MS-Index: Fast Top-k Subsequence Search for Multivariate Time
Series under Euclidean Distance

Jens d’Hondt
j.e.dhondt@tue.nl
Eindhoven University of Technology
Eindhoven, the Netherlands

Odysseas Papapetrou
o.papapetrou@tue.nl
Eindhoven University of Technology
Eindhoven, the Netherlands

ABSTRACT

Modern applications frequently collect and analyze temporal data
in the form of multivariate time series (MTS) — time series that
contain multiple channels. A common task in this context is sub-
sequence search, which involves identifying all MTS that contain
subsequences highly similar to a query time series. In practical
scenarios, not all channels of an MTS are relevant to every query.
For instance, airplane sensors may gather data on a plethora of
components and subsystems, but only a few of these are relevant
to a specific query, such as identifying the cause of a malfunction-
ing landing gear, or a specific flight maneuver. Consequently, the
relevant query channels are often specified at query time. In this
work, we introduce the Multivariate Subsequence Index (MS-Index),
a novel algorithm for nearest neighbor MTS subsequence search
under Euclidean distance that supports ad-hoc selection of query
channels. The algorithm is exact and demonstrates query perfor-
mance that scales sublinearly to the number of query channels. We
examine the properties of MS-Index with a thorough experimen-
tal evaluation over 34 datasets, and show that it outperforms the
state-of-the-art one to two orders of magnitude for both raw and
normalized subsequences.

PVLDB Reference Format:

Jens d’'Hondt, Teun Kortekaas, Odysseas Papapetrou, and Themis Palpanas.
MS-Index: Fast Top-k Subsequence Search for Multivariate Time Series
under Euclidean Distance. PVLDB, 19(2): 99 - 112, 2025.
doi:10.14778/3773749.3773751

PVLDB Artifact Availability:
The source code, data, and/or other artifacts have been made available at
https://github.com/JdHondt/MS-Index.

1 INTRODUCTION

Time series are ubiquitous in diverse domains, such as astrophysics,
seismology, meteorology, health care, finance, video and audio
recordings [5, 36, 38, 41, 57]. Due to advances in sensor technology,

This work is licensed under the Creative Commons BY-NC-ND 4.0 International
License. Visit https://creativecommons.org/licenses/by-nc-nd/4.0/ to view a copy of
this license. For any use beyond those covered by this license, obtain permission by
emailing info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.

Proceedings of the VLDB Endowment, Vol. 19, No. 2 ISSN 2150-8097.
doi:10.14778/3773749.3773751

Teun Kortekaas
teun@jelter.net
Eindhoven University of Technology
Eindhoven, the Netherlands

Themis Palpanas
themis@mi.parisdescartes.fr
Université Paris Cité & IUF
Paris, France

Query Q 1NN: Plane 287 - 23-04-2001
104 104
=< 1.5) 3. !
Z 11\/ L\o\'\1
= 05 1l }\‘/./VAJ
< o 0
< 3;'782 o b 52.37 s
3 81 » 5237 ' =
Z 37.75¢ ‘ ' b
= 37.7—— 5236 D
T o
50
—

)eoeooo ®
1 1

00250 500 0000 10500 ~ 11000
Time Time

Figure 1: Example query and 1NN for MTS of synthetic air-

plane data. Altitude and landing gear are the query channels.

The highlighted boxes (red) are the considered subsequences.

the amount of time series being collected has increased dramatically
over the last years, particularly in the form of multivariate time
series (MTS) [62]. Each MTS is a collection of time series, often
sourced from different sensors that measure different aspects of
the same phenomenon or object. These different time series are
referred to as the channels of the MTS. Examples of MTS include
health monitoring data of patients in a hospital (e.g., heart rate,
blood pressure, and body temperature), climate sensor arrays (e.g.,
an array measuring the temperature, humidity, and air pressure, at
a certain location) [44], or motion capture data (e.g., the position
and acceleration of different body parts).

A key operation on time series is similarity search, which in-
volves finding the most similar time series to a query time series
(also known as its Nearest Neighbors) [25, 26]. Similarity search can
be performed as a standalone task [16, 21, 28, 40, 42, 45, 59, 60, 66],
but is also frequently used as a subroutine in tasks such as out-
lier detection [14, 21, 70], classification [7, 34, 63, 67, 68, 76], and
clustering [9, 13, 23, 37, 64].

To get the most out of the ever-growing datasets, modern-day
similarity search algorithms should support queries with high flex-
ibility. For example, when analyzing patient data, a doctor might
need to find similar occurrences of a short-term pattern in a pa-
tient’s vital signs, to understand the root cause of their condition.
Such a query would require the algorithm to support (a) MTS (mul-
tiple sensors), (b) comparison of subsequences rather than whole
time series, and (c) deciding the query channels at query time (only

the sensors relating to the patient’s relevant vital signs). Another
example requiring such queries is the analysis of sensor data from
airplanes [12], where the user is analyzing the failed landing of an
airplane due to a malfunctioning landing gear, and wants to find
similar occurrences in historical data to understand the root cause.
In this case, the user might select the period of time of the failed
landing (i.e., the left time series in Figure 1) as well as the relevant
channels (highlighted red in the figure) to find similar occurrences
in historical data.

While much work has been done to address the challenges that
come with similarity search on large datasets of univariate time
series (UTS), the work on MTS search is still rudimentary. Current
solutions only support searching for whole time series (whole-
matching) instead of subsequences (subsequence search), and only
on a fixed, pre-determined set of channels. In this work, we show
that the performance of whole-matching state-of-the-art solutions
suffers when these are extended for subsequences. A further exten-
sion of these solutions to handle multivariate data only exacerbates
the problem, due to the additional challenges that come with the
number of channels. In summary, existing algorithms fall short in
at least one of the following ways: (a) they natively support only
UTS, and their extension to MTS is non-trivial, (b) they are focused
on whole matching, and their performance becomes unacceptable
when inserting subsequences, or, (c) they rely on severely restrictive
assumptions of the user query, such as user-defined thresholds on
each channel.

In this work, we propose MS-Index, a novel algorithm for k-
nearest neighbor (k-NN) subsequence search on MTS under Eu-
clidean distance. MS-Index allows for selection of the query chan-
nels at query time, and works for both normalized and un-normalized
subsequences.! MS-Index supports fixed-length queries, i.e., it re-
quires the length of the query to be known at index construction.
The algorithm is exact: it always returns the correct result.

