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ABSTRACT

Modern applications frequently collect and analyze temporal data

in the form of multivariate time series (MTS) – time series that

contain multiple channels. A common task in this context is sub-

sequence search, which involves identifying all MTS that contain

subsequences highly similar to a query time series. In practical

scenarios, not all channels of an MTS are relevant to every query.

For instance, airplane sensors may gather data on a plethora of

components and subsystems, but only a few of these are relevant

to a specific query, such as identifying the cause of a malfunction-

ing landing gear, or a specific flight maneuver. Consequently, the

relevant query channels are often specified at query time. In this

work, we introduce the Multivariate Subsequence Index (MS-Index),

a novel algorithm for nearest neighbor MTS subsequence search

under Euclidean distance that supports ad-hoc selection of query

channels. The algorithm is exact and demonstrates query perfor-

mance that scales sublinearly to the number of query channels. We

examine the properties of MS-Index with a thorough experimen-

tal evaluation over 34 datasets, and show that it outperforms the

state-of-the-art one to two orders of magnitude for both raw and

normalized subsequences.
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1 INTRODUCTION

Time series are ubiquitous in diverse domains, such as astrophysics,

seismology, meteorology, health care, finance, video and audio

recordings [5, 36, 38, 41, 57]. Due to advances in sensor technology,
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Figure 1: Example query and 1NN for MTS of synthetic air-

plane data. Altitude and landing gear are the query channels.

The highlighted boxes (red) are the considered subsequences.

the amount of time series being collected has increased dramatically

over the last years, particularly in the form of multivariate time

series (MTS) [62]. Each MTS is a collection of time series, often

sourced from different sensors that measure different aspects of

the same phenomenon or object. These different time series are

referred to as the channels of the MTS. Examples of MTS include

health monitoring data of patients in a hospital (e.g., heart rate,

blood pressure, and body temperature), climate sensor arrays (e.g.,

an array measuring the temperature, humidity, and air pressure, at

a certain location) [44], or motion capture data (e.g., the position

and acceleration of different body parts).

A key operation on time series is similarity search, which in-

volves finding the most similar time series to a query time series

(also known as its Nearest Neighbors) [25, 26]. Similarity search can

be performed as a standalone task [16, 21, 28, 40, 42, 45, 59, 60, 66],

but is also frequently used as a subroutine in tasks such as out-

lier detection [14, 21, 70], classification [7, 34, 63, 67, 68, 76], and

clustering [9, 13, 23, 37, 64].

To get the most out of the ever-growing datasets, modern-day

similarity search algorithms should support queries with high flex-

ibility. For example, when analyzing patient data, a doctor might

need to find similar occurrences of a short-term pattern in a pa-

tient’s vital signs, to understand the root cause of their condition.

Such a query would require the algorithm to support (a) MTS (mul-

tiple sensors), (b) comparison of subsequences rather than whole

time series, and (c) deciding the query channels at query time (only



the sensors relating to the patient’s relevant vital signs). Another

example requiring such queries is the analysis of sensor data from

airplanes [12], where the user is analyzing the failed landing of an

airplane due to a malfunctioning landing gear, and wants to find

similar occurrences in historical data to understand the root cause.

In this case, the user might select the period of time of the failed

landing (i.e., the left time series in Figure 1) as well as the relevant

channels (highlighted red in the figure) to find similar occurrences

in historical data.

While much work has been done to address the challenges that

come with similarity search on large datasets of univariate time

series (UTS), the work on MTS search is still rudimentary. Current

solutions only support searching for whole time series (whole-

matching) instead of subsequences (subsequence search), and only

on a fixed, pre-determined set of channels. In this work, we show

that the performance of whole-matching state-of-the-art solutions

suffers when these are extended for subsequences. A further exten-

sion of these solutions to handle multivariate data only exacerbates

the problem, due to the additional challenges that come with the

number of channels. In summary, existing algorithms fall short in

at least one of the following ways: (a) they natively support only

UTS, and their extension to MTS is non-trivial, (b) they are focused

on whole matching, and their performance becomes unacceptable

when inserting subsequences, or, (c) they rely on severely restrictive

assumptions of the user query, such as user-defined thresholds on

each channel.

In this work, we propose MS-Index, a novel algorithm for k-

nearest neighbor (𝑘-NN) subsequence search on MTS under Eu-

clidean distance. MS-Index allows for selection of the query chan-

nels at query time, andworks for both normalized and un-normalized

subsequences.1 MS-Index supports fixed-length queries, i.e., it re-

quires the length of the query to be known at index construction.

The algorithm is exact: it always returns the correct result.

MS-Index differs from existing methods in three ways. First, it is

designed specifically for MTS, leveraging the additional pruning

potential that comes with multiple channels. Second, it combines

index-powered pruning of the search space with efficient distance

computation on the remaining candidates through the convolution

theorem (MASS) [2, 50]. This is done with the help of an R-tree

that indexes Discrete Fourier Transform (DFT) approximated sub-

sequences on all channels, and a two-pass search algorithm that

prunes candidates based on the lower-bound distance to the query.

To the best of our knowledge, this is the first time an index has been

combined with MASS for subsequence search; previous works have

only used each of these techniques in isolation [28, 50], arguing

for either an index-based or a sequential-scan approach. Third, it

utilizes two novel methods to tighten the lower bound distance to

the query, further improving the pruning potential of the search.

These methods are generic, meaning that they can be applied to any

search solution that uses R-trees and/or DFT approximations. Our

key contributions are as follows:

• We introduceMS-Index, a novel algorithm for𝑘-NN subsequence

search on MTS under Euclidean distance (Section 3).

1Supporting normalized subsequences is more challenging than normalized time
series, as it cannot be done through preprocessing the data. Furthermore, while most
applications require normalized subsequences for shape matching, some applications
require querying for raw subsequences to preserve scale differences [8, 53].

• We propose a general set of optimizations to improve any search

solution using R-trees and/or DFT approximations (Section 3.4).

These are shown to improve the performance of MS-Index by a

factor of 4, when combined.

• We provide a general approach to extending current solutions

for UTS to the multivariate case, which provide baselines for

our evaluation (Section 4).

• We conduct a thorough evaluation ofMS-Index across 34 datasets,

comparing it to a range of baselines, and showing that MS-Index

outperforms the state-of-the-art by two orders of magnitude for

both raw and normalized subsequences (Section 5).

2 PRELIMINARIES

2.1 Definitions and Notation

Time series. A UTS 𝒕 of length𝑚 is denoted as 𝒕 = [𝒕1, . . . , 𝒕𝑚],
where 𝒕𝑖 is the data point at time 𝑖 . An MTS 𝑻 with 𝑐 channels is
denoted as a matrix 𝑻 = [𝒕1, . . . , 𝒕𝑐 ]𝑇 , where 𝒕𝑖 is the UTS of channel
𝑖 . A subsequence of length 𝑠 starting at timepoint 𝑖 is denoted as

𝑻𝑠𝑖 = 𝑻∗,𝑖:𝑖+𝑠−1. The number of available channels in the dataset is

denoted as 𝑐 , and the set of indices to the query channels is denoted
as 𝑐𝑸 , with 𝑐𝑸 ⊆ {1, . . . , 𝑐}.

Similarity Search Queries. There are two forms of similarity

search queries; a k-Nearest-Neighbor (𝑘-NN) query and an r-range

query (also called threshold query). A 𝑘-NN query is defined as

finding the 𝑘 time series in a dataset D with the smallest distances

to a query time series 𝑸 , under a given distance measure 𝑑 [25].

In the case of MTS, all time series in D contain the same 𝑐 chan-
nels. However, the query time series 𝑸 may contain only a subset

of these channels 𝑐𝑸 . Conversely, an r-range query is defined as

finding all time series in D with a distance to a query time series

𝑸 smaller than a given threshold 𝑟 [25]. These query types can be

further categorized into whole-matching and subsequence search

queries. In whole-matching, we consider the distance between an

entire query time series and an entire candidate series [25]. All

the series involved in the search need to be of the same length.

In subsequence search, we consider the distance between an en-

tire query series and all subsequences of a candidate series with

the same length as the query [25]. In this case, the candidate se-

ries from which the subsequences are extracted need not have the

same length. There exist two variants of subsequence search; (a)

fixed-length search, where the query length |𝑸 | is predetermined

and fixed across queries, and (b) variable-length search, where the

query length is not fixed and can vary between queries [25]. In this

work, we focus on the problem of fixed-length subsequence search,

which is a common assumption in the literature [12, 16, 28, 71, 72].

