loss L’ and the true
loss L satisfies:

IL’ (67, x) = L(6;, %) < €taylor T €approx »
where:
e L'(0;,x) = L(0i=1,x) + AL’ (0¢,S¢)
* Ciaylor = 31° - maxg [|VEL(6, x)|| - [|VL(S;, 6-1)|? is the error
from Taylor expansion.
e eqpprox = 1+ [IVL(S;, 0i—1) — (B* - VL(Siy, 0j—1) + (1 = %) -
VL(Si—1,0i—2))||? is the error from gradient approximation.

5.2 Adaptive Data Selection via MAB-Integrated
Training Scheduler

In this section, we propose a novel training scheduler for the LEAD
framework that integrates the Multi-Armed Bandit (MAB) algo-
rithm with our IDU utility function. The scheduler adaptively se-
lects training data clusters based on their evolving informativeness.

Step 1: Difficulty-Aware Cluster Selection. Initially, we set the
weights W = {wy, wa, ..., wg } for all clusters categorized by diffi-
culty level, where w; denotes the weight of cluster C; and K is the
number of clusters. To assess the difficulty score of each cluster, we
employ the EXP3 [3] algorithm for the cluster selection. Specifically,
for each iteration ¢, we first calculate the cluster score DC; (i) of the
cluster C; based on the cluster weight w;, and then select a cluster
(arm) DC; with the highest score DC. The DCy (i) can be computed

as:
Deuti =1y
(1) = =Y) —F—— t =
K @)
St K
where y controls the exploration-exploitation trade-off.
The selected cluster at iteration ¢ is the one with the highest

probability: Cj+ = arg max;¢ (1] DCt(i).

(11)

Step 2: Sample Selection with IDU. After selecting a cluster C;
with the highest DC score, we apply our previously introduced

IDU utility function to sample the most informative subset Bc,
within the selected cluster C;. Specifically, we select samples with
the highest IDU scores to maximize utility gain at each iteration.

Step 3: Model Training and Reward Computation. Using the
selected subset Bc,, we train the large language model during it-

(t)

eration ¢. Once training is complete, we compute a reward r;
to quantify the model’s improvement resulting from the selected
samples (Please refer to Section 5.3 for details).

Step 4: Cluster Weight Updates for Next Round Selection.
(t)

After obtaining the reward r;"’, we update the cluster weights

wl.(Hl) according to EXP3 update rule:
(1) A
e _ [e (ko). 1=t (12)
(N) .
w7, otherwise

This adaptive weight-update mechanism ensures clusters that
consistently yield high utility are progressively favored in subse-
quent iterations, achieving adaptive training data selection.

5.3 Self-Guided IDU-Based Reward

An effective reward function is critical to guiding effective clus-
ter selection within the MAB framework. Ideally, such a reward
should precisely capture each cluster’s direct contribution to model
improvement, while remaining computationally efficient and fully
integrated into the training process.

Hence, we propose a Self-Guided IDU-Based Reward, leveraging
our IDU utility to quantify each cluster’s contribution to model
improvement without additional inference overhead. Formally, the
reward for training on cluster C; at iteration ¢ is computed as:

r' = InfoGain(Cy, t) = Bx,ec; [IDU(6-1,x:) — IDU (67, x1)], (13)

i
where 0;_1 and 6; represent the model parameters before and after
training, respectively. To maintain numerical stability and consis-
tent scaling, rewards are further normalized to the range [—1, 1]
via min-max normalization.

Compared to traditional reward designs [9], our self-guided re-
ward integrates into the standard training loop, accurately reflects
dynamic model improvements at no additional inference cost, and
significantly simplifies the reward computation.

6 THEORETICAL GUARANTEES

In this section, we analyze the theoretical guarantees of our IDU
utility and the LEAD framework.

6.1 Optimal Smoothing Coefficient

We now analyze the optimal smoothing coefficient for the budget-
constrained IDU optimization (PROBLEM 1, presented in Section 5.1).

THEOREM 6.1 (OPTIMAL SMOOTHING COEFFICIENT). The opti-
mal smoothing coefficient b*:

B
Pr=1-— (14)
noT - (1+CV?)
whereng = a - |C| is the expected batch size without smoothing and
heterogeneity effects.

Under a total budget B, we propose the optimization problem:

T T
max Z AIDU;, st. Z n; <B (15)
bT t=1 t=1
R = AIDU, = —(1 - b)n;|S:|¥%;. (16)

The specific simplification process can be referred to as Lemma 6.2.

Step 1: Estimate sample size selected in the t-th round n;.
E[n;] can be simplified as follows (see Lemma 6.3 for details):

el

Eln;]l=a-(1-0) -
! K 1cil

-(1+0(y)) (17)

Step 2: Estimate the expectation of utility gain AIDU;. Accord-
ing to the Eq. (16) and Eq. (17), we can further obtain E[AIDU;].

T

T
ZE[AIDUt] =—ng-(1-b)%- (1+CV?)- Z ndr (18)
t=1 t=1

Step 3: Redefine objective and constrained condition.

T

T
rgaTxZE[AIDU,], st. ZE[n,] <B (19)
ot=1 t=1

where E[n;]=a-(1-b)-|C|-(1+CV®.-(1+0(y)) (20)

Let 76 = % Zthl nt6t, The budget constraint becomes:

T T
E[n] = ng- (1-b)-(1+CV?) <B (21)
t=1 t=1

Step 4: Solving optimal b* and T*. We formulate the Lagrangian:

L(b,A) =E[AIDU;] — A(E[n;] — B) (22)
oL _ B
E-O:Zaé-(l—b)—)t (23)
We require 0 < b* < 1, which implies:
B
o= | e “

LEmMA 6.2 (BaTcH UTILITY CHANGE DECOMPOSITION). The
utility change for batch Sy under the smoothed utility function can
be expressed as:

(1= b)ne|Se ¥ + 5181821 (1= b7, <5

AIDU; =
! {—(1—b)f7t|5t|‘1’t, t>5

where ¥; denotes the gradient alignment term:
¥y = ﬁ%&k + (1= Be)28-1+2B: (1= Br) O1 Or-1cos¢ (26)

Proor. For any x € S;, AIDU;(x) can be decomposed as:

t-3
AIDU; (x) = (1 = b)AL(6;,x) + b(1 - b) Z bEAL(6,_y_j, x)
k=0
+(1-b)b "1 IDU (6, x) (27)

When t > 5, the exponential decay term b*~! becomes negligible:
AIDU; = —(1 — b)n:|S¢ Y (28)

O

LEMmMA 6.3 (EXPECTED SAMPLE S1ZE UNDER MAB MECHA-
NIsMm). In the MAB framework using EXP3 for cluster selection with
smoothed utility, the expected sample size per round E[n;] satisfies:

Bln]=a-(1-b)-IC[- (1+CV*) - (1+0(y)) (29
where a is the sampling rate, b is the smoothing coefficient, |C;| is the
size of cluster i, and y is the exploration rate in function 11.