MS-Index differs from existing methods in three ways. First, it is
designed specifically for MTS, leveraging the additional pruning
potential that comes with multiple channels. Second, it combines
index-powered pruning of the search space with efficient distance
computation on the remaining candidates through the convolution
theorem (MASS) [2, 50]. This is done with the help of an R-tree
that indexes Discrete Fourier Transform (DFT) approximated sub-
sequences on all channels, and a two-pass search algorithm that
prunes candidates based on the lower-bound distance to the query.
To the best of our knowledge, this is the first time an index has been
combined with MASS for subsequence search; previous works have
only used each of these techniques in isolation [28, 50], arguing
for either an index-based or a sequential-scan approach. Third, it
utilizes two novel methods to tighten the lower bound distance to
the query, further improving the pruning potential of the search.
These methods are generic, meaning that they can be applied to any
search solution that uses R-trees and/or DFT approximations. Our
key contributions are as follows:

e We introduce MS-Index, a novel algorithm for k-NN subsequence
search on MTS under Euclidean distance (Section 3).

Supporting normalized subsequences is more challenging than normalized time
series, as it cannot be done through preprocessing the data. Furthermore, while most
applications require normalized subsequences for shape matching, some applications
require querying for raw subsequences to preserve scale differences [8, 53].

e We propose a general set of optimizations to improve any search
solution using R-trees and/or DFT approximations (Section 3.4).
These are shown to improve the performance of MS-Index by a
factor of 4, when combined.

e We provide a general approach to extending current solutions
for UTS to the multivariate case, which provide baselines for
our evaluation (Section 4).

e We conduct a thorough evaluation of MS-Index across 34 datasets,
comparing it to a range of baselines, and showing that MS-Index
outperforms the state-of-the-art by two orders of magnitude for
both raw and normalized subsequences (Section 5).

2 PRELIMINARIES

2.1 Definitions and Notation

Time series. A UTS t of length m is denoted as t = [t1,...,tn],
where t; is the data point at time i. An MTS T with ¢ channels is
denoted as a matrix T = [t1,...,] T \where t; is the UTS of channel
i. A subsequence of length s starting at timepoint i is denoted as
T} =Ty :i+s—1. The number of available channels in the dataset is
denoted as c, and the set of indices to the query channels is denoted
as cg, withcg € {1,...,c}.

Similarity Search Queries. There are two forms of similarity
search queries; a k-Nearest-Neighbor (k-NN) query and an r-range
query (also called threshold query). A k-NN query is defined as
finding the k time series in a dataset 9 with the smallest distances
to a query time series Q, under a given distance measure d [25].
In the case of MTS, all time series in D contain the same ¢ chan-
nels. However, the query time series Q may contain only a subset
of these channels cg. Conversely, an r-range query is defined as
finding all time series in O with a distance to a query time series
Q smaller than a given threshold r [25]. These query types can be
further categorized into whole-matching and subsequence search
queries. In whole-matching, we consider the distance between an
entire query time series and an entire candidate series [25]. All
the series involved in the search need to be of the same length.
In subsequence search, we consider the distance between an en-
tire query series and all subsequences of a candidate series with
the same length as the query [25]. In this case, the candidate se-
ries from which the subsequences are extracted need not have the
same length. There exist two variants of subsequence search; (a)
fixed-length search, where the query length |Q| is predetermined
and fixed across queries, and (b) variable-length search, where the
query length is not fixed and can vary between queries [25]. In this
work, we focus on the problem of fixed-length subsequence search,
which is a common assumption in the literature [12, 16, 28, 71, 72].
Variable-length search is left for future work.

Distance. In line with previous studies on MTS similarity search [7,
12, 71], we use Euclidean distance (ED) to measure the distance
between time series, which is defined over MTS as:

dXY)=[IX=Ylla=,| > Y (Xij-Yip)2 (O

iccxy j=1

with ¢cxy = c¢x N cy the common channels of X and Y, and
m = min(my, my) the length of the shortest time series. ED was

Table 1: Nomenclature

t Univariate time series

T Multivariate time series

|| Length of time series T

T; Channel i of T

T;; Datapoint j of channel i of T

T7 Subsequence of T of length s starting at index i
T DFT approximation of T
T’ Flattened DFT approximation of T (i.e. feature vector)
o Query time series
c Total number of channels in the dataset
co The set of channel ids of Q
n Number of time series in the dataset D
m Length of the time series in D
=60
a
n
340
Q
220
o
0 3000 6000 9000 12000

Time
Figure 2: The price of a stock over time (blue), and its recon-
struction through its first three DFT coeflicients (orange).

chosen due to its simplicity, efficiency, well-understood properties
for univariate data, its natural extension to the multivariate case,
and its popularity in the literature [7, 12, 22, 71]. In fact, while
temporal alignment through more complex measures like Dynamic
Time Warping (DTW) and Shape-Based Distance (SBD) has proven
effective for whole-matching in both univariate and multivariate
contexts [22, 24, 55, 56, 64, 67], the marginal gain of using these mea-
sures over ED for subsequence search is negligible [22, 61, 66, 74].
This is because the consideration of all subsequences in time series
is effectively a form of temporal alignment, comparing the query
with candidate time series under different shifts, naturally correct-
ing for temporal distortions. Table 1 summarizes the notations used
throughout the paper.

2.2 DFT Approximation

A key challenge in similarity search is the high dimensionality of
the data, sourcing from the length of the time series. A common ap-
proach to address this challenge is the use of dimensionality reduc-
tion, or “summarization”, techniques that transform the data into
a lower-dimensional space where distances can be approximated
at a low cost. A popular summarization technique for Euclidean
distance (Ly) is the DFT approximation, which involves perform-
ing a DFT on the time series and keeping only a small fraction of
the resulting vector [28, 49, 59, 69]. The DFT decomposes a time
series into a sum of sinusoids of different frequencies (also called
the coefficients), where the amplitudes of the sinusoids represent
the importance of the corresponding frequency in the time series
(also called the energy of the coefficient). For most real-world time
series, the amplitudes of the high-frequency sinusoids are small,
which means that these sinusoids can be discarded without losing
much information. This means that we can accurately approximate
a time series using only the first f values of the DFT, resulting in a
vector of size f instead of the original size m [28]. The accuracy of
such an approximation is demonstrated with an example from the