Variable-length search is left for future work.

Distance. In linewith previous studies onMTS similarity search [7,

12, 71], we use Euclidean distance (ED) to measure the distance

between time series, which is defined over MTS as:

𝑑 (𝑿 , 𝒀 ) = | |𝑿 − 𝒀 | |2 =

√√√ ∑
𝑖∈𝑐𝑿𝒀

𝑚∑
𝑗=1

(𝑿𝑖, 𝑗 − 𝒀𝑖, 𝑗 )2 (1)

with 𝑐𝑿𝒀 = 𝑐𝑿 ∩ 𝑐𝒀 the common channels of 𝑿 and 𝒀 , and
𝑚 = min(𝑚𝑿 ,𝑚𝒀 ) the length of the shortest time series. ED was



Table 1: Nomenclature

𝒕 Univariate time series

𝑻 Multivariate time series

|𝒕 | Length of time series 𝑻
𝑻𝑖 Channel 𝑖 of 𝑻
𝑻𝑖,𝑗 Data point 𝑗 of channel 𝑖 of 𝑻
𝑻𝑠
𝑖 Subsequence of 𝑻 of length 𝑠 starting at index 𝑖

𝑻̃ DFT approximation of 𝑻
𝑻̃ ′ Flattened DFT approximation of 𝑻 (i.e. feature vector)

𝑸 Query time series

𝑐 Total number of channels in the dataset

𝑐𝑄 The set of channel ids of 𝑸
𝑛 Number of time series in the dataset D
𝑚 Length of the time series in D

Figure 2: The price of a stock over time (blue), and its recon-

struction through its first three DFT coefficients (orange).

chosen due to its simplicity, efficiency, well-understood properties

for univariate data, its natural extension to the multivariate case,

and its popularity in the literature [7, 12, 22, 71]. In fact, while

temporal alignment through more complex measures like Dynamic

Time Warping (DTW) and Shape-Based Distance (SBD) has proven

effective for whole-matching in both univariate and multivariate

contexts [22, 24, 55, 56, 64, 67], the marginal gain of using these mea-

sures over ED for subsequence search is negligible [22, 61, 66, 74].

This is because the consideration of all subsequences in time series

is effectively a form of temporal alignment, comparing the query

with candidate time series under different shifts, naturally correct-

ing for temporal distortions. Table 1 summarizes the notations used

throughout the paper.

2.2 DFT Approximation

A key challenge in similarity search is the high dimensionality of

the data, sourcing from the length of the time series. A common ap-

proach to address this challenge is the use of dimensionality reduc-

tion, or “summarization”, techniques that transform the data into

a lower-dimensional space where distances can be approximated

at a low cost. A popular summarization technique for Euclidean

distance (𝐿2) is the DFT approximation, which involves perform-

ing a DFT on the time series and keeping only a small fraction of

the resulting vector [28, 49, 59, 69]. The DFT decomposes a time

series into a sum of sinusoids of different frequencies (also called

the coefficients), where the amplitudes of the sinusoids represent

the importance of the corresponding frequency in the time series

(also called the energy of the coefficient). For most real-world time

series, the amplitudes of the high-frequency sinusoids are small,

which means that these sinusoids can be discarded without losing

much information. This means that we can accurately approximate

a time series using only the first 𝑓 values of the DFT, resulting in a

vector of size 𝑓 instead of the original size𝑚 [28]. The accuracy of

such an approximation is demonstrated with an example from the

Table 2: Overview of related work
Name Ref Type Notes

U
T
S W
h
o
le VA+ file [30] Index

ISAX2+ [16] Index
DSTree [72] Index

Su
b.

ST-index [28] Index

KV-match [73] Sequential
Custom definition of
normalized subsequences

MASS [50] Sequential

M
T
S

W
h
o
le

Vlachos [71] Index
Does not support
normalized subsequences

Su
b. Bhaduri [12] Index

Only supports
r-range queries

MS-Index (ours) Index

Stocks dataset (cf. Section 5) in Figure 2. DFT approximation is pop-

ular for estimating the Euclidean distance, as the distance between

two DFT-approximated time series is a lower bound on their true

Euclidean distance [49]. Namely, the Euclidean distance between

two time series 𝒕,𝑸 ∈ R𝑚 is bounded by their DFT approximations

𝒕, 𝑸̃ ∈ C𝑓 as [49]:

𝑑 (𝒕,𝑸) ≥

√∑𝑓
𝑖=1 |𝒕𝑖 − 𝑸̃𝑖 |2

𝑚
=
𝑑 (𝒕, 𝑸̃)
√
𝑚

(2)

As the value of 𝑓 increases (i.e., we account for more coefficients),

the DFT bound converges to the exact distance [49]. This way, DFT

approximation allows for a trade-off between the accuracy of the

distance estimation and the dimensionality of the data, which is

particularly useful for high-dimensional data such as time series.

In the case of MTS, the same concept can be used by summarizing

each individual channel, independently.

2.3 R-tree Construction Techniques

An R-tree is a tree-based index for spatial data that groups nearby

objects into Minimum Bounding Rectangles (MBRs), which are

recursively grouped into larger MBRs [10, 33]. R-trees can be con-

structed top-down by splitting a single MBR containing all data

points into smaller MBRs using strategies like Quadratic Split [33],

Linear Split [33], or R*-tree topological split [10]. Alternatively,

bottom-up construction (or bulk loading) starts with individual data

points as MBRs and merges them into larger MBRs based on a leaf

size 𝐿 and partitioning strategy, generally resulting in less overlap

but requiring all data to be known in advance. A popular bulk load-

ing algorithm is the Sort-Tile-Recursive (STR) algorithm [43]. STR

first sorts the children based on their coordinates in each dimen-

sion (using the middle in case the children are rectangles instead

of points). Then, it recursively partitions the entries into groups of

size 	𝑁𝐿 
1/𝑑 , where 𝑁 is the number of entries to index, 𝐿 is the de-

sired leaf size, and 𝑑 is the dimensionality of the tree. For example,

given a 1D space with entries [1, 2, . . . , 10] and 𝐿 = 2, the algo-

rithm partitions the entries into [[1, 2], [3, 4], [5, 6], [7, 8], [9, 10]],
to subsequently create the nodes [[1, . . . , 4], [5, . . . 8], [9, 10]], etc.

2.4 Related Work

We first discuss related work on UTS, followed by recent work on

MTS. An overview of all related work is given in Table 2.

Univariate Time Series (UTS) whole-matching. In a large-scale

comparison of algorithms for UTS whole-matching by Echihabi,



et al. [25], index-based algorithms generally showed to outper-

form their sequential scan counterparts. Furthermore, for small

in-memory datasets, VA+ file [30] and iSAX2+ [16] excel, while

DSTree [72] dominates for larger datasets. DSTree uses Extended

Adaptive Piecewise Constant Approximation (EAPCA) to estimate

distances between query and groups of time series, differentiat-

ing them by mean and variance at increasing resolution. Whole-

matching indices could be extended to support subsequence search

by indexing each subsequence individually. However, this approach

would overwhelm the indices when |𝑸 | � |𝑻 |, degrading perfor-

mance as verified in Section 5.

UTS subsequence search indices. Multiple indices have been pro-

posed for UTS subsequence search. The ST-index [28] for r-range

queries first extracts a DFT approximation of each subsequence of

length |𝑸 | in a time series. These 𝑓 -dimensional vectors then form

a trail in the 𝑓 -dimensional space, which is segmented into sub-

trails using MBRs. The MBRs are then indexed in an R*-tree [10], to

enable efficient search. More recents improvements through Dual

Match and General Match [31, 47] used different window types to

reduce index size. However, these extensions inherently restrict

the indices to raw subsequences, as supporting normalized subse-

quences would require a complete redesign. Our work adopts the

idea of indexing DFT approximations in an R-tree but (a) focuses

on MTS, (b) removes explicit time series segmentation, (c) lever-

ages convolution theorem for faster distance computation, and (d)

employs a different search algorithm to support 𝑘-NN queries with

ad-hoc selection of query channels. Another notable index is KV-

match [73], which indexes subsequences within a single time series

using the means and variances of disjoint windows over the time

series. The index supports both normalized and raw subsequences,

though for normalized subsequences it restricts the search space to

subsequences with similar means and variances to the query before

normalization. KV-Match can be adapted to our problem setting by

(a) building one KV-match per time series and iteratively querying

each, and (b) dropping the filter on means and variances before

querying normalized subsequences.