Proor. The reward signal for selecting cluster i at time ¢ is:
R = AIDU; o (1 - b)|C;| (30)

From the weight update Eq. (11) and Eq. (12) in the MAB EXP3
algorithm. As the algorithm converges to steady state, the weights
stabilize such that:

() t-1 (7)
W. Y Ri
K o <P (Z K <r>) 6D
j=1] =1 Pi
) (1—y)(1—b)|C| _a b)|C|+O
i =K 1 o~ —x - +toW) (32)
Zfl(l—b)|c| K 25{1|CJ|
The expected sample size in round ¢ is:
(*) T Gl
E[n] = aZp ICil =a(1-b) 2 ——+0(y) (33)
K161
Since Zi:l |Ci| = N (total dataset size), we can express this as:
Bind=a (1-)- 22190 o) (54
Jd=a-(1-b). 221170
pyer
O

6.2 Loss Changes in Gradient-Based Approximation

Recap that we have introduced utility function Eq. (6) in Section 3,
In this section, we try to approximate the loss reduction AL’ (6, x).

THEOREM 6.4 (IU CHANGE APPROXIMATION). For any sam-
ple set S;, the average uncertainty change AL’ (6;,S;) when model
parameters update from 0;_1 to 6; can be approximated as:

5; = AL’(@;, St) (35)
= [B8, + (1= p)281-1 + 2801 = PV Bi1 cosg| - (36)

where ¢ is the angle between parameter update directions A8y, and

AOF A6,
Abr—1, with cos ¢ = yxgag, -

St—1 = /0y Ot-1c08 ¢
5tk + 5[—1 - 2\)5[k5t_1 COS¢
Step 1: Simplify the loss change.

L(0,%) = L(O-1,%) + VL(0r-1,%) T (0 = 0;-1) (38)

B = (37)

Averaging over all samples in S;:

8t = AL’ (01, St) = —nel|VL(0—1, Sp) |12 (39)

Step 2: Approximate the gradient.
VL' (St,0;-1) = B+ VL(Sty, Opp—1) + (1 = f) - VL(S;-1,60;-2), (40)

where t;. is the most recent step when Cj. was previously selected,
Cy. is the cluster selected at step t.

Step 3: Solving optimal * to obtain final IU Change Approx-
imation AL’ (6, S;).

J(B) = IVLs = (BVLy + (1 = B)VLe—1) |I? (41)
Setting j_/]g = 0 yields the optimal coefficient:

51_1 - \)5[](51_1 COS¢
t +01-1 = 24/8,,. 8,1 cos ¢
The loss change is then approximated as:

(B2 8 + (1=) 81+ 2 (1= B*) /81,.61—1 cos </)].
(43)

B =

7 EXPERIMENTS
7.1 Experimental Setup

Data Pool. To simulate realistic and diverse training scenarios,
we construct two large-scale and heterogeneous data pools corre-
sponding to different modalities.

(1) Text Data Pool comprises approximately 600,000 samples.
Our dataset integrates multiple well-established public sources,
including WizardLM (ShareGPT) [45], WizardLM (Alpaca) [45], Ul-
traChat [21], Standard Alpaca [61], unnatural [28], Alpaca code [13],
MATH [27], GSM8K [20]. We closely follow Tulu [64] to process
these datasets. All methods will select data from this pool for LLMs’
instruction tuning.

Benchmarks and Metrics. We evaluate our method on four repre-
sentative tasks aligned with the multi-task training pool but drawn
from distinct distributions, reflecting key LLM capabilities.

e Code Generation. We use HumanEval [16] to evaluate the code-
writing capabilities of LLMs. Performance is measured via the
widely adopted pass@1, pass@5 and pass@10 metric.

e Math Reasoning. We use GSM8k [20] to evaluate the mathemat-
ical abilities of models. We adopt an 8-shot setting and evaluate
performance using the exact match accuracy metric.

e Multi-task Knowledge and Reasoning. We evaluate on
MMLU [26], which consists of a range of multiple-choice academic
questions. We report accuracy as the metric.

e Cross-lingual Question Answering. To assess multilingual
understanding, we utilize the TYDIQA [19]. We report F1 scores
for passage selection and answer span extraction tasks.

Baselines. We study several existing state-of-the-art methods as
our baselines for data selection.

(1) Full Data: Train the model using the entire data pool.

(2) Random Selection [68]: Randomly selects training samples.

(3) Instruction-Following Difficulty (IFD) [37]: Selects samples based
on a complexity metric measuring instruction-following difficulty.

(4) Perplexity (PPL) [36]: Prioritizes uncertain samples with high
perplexity.

(5) K-Center-Greedy (KCG) [57]: Maximizes diversity by iteratively
choosing the sample farthest from the current selection.

(6) SelectIT[42]: Selects samples via uncertainty-aware self-reflection
during instruction tuning.

(7) Token Length (TL)[68]: Selects samples with the longest response.

(8) ZIP [71]: prompting a strong LLM to estimate and select samples
based on quality, relevance, and complexity scores.

(9) DiverseEvol [66]: Iteratively selects the most diverse samples
using a K-Center-based strategy to self-evolve model performance.
(10) MIG [17]: Selects samples by maximizing information gain in
semantic space using a label graph to balance quality and diversity.

Implementation Details of LEAD. We evaluate LEAD using three
foundational models (LLAMA-3.1-8B, Mistral-7B and Qwen2-7B)
and utilize Low-Rank Adaption (LoRA) [29] for parameter-efficient
fine-tuning. The maximum learning rate is set as 2 x 107> with
a linear decay schedule, and the batch size is 8. We also fix the
maximum input sequence length to 3080. Models are trained for 4
epochs on 4 H800 GPUs. For the MAB setting, the number of arms
is set to 7. The maximum sampling budget of LEAD is 15K.

7.2 Exp-1: Overall Performance

We first evaluate LEAD and all baseline methods using the same
budget of 15K samples, corresponding to 2.5% of the data pool.
Table 1 summarizes the evaluation results across four bench-
marks and model architectures (LLaMA3.1-8B, Mistral-7B, and
Qwen2-7B). Overall, LEAD consistently outperforms state-of-the-
art baselines on most benchmarks, demonstrating its effectiveness.

(1) Consistent Effectiveness of LEAD across LLMs. LEAD consis-
tently improves performance across LLMs: on LLaMA3.1-8B it
reaches 66.62 (+6.31 over full data), with similar gains on Mistral-7B
(+10.75) and Qwen2-7B (+6.09), confirming its robustness across
architectures. Interestingly, we observe that perplexity-based selec-
tion performs well on GSM8K for stronger models like LLaMA3.1-
8B and Qwen2-7B, but degrades on Mistral. This is likely due to
its tendency to sample from uncertain regions of the data pool:
strong models may already be confident on general-domain tasks
and thus focus on math-relevant instructions, while weaker models
like Mistral exhibit uncertainty across all domains, leading to task
conflicts and catastrophic forgetting. LEAD avoids this issue by
balancing instruction difficulty and task diversity, resulting in more
stable gains across models.