Table 2: Overview of related work

Name Ref Type Notes
| VA+file [30] Index
2 [TsAX2+ 16] Index
2 Z [DSTree 72 Index
D ST-index 28 Index
= Custom definition of
g g .
& | KV-match (73] Sequential normalized subsequences
MASS [50] Sequential
L
2 | Vlachos [71] Index Does n?t support
= normalized subsequences
w
=
= | & | Bhaduri [12] Index Only supp orFs
£l r-range queries
MS-Index (ours) Index

Stocks dataset (cf. Section 5) in Figure 2. DFT approximation is pop-
ular for estimating the Euclidean distance, as the distance between
two DFT-approximated time series is a lower bound on their true
Euclidean distance [49]. Namely, the Euclidean distance between
two time series t,Q € R™ is bounded by their DFT approximations
£,0 e Cf as[49]:

S -0 ai.0)

m m
As the value of f increases (i.e., we account for more coefficients),
the DFT bound converges to the exact distance [49]. This way, DFT
approximation allows for a trade-off between the accuracy of the
distance estimation and the dimensionality of the data, which is
particularly useful for high-dimensional data such as time series.
In the case of MTS, the same concept can be used by summarizing
each individual channel, independently.

d(t,Q) = @

2.3 R-tree Construction Techniques

An R-tree is a tree-based index for spatial data that groups nearby
objects into Minimum Bounding Rectangles (MBRs), which are
recursively grouped into larger MBRs [10, 33]. R-trees can be con-
structed top-down by splitting a single MBR containing all data
points into smaller MBRs using strategies like Quadratic Split [33],
Linear Split [33], or R*-tree topological split [10]. Alternatively,
bottom-up construction (or bulk loading) starts with individual data
points as MBRs and merges them into larger MBRs based on a leaf
size L and partitioning strategy, generally resulting in less overlap
but requiring all data to be known in advance. A popular bulk load-
ing algorithm is the Sort-Tile-Recursive (STR) algorithm [43]. STR
first sorts the children based on their coordinates in each dimen-
sion (using the middle in case the children are rectangles instead
of points). Then, it recursively partitions the entries into groups of
size [%] 1/ d, where N is the number of entries to index, L is the de-
sired leaf size, and d is the dimensionality of the tree. For example,
given a 1D space with entries [1,2,...,10] and L = 2, the algo-
rithm partitions the entries into [[1, 2], [3,4], [5, 6], [7, 8], [9, 10]],
to subsequently create the nodes [[1,...,4], [5,...8], [9,10]], etc.

2.4 Related Work

We first discuss related work on UTS, followed by recent work on
MTS. An overview of all related work is given in Table 2.

Univariate Time Series (UTS) whole-matching. In a large-scale
comparison of algorithms for UTS whole-matching by Echihabi,

et al. [25], index-based algorithms generally showed to outper-
form their sequential scan counterparts. Furthermore, for small
in-memory datasets, VA+ file [30] and iSAX2+ [16] excel, while
DSTree [72] dominates for larger datasets. DSTree uses Extended
Adaptive Piecewise Constant Approximation (EAPCA) to estimate
distances between query and groups of time series, differentiat-
ing them by mean and variance at increasing resolution. Whole-
matching indices could be extended to support subsequence search
by indexing each subsequence individually. However, this approach
would overwhelm the indices when |Q| < |T|, degrading perfor-
mance as verified in Section 5.

UTS subsequence search indices. Multiple indices have been pro-
posed for UTS subsequence search. The ST-index [28] for r-range
queries first extracts a DFT approximation of each subsequence of
length |Q] in a time series. These f-dimensional vectors then form
a trail in the f-dimensional space, which is segmented into sub-
trails using MBRs. The MBRs are then indexed in an R*-tree [10], to
enable efficient search. More recents improvements through Dual
Match and General Match [31, 47] used different window types to
reduce index size. However, these extensions inherently restrict
the indices to raw subsequences, as supporting normalized subse-
quences would require a complete redesign. Our work adopts the
idea of indexing DFT approximations in an R-tree but (a) focuses
on MTS, (b) removes explicit time series segmentation, (c) lever-
ages convolution theorem for faster distance computation, and (d)
employs a different search algorithm to support k-NN queries with
ad-hoc selection of query channels. Another notable index is KV-
match [73], which indexes subsequences within a single time series
using the means and variances of disjoint windows over the time
series. The index supports both normalized and raw subsequences,
though for normalized subsequences it restricts the search space to
subsequences with similar means and variances to the query before
normalization. KV-Match can be adapted to our problem setting by
(a) building one KV-match per time series and iteratively querying
each, and (b) dropping the filter on means and variances before
querying normalized subsequences.

Other UTS subsequence indices include L-match [29] and TS-
index [18], which we do not consider further because: L-match
improves KV-match’s indexing time but has higher query time;
and TS-index uses Chebyshev distance rather than our Euclidean
distance. As we show in Section 5, our work outperforms KV-match,
which (by transivity) also suggests how our work is expected to
relate to L-match.

UTS subsequence search sequential scans. Mueen’s Algorithm for
Similarity Search (MASS) [50] is an exact subsequence search al-
gorithm that computes the distance between a query Q and all
subsequences of a time series ¢ in time O(|t| log |¢|) rather than the
exhaustive O(|¢||Q]) time. It does so through the convolution theo-
rem, which states that the cross-correlation (i.e., sliding dot product)
of two time series is equivalent to the point-wise multiplication
of their Fourier transforms [2]. Namely, the convolution theorem
states that the dot-products (-, -) between Q and all subsequences
of t of length |Q| can be computed through:

(...t o =T F@eF®) ©

where ¥, ‘7'-_1, and ® are the Fourier transform, inverse Fourier
transform, and point-wise multiplication, respectively. Then, as
the Euclidean distance between two vectors x and y is defined as
d(x,y) = VIIx||? + ||lyl|2 - 2(x,y), MASS computes the distance
between Q and all subsequences of ¢ in time O(|t|log [t]|) using
Equation 3 and the sliding squared sums of Q and . MASS can be
used as a subsequence search algorithm for MTS, by repeating the
distance computation for each channel separately and summing
the results to obtain the multivariate Euclidean distance. We will
be using MASS in this work, both as a baseline and as a component
of our method.