Other UTS subsequence indices include L-match [29] and TS-

index [18], which we do not consider further because: L-match

improves KV-match’s indexing time but has higher query time;

and TS-index uses Chebyshev distance rather than our Euclidean

distance. As we show in Section 5, our work outperforms KV-match,

which (by transivity) also suggests how our work is expected to

relate to L-match.

UTS subsequence search sequential scans. Mueen’s Algorithm for

Similarity Search (MASS) [50] is an exact subsequence search al-

gorithm that computes the distance between a query 𝑸 and all

subsequences of a time series 𝒕 in time𝑂 ( |𝒕 | log |𝒕 |) rather than the

exhaustive 𝑂 ( |𝒕 | |𝑸 |) time. It does so through the convolution theo-

rem, which states that the cross-correlation (i.e., sliding dot product)

of two time series is equivalent to the point-wise multiplication

of their Fourier transforms [2]. Namely, the convolution theorem

states that the dot-products 〈·, ·〉 between 𝑸 and all subsequences

of 𝒕 of length |𝑸 | can be computed through:

[〈𝑸, 𝒕 |𝑸 |
1 〉, . . . , 〈𝑸, 𝒕 |𝑸 |

|𝒕 |− |𝑸 |+1〉] = F −1 (F (𝑸) ⊗ F (𝒕)) (3)

where F , F −1, and ⊗ are the Fourier transform, inverse Fourier

transform, and point-wise multiplication, respectively. Then, as

the Euclidean distance between two vectors 𝒙 and 𝒚 is defined as

𝑑 (𝒙,𝒚) =
√
| |𝒙 | |2 + ||𝒚 | |2 − 2〈𝒙,𝒚〉, MASS computes the distance

between 𝑸 and all subsequences of 𝒕 in time 𝑂 ( |𝒕 | log |𝒕 |) using
Equation 3 and the sliding squared sums of 𝑸 and 𝒕 . MASS can be

used as a subsequence search algorithm for MTS, by repeating the

distance computation for each channel separately and summing

the results to obtain the multivariate Euclidean distance. We will

be using MASS in this work, both as a baseline and as a component

of our method.

MTS whole-matching. The first index for MTS whole-matching

was proposed by Vlachos et al. [71], focusing on r-range queries

under DTW and Longest Common Subsequence (LCSS) distance,

besides Euclidean distance. It works by splitting the MTS into MBRs

that span across the time, channel, and value axes, and storing

those in an R*-tree [10]. Then, at query time, a Minimum Bounding

Envelope (MBE) is constructed for the query, which covers all the

possible matching areas of the query under warping conditions.

This MBE is further decomposed into MBRs and probed in the R*-

tree to efficiently find the candidates. However, using themethod for

subsequence search under Euclidean distance essentially reduces to

a simplified variant of Dual Match [31], which – as discussed earlier

– prevents the index from supporting normalized subsequences,

making it unsuitable for our problem setting.

MTS subsequence search. Recently, a novel algorithm for variable-

lengthMTS subsequence searchwas proposed namedMULISSE [58],

as a multivariate extension of the state-of-the-art UTS subsequence

search algorithm ULISSE [45]. The method extends iSAX2+ [16]

representations to multiple channels and introduces channel-aware

node splitting for improved pruning. To accommodate for the vast

search space of variable-length subsequence search, the ULISSE

index (and thus MULISSE) uses a lightweight design that sacrifices

pruning power for a reduced index size. MULISSE can be applied

to fixed-length search by restricting the query length range to a

single value, as we show in Section 5.

To the best of our knowledge, the only solution for fixed-length

MTS subsequence search is by Bhaduri, et al [12]. The method

answers r-range queries under Euclidean distance by indexing sub-

sequences per channel based on distances to univariate reference

points. However, its reliance on channel-level thresholds prevents

support for 𝑘-NN queries, which require simultaneous querying of

all channels. Adapting the method to our problem setting would

require non-trivial modifications likely to degrade its performance,

so we do not consider it further in our work.

Summary. Concluding, literature includes a multitude of sim-

ilarity search solutions for UTS and MTS data under different

query types and solution designs. However, only few of the ex-

isting solutions can be directly applied/extended to our problem

setting. Namely, all MTS solutions either (a) do not support 𝑘-NN
queries [12] or querying on normalized subsequences [71], or (b) op-

timize for index size rather than query performance (MULISSE [58]).

There are UTS solutions that could be extended to MTS, but those

extensions are not expected to scale well. This is either because

(a) they are not build for subsequence search (DSTree), (b) they are



Figure 3: Summarization and indexing of MTS subsequences.

We represent the indexed subsequences of three MTS in

the feature space with blue, green, and orange nodes. Time-

neighbouring subsequences are connected with lines.

sequential scan algorithms (MASS), or (c) they are simply designed

for UTS (ST-index).

3 MS-INDEX

MTS subsequence search involves two key challenges. First, the

number of subsequences in the dataset grows rapidly, even for fairly

small datasets. For a dataset with 𝑛 time series, each of length𝑚, an

exhaustive search would require computing the Euclidean distance

between all 𝑛 ∗ (𝑚 − |𝑸 | + 1) subsequences and the query 𝑸 , with
each computation costing |𝑐𝑸 | ∗ |𝑸 | time. Second, the requirement

to support ad-hoc selection of query channels precludes the use of

summarizations that involve merging channels, such as PCA [76].

Our solution, named MS-Index, addresses these challenges by

combining the pruning potential of an index with the efficiency of

the MASS algorithm for exact distance computation (cf. Section 2.4).

The solution involves three key steps (cf. Figure 3): (a) summarizing

theMTS subsequences throughDFT approximations, (b) building an

R-tree index on these approximations, 2 and (c) at query time, using

the index to heavily prune the candidate subsequences, followed by

an exact distance computation on the remaining candidates using

MASS. Through the index, MS-Index is able to prune over 99% of

the candidate subsequences for a variety of datasets, at a very low

cost, thereby achieving a speedup up to 100x compared to the state-

of-the-art. We also propose a number of optimizations to further

improve the efficiency of the search process (Section 3.4). These

novel optimizations are interesting in their own right, as they can

be applied to any search algorithm that uses DFT approximations

and/or spatial indices, such as [20, 28, 30, 49, 59, 71].

We now present the key components of MS-Index, starting with

time series summarization (Section 3.1) and indexing (Section 3.2),

followed by the query execution algorithm (Section 3.3), and the

optimizations (Section 3.4).

3.1 Summarizing All Subsequences with DFTs

As discussed in Section 2.2, a big challenge in working with time se-

ries is their length. Using a subset of DFT coefficients to approximate

time series has been extensively used in the literature [28, 30, 49].

2We would like to stress that, despite the use of DFTs, which is an approximation
technique, MS-Index remains an exact algorithm. Approximation only influences the
bounding efficiency and pruning power (i.e., the speed) of MS-Index, and not the
accuracy or completeness of its results. Specifically, after applying dimensionality
reduction, the distances between objects in the R-tree are lower-bounds on the actual
distances. This potentially leads to false positives, but never false negatives as we
query the R-tree with a threshold that is an upper bound on the actual 𝑘-NN distance
(i.e., without dimensionality reduction). We formally prove this in Lemma 3.1.

This approach is effective because it provides a compact represen-

tation that enables efficient lower-bounding of distances between

time series. However, our analysis of real-world time series revealed

two important observations that can further improve the accuracy

of such approximations;

Observation 1: The first-𝑓 coefficients are not always the top-𝑓
coefficients in terms of their contribution to the total energy of

the time series; there exist domains where certain high-frequency

contributions are also substantial. This is illustrated in the two

plots in Figure 4a, which show the absolute and cumulative con-

tribution to the total energy and distance across DFT coefficients,

extracted from 100 time series with real-world temperature read-

ings at different locations (see Section 5 for details on the dataset).

Both lines show a 90% confidence interval over a wide range of

measurements (i.e., all 100 time series to form the line for energy,

and all 100*99/2 pairwise distances to form the line for total dis-

tance). The figure shows a sudden jump in the energy contribution

at the 62nd coefficient, which indicates that this coefficient has a

substantial contribution to the shape of the time series and should

thus be included in the approximation. The top-𝑓 most significant

coefficients can be derived similarly to the configuration process in

other adaptive summarization techniques [32, 54, 75]; by computing

statistics on a sample of the dataset pre-index construction.