(2) 2.5% of Data is All You Need. LEAD achieves these gains us-
ing only 2.5% of data, challenging the conventional assumption that
larger datasets produce superior results. Specifically, our method
outperforms full dataset training (Full Data baseline) across all
model and benchmark settings. For example, On TYDIQA, it im-
proves by 22.33, 29.15, and 12.63 points across the three models,
respectively, demonstrating that selected instruction samples can
lead to more effective learning.

(3) Outperforming State-of-the-art Baselines. LEAD outperforms
both static and iterative selection methods with consistent effective-
ness across models and benchmarks. While certain static methods
demonstrate competitive performance in isolated settings (e.g., Se-
lectIT on LLaMA3.1-8B and PPL on Qwen2-7B), their effectiveness
is often inconsistent across beckbones. Iterative methods generally
achieve more stable results, yet LEAD attains the highest average
performance. Although random sampling appears competitive in
some cases, it suffers from high performance variance across runs.

Inference Time Training Time —@—Performance
1004 4.9 70
3
= 801 les =
S [0}
2 o
o
£ 60 l60 &
2 40 £
£ Y] 5.7 : 69.4 S
= 57.6 31 I55 E
201 36.6 315 48 o
o 10.3 50
PPL KCG IFD SelectlT ZIP Ours Full Data

Figure 5: Inference time (Full Data) and training time (Se-
lected Data) per iteration across different methods.

In contrast, our approach maintains consistent high performance
across the benchmarks.

7.3 Exp-2: The Efficiency of LEAD

We evaluate the efficiency of LEAD compared to baseline methods
(PPL, KCG, IFD, SelectIT, and ZIP) across four benchmarks. Note
that we exclude Random and TL from this comparison, as these
methods incur minimal computational overhead and were shown to
perform significantly worse in Exp-1. We report the overall latency
of all methods with one round of selection iteration on average.

Exp-2.1: Performance vs. Latency. We compare performance
and inference latency (in log; scale) across different methods. As
shown in Figure 8, LEAD (marked with a star) consistently achieves
the best performance-latency trade-off, occupying the upper-left
region of each plot. LEAD delivers a roughly 5x faster inference
time compared to baselines, while maintaining top performance on
benchmarks like TYDIQA, GSM8K, and HumanEval.

Exp-2.2: Analysis of Latency Composition. Figure 5 compares
latency components (inference and training) of different methods.
Inference time constitutes the computational bottleneck for tradi-
tional methods (e.g., IFD: 98.0 hours), due to repeated full-dataset
inference at each selection iteration. In contrast, LEAD requires
inference only once (10.3 hours) for initial selection, eliminating
subsequent inference overhead via inference-free IDU estimation.

7.4 Exp-3: Static vs. Iterative Data Selection

These experiments validate the necessity of iterative data selection.

Exp-3.1: Dynamics of Sample Utility over Training. We first
track the overlap of samples initially identified as valuable (iteration
0) with the top-k samples in later iterations (1, 4, 7, and 10). As
illustrated in Figure 6, the coverage rate for k=15,000 increases
initially (from 0.77 to 0.98 at iteration 4), but significantly declines
(to 0.67) in later iterations. These results underscore the dynamic
nature of sample utility and the necessity of adapting data selection
to the model’s evolving state.

Exp-3.2: Performance of Static and Iterative Selection. We
further compare the performance between one-round (static) and
iterative selection strategies (Table 2). Iterative LEAD (IU) con-
sistently surpasses One-round LEAD (IU), achieving an average
improvement of 1.17 points (64.33 vs. 63.16). This performance gap
confirms that iterative data selection is essential, as the utility of
training samples dynamically changes throughout model training.

Table 1: Comparison of performance across different benchmarks with static data selection methods and iterative methods.
indicates improvements over the second-best baseline.

Benchmark (Metric) ‘ Static Data Selection Methods ‘ Iterative Methods

| Full Data Random PPL TL IFD SelectIT ZIP MIG | KCG DiverseEvol LEAD (Ours)

LLaMA3.1-8B
MMLU (Acc) 65.13 64.30 63.27 64.10 64.48 64.93 63.45 64.02 | 61.39 64.78 65.40
TYDIQA (F1) 50.94 40.91 41.89 4647 55.66 61.33 45.41 4993 | 43.12 48.84 63.24
GSMSK (EM) 56.63 54.80 56.32 54.28 43.52 54.89 57.32 53.76 | 51.73 53.96 60.88
HumanEval (Pass@10) 68.52 70.24 71.44 7399 70.40 69.33 67.68 70.02 | 69.80 73.45 76.95
Average 56.41 55.09 49.95 56.80 56.10 57.86 54.84 55.86 | 53.74 57.04 61.69 (+3.83)
Mistral-7B
MMLU (Acc) 61.45 61.68 62.38 6193 61.65 64.93 61.93 6147 | 61.02 61.32 62.10
TYDIQA (F1) 49.63 38.02 52.72 39.88 4141 36.79 42.04 40.02 | 39.79 42.19 67.17
GSMS8K (EM) 40.56 33.51 22.82 37.76 31.77 35.86 41.17 35.71 | 33.89 34.46 45.26
HumanEval (Pass@10) 58.37 57.35 54.68 60.54 52.05 58.15 6191 57.12 | 59.96 55.17 59.01
Average 47.04 43.34 43.87 46.46 43.34 45.60 47.67 45.01 | 45.14 43.99 51.73 (+4.06)
Qwen2-7B
MMLU (Acc) 70.54 69.85 70.70 70.52 70.03 70.32 70.54 70.26 | 70.64 70.36 70.19
TYDIQA (F1) 42.94 43.43 42.63 3891 35.00 43.80 34.51 4092 | 40.92 39.61 56.06
GSMSK (EM) 73.16 73.16 79.00 78.53 74.91 74.60 75.66 76.18 | 76.04 78.57 79.83
HumanEval (Pass@10) 82.56 79.51 78.44 80.79 81.94 78.14 83.91 7881 | 78.81 79.73 84.22
Average 62.20 61.69 62.37 6234 61.40 62.05 61.68 61.66 | 61.93 62.21 66.38 (+4.01)
Table 2: Comparison between IU and IDU. LEAD (IDU) refers Table 3: Ablation study of different modules on LLaMA3.1-8B
to LEAD using IDU as the utility function. One-round and and Qwen2-7B.