MTS whole-matching. The first index for MTS whole-matching
was proposed by Vlachos et al. [71], focusing on r-range queries
under DTW and Longest Common Subsequence (LCSS) distance,
besides Euclidean distance. It works by splitting the MTS into MBRs
that span across the time, channel, and value axes, and storing
those in an R*-tree [10]. Then, at query time, a Minimum Bounding
Envelope (MBE) is constructed for the query, which covers all the
possible matching areas of the query under warping conditions.
This MBE is further decomposed into MBRs and probed in the R*-
tree to efficiently find the candidates. However, using the method for
subsequence search under Euclidean distance essentially reduces to
a simplified variant of Dual Match [31], which - as discussed earlier
— prevents the index from supporting normalized subsequences,
making it unsuitable for our problem setting.

MTS subsequence search. Recently, a novel algorithm for variable-
length MTS subsequence search was proposed named MULISSE [58],
as a multivariate extension of the state-of-the-art UTS subsequence
search algorithm ULISSE [45]. The method extends iSAX2+ [16]
representations to multiple channels and introduces channel-aware
node splitting for improved pruning. To accommodate for the vast
search space of variable-length subsequence search, the ULISSE
index (and thus MULISSE) uses a lightweight design that sacrifices
pruning power for a reduced index size. MULISSE can be applied
to fixed-length search by restricting the query length range to a
single value, as we show in Section 5.

To the best of our knowledge, the only solution for fixed-length
MTS subsequence search is by Bhaduri, et al [12]. The method
answers r-range queries under Euclidean distance by indexing sub-
sequences per channel based on distances to univariate reference
points. However, its reliance on channel-level thresholds prevents
support for k-NN queries, which require simultaneous querying of
all channels. Adapting the method to our problem setting would
require non-trivial modifications likely to degrade its performance,
so we do not consider it further in our work.

Summary. Concluding, literature includes a multitude of sim-
ilarity search solutions for UTS and MTS data under different
query types and solution designs. However, only few of the ex-
isting solutions can be directly applied/extended to our problem
setting. Namely, all MTS solutions either (a) do not support k-NN
queries [12] or querying on normalized subsequences [71], or (b) op-
timize for index size rather than query performance (MULISSE [58]).
There are UTS solutions that could be extended to MTS, but those
extensions are not expected to scale well. This is either because
(a) they are not build for subsequence search (DSTree), (b) they are

Summarization and Indexing
e \ Ve R-tree

MTS X :
Channel 1 Channel 2 (dim: ¢ * f)
M : [= e |
‘\\,“\‘H\“\“\ﬁv N\N% /\v }/\vn il % N el
L AR] 20 ;
e 18 g Bubsca]
1) Fourier Approximation_ ol g =
X "e 1 <tID,start,length:
!
o g etieal]
----- ! /
2) Extract Feature Vector - Re(fir)

2045 2+i [2244if2+2 3) Index in R-tree

Figure 3: Summarization and indexing of MTS subsequences.
We represent the indexed subsequences of three MTS in
the feature space with blue, green, and orange nodes. Time-
neighbouring subsequences are connected with lines.

sequential scan algorithms (MASS), or (c) they are simply designed
for UTS (ST-index).

3 MS-INDEX

MTS subsequence search involves two key challenges. First, the
number of subsequences in the dataset grows rapidly, even for fairly
small datasets. For a dataset with n time series, each of length m, an
exhaustive search would require computing the Euclidean distance
between all n * (m — |Q| + 1) subsequences and the query Q, with
each computation costing [cg| * |Q| time. Second, the requirement
to support ad-hoc selection of query channels precludes the use of
summarizations that involve merging channels, such as PCA [76].

Our solution, named MS-Index, addresses these challenges by
combining the pruning potential of an index with the efficiency of
the MASS algorithm for exact distance computation (cf. Section 2.4).
The solution involves three key steps (cf. Figure 3): (a) summarizing
the MTS subsequences through DFT approximations, (b) building an
R-tree index on these approximations, ? and (c) at query time, using
the index to heavily prune the candidate subsequences, followed by
an exact distance computation on the remaining candidates using
MASS. Through the index, MS-Index is able to prune over 99% of
the candidate subsequences for a variety of datasets, at a very low
cost, thereby achieving a speedup up to 100x compared to the state-
of-the-art. We also propose a number of optimizations to further
improve the efficiency of the search process (Section 3.4). These
novel optimizations are interesting in their own right, as they can
be applied to any search algorithm that uses DFT approximations
and/or spatial indices, such as [20, 28, 30, 49, 59, 71].

We now present the key components of MS-Index, starting with
time series summarization (Section 3.1) and indexing (Section 3.2),
followed by the query execution algorithm (Section 3.3), and the
optimizations (Section 3.4).

3.1 Summarizing All Subsequences with DFTs

As discussed in Section 2.2, a big challenge in working with time se-
ries is their length. Using a subset of DFT coefficients to approximate
time series has been extensively used in the literature [28, 30, 49].

2We would like to stress that, despite the use of DFTs, which is an approximation
technique, MS-Index remains an exact algorithm. Approximation only influences the
bounding efficiency and pruning power (i.e., the speed) of MS-Index, and not the
accuracy or completeness of its results. Specifically, after applying dimensionality
reduction, the distances between objects in the R-tree are lower-bounds on the actual
distances. This potentially leads to false positives, but never false negatives as we
query the R-tree with a threshold that is an upper bound on the actual k-NN distance
(i.e., without dimensionality reduction). We formally prove this in Lemma 3.1.

This approach is effective because it provides a compact represen-
tation that enables efficient lower-bounding of distances between
time series. However, our analysis of real-world time series revealed
two important observations that can further improve the accuracy
of such approximations;

Observation 1: The first-f coefficients are not always the top-f
coefficients in terms of their contribution to the total energy of
the time series; there exist domains where certain high-frequency
contributions are also substantial. This is illustrated in the two
plots in Figure 4a, which show the absolute and cumulative con-
tribution to the total energy and distance across DFT coefficients,
extracted from 100 time series with real-world temperature read-
ings at different locations (see Section 5 for details on the dataset).
Both lines show a 90% confidence interval over a wide range of
measurements (i.e., all 100 time series to form the line for energy,
and all 100"99/2 pairwise distances to form the line for total dis-
tance). The figure shows a sudden jump in the energy contribution
at the 62nd coefficient, which indicates that this coefficient has a
substantial contribution to the shape of the time series and should
thus be included in the approximation. The top-f most significant
coefficients can be derived similarly to the configuration process in
other adaptive summarization techniques [32, 54, 75]; by computing
statistics on a sample of the dataset pre-index construction.
Observation 2: The contribution of DFT coefficients to the total
distance between time series is even more significant than their
contribution to energy. Intuitively, this means that the top coefli-
cients are not only larger in scale, but also vary much more between
time series. This evident from Figure 4a, which shows that the cu-
mulative contribution to distance increases much faster than the
contribution to energy, implying that one can already cover ~90%
of the total distance with the top 5 coefficients, even though these
only cover roughly ~60% of the total energy.