Observation 2: The contribution of DFT coefficients to the total

distance between time series is even more significant than their

contribution to energy. Intuitively, this means that the top coeffi-

cients are not only larger in scale, but also vary much more between

time series. This evident from Figure 4a, which shows that the cu-

mulative contribution to distance increases much faster than the

contribution to energy, implying that one can already cover ∼90%
of the total distance with the top 5 coefficients, even though these

only cover roughly ∼60% of the total energy.

MS-Index exploits these observations to create accurate approxi-

mations of time series subsequences, adapted to the dataset at hand.

In particular, we summarize the MTS in the dataset as follows. First,

before index construction, we extract a uniformly random sam-

ple 𝑆 of subsequences of length |𝑸 | from different time series in

the dataset3, and derive the average relative distance contribution

(ARDC) of each DFT coefficient and each channel to the Euclidean

distance between these subsequences (i.e., the process that gener-

ated the plots in Figure 4a). Then, for each channel in the dataset,

the top-𝑓 coefficients with the largest ARDC are derived, with 𝑓
chosen such that the total ARDC of the top-𝑓 coefficients is above

a certain threshold 𝑑target (e.g., 90%). Parameterizing the algorithm

on 𝑑target rather than 𝑓 allows the algorithm to adapt the size of the

summarization to the dataset at hand, ensuring a predetermined

level of accuracy of the approximations. Those top-𝑓 coefficients

are then used to compute the DFT approximations of all |𝑸 |-length
subsequences in the dataset. Notice that the summation in Equa-

tion 2 can be over any permutation or subset of coefficients; as long

as the same coefficients are used for both subsequences the bound

still holds.

In the following, with 𝑻̃ we will denote the matrix of size 𝑐 × 𝑓
that stores the DFT approximations for subsequence 𝑻 . Also, 𝑻̃ ′

3The sample size is a parameter of the algorithm, and is typically set to 100 subse-
quences. This value was chosen after empirical testing on different datasets, which
showed that larger sample sizes did not lead to a noticeable difference in performance.
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Figure 4: (a) Cumulative and absolute % of total distance and energy across DFT coefficients on the temperature channel of a

weather dataset; (b) Query execution in MS-Index. Numbers in tree nodes indicate the lower bound distance of the respective

MBR to the query.

will be used to denote the feature vector of subsequence 𝑻 , which
is of length 𝑐 ∗ 𝑓 and is constructed by flattening the matrix 𝑻̃
(step 2 in Figure 3). Summarizing a dataset of 𝑛 time series costs

𝑂 (𝑛 ∗𝑚 ∗ |𝑸 | ∗ 𝑓 ), and leads to a total of𝑂 (𝑛 ∗𝑚) feature vectors –
one per subsequence.

3.2 Indexing of the MTS

The next step involves indexing the generated feature vectors in an

R-tree (step 3 in Figure 3).4 Notice, however, that the total number

of feature vectors is 𝑂 (𝑛 ∗𝑚), which can lead to a large and ineffi-

cient R-tree when the number of time series 𝑛 is large, negatively

impacting the query performance.

Wemitigate this problem as follows. First, we build the R-tree in a

bottom-up fashion with leaves containing more than one entry (i.e.,

leaf size 𝐿 > 1), to reduce the number of nodes in the tree. Second,

once the leaves are constructed, we revisit them and modify their

internal representation, to allow pruning of multiple subsequences

(i.e., entries) with a single distance computation. Particularly, for

each leaf that contains two or more entries, we group together

all entries that originate from time-neighbouring subsequences of

the same MTS, i.e., feature vectors corresponding to a series of

subsequences that are a single time shift apart (e.g., 𝑻
|𝑸 |
𝑖 , 𝑻

|𝑸 |
𝑖+1 ,

𝑻
|𝑸 |
𝑖+2 , . . .). These groups correspond to a continuous subsequence

of the original MTS. For example, assume a leaf Λ that includes the

following subsequences: Λ = {𝑿 |𝑸 |
10 ,𝑿

|𝑸 |
11 ,𝑿

|𝑸 |
12 , 𝒀

|𝑸 |
40 , 𝒀

|𝑸 |
41 }, with

𝑋 and 𝑌 being two different MTS. We compress these five entries

into two, representing the relatively larger subsequences Λ′ =

{𝑿 |𝑸 |+2
10 , 𝒀

|𝑸 |+1
3 }. These entries are now represented with Minimal

Bounding Rectangles (MBR) rather than with single points in the

feature space, with the start and end positions of the continuous

subsequence stored in the entry along with the MBR.

The intuition behind this grouping is that time-neighboring sub-

sequences are typically very similar due to their large overlap [28].

This means that their feature vectors are also similar, often ending

up in the same R-tree leaf. This allows many subsequences to be rep-

resented by compact entries with tight MBRs, which both reduces

4We also experimented with other spatial indexes like KD-trees [11], but found that
the recall stage of our algorithm was the most time-consuming part of our solution,
rather than the probing of the index. We thus opted for using an R-tree to enable a
more clear comparison with ST-index [28].

the number of entries in the R-tree and enables efficient distance

computation with MASS. In our experiments, this compression

typically merges 8-50 subsequences into a single entry, depending

on the dataset, with a leaf size optimized for query performance.

Consequently, the indexing process of MS-Index is as follows. (a)

We build an R-tree bottom-up on the feature vectors of all subse-

quences in the dataset. In our running example with 𝑋 and 𝑌 , this
step involves creating the leaf node Λ along with all other leafs that

contain the other subsequences in the dataset. In the recursion of

the R-tree, we then create the parent nodes of Λ, which contain the

MBRs of the leafs (and are MBRs themselves), and so on until we

reach the root node. (b) We then revisit the leaf nodes and group to-

gether all time-neighbouring entries (i.e., creating Λ′) to reduce the
index size. After these steps, we end up with an R-tree with each

entry storing (a) an MBR covering the indexed feature vectors, (b)

the start and end positions of the subsequences in the original MTS,

and (c) the MTS identifier. This index is visualized on the right

of Figure 3, where the nodes represent the indexed subsequences

of different MTS (differentiated by color), and the edges connect

time-neighbouring subsequences of the same MTS.

3.3 Query Execution

Our algorithm probes the index twice. The first probe is for finding a

rough estimate (an upper bound) of the distance to the 𝑘-th nearest

neighbor, whereas the second probe retrieves all entries within

this distance, and computes the exact result. The second probe is

necessary to guarantee correctness of the answer.

Queries are executed as follows. First, we extract a feature vector

𝑸̃ ′ of the query 𝑸 . Then, starting with a distance threshold 𝜏𝑘 = ∞,

we perform a best-first search on the R-tree, to find the 𝑘 entries

(i.e., groups of |𝑸 |-length subsequences) with the smallest distance

to 𝑸̃ ′. Since the R-tree relies on the feature vectors to compute all

distances, the computed distances are lower bounds (LBs) on the

true distances to 𝑸 . Then, for each retrieved entry, we compute the

exact distances between 𝑸 and the |𝑸 |-length subsequences in the

entry using MASS, and set the distance threshold 𝜏𝑘 to the 𝑘-th
smallest distance found in this step. Finally, we perform a threshold

query on the index, using 𝜏𝑘 ∗
√
|𝑸 | as the distance threshold, and

compute the exact distances for these entries with MASS to obtain



the final 𝑘-NN.5 These results are then returned to the user along

with the corresponding timestamps of the subsequences, which

are derived from the offset and the timestamp of the MTS. Since

the query 𝑸 does not necessarily contain all channels (i.e., 𝑐𝑸 ⊆
{1, . . . , 𝑐}), the R-tree is only queried on the dimensions of the

feature space that correspond to the channels in 𝑸 . This is natively

handled by the R-tree algorithm [65].

To illustrate this process, consider a query 𝑸 for which the 1-NN

is the subsequence 𝑿
|𝑸 |
11 in leaf Λ′ from the previous section. The

algorithm will return the entry 𝑿
|𝑸 |+2
10 in the first probe, as it has

the smallest lower bounding distance to 𝑸 (Step 1 in Figure 4b).

It then computes MASS(𝑸,𝑿 |𝑸 |+2
10 ) on the original subsequences,

which outputs the distances [8, 5, 6], and adds 𝑿
|𝑸 |
11 to the running

1-NN set as it corresponds to the smallest distance of 5 (Step 2).