Iterative LEAD (IU) denote non-iterative and iterative vari-

ants of the IU approach. . | Module | Benchmarks | Average
| MAB TC IDU|MMLU TYDIQA GSM8K HumanEval |
hod ‘ Benchmarks ‘ A
Metho. verage v 64.83 59.84 54.81 72.13 62.90
| MMLU TYDIQA GSMSK HumanEval | v 6271 6131 5148 74.25 62.44
LEAD (IDU) 65.40 63.24 60.88 76.95 66.62 Vo 6413 6147 5792 74.93 64.61
One-round LEAD (IU) | 63.92 59.13 57.47 72.13 63.16 LLaMA3.1-8B | v v 65.10 55.88 57.99 74.41 63.35
Iterative LEAD (IU) 64.72 60.15 57.99 74.46 6433 v V| 6470 6646 5595 74.46 65.39
VoV | 6530 6429 5640 73.38 64.84
Vv /| 6540 6324 60.88 76.95 66.62
T os7 —@—Random ——IFD PPL —p—KCG v 69.17 42.61 78.09 75.10 66.24
2 10 —@mSelectT —¥=TL ZIP ==Ours v 69.87 3917 77.0 73.05 64.80
v o| 7005 4398 79.00 79.16 68.05
T ... 08 ~ Qwenz7B | v 7001 4585 7741 72.89 66.54
Q . \O
2 2651 v v | 7054 s016 7921 80.07 69.89
) v v 70.16 48.14 78.43 77.13 68.47
~ |}
al — Vo v/ | 7019 5606 79.83 84.22 72.58
e 0.31 0 % 601 ./.\
2 0.2 % L jA; : ‘
- 030 046 | 059 455 ’/F\’_\’ Table 4: Ablation study of LEAD framework.
= o}
. U U v o
1000 3000 6000 15000 g . . . Benchmarks
K Values ok 15k 20k 25k Method ‘ Replace Strategy‘ ‘Average
Data Budget | [MMLU TYDIQA GSM8K HumanEval |
Figure 6: Coverage of Top-k Figure 7: Avg performance by Reward IFD-MAB 6529 6531 51.02 72.13 63.44
samples between iter. t and varying training budgets. Function PPL-MAB 6552 67.17 5171 72.11 64.13
iter. 0. Random 6510 55.88 57.99 74.41 63.35
DU PPL 6413 4940 52.53 68.17 59.59
. . I 6472 60.15 57.99 74.46 63.56
7.5 Exp-4: Ablation Study of LEAD IFD 6492 5498 51.86 70.71 60.62
Exp-4.1: Ablation Study on LEAD Components. To validate the Random 6417 6146 5595 74.00 63.90
. . MAB Easy2Hard 6473 6032 5898 71.81 63.96
effectiveness of our proposed framework, we conduct an ablation Hard2Easy 6429 6196 56.65 7454 64.36
study on the LLaMA3.1-8B model and Qwen2-7B by systematically TC | General-Purpose | 6482 6214 56.28 74.25 64.37
removing individual modules of our LEAD framework. Ours | _ | 6540 6324 60388 G105 662

As shown in Table 3, removing any module leads to a perfor-
mance drop: average metric decreases by 1.78 (MAB), 1.23 (TC),
and 3.27 (IDU). The IDU module has the most pronounced impact, informative samples. Removing the TC module also degrades per-
particularly on TYDIQA (-7.36), underscoring its role in identifying formance across all benchmarks, confirming the value of semantic

clustering. The removal of the MAB module significantly affects
performance on the challenging GSM8K (-4.48), demonstrating its
role in balancing exploration and exploitation. For Qwen2-7B, the
same trend holds: removing IDU yields the largest drop (-4.52), fol-
lowed by MAB (-2.34) and TC (-1.92). Overall, the ablation study
highlights the effectiveness of each component within the LEAD
framework.

Exp-4.2: The Effectiveness of IDU Utility. To demonstrate the
effectiveness of IDU, we conducted comprehensive experiments
examining its performance from two perspectives.

First, to verify that IDU effectively smooths the instability issues
during iterative selection, we compared LEAD (IDU) against LEAD
(IU) on LLaMA3.1-8B. As shown in Table 2, LEAD (IDU) consis-
tently outperforms LEAD (IU) across benchmarks (+3.06%, 66.62
vs. 63.56), confirming its smoothing design effectively mitigates in-
stability. Second, to validate IDU’s superiority as a utility function,
we compared it against alternative utility metrics while keeping
other LEAD components intact. The results in Table 4 show that
replacing IDU with conventional metrics like PPL leads to dramatic
performance degradation (from 66.62 to 59.59). These findings high-
light IDU’s robustness as a reliable criterion for selecting high-value
samples across diverse tasks.

Exp-4.3: The Effectiveness of MAB Module. To assess the MAB
module’s contribution, we compare it against three baselines: (1)
Random-LEAD: random selection of difficulty-aware clusters per
iteration; (2) Easy2Hard-LEAD: iterative training from easy to hard
clusters based on difficulty scores; and (3) Hard2Easy-LEAD: itera-
tive training from hard to easy. For a fair comparison, all modules
except the training strategy remained consistent with the LEAD.

As shown in Table 4, our MAB training schedule significantly out-
performs the other three strategies, confirming its effectiveness in
dynamically balancing exploration and exploitation. By adaptively
selecting difficulty-aware clusters, MAB enhances both overall per-
formance and generalizability. In contrast, Easy2Hard-LEAD yields
the low score (63.96), highlighting the limitations of traditional cur-
riculum learning in instruction tuning, as a fixed progression from
easy to hard can hinder learning dynamics and lead to premature
convergence. Hard2Easy-LEAD performs slightly better (64.36), yet
still underperforms compared to MAB, indicating that prioritizing
difficult clusters does not guarantee optimal results.

Exp-4.4: The Effectiveness of Reward Function. We assess the
effectiveness of our proposed IDU-based reward by comparing it
with two widely-used reward metrics: IFD [37] and PPL [36]. As
shown in Table 4, our IDU-based reward consistently achieves the
best overall performance (average 66.62), surpassing IFD (63.44)
and PPL (64.13). This demonstrates that directly measuring the
reduction in instance-level dynamic uncertainty provides more
effective guidance for cluster selection than traditional metrics.

Exp-4.5: The Effectiveness of Task-Specific Clustering. We
evaluate task-specific clustering via two ablations: (1) removing
the clustering module, and (2) replacing task-specific with general-
purpose embeddings.

The results presented in Table 3 and Table 4 show that module
removal causes greater degradation than embedding replacement,
underscoring its key role in organizing data by task relevance. While

general-purpose embeddings capture broad semantics, they fail to
represent task-specific nuances, yielding less effective clustering.

7.6 Exp-5: Effect of Sample Size on Performance

To examine the impact of data selection strategies on data budgets’
effectiveness, we conduct experiments using subsets with varying
budgets. As illustrated in Figure 7, LEAD consistently presents
higher average performance than alternative selection methods
across all data budgets, achieving peak performance with only 15K
samples. Even the second-best method with a 25K sample budget
still underperforms LEAD at 15K, highlighting the superior sample
efficiency and effectiveness of our approach. Notably, we observe a
non-linear performance curve: gains taper and eventually decline
beyond a certain data threshold, which reveals a crucial insight:
“alignment-suitable data” is inherently limited. This finding chal-
lenges the conventional wisdom that more data automatically yields
better results, underscoring the critical importance of strategic data
selection over mere quantity.

7.7 Exp-6: Parameter Sensitivity Analysis

Exp-6.1: Effect of Sampling Threshold «. As shown in Figure 9,
performance peaks when « is between 0.15 and 0.20, reaching a bal-
ance between iteration quantity and quality. Higher « values yield
more samples per round but fewer iterations, limiting adaptability.
Lower values allow more iterations but provide weaker signals.

Exp-6.2: Effect of Smoothing Coefficient b of IDU. Figure 10(a)
shows optimal performance at =0.1, which effectively balances
stability and responsiveness. Smaller values (b < 0.1) overemphasize
current fluctuations, leading to noise susceptibility, whereas larger
values (b > 0.2) overweight historical signals, reducing adaptability.