MS-Index exploits these observations to create accurate approxi-
mations of time series subsequences, adapted to the dataset at hand.
In particular, we summarize the MTS in the dataset as follows. First,
before index construction, we extract a uniformly random sam-
ple S of subsequences of length |Q| from different time series in
the dataset®, and derive the average relative distance contribution
(ARDC) of each DFT coefficient and each channel to the Euclidean
distance between these subsequences (i.e., the process that gener-
ated the plots in Figure 4a). Then, for each channel in the dataset,
the top-f coefficients with the largest ARDC are derived, with f
chosen such that the total ARDC of the top-f coefficients is above
a certain threshold diarget (€.g., 90%). Parameterizing the algorithm
on darget rather than f allows the algorithm to adapt the size of the
summarization to the dataset at hand, ensuring a predetermined
level of accuracy of the approximations. Those top-f coefficients
are then used to compute the DFT approximations of all |Q|-length
subsequences in the dataset. Notice that the summation in Equa-
tion 2 can be over any permutation or subset of coefficients; as long
as the same coefficients are used for both subsequences the bound
still holds.

In the following, with T we will denote the matrix of size ¢ X f
that stores the DFT approximations for subsequence T. Also, T
3The sample size is a parameter of the algorithm, and is typically set to 100 subse-

quences. This value was chosen after empirical testing on different datasets, which
showed that larger sample sizes did not lead to a noticeable difference in performance.

Querying for 1-NN

0 20 40 60 80
DFT coefficient

]
= o/, .
% 50% L Distance Energy 1) Get initial top-k 2) Compute exact distances 3) Threshold query 4) Derive exact top-k
] : |Best-First _ :[Best-First ()
£ 0% A T=™ 5 T““V‘Q‘i x° @ 1NN
< T T T T T V- Y- NN Ve ~ 1
100% R-tree (0 L)
[(| [; t
3 MASS(Q,-)=[8.5.6] 2 [MASS(Q,) =... |
- 1 J
B 75% - @
> Q X]\ngz N\ e
g 50% - OB ... %
. Disk
© :' “ 10 Result set - ls/

a FE/ p
a A1 Disk ,
P Get raw data — T

) candidate subseq. T

T

Get raw data
candidate subseq.

Figure 4: (a) Cumulative and absolute % of total distance and energy across DFT coefficients on the temperature channel of a
weather dataset; (b) Query execution in MS-Index. Numbers in tree nodes indicate the lower bound distance of the respective

MBR to the query.

will be used to denote the feature vector of subsequence T, which
is of length ¢ * f and is constructed by flattening the matrix T
(step 2 in Figure 3). Summarizing a dataset of n time series costs
O(n+m=|Q| * f), and leads to a total of O(n * m) feature vectors -
one per subsequence.

3.2 Indexing of the MTS

The next step involves indexing the generated feature vectors in an
R-tree (step 3 in Figure 3).4 Notice, however, that the total number
of feature vectors is O(n * m), which can lead to a large and ineffi-
cient R-tree when the number of time series n is large, negatively
impacting the query performance.

We mitigate this problem as follows. First, we build the R-tree in a
bottom-up fashion with leaves containing more than one entry (i.e.,
leaf size L > 1), to reduce the number of nodes in the tree. Second,
once the leaves are constructed, we revisit them and modify their
internal representation, to allow pruning of multiple subsequences
(i.e., entries) with a single distance computation. Particularly, for
each leaf that contains two or more entries, we group together
all entries that originate from time-neighbouring subsequences of
the same MTS, i.e., feature vectors corresponding to a series of

subsequences that are a single time shift apart (e.g., Tl.lgl, Tilﬁl,
TILQZ‘, ...). These groups correspond to a continuous subsequence

of the original MTS. For example, assume a leaf A that includes the

following subsequences: A = {Xlogl, Xilgl, Xlel, YJOQ‘, YLQ‘ }, with
X and Y being two different MTS. We compress these five entries
into two, representing the relatively larger subsequences A’ =
{XJOQHZ, Y3|Q|+1 }. These entries are now represented with Minimal
Bounding Rectangles (MBR) rather than with single points in the
feature space, with the start and end positions of the continuous
subsequence stored in the entry along with the MBR.

The intuition behind this grouping is that time-neighboring sub-
sequences are typically very similar due to their large overlap [28].
This means that their feature vectors are also similar, often ending
up in the same R-tree leaf. This allows many subsequences to be rep-

resented by compact entries with tight MBRs, which both reduces

4We also experimented with other spatial indexes like KD-trees [11], but found that
the recall stage of our algorithm was the most time-consuming part of our solution,
rather than the probing of the index. We thus opted for using an R-tree to enable a
more clear comparison with ST-index [28].

the number of entries in the R-tree and enables efficient distance
computation with MASS. In our experiments, this compression
typically merges 8-50 subsequences into a single entry, depending
on the dataset, with a leaf size optimized for query performance.
Consequently, the indexing process of MS-Index is as follows. (a)
We build an R-tree bottom-up on the feature vectors of all subse-
quences in the dataset. In our running example with X and Y, this
step involves creating the leaf node A along with all other leafs that
contain the other subsequences in the dataset. In the recursion of
the R-tree, we then create the parent nodes of A, which contain the
MBRs of the leafs (and are MBRs themselves), and so on until we
reach the root node. (b) We then revisit the leaf nodes and group to-
gether all time-neighbouring entries (i.e., creating A”) to reduce the
index size. After these steps, we end up with an R-tree with each
entry storing (a) an MBR covering the indexed feature vectors, (b)
the start and end positions of the subsequences in the original MTS,
and (c) the MTS identifier. This index is visualized on the right
of Figure 3, where the nodes represent the indexed subsequences
of different MTS (differentiated by color), and the edges connect
time-neighbouring subsequences of the same MTS.