Accordingly, the threshold is set to 5 ∗
√
|𝑸 | and the algorithm per-

forms the second probe, retrieving the entries 𝒁
|𝑸 |+2
23 and 𝑿

|𝑸 |+2
10

(Step 3). After computing the exact distances for these entries with

MASS, the algorithm returns 𝑿
|𝑸 |
11 as the 1-NN to 𝑸 (Step 4).

We now prove that the query process described above is guar-

anteed to return the complete and correct 𝑘-NN to the query 𝑸 .
Specifically, we aim to prove the following lemma:

Lemma 3.1. Any indexed subsequence 𝑻 of length |𝑸 | that is part of
the 𝑘-NN of 𝑸 is guaranteed to be in the set of subsequences returned

by MS-Index.

Proof. The first probe of the index returns 𝑘 subsequences of

length 𝑠 ≥ |𝑸 |, for which the exact distances with the query are

computed. As these 𝑘 subsequences collectively contain at least 𝑘
subsequences of length |𝑸 |, by setting 𝜏𝑘 as the k’th smallest of

these distances we get an upper bound on the distance of the true 𝑘-
th nearest neighbor. In the second probe, we perform a range query

with threshold 𝜏𝑘 ∗
√
|𝑸 | on the R-tree index, which contains the

feature vectors. Based on Equation 2, the distance between any two

points in the feature space is a lower bound on the true distance of

the subsequences they represent. Specifically, the distance between

a |𝑸 |-length subsequence 𝑻 and the query 𝑸 is lower-bounded by

the distance between their feature vectors 𝑻̃ ′ and 𝑸̃ ′ as:

𝑑 (𝑻 ,𝑸) ≥
1√
|𝑸 |

√∑
𝑖∈𝑐𝑸

𝑑 (𝑻̃𝑖 , 𝑸̃𝑖 )2 =
𝑑 (𝑻̃ ′𝑐𝑸 , 𝑸̃

′
𝑐𝑸 )√

|𝑸 |
(4)

where 𝑻̃ ′𝑐𝑸 and 𝑸̃ ′
𝑐𝑸 correspond to the feature vectors of 𝑻 and 𝑸

limited to the channels of 𝑸 . Now, assume that an indexed subse-

quence 𝑻 has distance with 𝑸 less than 𝜏𝑘 . Then, by Equation 4 we

know that
𝑑 (𝑻̃𝑐𝑸 ,𝑸̃ ′

𝑐𝑸
)

√
|𝑸 |

≤ 𝑑 (𝑻 ,𝑸) ≤ 𝜏𝑘 . Therefore, by querying an

R-tree a threshold 𝜏𝑘 ∗
√
|𝑸 |, 𝑻 is guaranteed to be included in the

returned set.6 �

5Note that MASS is not executed on the feature vectors, but rather on the original
subsequences, to ensure that the distances are exact. This data is retrieved by chasing
the pointers stored in the R-tree entries to the original MTS, residing on disk.
6Note that the

√
|𝑸 | is simply a scaling factor that needs to be accounted when

transforming the distances from the feature space to the time domain. It does not
weaken the bounds.

The lemma proves that MS-Index is complete by guaranteeing

that all subsequences in the 𝑘-NN are found. Since exact distances

are computed for all candidates using MASS (which is exact), and

the 𝑘-NN is derived from these distances, the algorithm is also

correct, never returning false positives.

3.4 Optimizations

We now present three optimizations of MS-Index aimed at improv-

ing the pruning power of the index and the efficiency of the search

process. These optimizations do not affect the correctness of the

algorithm or the final result – the algorithm still remains exact.

Tightening the DFT bounds. As discussed in Section 3.1, in most

real-world datasets, around 60%-80% of the distance between time

series is covered by the top 2-5 DFT coefficients. Formally, this

concept is expressed as:

𝑑2 (𝑻 ,𝑸) = (𝑑2 (𝑻̃𝑓 , 𝑸̃𝑓 )︸�������︷︷�������︸
∼80%

+𝑑2 (𝑻̃𝑓 +, 𝑸̃𝑓 +)︸����������︷︷����������︸
∼20%

)/|𝑸 | (5)

where 𝑻̃𝑓 denotes the DFT approximation of an MTS 𝑻 using the

top-𝑓 coefficients, and 𝑻̃𝑓 + denotes the set of 𝑐 vectors composed

of the remaining coefficients. In the DFT bound of Equation 4, we

effectively throw away the second term, which leads to a lower

bound of the true distance. This bound can be computed very effi-

ciently (in 𝑂 (𝑓 )), but it may also lead to a weaker pruning in the

R-tree, and to unnecessary distance computations for subsequences

that are outside the final 𝑘-NN.
We improve this lower bound such that it approaches the true

distance more closely, by introducing a correction term at the dis-

tance calculation that approximates (again by lower-bounding) the

distance over the remaining ( |𝑸 | − 𝑓 ) coefficients, without actually

having to compute these coefficients. Computing this correction term

costs𝑂 (1) at query time for each probed R-tree node, and improves

the pruning power of the index.

Namely, during index construction, after computing the DFT

approximation for each subsequence 𝑻 , we also derive the part of

𝑻 that is not covered by the top-𝑓 coefficients, called its remain-

der 𝑻𝑓 + = [𝑻1 − IDFT(𝑻̃𝑓 ,1), . . . , 𝑻𝑐 − IDFT(𝑻̃𝑓 ,𝑐 )]. This remainder

can be computed solely based on the top-𝑓 coefficients, and does

not require computing all other ( |𝑸 | − 𝑓 ) coefficients. The key

observation here is that the distance between the remainders of

two time series captures the remaining ∼20% of their distance as

shown in Equation 5. Then, Equation 5 can be rewritten to utilize

the remainders:

𝑑2 (𝑻 ,𝑸) =
𝑑2 (𝑻̃𝑓 , 𝑸̃𝑓 )

|𝑸 |
+ 𝑑2 (𝑻𝑓 +,𝑸𝑓 +) (6)

The remainders are of length |𝑸 |, meaning that the cost is as much

as computing the full distance on the original data (i.e., 𝑂 ( |𝑐𝑸 | ∗
|𝑸 |)). To avoid this cost at query time, we precompute the distances

of the remainders for each subsequence to a small fixed set of

pivot points at index time, and store these distances in a map. Then,

during query execution, we do the same for𝑸𝑓 +, and use the reverse
triangle inequality to lower-bound the distance between 𝑸𝑓 + and

the remainders of the indexed subsequences through their distances

to pivots. We refer to this latter bound as the correction term. We



Figure 5: Different partitioning strategies for a 2-dimensional

feature space; the STR algorithm (left) and the proposed

weighted partitioning (right), that leads to smaller MBRs and

to tighter bounds.

apply the correction term to Equation 6 as follows:

0 ≤ (|𝑑 (𝑻𝑓 +, 𝑷 ) − 𝑑 (𝑸𝑓 +, 𝑷 ) |)2 ≤ 𝑑2 (𝑻𝑓 +,𝑸𝑓 +) ⇒

𝑑2 (𝑻 ,𝑸) ≥ 𝑑2 (𝑻̃𝑓 , 𝑸̃𝑓 )/|𝑸 |︸�������������︷︷�������������︸
DFT distance

+ (|𝑑 (𝑻𝑓 +, 𝑷 ) − 𝑑 (𝑸𝑓 +, 𝑷 ) |)2︸�����������������������������︷︷�����������������������������︸
Correction term

(7)

where 𝑷 is a pivot. At index construction time, we derive 𝑘 pivots

by running 𝑘-means clustering on a sample of the remainders of

subsequences in the dataset. Then, during query execution, the

algorithm detects the closest pivot to the query’s remainder, and

uses this pivot 𝑷 to compute the bound, according to Equation 7.

In Section 5 we show that this optimization leads to a 2x speedup

in query execution.

Tightening the MBRs. Pruning efficiency of the R-tree can be

further enhanced by reducing the volume of the MBRs in the R-tree

nodes. The R-tree is constructed in a bottom-up fashion using

the STR algorithm [43], briefly presented in Section 2.3. STR’s

approach of splitting the entries into an equal number of partitions

per dimension works well when the data is uniformly distributed

at all dimensions, but it can lead to sub-optimal partitioning when

the data is skewed or concentrated in certain areas of the space. To

illustrate the reason, consider a simple example where the R-tree

is used to index a two-dimensional space, with the values in the

first dimension ranging from 2 to 6, and in the second from 1.5

to 2.5 (see Figure 5). The first dimension will likely be the main

contributor of the Euclidean distances between different entries.