Exp-6.3: Effect of Exploration Rate y of MAB. Figure 10(b)
shows that our MAB algorithm achieves optimal performance
at moderate exploration rates (y=0.05-0.07). Minimal exploration
(y=0.01) limits discovery of new clusters, whereas excessive explo-
ration (y=0.12) hinders focus on promising clusters.

Exp-6.4: Effect of Different Clustering Algorithm of LEAD.
We compared Agglomerative Clustering, DBSCAN, and K-Means.
The results in Figure 10 (c) show minimal differences (66.42-67.02),
suggesting that LEAD is not sensitive to the choice of clustering
algorithm and is robust across methods.

Exp-6.5: Effect of the Number of Clusters k (MAB Arms). In
this experiment, we evaluate the impact of varying the number of
clusters (k) on LEAD’s performance, where k also represents the
number of arms in the MAB algorithm. The results presented in
Figure 10 (d) show that the performance fluctuates as k changes.
The best average performance (67.02) is observed when k = 7. As
k increases further, the performance begins to decline, with k =
15 achieving the lowest average score of 60.03. This indicates that
a moderate number of clusters (arms) provides the best balance
between selection diversity and efficiency.

TYDIQA MMLU GSM8K HumanEval Avg
S % 75 -
[J]]
Q50 72 80 {4 8514 . +
S ®]
£ ® O He AlTO
S 401 70 % ¢ Al ‘A 80 e oA
—_ 4
o ¢ ® 65 | ¢
4 6 4 6 4 6 4 6 4 6
Latency(h) in logz Latency(h) in logz Latency(h) in logz Latency(h) in logz Latency(h) in logz
® PPL B KCG A IFD ’ SelectIT ® zp Ours
Figure 8: Comparison of Performance(y-axis) and Latency(x-axis) across six data selection methods.
_ TYDIQA b) GSM8k
9 (a) 27 . ()60_88 learning dynamics, though they introduce higher computational
g 681 | 60138,61 [}-58,23 costs through required model inference or fine-tuning. In contrast,
S 647264 24 7 52,08 LEAD proposes a two-stage adaptive approach that efficiently com-
g 641 0342 61.92 501 bines model-aware adaptiveness with zero computational overhead,
< o [] 40 4|—3 'Q|6 effectively addressing the challenge of balancing effectiveness and
“""0bs 01 015 02 0.25 0.05 01 015 02 025 efficiency in instruction tuning data selection.
<80 (c) HumankEval 70 (d) AVG
S 67.02 Sample Utility Estimation. Sample utility scoring is central to
o 76,95 65,16 pO-1-66,02 . R . .
Qo X 654 63.52 J| data selection, leveraging diverse metrics [8, 56, 65]. Perplexity-
g - 974 A soo7323 Y9.40 based metrics‘ [36, 53] prefer simple patterns, whereas di'versity-
8721 ’—oll 71,90 aware strategies [66, 72] broaden coverage but always hinge on
Ky 55 embedding quality. Quality-oriented metrics, such as influence

0.05 011 0.15 02 0.25 0.05 0.1 0.15 0.2 0.25
Sample Ratio of Each Iteration

Figure 9: Performance on sample ratios of each iteration.

—o— TYDIQA GSM8k —A— HumanEval —4— AVG

80 1 80 :

Sqott X 7074 e

=]

NP S S SRR SR ¢ ey

£ 60 & 60 M A o 1
€50 50

jol

A& 0.01 003 005 0.07 010 0.08 0.10 0.20 0.30 0.40 0.50
= (a) varying b (b) varying y

X

=80 80 N

g0 0] & NS 4

: Ui o e s

g70 60 A 4
=65 " """""" e L ¢ 50

o o

60 40

& AHC DBSCAN KMeans 5 7 9 11 13 15

(c) Clustering Algorithm (d) Clusters Number k

Figure 10: Parameter sensitivity analysis.

8 RELATED WORK

Data Selection for Instruction Tuning. Previous works on data
selection [10, 25, 67, 74] can be broadly categorized into two key
approaches: model-agnostic methods and model-aware methods.
Model-agnostic methods operate independently of the target
model, including rule-based approaches [5, 6, 30, 45, 54, 58, 76] that
are computationally efficient but lack semantic understanding. Ad-
vanced model-based methods [14, 15, 40] like GPT-4 [1] that provide
nuanced assessment at high computational cost, and proxy model-
based methods [36, 70] that balance efficiency and quality. However,
these methods cannot adapt to the specific learning characteristics
of the target model. Model-aware methods [5, 8, 9, 41, 46, 47, 73] ad-
dress this limitation by customizing selection based on the model’s

scoring [18, 23, 31, 67], external model [38] and gradient match-
ing [7, 8], are principled but gradient-expensive. Complexity-based
selection [37, 43] risks noisy samples, while uncertainty-driven
metrics [24, 42] suffer from loss landscape instability. Recent ad-
vances like Quad [73] enhance efficiency via MAB-driven utility
estimation, yet still depend on extra inference and lack difficulty-
aware adaptation. In contrast, we introduce IDU, an inference-free
utility function that achieves zero-cost estimation while preserving
selection effectiveness.

9 CONCLUSION

In this paper, we proposed LEAD, an iterative data selection frame-
work for LLMs instruction tuning. LEAD introduces an Instance-
Level Dynamic Uncertainty utility function, enabling accurate util-
ity estimation without extra inference. In addition, we developed a
coarse-to-fine selection approach guided by a multi-armed bandit
mechanism. Experiments show LEAD achieves 6.1%-10.8% perfor-
mance improvement using only 2.5% training data and reduces
training costs by 5-10x.

ACKNOWLEDGMENTS

This paper was supported by National Key R&D Program of China
(2024YFA1012700); the NSF of China (62402409); EU Horizon project
DataGEMS (101188416); Youth S&T Talent Support Programme of
Guangdong Provincial Association for Science and Technology
(SKXRC2025461); the Young Talent Support Project of Guangzhou
Association for Science and Technology (QT-2025-001); Guangzhou-
HKUST(GZ) Joint Funding Program (2025A03]3714); Guangzhou
Basic and Applied Basic Research Foundation (2025A04J3935); and
Guangdong Provincial Project (2023CX10X008).

REFERENCES

(1]

A

[10]

(11

[12]

[13]

=
it

[15]

[16]

[19]

[20]

[21]

[22

[23]

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Floren-
cia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, et al. 2023. Gpt-4 technical report. arXiv preprint arXiv:2303.08774
(2023).

Alon Albalak, Yanai Elazar, Sang Michael Xie, Shayne Longpre, Nathan Lambert,
Xinyi Wang, Niklas Muennighoff, Bairu Hou, Liangming Pan, Haewon Jeong,
et al. [n.d.]. A Survey on Data Selection for Language Models. Transactions on
Machine Learning Research ([n.d.]).

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. 2002. The
nonstochastic multiarmed bandit problem. SIAM journal on computing 32, 1
(2002), 48-77.