3.3 Query Execution

Our algorithm probes the index twice. The first probe is for finding a
rough estimate (an upper bound) of the distance to the k-th nearest
neighbor, whereas the second probe retrieves all entries within
this distance, and computes the exact result. The second probe is
necessary to guarantee correctness of the answer.

Queries are executed as follows. First, we extract a feature vector
Q’ of the query Q. Then, starting with a distance threshold 7. = oo,
we perform a best-first search on the R-tree, to find the k entries
(i.e., groups of |Q|-length subsequences) with the smallest distance
to Q’. Since the R-tree relies on the feature vectors to compute all
distances, the computed distances are lower bounds (LBs) on the
true distances to Q. Then, for each retrieved entry, we compute the
exact distances between Q and the |Q|-length subsequences in the
entry using MASS, and set the distance threshold 7; to the k-th
smallest distance found in this step. Finally, we perform a threshold
query on the index, using 7y * \/|Q_| as the distance threshold, and
compute the exact distances for these entries with MASS to obtain

the final k-NN.> These results are then returned to the user along
with the corresponding timestamps of the subsequences, which
are derived from the offset and the timestamp of the MTS. Since
the query Q does not necessarily contain all channels (i.e., cg C
{1,...,c}), the R-tree is only queried on the dimensions of the
feature space that correspond to the channels in Q. This is natively
handled by the R-tree algorithm [65].

To illustrate this process, consider a query Q for which the 1-NN

is the subsequence Xllgl in leaf A’ from the previous section. The

algorithm will return the entry Xlg“z in the first probe, as it has

the smallest lower bounding distance to Q (Step 1 in Figure 4b).
It then computes MASS(Q, XlOQHz) on the original subsequences,

which outputs the distances [8, 5, 6], and adds Xllgl to the running
1-NN set as it corresponds to the smallest distance of 5 (Step 2).
Accordingly, the threshold is set to 5 * /|Q| and the algorithm per-

forms the second probe, retrieving the entries Z2‘3Q *2 and X10Q|+2
(Step 3). After computing the exact distances for these entries with

MASS, the algorithm returns Xllgl as the 1-NN to Q (Step 4).

We now prove that the query process described above is guar-
anteed to return the complete and correct k-NN to the query Q.
Specifically, we aim to prove the following lemma:

LEMMA 3.1. Any indexed subsequenceT of length |Q| that is part of
the k-NN of Q is guaranteed to be in the set of subsequences returned
by MS-Index.

Proor. The first probe of the index returns k subsequences of
length s > |Q|, for which the exact distances with the query are
computed. As these k subsequences collectively contain at least k
subsequences of length |Q], by setting 7; as the k’th smallest of
these distances we get an upper bound on the distance of the true k-
th nearest neighbor. In the second probe, we perform a range query
with threshold ;. * \/lQ_| on the R-tree index, which contains the
feature vectors. Based on Equation 2, the distance between any two
points in the feature space is a lower bound on the true distance of
the subsequences they represent. Specifically, the distance between
a |Q|-length subsequence T and the query Q is lower-bounded by
the distance between their feature vectors T’ and Q as:

1 . (T, Q)
d(T,Q) > — d(T;, Q)2 = ——
V10| i;lg el

where T/ o and Qé ° correspond to the feature vectors of T and Q
limited to the channels of Q. Now, assume that an indexed subse-
quence T has distance with Q less than ;.. Then, by Equation 4 we
d(Teg.Qly)
viel
R-tree a threshold 7 * \/lQ_| , T is guaranteed to be included in the
returned set.® O

©

know that < d(T,Q) < 7i. Therefore, by querying an

>Note that MASS is not executed on the feature vectors, but rather on the original
subsequences, to ensure that the distances are exact. This data is retrieved by chasing
the pointers stored in the R-tree entries to the original MTS, residing on disk.

®Note that the /| Q] is simply a scaling factor that needs to be accounted when
transforming the distances from the feature space to the time domain. It does not
weaken the bounds.

The lemma proves that MS-Index is complete by guaranteeing
that all subsequences in the k-NN are found. Since exact distances
are computed for all candidates using MASS (which is exact), and
the k-NN is derived from these distances, the algorithm is also
correct, never returning false positives.

3.4 Optimizations

We now present three optimizations of MS-Index aimed at improv-
ing the pruning power of the index and the efficiency of the search
process. These optimizations do not affect the correctness of the
algorithm or the final result - the algorithm still remains exact.

Tightening the DFT bounds. As discussed in Section 3.1, in most
real-world datasets, around 60%-80% of the distance between time
series is covered by the top 2-5 DFT coeflicients. Formally, this
concept is expressed as:

d4(T,Q) = (d*(Ty.Qp) +d* (Tr,. Of4)) /10| ©)
—_——— —,——
~80% ~20%

where f‘f denotes the DFT approximation of an MTS T using the

top-f coefficients, and Tf+ denotes the set of ¢ vectors composed
of the remaining coefficients. In the DFT bound of Equation 4, we
effectively throw away the second term, which leads to a lower
bound of the true distance. This bound can be computed very effi-
ciently (in O(f)), but it may also lead to a weaker pruning in the
R-tree, and to unnecessary distance computations for subsequences
that are outside the final k-NN.

We improve this lower bound such that it approaches the true
distance more closely, by introducing a correction term at the dis-
tance calculation that approximates (again by lower-bounding) the
distance over the remaining (|Q| — f) coefficients, without actually
having to compute these coefficients. Computing this correction term
costs O(1) at query time for each probed R-tree node, and improves
the pruning power of the index.