Therefore, if we devote more splits/partitions on the first dimension

while constructing the R-tree, the resulting MBRs will be tighter in

this dimension, leading to tighter lower distance bounds and to a

more aggressive pruning. Figure 5 illustrates this idea.

DFT approximations, in particular, are prone to have such a

heavy concentration of variance in the first few dimensions, as dis-

cussed in Section 3.1. We leverage this observation by weighing the

dimensions of the R-tree (i.e., the DFT coefficients across channels)

based on the variance of their values, which is a good proxy for

the contribution of the dimension to the distance between points.

Namely, before constructing the R-tree, we use the sample 𝑆 of

subsequences extracted during the summarization step (Section 3.1)

to estimate the variance 𝜎̂2𝑖 of the distribution of feature vectors

across each dimension 𝑖 of the feature space. Next, we compute

𝜔𝑖 (the weight of dimension 𝑖) through softmax normalization of

the variances [15]. Then, given a desired leaf size 𝐿, the number of

splits 𝑝𝑖 for a dimension 𝑖 is determined by 𝑝𝑖 = 	(𝑁 /𝐿)𝜔𝑖 
, with
𝑁 being the total number of entries to index in the whole dataset.

Algorithm 1: UTSBaseline(I,𝑸, 𝑘)
Input :A set of channel-level indices I, a query MTS 𝑸 , a

result set size 𝑘 .
Output :The top-𝑘 subsequences in T with the lowest

distance to 𝑸 .
1 R̂ ← {}
2 for 𝑖 ∈ 𝑐𝑸 do // Iterate over indices

3 R̂ ← R̂ ∪Query(I𝑖 ,𝑸𝑖 , 𝑘) // Query index

4 R̂ ← ExhaustiveTopK(R̂,𝑸) // Compute est. top-𝑘

5 for 𝑖 ∈ 𝑐𝑸 do // Set thresholds
6 𝜏𝑖 ← max

𝑆∈R̂
𝑑2 (𝑆𝑖 ,𝑸𝑖 );

7 R ← {};
8 for 𝑖 ∈ 𝑐𝑸 do // Re-query
9 R𝑖 ← Query(I𝑖 ,𝑸, 𝜏𝑖 );

10 R ← R ∪ {𝑻 |𝑻 ∈ R𝑖 ∧ 𝑑2 (𝑸𝑖 , 𝑻𝑖 ) ≤ 𝜏𝑖 }
11 return ExhTopK(R,𝑸);

This definition of 𝑝𝑖 ensures that the desired leaf size 𝐿 is reached

as
∏𝑐∗𝑓 ∗2

𝑖=1 	(𝑁 /𝐿)𝜔𝑖 
 ≈ 𝑁
𝐿 . This way, the algorithm effectively re-

distributes the number of partitions across the dimensions, such

that it is proportional to the contribution of each dimension to the

distance. In Section 5 we will show that this optimization leads

to a 2-4x speedup in query execution, due to the more aggressive

pruning of the index.

Distance browsing. Notice that, as the threshold 𝜏𝑘 used in the

second probe is set to the 𝑘-th smallest exact distance of the subse-

quences returned by the first probe, the second probe is guaranteed

to return a superset of the entries returned by the first probe. To

avoid redundant lower bound distance computations, we preserve

the priority queue of entries used in the best-first searches between

the two probes, so that the second probe continues from where the

first one left off. This optimization is commonly used for querying

spatial indices, and is typically referred to as distance browsing [35].

4 EXTENDING EXISTING ALGORITHMS TO

THE MULTIVARIATE CASE

As mentioned in Section 2.4, there exist several efficient algorithms

that address similarity search for UTS. Therefore, a natural question

is whether these algorithms can be extended to query MTS, and

how they would perform in such a setting. We will now present

a unified extension – a wrapper algorithm – that can be used to

extend any UTS search algorithm to work with MTS. We also note

that this alternative design approach comes with several deficien-

cies compared to MS-Index, such as low pruning power when the

channels are uncorrelated, as shown in Section 5. Still, it is a useful

approach to enable comparison of MS-Index with out-of-the-box

extensions of UTS algorithms such as DSTree [72], ST-index [28],

and KV-match [73] on MTS data.

The general approach is based on the well-known Threshold

algorithm [27], which can be used to derive a global top-𝑘 from

multiple sorted lists with different attribute values of the same

objects, given a monotonic aggregation function to compute the

target value upon which the top-𝑘 is based. The approach works

as follows (cf., Alg. 1): (a) We initialize one index (e.g., one DSTree



or one ST-index) per channel. (b) At query time, we first obtain an

initial top-𝑘 estimate 𝑅𝑖 for each channel 𝑖 ∈ 𝑐𝑸 by querying the

corresponding index (lines 2-3). (c) For each subsequence in the

union of the local estimates, we compute the full distance to the

query (i.e., using all query channels), constructing an intermediate

global top-𝑘 𝑅 (line 4). (d) We set a distance threshold 𝜏𝑖 for each
channel 𝑖 ∈ 𝑐𝑸 to the largest univariate Euclidean distance in 𝑅
on that channel (lines 5-6). (e) Finally, we re-query the channel-

level indices with their respective thresholds 𝜏𝑖 . We compute the

full distances to the query for the results, update the global top-k

accordingly, and return it as a final result (lines 7-11). Since any

subsequence that belongs to the global top-𝑘 must have a distance

at most 𝜏𝑖 on at least one channel 𝑖 ∈ 𝑐𝑸 , the result of this algorithm

is guaranteed to be correct. Lastly, MASS is used to speed up the

exact distance computations (lines 4 & 10).

5 EVALUATION

The purpose of our experiments was threefold: (a) to assess the

scalability and efficiency of MS-Index under various query configu-

rations, (b) to compare MS-Index to other methods, and, (c) to test

the effectiveness of the optimizations proposed in Section 3.4. Since

our method and all baselines are exact, our evaluation only focuses

on efficiency; experiments on accuracy would always yield 100%.

Compared methods. First of all, we compare MS-Index toMULIS-

SE [58], applying it to fixed-length search by restricting the sup-

ported range of query lengths to |𝑸 |. This way, MULISSE also

exploits the knowledge of a preknown query length, which slightly

improved its performance without affecting the quality of the re-

sults. As no other method natively supports𝑘-NNMTS subsequence

search, our other baselines comprise of SOTA methods for UTS

search extended through Algorithm 1.7 (a) ST-Index* [28], a well-

known index for subsequence search [48, 77], (b) KV-Match* [73],

a SOTA index for subsequence search on single long series, ex-

tended with per-MTS indices, and (c) DSTree* [72], an index for

whole-matching [25], adapted by indexing all subsequences. We

also include two sequential scan baselines: (a)MASS [50] applied

to all MTS, and (b) Brute-force exhaustive comparison. Detailed

descriptions of the compared methods can be found in Section 2.4.

Hardware and implementations. All experiments were executed

on a server equipped with a 64-core 2.4 GHz AMD Genoa 9654

processor and 128 GB of RAM. The code for MULISSE (C++) was

provided by the authors of [58], and was executed directly with the

original parameters as described in the paper. The code for DSTree*

(Java-11) was provided by the authors of [72], and was invoked as

a subroutine in Alg. 1. Due to the lack of publicly available code,

all other algorithms were implemented from scratch in Java-11.8

For a fair comparison, all methods were implemented to operate

fully in main memory and run in single-threaded.

Datasets. We used 32 real-world publicly available datasets from

different domains, and a set of synthetic datasets: (a) Stocks. Daily

volumes, opening, closing, high, and low-prices of 28678 stocks

over the period Jan. 2, 1987 to Feb. 26, 2021. (b) Weather. Segment

of the ISD weather dataset [52] containing hourly readings of wind

7We add an asterisk to their names to differentiate them from their original versions.
8Our code is available at https://github.com/JdHondt/MS-Index

Table 3: Default query configurations.

Stocks Weather Synthetic Wind UEA (30x)

𝑛 2000 1300 1600 1 all, see [7]

Avg.𝑚 5590 8692 4096 432,000 see [7]

|𝑸 | 730 (2 y.) 1488 (2 mth.) 1024 1800 (1 h.) 20%

#Channels 5 4 64 10 see [7]

speed, sea level pressure, atmospheric temperature, dew point tem-

peratureof 13545 sensors taken between Jan. 1, 2020 and Dec. 31,

2021. (c)Wind. Sensor output of an active wind turbine sampled

every 2 seconds for 10 days [51], resulting in a single MTS with

432,000 observations and 10 channels covering power output, rotor

speed, wind speed, and other wind-related variables. (d) Synthetic.