Alexander Bukharin, Shiyang Li, Zhengyang Wang, Jingfeng Yang, Bing Yin,
Xian Li, Chao Zhang, Tuo Zhao, and Haoming Jiang. 2024. Data Diversity Matters
for Robust Instruction Tuning. In Findings of the Association for Computational
Linguistics: EMINLP 2024. 3411-3425.

Yihan Cao, Yanbin Kang, Chi Wang, and Lichao Sun. 2023. Instruction mining:
Instruction data selection for tuning large language models. arXiv preprint
arXiv:2307.06290 (2023).

Chengliang Chai, Lei Cao, Guoliang Li, Jian Li, Yuyu Luo, and Samuel Madden.
2020. Human-in-the-loop Outlier Detection. In SIGMOD Conference. ACM, 19-33.
Chengliang Chai, Kaisen Jin, Nan Tang, Ju Fan, Dongjing Miao, Jiayi Wang, Yuyu
Luo, Guoliang Li, Ye Yuan, and Guoren Wang. 2025. Cost-effective Missing Value
Imputation for Data-effective Machine Learning. ACM Transactions on Database
Systems 50, 3 (2025), 1-36.

Chengliang Chai, Jiabin Liu, Nan Tang, Ju Fan, Dongjing Miao, Jiayi Wang, Yuyu
Luo, and Guoliang Li. 2023. Goodcore: Data-effective and data-efficient machine
learning through coreset selection over incomplete data. Proceedings of the ACM
on Management of Data 1, 2 (2023), 1-27.

Chengliang Chai, Jiabin Liu, Nan Tang, Guoliang Li, and Yuyu Luo. 2022. Selec-
tive data acquisition in the wild for model charging. Proceedings of the VLDB
Endowment 15, 7 (2022), 1466-1478.

Chengliang Chai, Nan Tang, Ju Fan, and Yuyu Luo. 2023. Demystifying Artificial
Intelligence for Data Preparation. In SIGMOD Conference Companion. ACM,
13-20.

Chengliang Chai, Jiayi Wang, Yuyu Luo, Zeping Niu, and Guoliang Li. 2023. Data
Management for Machine Learning: A Survey. IEEE Trans. Knowl. Data Eng. 35,
5 (2023), 4646-4667

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao
Chen, Xiaoyuan Yi, Cunxiang Wang, Yidong Wang, et al. 2024. A survey on
evaluation of large language models. ACM Transactions on Intelligent Systems
and Technology 15, 3 (2024), 1-45.

Sahil Chaudhary. 2023. Code alpaca: An instruction-following llama model for
code generation.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav,
Zheng Tang, Vijay Srinivasan, Tianyi Zhou, Heng Huang, et al. [n. d.]. AlpaGasus:
Training a Better Alpaca with Fewer Data. In The Twelfth International Conference
on Learning Representations.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav,
Zheng Tang, Vijay Srinivasan, Tianyi Zhou, Heng Huang, et al. 2023. Alpagasus:
Training a better alpaca with fewer data. arXiv preprint arXiv:2307.08701 (2023).
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde
De Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, et al. 2021. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374 (2021).

Yicheng Chen, Yining Li, Kai Hu, Zerun Ma, Haochen Ye, and Kai Chen. 2025.
Mig: Automatic data selection for instruction tuning by maximizing information
gain in semantic space. arXiv preprint arXiv:2504.13835 (2025).

Sang Keun Choe, Hwijeen Ahn, Juhan Bae, Kewen Zhao, Minsoo Kang,
Youngseog Chung, Adithya Pratapa, Willie Neiswanger, Emma Strubell, Teruko
Mitamura, et al. 2024. What is your data worth to gpt? llm-scale data valuation
with influence functions. arXiv preprint arXiv:2405.13954 (2024).

Jonathan H Clark, Eunsol Choi, Michael Collins, Dan Garrette, Tom Kwiatkowski,
Vitaly Nikolaev, and Jennimaria Palomaki. 2020. TyDi QA: A Benchmark for
Information-Seeking Question Answering in Typologically Diverse Languages.
Transactions of the Association for Computational Linguistics 8 (2020), 454-470.
Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun,
Lukasz Kaiser, Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano,
et al. 2021. Training verifiers to solve math word problems. arXiv preprint
arXiv:2110.14168 (2021).

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Shengding Hu, Zhiyuan Liu,
Maosong Sun, and Bowen Zhou. 2023. Enhancing Chat Language Models by
Scaling High-quality Instructional Conversations. In Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing. 3029-3051.
Everette S Gardner Jr. 1985. Exponential smoothing: The state of the art. Journal

of forecasting 4, 1 (1985), 1-28.
Amirata Ghorbani and James Zou. 2019. Data shapley: Equitable valuation of
data for machine learning. In International conference on machine learning. PMLR,

[24

[25]

[26]

(28]

[29

[30]

(32]

(33]

(34]

(35]

[37

(38]

[39

[40]

[41

[42

[44

2242-2251.

Jindong Han, Hao Liu, Jun Fang, Naigiang Tan, and Hui Xiong. [n.d.]. Automatic
Instruction Data Selection for Large Language Models via Uncertainty-Aware
Influence Maximization. In THE WEB CONFERENCE 2025.

LIU Hanmo, DI Shimin, LI Haoyang, LI Shuangyin, CHEN Lei, and ZHOU Xi-
aofang. 2024. Effective Data Selection and Replay for Unsupervised Continual
Learning. In 2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 1449-1463.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn
Song, and Jacob Steinhardt. [n.d.]. Measuring Massive Multitask Language
Understanding. In International Conference on Learning Representations.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric
Tang, Dawn Song, and Jacob Steinhardt. 2021. Measuring mathematical problem
solving with the math dataset. arXiv preprint arXiv:2103.03874 (2021).

Or Honovich, Thomas Scialom, Omer Levy, and Timo Schick. 2022. Unnatural
instructions: Tuning language models with (almost) no human labor. arXiv
preprint arXiv:2212.09689 (2022).

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean
Wang, Lu Wang, Weizhu Chen, et al. 2022. Lora: Low-rank adaptation of large
language models. ICLR 1, 2 (2022), 3.

Andreas K6pf, Yannic Kilcher, Dimitri Von Riitte, Sotiris Anagnostidis, Zhi Rui
Tam, Keith Stevens, Abdullah Barhoum, Duc Nguyen, Oliver Stanley, Richard
Nagyfi, et al. 2023. Openassistant conversations-democratizing large language
model alignment. Advances in Neural Information Processing Systems 36 (2023),
47669-47681.

Yongchan Kwon, Eric Wu, Kevin Wu, and James Zou. [n. d.]. Datalnf: Efficiently
Estimating Data Influence in LoRA-tuned LLMs and Diffusion Models. In The
Twelfth International Conference on Learning Representations.

Boyan Li, Chong Chen, Zhujun Xue, Yinan Mei, and Yuyu Luo. 2025.
DeepEye-SQL: A Software-Engineering-Inspired Text-to-SQL Framework. CoRR
abs/2510.17586 (2025).