Namely, during index construction, after computing the DFT
approximation for each subsequence T, we also derive the part of
T that is not covered by the top-f coefficients, called its remain-
der Tp, = [Ty - IDFT(Tfsl), o Te — IDFT(Tf’C)]. This remainder
can be computed solely based on the top-f coefficients, and does
not require computing all other (|Q| — f) coefficients. The key
observation here is that the distance between the remainders of
two time series captures the remaining ~20% of their distance as
shown in Equation 5. Then, Equation 5 can be rewritten to utilize
the remainders:

d* (T, Q)
[of

The remainders are of length |Q|, meaning that the cost is as much
as computing the full distance on the original data (i.e., O(|cg] *
|O|)). To avoid this cost at query time, we precompute the distances
of the remainders for each subsequence to a small fixed set of
pivot points at index time, and store these distances in a map. Then,
during query execution, we do the same for O, and use the reverse
triangle inequality to lower-bound the distance between Qr, and
the remainders of the indexed subsequences through their distances
to pivots. We refer to this latter bound as the correction term. We

d*(1.Q) = +d*(T7,.0p) ©)

Weighted partitioning

Uniform partitioning based on variances

6

2 4 6 2 4
Avg. Volume ~ 0.89 Avg. Volume ~ 0.66

Figure 5: Different partitioning strategies for a 2-dimensional
feature space; the STR algorithm (left) and the proposed
weighted partitioning (right), that leads to smaller MBRs and
to tighter bounds.

apply the correction term to Equation 6 as follows:

0 < (|d(Tgy, P) = d(Qps P))? < d* (T, Qpy) =
d*(T,Q) = d*(T5,Qp)/IQ|+ (1d(Tfs, P) = d(Qpr, P))* (7)

DFT distance Correction term

where P is a pivot. At index construction time, we derive k pivots
by running k-means clustering on a sample of the remainders of
subsequences in the dataset. Then, during query execution, the
algorithm detects the closest pivot to the query’s remainder, and
uses this pivot P to compute the bound, according to Equation 7.
In Section 5 we show that this optimization leads to a 2x speedup
in query execution.

Tightening the MBRs. Pruning efficiency of the R-tree can be
further enhanced by reducing the volume of the MBRs in the R-tree
nodes. The R-tree is constructed in a bottom-up fashion using
the STR algorithm [43], briefly presented in Section 2.3. STR’s
approach of splitting the entries into an equal number of partitions
per dimension works well when the data is uniformly distributed
at all dimensions, but it can lead to sub-optimal partitioning when
the data is skewed or concentrated in certain areas of the space. To
illustrate the reason, consider a simple example where the R-tree
is used to index a two-dimensional space, with the values in the
first dimension ranging from 2 to 6, and in the second from 1.5
to 2.5 (see Figure 5). The first dimension will likely be the main
contributor of the Euclidean distances between different entries.
Therefore, if we devote more splits/partitions on the first dimension
while constructing the R-tree, the resulting MBRs will be tighter in
this dimension, leading to tighter lower distance bounds and to a
more aggressive pruning. Figure 5 illustrates this idea.

DFT approximations, in particular, are prone to have such a
heavy concentration of variance in the first few dimensions, as dis-
cussed in Section 3.1. We leverage this observation by weighing the
dimensions of the R-tree (i.e., the DFT coefficients across channels)
based on the variance of their values, which is a good proxy for
the contribution of the dimension to the distance between points.
Namely, before constructing the R-tree, we use the sample S of
subsequences extracted during the summarization step (Section 3.1)
to estimate the variance &iz of the distribution of feature vectors
across each dimension i of the feature space. Next, we compute
wj (the weight of dimension i) through softmax normalization of
the variances [15]. Then, given a desired leaf size L, the number of
splits p; for a dimension i is determined by p; = [(N/L)“], with
N being the total number of entries to index in the whole dataset.

Algorithm 1: UTSBASELINE(], Q, k)
Input :A set of channel-level indices 7, a query MTS Q, a
result set size k.
Output: The top-k subsequences in 7~ with the lowest
distance to Q.
1R — {}
2 fori € cg do
3 ‘ R—RU QuERrY(Z;, Qj, k)
4 R — ExHAUSTIVETOPK(R, Q)
s forie€cg do
6 ‘ 7; « max d*(S;, Qi);
SeR

// Iterate over indices
// Query index

// Compute est. top-k
// Set thresholds

7 R—{}

s fori€cg do

Ri — QUERY(;, Q, 71);

10 R «— RU{T|T € R; Ad?(Q;,T;) < 1;}
11 return ExuTorK(R, Q);

// Re-query

This definition of p; ensures that the desired leaf size L is reached
as [—[z{ 2 [(N/L)®] ~ % This way, the algorithm effectively re-
distributes the number of partitions across the dimensions, such
that it is proportional to the contribution of each dimension to the
distance. In Section 5 we will show that this optimization leads
to a 2-4x speedup in query execution, due to the more aggressive
pruning of the index.

Distance browsing. Notice that, as the threshold 7. used in the
second probe is set to the k-th smallest exact distance of the subse-
quences returned by the first probe, the second probe is guaranteed
to return a superset of the entries returned by the first probe. To
avoid redundant lower bound distance computations, we preserve
the priority queue of entries used in the best-first searches between
the two probes, so that the second probe continues from where the
first one left off. This optimization is commonly used for querying
spatial indices, and is typically referred to as distance browsing [35].

4 EXTENDING EXISTING ALGORITHMS TO
THE MULTIVARIATE CASE

As mentioned in Section 2.4, there exist several efficient algorithms
that address similarity search for UTS. Therefore, a natural question
is whether these algorithms can be extended to query MTS, and
how they would perform in such a setting. We will now present
a unified extension — a wrapper algorithm - that can be used to
extend any UTS search algorithm to work with MTS. We also note
that this alternative design approach comes with several deficien-
cies compared to MS-Index, such as low pruning power when the
channels are uncorrelated, as shown in Section 5. Still, it is a useful
approach to enable comparison of MS-Index with out-of-the-box
extensions of UTS algorithms such as DSTree [72], ST-index [28],
and KV-match [73] on MTS data.

The general approach is based on the well-known Threshold
algorithm [27], which can be used to derive a global top-k from
multiple sorted lists with different attribute values of the same
objects, given a monotonic aggregation function to compute the
target value upon which the top-k is based. The approach works
as follows (cf., Alg. 1): (a) We initialize one index (e.g., one DSTree

or one ST-index) per channel. (b) At query time, we first obtain an
initial top-k estimate R; for each channel i € co by querying the
corresponding index (lines 2-3). (c) For each subsequence in the
union of the local estimates, we compute the full distance to the
query (i.e., using all query channels), constructing an intermediate
global top-k R (line 4). (d) We set a distance threshold 7; for each
channel i € cg to the largest univariate Euclidean distance in R
on that channel (lines 5-6). (e) Finally, we re-query the channel-
level indices with their respective thresholds 7;. We compute the
full distances to the query for the results, update the global top-k
accordingly, and return it as a final result (lines 7-11). Since any
subsequence that belongs to the global top-k must have a distance
at most 7; on at least one channel i € cg, the result of this algorithm
is guaranteed to be correct. Lastly, MASS is used to speed up the
exact distance computations (lines 4 & 10).