Random walk datasets with 1600 MTS, of 64 channels and 4096 ob-

servations each. Following [25, 26], these datasets were generated

by drawing random numbers from a normal distribution with a

mean of 0 and a standard deviation sampled uniformly at random

from the interval [0, . . . , 10], with starting points sampled uniformly

at random from the interval [0, . . . , 100]. (e) UEA archive. Popular

benchmark archive for MTS classification consisting of 30 labeled

real-world datasets from different domains [7], with varying num-

bers of MTS, channels, and observations. Train and test splits for

each dataset were merged, to form a single dataset.

We evaluated both raw and normalized subsequences, focus-

ing on raw results and highlighting normalized results only when

they provide additional insights. The Stocks dataset serves as our

primary benchmark due to its size, with other datasets discussed

in designated experiments or when they reveal notable patterns.

Table 3 summarizes the default query confirms for each dataset. We

include more details about the datasets in our code repository.8

Queries and evaluation metrics. As per standard practice [25], we

generated the query workloads for each dataset by randomly select-

ing |𝑸 |-length subsequences from the dataset and adding Gaussian

noise with standard deviation 0.1 ∗ 𝜎𝑄𝑖 on all channels. As part of

sensitivity analysis experiments, we also investigate varying noise

levels and query generation from out-of-dataset subsequences in

Section 5.2.6. Unless otherwise stated, we query on all channels

of the dataset.When querying on a subset of channels (as in Sec-

tion 5.2.7), the query channels are selected uniformly at random

from all available channels. For each algorithm, we measured: (a)

initialization time, e.g., index construction index, (b) query execu-

tion time, and, (c) size of the index and/or auxiliary data. We set

a timeout of 12 hours for total execution time, and report median

results over 10 runs with 100 queries each.

5.1 Tuning the Algorithms

5.1.1 Number of DFT coefficients forMS-Index and ST-Index* Recall

from Section 3.1 that the number of DFT coefficients 𝑓 is derived

based on the distance𝑑target covered by the top-𝑓 coefficients, rather

than parameterizing the number of coefficients directly. For both

algorithms, 𝑑target was tuned through a grid search over the values

[20%, 40%, . . . 100%], across all datasets and with queries on both raw

and normalized subsequences. The results showed that a coverage

of 60% was the most robust choice for both algorithms across the

datasets, resulting in a query time at most 20% larger than the

optimal choice for each dataset. Therefore, 𝑑target was set to 60%

for the following experiments.



Table 4: Average query time (ms) of MS-Index for different

leaf size values. Leaf size is expressed as a percentage of the

total number of subsequences in each dataset (raw datasets).

Leaf size Insectwingbeat Stocks Synthetic Weather

0.0001 % 8.61 8.50 2.98 4.67

0.01 % 8.61 8.37 2.97 4.64

0.05* % 9.01 8.16 2.98 4.61

0.1 % 10.79 8.36 3.01 4.69

1 % 22.70 11.83 3.62 5.06

100 % 38.12 158.10 4.59 100.87

Table 5: Index size (MB) and the corresponding percentage of

the dataset size (MB) of different algorithms across different

Stocks dataset sizes.

Raw Normalized

𝑛 1000 2000 3000 % 1000 2000 3000 %

Dataset size (MB) 210 430 641 100% 210 430 641 100%

MULISSE 14 15 16 5% 16 18 20 5%

KV-Match* 259 536 793 124% 10 20 30 5%

MASS 315 646 964 150% 315 646 964 150%

MS-Index 968 1923 2861 452% 1094 2248 3348 522%

DSTree* 1491 3230 4773 731% 620 1276 1900 296%

ST-Index* 2904 5771 8584 1355% 3282 6746 10045 1567%

5.1.2 Leaf size DSTree*, ST-Index*, and MS-Index support tuning

of the leaf size 𝐿, i.e., the maximum number of entries per leaf.

Similar to the number of DFT coefficients, we tuned the leaf size for

query time through a grid search over values ranging from 0.0001%

to 100% (i.e., no constraints on the leaf size) of the total number of

entries to index.9 Looking at the results in Table 4, we see that a

leaf size of 0.05% provides consistently good performance across all

datasets for MS-Index. Therefore, this leaf size was chosen for all

experiments. For ST-Index*, the optimal leaf size was also 0.05%. For

DSTree*, the optimal leaf size was found to be 10%. This contradicts

the results of Echihabi et al. [25], who showed that the optimal leaf

size for query time was 0.9% for time series of size 256. Both 0.9%

and 10% had a similar query time in our experiments, but the 10%

choice had a substantially lower initialization cost.

5.1.3 KV-Match* segment size The segment size parameter in KV-

Match* controls the number of piecewise means and variances used

to index each subsequence. We found the optimal segment size to

be 1 for all datasets. For raw subsequences, this reduces the index

to a single lookup table per channel and time series. For normalized

subsequences, all entries end up in the same bucket due to zero

mean and unit variance, effectively reducing KV-Match* to MASS

with overhead.

5.2 Evaluation Results

5.2.1 Initialization time Figures 6a-b show the initialization time

of all index-based algorithms on the Stocks dataset as the number

of MTS (𝑛) increases. All methods scale linearly with 𝑛, which is

expected since initialization of these methods requires iterating

over all time series subsequences. MS-Index and ST-Index* have

comparable initialization times, both primarily spent on comput-

ing DFT approximations. The remainder of the initialization cost

9ST-Index*’s leaf size was tuned after tuning the number of DFT coefficients, using a
leaf size of 0.1% in the first step.

relates to index construction which for ST-Index* involves building

channel-level trees (scaling linearly with the number of channels).

In contrast, MS-Index builds a single tree for all channels, making

it 2-3 times faster for this phase. DSTree* shows comparable ini-

tialization time to other methods for normalized subsequences, but

is two orders of magnitude slower for raw subsequences. This dif-

ference occurs because raw subsequences with varying scales and

means cause DSTree* to create deep, unbalanced trees with costly

node splitting operations, while normalized subsequences lead to

more balanced trees based on pattern differences. KV-Match* and

MULISSE have the lowest initialization time. This is because KV-

Match* only requires a small lookup table for each time series, and

MULISSE is originally build and parameterized for variable-length

subsequence search, which adds an additional degree of freedom

to the problem and makes indexing performance a key priority.

5.2.2 Size of the data structures Table 5 presents the memory re-

quirements of each algorithm for the Stocks dataset both in MB

and as a percentage of the dataset size. All methods scale linearly

with 𝑛, with MULISSE being the most space-efficient (storing only

𝑛 envelopes in a shallow iSAX tree), followed by KV-Match*, MASS,

MS-Index, DSTree*, and ST-Index*. MS-Index and ST-Index* have a

worst-case space complexity of 𝑂 (𝑛 ∗ (𝑚max − |𝑸 |) ∗ 𝑓 ∗ 𝑐), with
ST-Index* requiring approximately three times more space than

MS-Index due to its channel-level indices. Reflecting on the relative

memory requirements, we see that many methods require more

than 100% of the dataset size to store their indices. While this may

sound counterintuitive, recall that these structures index the space

of subsequences, which is significantly larger than the dataset, given

that subsequences overlap. Indicatively, while a 𝑛 = 1000 subset of

Stocks is 210 MB large, storing all subsequences of length |𝑸 | = 730

would require 133 GB of memory, implying that MS-Index already

compresses this space by a factor of 138. Still, the memory footprint

of subsequence indices may be a concern for some applications, and

is a commonly acknowledged limitation of these methods [45, 60].

5.2.3 Query time Figures 6c-d present the query execution time

for all methods, when executing queries on subsets of the time

series in the Stocks dataset. We see that MS-Index significantly

outperforms all other methods. In fact, it outperforms its closest

competitor, MASS, by over two orders of magnitude, and the other

methods by over three orders of magnitude. These results can be

explained by the fact that MS-Index adds pruning power to the

MASS algorithm, which already offers a big performance boost

over the Brute-force algorithm. A deeper investigation revealed

that MS-Index reaches a median pruning effectiveness of 99% across

all datasets, i.e., 99% of the subsequences are already pruned from

the index and do not need to be compared with MASS. While

ST-Index*, KV-Match*, and DSTree* also act as a pre-filter on top of

MASS, their pruning power is significantly lower compared to MS-

Index, with pruning effectiveness of 52%, 65%, and 46% respectively

on average on the Stocks dataset with raw subsequences. This

is because the pruning power of these methods depends on the

relative ordering of the subsequences to the partial (per-channel)

results. When this relative ordering differed significantly over the

different query channels, it resulted in relatively high thresholds for

the per-channel distances (set in Lines 5-7 of Alg. 1), and therefore

to a high number of MASS-based comparisons. MS-Index avoids



Figure 6: Scalability over number of MTS 𝑛 on Stocks. (a) Initialization time for raw subsequences, and (b) normalized subse-

quences; (c) Query time for raw subsequences, and (d) normalized subsequences. (e) Query time for raw subsequences with

varying query length. All y axes are presented in log scale.