Boyan Li, Yuyu Luo, Chengliang Chai, Guoliang Li, and Nan Tang. 2024. The
Dawn of Natural Language to SQL: Are We Fully Ready? [Experiment, Analysis
& Benchmark]. Proc. VLDB Endow. 17, 11 (2024), 3318-3331.

Boyan Li, Jiayi Zhang, Ju Fan, Yanwei Xu, Chong Chen, Nan Tang, and Yuyu
Luo. 2025. Alpha-SQL: Zero-Shot Text-to-SQL using Monte Carlo Tree Search.
In ICML. OpenReview.net.

Changlun Li, Chenyu Yang, Yuyu Luo, Ju Fan, and Nan Tang. 2025. Weak-to-
Strong Prompts with Lightweight-to-Powerful LLMs for High-Accuracy, Low-
Cost, and Explainable Data Transformation. Proc. VLDB Endow. 18, 8 (2025),
2371-2384.

Ming Li, Yong Zhang, Shwai He, Zhitao Li, Hongyu Zhao, Jianzong Wang, Ning
Cheng, and Tianyi Zhou. 2024. Superfiltering: Weak-to-Strong Data Filtering
for Fast Instruction-Tuning. In Proceedings of the 62nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). 14255-14273.
Ming Li, Yong Zhang, Zhitao Li, Jiuhai Chen, Lichang Chen, Ning Cheng, Jianzong
Wang, Tianyi Zhou, and Jing Xiao. 2024. From Quantity to Quality: Boosting
LLM Performance with Self-Guided Data Selection for Instruction Tuning. In
Proceedings of the 2024 Conference of the North American Chapter of the Association
for Computational Linguistics: Human Language Technologies (Volume 1: Long
Papers). 7595-7628.

Yunshui Li, Binyuan Hui, Xiaobo Xia, Jiaxi Yang, Min Yang, Lei Zhang, Shuzheng
Si, Ling-Hao Chen, Junhao Liu, Tongliang Liu, et al. 2024. One-Shot Learning as
Instruction Data Prospector for Large Language Models. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers). 4586—4601.

Yiwei Li, Jiayi Shi, Shaoxiong Feng, Peiwen Yuan, Xinglin Wang, Boyuan Pan,
Heda Wang, and Yao Hu. 2024. Instruction Embedding: Latent Representations
of Instructions Towards Task Identification. Advances in Neural Information
Processing Systems 37 (2024), 87683-87711.

W Lian et al. 2023. SlimOrca: An Open Dataset of GPT-4 Augmented FLAN
Reasoning Traces, with Verification.

Jiabin Liu, Chengliang Chai, Yuyu Luo, Yin Lou, Jianhua Feng, and Nan Tang.
2022. Feature augmentation with reinforcement learning. In 2022 IEEE 38th
International Conference on Data Engineering (ICDE). IEEE, 3360-3372.
Liangxin Liu, Xuebo Liu, Derek F Wong, Dongfang Li, Ziyi Wang, Baotian Hu,
and Min Zhang. 2024. Selectit: Selective instruction tuning for large language
models via uncertainty-aware self-reflection. arXiv preprint arXiv:2402.16705
(2024).

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. 2024. What
Makes Good Data for Alignment? A Comprehensive Study of Automatic Data Se-
lection in Instruction Tuning. In The Twelfth International Conference on Learning
Representations. https://openreview.net/forum?id=BTKAeLqLMw

Xinyu Liu, Shuyu Shen, Boyan Li, Peixian Ma, Runzhi Jiang, Yuxin Zhang, Ju
Fan, Guoliang Li, Nan Tang, and Yuyu Luo. 2025. A Survey of Text-to-SQL in
the Era of LLMs: Where Are We, and Where Are We Going? IEEE Trans. Knowl.
Data Eng. 37, 10 (2025), 5735-5754.

https://openreview.net/forum?id=BTKAeLqLMw

[45

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan,
Chang Zhou, and Jingren Zhou. [n. d.]. # InsTag: Instruction Tagging for Ana-
lyzing Supervised Fine-tuning of Large Language Models. In The Twelfth Inter-
national Conference on Learning Representations.

Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and Guoliang Li. 2020. Inter-
active Cleaning for Progressive Visualization through Composite Questions. In
ICDE. IEEE, 733-744.

Yuyu Luo, Chengliang Chai, Xuedi Qin, Nan Tang, and Guoliang Li. 2020. Vis-
Clean: Interactive Cleaning for Progressive Visualization. Proc. VLDB Endow. 13,
12 (2020), 2821-2824.

Yuyu Luo, Guoliang Li, Ju Fan, Chengliang Chai, and Nan Tang. 2025. Natural
Language to SQL: State of the Art and Open Problems. Proc. VLDB Endow. 18, 12
(2025), 5466-5471.

Yuyu Luo, Xuedi Qin, Chengliang Chai, Nan Tang, Guoliang Li, and Wenbo Li.
2022. Steerable Self-Driving Data Visualization. IEEE Trans. Knowl. Data Eng. 34,
1(2022), 475-490.

Yuyu Luo, Xuedi Qin, Nan Tang, and Guoliang Li. 2018. DeepEye: Towards
Automatic Data Visualization. In ICDE. IEEE Computer Society, 101-112.

Yuyu Luo, Nan Tang, Guoliang Li, Chengliang Chai, Wenbo Li, and Xuedi Qin.
2021. Synthesizing Natural Language to Visualization (NL2VIS) Benchmarks
from NL2SQL Benchmarks. In SIGMOD Conference. ACM, 1235-1247.

Yuyu Luo, Yihui Zhou, Nan Tang, Guoliang Li, Chengliang Chai, and Leixian
Shen. 2023. Learned Data-aware Image Representations of Line Charts for
Similarity Search. Proc. ACM Manag. Data 1, 1 (2023), 88:1-88:29.

Max Marion, Ahmet Ustiin, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and
Sara Hooker. 2023. When less is more: Investigating data pruning for pretraining
llms at scale. arXiv preprint arXiv:2309.04564 (2023).

Niklas Muennighoff, Qian Liu, Armel Zebaze, Qinkai Zheng, Binyuan Hui,
Terry Yue Zhuo, Swayam Singh, Xiangru Tang, Leandro Von Werra, and Shayne
Longpre. 2023. Octopack: Instruction tuning code large language models. In
NeurIPS 2023 Workshop on Instruction Tuning and Instruction Following.

Xuedi Qin, Yuyu Luo, Nan Tang, and Guoliang Li. 2020. Making data visualization
more efficient and effective: a survey. VLDB 7. 29, 1 (2020), 93-117.

Alexander Ratner, Stephen H Bach, Henry Ehrenberg, Jason Fries, Sen Wu,
and Christopher Ré. 2017. Snorkel: Rapid training data creation with weak
supervision. In Proceedings of the VLDB endowment. International conference on
very large data bases, Vol. 11. 269.

Ozan Sener and Silvio Savarese. 2018. Active Learning for Convolutional Neu-
ral Networks: A Core-Set Approach. In International Conference on Learning
Representations.

Luca Soldaini, Rodney Kinney, Akshita Bhagia, Dustin Schwenk, David Atkinson,
Russell Authur, Ben Bogin, Khyathi Chandu, Jennifer Dumas, Yanai Elazar, et al.
2024. Dolma: an Open Corpus of Three Trillion Tokens for Language Model
Pretraining Research. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 15725-15788.

Jielin Song, Siyu Liu, Bin Zhu, and Yanghui Rao. 2024. IterSelectTune: An
Iterative Training Framework for Efficient Instruction-Tuning Data Selection.
arXiv preprint arXiv:2410.13464 (2024).

Wangtao Sun, Haotian Xu, Xuanging Yu, Pei Chen, Shizhu He, Jun Zhao, and
Kang Liu. 2024. ItD: Large Language Models Can Teach Themselves Induction
through Deduction. In Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). 2719-2731.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos
Guestrin, Percy Liang, and Tatsunori B Hashimoto. 2023. Stanford alpaca: An
instruction-following llama model.

[62

[63

[64

[66

[67]

[68]

[69]

[70

[72]

(73]

=
=}

[75

[76]

Joannes Vermorel and Mehryar Mohri. 2005. Multi-armed bandit algorithms
and empirical evaluation. In European conference on machine learning. Springer,
437-448.

Jiachen Tianhao Wang, Tong Wu, Dawn Song, Prateek Mittal, and Ruoxi Jia. 2024.
GREATS: Online selection of high-quality data for llm training in every iteration.
Advances in Neural Information Processing Systems 37 (2024), 131197-131223.
Yizhong Wang, Hamish Ivison, Pradeep Dasigi, Jack Hessel, Tushar Khot, Khyathi
Chandu, David Wadden, Kelsey MacMillan, Noah A Smith, Iz Beltagy, et al.
2023. How far can camels go? exploring the state of instruction tuning on
open resources. Advances in Neural Information Processing Systems 36 (2023),
74764-74786.

Yong Wang, Kaiyu Li, Yuyu Luo, Guoliang Li, Yunyan Guo, and Zhuo Wang. 2024.
Fast, Robust and Interpretable Participant Contribution Estimation for Federated
Learning. In 2024 IEEE 40th International Conference on Data Engineering (ICDE).
IEEE, 2298-2311.

Shengguang Wu, Keming Lu, Benfeng Xu, Junyang Lin, Qi Su, and Chang Zhou.
2023. Self-evolved diverse data sampling for efficient instruction tuning. arXiv
preprint arXiv:2311.08182 (2023).

Mengzhou Xia, Sadhika Malladi, Suchin Gururangan, Sanjeev Arora, and Danqi
Chen. 2024. Less: Selecting influential data for targeted instruction tuning. arXiv
preprint arXiv:2402.04333 (2024).

Tingyu Xia, Bowen Yu, Kai Dang, An Yang, Yuan Wu, Yuan Tian, Yi Chang, and

Junyang Lin. 2024. Rethinking data selection at scale: Random selection is almost
all you need. arXiv preprint arXiv:2410.09335 (2024).

Chenyu Yang, Yuyu Luo, Chuanxuan Cui, Ju Fan, Chengliang Chai, and Nan
Tang. 2025. Data Imputation with Limited Data Redundancy Using Data Lakes.
Proc. VLDB Endow. 18, 10 (2025), 3354-3367.

Yu Yang, Siddhartha Mishra, Jeffrey Chiang, and Baharan Mirzasoleiman. 2024.
Smalltolarge (s2l): Scalable data selection for fine-tuning large language mod-
els by summarizing training trajectories of small models. Advances in Neural
Information Processing Systems 37 (2024), 83465-83496.

Mingjia Yin, Chuhan Wu, Yufei Wang, Hao Wang, Wei Guo, Yasheng Wang, Yong
Liu, Ruiming Tang, Defu Lian, and Enhong Chen. 2024. Entropy law: The story
behind data compression and llm performance. arXiv preprint arXiv:2407.06645
(2024).

Simon Yu, Liangyu Chen, Sara Ahmadian, and Marzieh Fadaee. 2024. Diversify
and Conquer: Diversity-Centric Data Selection with Iterative Refinement. arXiv
preprint arXiv:2409.11378 (2024).

Chi Zhang, Huaping Zhong, Kuan Zhang, Chengliang Chai, Rui Wang, Xinlin
Zhuang, Tianyi Bai, Jiantao Qiu, Lei Cao, Ju Fan, et al. 2024. Harnessing Diversity
for Important Data Selection in Pretraining Large Language Models. arXiv
preprint arXiv:2409.16986 (2024).

Chunting Zhou, Pengfei Liu, Puxin Xu, Srinivasan Iyer, Jiao Sun, Yuning Mao,
Xuezhe Ma, Avia Efrat, Ping Yu, Lili Yu, et al. 2023. Lima: Less is more for
alignment. Advances in Neural Information Processing Systems 36 (2023), 55006
55021.

Yizhang Zhu, Liangwei Wang, Chenyu Yang, Xiaotian Lin, Boyan Li, Wei Zhou,
Xinyu Liu, Zhangyang Peng, Tianqi Luo, Yu Li, Chengliang Chai, Chong Chen,
Shimin Di, Ju Fan, Ji Sun, Nan Tang, Fugee Tsung, Jiannan Wang, Chenglin Wu,
Yanwei Xu, Shaolei Zhang, Yong Zhang, Xuanhe Zhou, Guoliang Li, and Yuyu
Luo. 2025. A Survey of Data Agents: Emerging Paradigm or Overstated Hype?
CoRR abs/2510.23587 (2025).

Terry Yue Zhuo, Armel Zebaze, Nitchakarn Suppattarachai, Leandro von
Werra, Harm de Vries, Qian Liu, and Niklas Muennighoff. 2024. Astraios:
Parameter-efficient instruction tuning code large language models. arXiv preprint
arXiv:2401.00788 (2024).

	Abstract
	1 Introduction
	2 Preliminary & Problem Formulation
	2.1 Data Selection for Instruction Tuning
	2.2 Problem Formulation

	3 Instance-Level Dynamic Uncertainty Utility
	4 LEAD: LEArning-to-Select Data Iteratively
	4.1 LEAD Framework: An Overview
	4.2 LEAD Framework: Core Components
	4.3 Training Iteration Workflow of LEAD

	5 The Design Details of LEAD
	5.1 Instance-Level Dynamic Uncertainty Optimization under the Budget Constraint
	5.2 Adaptive Data Selection via MAB-Integrated Training Scheduler
	5.3 Self-Guided IDU-Based Reward

	6 Theoretical Guarantees
	6.1 Optimal Smoothing Coefficient
	6.2 Loss Changes in Gradient-Based Approximation

	7 Experiments
	7.1 Experimental Setup
	7.2 Exp-1: Overall Performance
	7.3 Exp-2: The Efficiency of LEAD
	7.4 Exp-3: Static vs. Iterative Data Selection
	7.5 Exp-4: Ablation Study of LEAD
	7.6 Exp-5: Effect of Sample Size on Performance
	7.7 Exp-6: Parameter Sensitivity Analysis

	8 Related Work
	9 Conclusion
	Acknowledgments
	References