Figure 7: Query time of algorithms on different datasets. All y axes are presented in log scale.

this issue by querying all query channels simultaneously. Lastly,

MULISSE performs second-slowest (after Brute-force) with only 9%

pruning rate. This shows that while its extremely memory-efficient

design achieves the smallest index size among all methods, this

comes at the cost of loose distance bounds that result in many

exhaustive comparisons.

5.2.4 Query length Since query length must be specified before in-

dex construction, we evaluate its impact on performance. Figure 6e

shows that all algorithms except Brute-force are invariant to query

length, as they use MASS which scales with subsequence length

(𝑂 (𝑚 log𝑚) with𝑚 ≥ |𝑸 |) rather than query length. This suggests

MS-Index’s performance is independent of |𝑸 |, allowing users to
choose lengths that best fit their use case.

5.2.5 Different datasets Figure 7 presents the query execution per-

formance across all datasets using default query parameters from

Table 3.10 For the 30 UEA datasets, we present average results as

individual dataset results showed similar patterns. MS-Index con-

sistently outperforms competitors by 2-3 orders of magnitude on

all datasets, with the exception of the UEA datasets where MS-

Index’s advantage is reduced to 5-7 times compared to MASS. This

is because UEA datasets capture short, single events (e.g., a person

lifting their arm, or a duck producing a sound) rather than continu-

ous long series with multiple events. Subsequences in such datasets

are typically more similar to each other than those in the Stocks or

Weather datasets. This creates more challenging queries for index-

based methods, further discussed in Section 5.2.6. Another notable

observation is that MS-Index’s advantage over competitors remains

substantial also on extremely long time series, with a 22x speedup

over MASS and a ∼100x speedup over other methods on the Wind

dataset. This is relevant, as such datasets are becoming increasingly

common in domains such as IoT and sensor data [51]. All in all, we

conclude that MS-Index is significantly faster than all competitors

across various datasets with different characteristics and different

domains, confirming its robustness and general applicability.

10The results on normalized subsequences are omitted as they show similar patterns.

Table 6: Relative contrast of queries and percentage of nodes

pruned by MS-Index, over different numbers of query chan-

nels on the DuckDuckGeese dataset (UEA).

Query channels |𝑐𝑄 | 16 64 256 1024

Rel. contrast
Raw 62 107 110 120

Normalized 14.5 14.4 13.9 13.9

Perc. pruned
Raw 70.54% 79.36% 92.20% 97.94%

Normalized 89.58% 84.66% 83.68% 83.61%

5.2.6 Effect of query difficulty Pruning-based algorithms rely on

the "left-tail" assumption [3]: only a small fraction of the dataset

is similar to the query. Their performance depends on the relative

contrast between the query and indexed data – the ratio between

distances to the closest and farthest indexed entities [1, 17]. Follow-

ing [4, 78], we test algorithm sensitivity by varying noise levels and

using out-of-distribution (OOD) queries from held-out data. Fig-

ure 8a shows results for Stocks and Weather, revealing that query

times are inversely proportional to relative contrast (grey bars on

secondary y-axis), consistent with previous work [4, 17, 78]. Nor-

malized subsequence queries have lower contrast than raw ones,

making them more challenging. For high-noise or OOD queries,

MS-Index’s pruning power weakens to match MASS (plus tree tra-

versal overhead), suggesting sequential scans are more appropriate

as they don’t rely on pruning. This motivates future work on a

hybrid approach that selects between MS-Index and MASS based

on estimated query difficulty.

5.2.7 Number of query channels We investigate algorithm sensi-

tivity to the number of query channels using the DuckDuckGeese

dataset from UEA, containing 1024 channels. Figure 8b shows MS-

Index’s query time scales sublinearly with the number of channels,

while other methods scale linearly. This improvement comes from

increased pruning power outweighing the cost of additional dis-

tance computations. For instance, query time decreases from 8.4 to

4.4 ms between 8-16 channels, then grows slowly as marginal selec-

tivity diminishes. Table 6 confirms that MS-Index prunes 70.5-97.9%

of R-tree nodes as channels increase from 16 to 1024 when querying

for raw subsequences, demonstrating effective use of multivariate



Figure 8: Impact of query workload on algorithms. (a) Query time of algorithms with varying levels of query noise; (b) Query

time over queried channels; (c) Amortized initialization time over queries. All y axes are presented in log scale.

Figure 9: Impact analysis of the optimizations onMS-Index: (a) Query time over the number of pivots inDFT-bound correction; (b)

Query time of weighted partitioning vs. uniform partitioning. Annotations indicate the average query time and the percentage

of subsequences exhaustively considered (the rest is pruned).

information.11 In contrast, DSTree*, ST-Index*, and KV-Match* suf-

fer with more query channels as their union of per-channel results

grows almost linearly. For normalized subsequences, MS-Index

maintains superior performance but experiences a decreasing prun-

ing power due to the curse of dimensionality – as the number of

channels increases, distances between points become more uni-

form, reducing discriminative power [10, 46]. This effect is less

pronounced for raw subsequences, where the scale of values in a

channel can still provide additional discriminative information that

can help in pruning. The relative contrast values in Table 6 con-

firm this: increasing with |𝑐𝑄 | for raw subsequences while slightly

decreasing for normalized ones.

5.2.8 Amortizing the initialization cost Since algorithms have dif-

ferent initialization costs, their relative efficiency depends on the

number of queries executed. Figure 8c shows the amortized total

cost (initialization + query time) up to 3000 queries. While MASS

is fastest for few queries due to its low initialization cost, MS-Index

becomes more efficient after just 45 queries, with its advantage

growing with more queries due to its superior query performance.

5.2.9 Effect of DFT bound correction optimization Recall from Sec-

tion 3.4 that we tighten the distance bound using a triangle-inequality-

based correction term, enabling more pruning at the cost of added

initialization overhead. We evaluate this correction’s impact on

both initialization and query times with varying number of pivots.

Figure 9a shows that adding just a single pivot improves query

performance by a factor of 2, while additional pivots yield only

marginal improvements. This is known as the coverage saturation

effect, where the effectiveness of pivot-based bounding stabilizes

as the space becomes increasingly well-covered with more piv-

ots [6, 19]. In our case, diminishing returns after the first pivot

indicate that the space of remainders (i.e., the high-frequency DFT

11The pruning percentage of nodes is not the same as the pruning power (the ratio
between number of considered subsequences over all subsequences, around 99.9% for
MS-Index), since many nodes in the tree contain groups of subsequences.

coefficients) has low complexity: the data is concentrated around a

single point. This observation is not surprising, as – by definition –

these remainders comprise lower-energy frequencies that mostly

represent noise following a normal distribution [39]. Nevertheless,

the improvement over not correcting shows that the remainders

still contain valuable information. Our analysis shows pivot com-

parisons increase initialization time by 15%, 30%, and 75% for 1, 2,

and 5 pivots respectively. Given the query time improvements, a

single pivot provides the best cost-benefit tradeoff.

5.2.10 Effect of the optimization for tightening the MBRs We eval-

uate the optimization for tightening MBRs via weighted R-tree

partitioning (Section 3.4) against uniform partitioning. The results

in Figure 9b show that weighted partitioning improves query time

by 1.5-3x by allowing the R-tree to better adapt to dataset char-

acteristics, with larger gains on high-dimensional datasets like

DuckDuckGeese and Synthetic. From these results we can conclude

that the weighted partitioning strategy is beneficial.

6 CONCLUSIONS

We considered the problem of fixed-length subsequence search on

MTS, and proposed MS-Index, an exact algorithm that adaptively

partitions and indexes a DFT-based feature space, allowing for a

cheap pruning of over 99% of the subsequences. Our evaluation

with 34 datasets demonstrated that MS-Index outperforms the state-

of-the-art by two orders of magnitude for both raw and normalized

subsequences, and that it scales sublinearly with the amount of

query channels.
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