5 EVALUATION

The purpose of our experiments was threefold: (a) to assess the
scalability and efficiency of MS-Index under various query configu-
rations, (b) to compare MS-Index to other methods, and, (c) to test
the effectiveness of the optimizations proposed in Section 3.4. Since
our method and all baselines are exact, our evaluation only focuses
on efficiency; experiments on accuracy would always yield 100%.

Compared methods. First of all, we compare MS-Index to MULIS-
SE [58], applying it to fixed-length search by restricting the sup-
ported range of query lengths to |Q|. This way, MULISSE also
exploits the knowledge of a preknown query length, which slightly
improved its performance without affecting the quality of the re-
sults. As no other method natively supports k-NN MTS subsequence
search, our other baselines comprise of SOTA methods for UTS
search extended through Algorithm 1.7 (a) ST-Index* [28], a well-
known index for subsequence search [48, 77], (b) KV-Match* [73],
a SOTA index for subsequence search on single long series, ex-
tended with per-MTS indices, and (c) DSTree* [72], an index for
whole-matching [25], adapted by indexing all subsequences. We
also include two sequential scan baselines: (a) MASS [50] applied
to all MTS, and (b) Brute-force exhaustive comparison. Detailed
descriptions of the compared methods can be found in Section 2.4.

Hardware and implementations. All experiments were executed
on a server equipped with a 64-core 2.4 GHz AMD Genoa 9654
processor and 128 GB of RAM. The code for MULISSE (C++) was
provided by the authors of [58], and was executed directly with the
original parameters as described in the paper. The code for DSTree”
(Java-11) was provided by the authors of [72], and was invoked as
a subroutine in Alg. 1. Due to the lack of publicly available code,
all other algorithms were implemented from scratch in Java-11.8
For a fair comparison, all methods were implemented to operate
fully in main memory and run in single-threaded.

Datasets. We used 32 real-world publicly available datasets from
different domains, and a set of synthetic datasets: (a) Stocks. Daily
volumes, opening, closing, high, and low-prices of 28678 stocks
over the period Jan. 2, 1987 to Feb. 26, 2021. (b) Weather. Segment
of the ISD weather dataset [52] containing hourly readings of wind

"We add an asterisk to their names to differentiate them from their original versions.
80ur code is available at https://github.com/JdHondt/MS-Index

Table 3: Default query configurations.

Stocks Weather Synthetic Wind UEA (30x)
n 2000 1300 1600 1 all, see [7]
Avg. m 5590 8692 4096 432,000 see [7]
te]] 730 (2y) 1488 (2mth) 1024 1800 (1h) 20%
#Channels | 5 4 64 10 see [7]

speed, sea level pressure, atmospheric temperature, dew point tem-
peratureof 13545 sensors taken between Jan. 1, 2020 and Dec. 31,
2021. (c) Wind. Sensor output of an active wind turbine sampled
every 2 seconds for 10 days [51], resulting in a single MTS with
432,000 observations and 10 channels covering power output, rotor
speed, wind speed, and other wind-related variables. (d) Synthetic.
Random walk datasets with 1600 MTS, of 64 channels and 4096 ob-
servations each. Following [25, 26], these datasets were generated
by drawing random numbers from a normal distribution with a
mean of 0 and a standard deviation sampled uniformly at random
from the interval [0, . . ., 10], with starting points sampled uniformly
at random from the interval [0, ..., 100]. (¢) UEA archive. Popular
benchmark archive for MTS classification consisting of 30 labeled
real-world datasets from different domains [7], with varying num-
bers of MTS, channels, and observations. Train and test splits for
each dataset were merged, to form a single dataset.

We evaluated both raw and normalized subsequences, focus-
ing on raw results and highlighting normalized results only when
they provide additional insights. The Stocks dataset serves as our
primary benchmark due to its size, with other datasets discussed
in designated experiments or when they reveal notable patterns.
Table 3 summarizes the default query confirms for each dataset. We
include more details about the datasets in our code repository.’

Queries and evaluation metrics. As per standard practice [25], we
generated the query workloads for each dataset by randomly select-
ing |Q|-length subsequences from the dataset and adding Gaussian
noise with standard deviation 0.1+ o, on all channels. As part of
sensitivity analysis experiments, we also investigate varying noise
levels and query generation from out-of-dataset subsequences in
Section 5.2.6. Unless otherwise stated, we query on all channels
of the datasetWhen querying on a subset of channels (as in Sec-
tion 5.2.7), the query channels are selected uniformly at random
from all available channels. For each algorithm, we measured: (a)
initialization time, e.g., index construction index, (b) query execu-
tion time, and, (c) size of the index and/or auxiliary data. We set
a timeout of 12 hours for total execution time, and report median
results over 10 runs with 100 queries each.

5.1 Tuning the Algorithms

5.1.1 Number of DFT coefficients for MS-Index and ST-Index* Recall
from Section 3.1 that the number of DFT coefficients f is derived
based on the distance darget covered by the top-f coefficients, rather
than parameterizing the number of coefficients directly. For both
algorithms, diarget Was tuned through a grid search over the values
[20%, 40%, ...100%], across all datasets and with queries on both raw
and normalized subsequences. The results showed that a coverage
of 60% was the most robust choice for both algorithms across the
datasets, resulting in a query time at most 20% larger than the
optimal choice for each dataset. Therefore, diarget Was set to 60%
for the following experiments.

Table 4: Average query time (ms) of MS-Index for different
leaf size values. Leaf size is expressed as a percentage of the
total number of subsequences in each dataset (raw datasets).

Leaf size | Insectwingbeat Stocks Synthetic ~Weather
0.0001 % | 8.61 8.50 2.98 4.67
0.01 % 8.61 8.37 2.97 4.64
0.05" % 9.01 8.16 2.98 4.61
0.1% 10.79 8.36 3.01 4.69
1% 22.70 11.83 3.62 5.06
100 % 38.12 158.10 4.59 100.87

Table 5: Index size (MB) and the corresponding percentage of
the dataset size (MB) of different algorithms across different
Stocks dataset sizes.

Raw Normalized
n 1000 2000 3000 % | 1000 2000 3000 %
Dataset size (MB) | 210 430 641 100%| 210 430 641 100%
MULISSE 14 15 16 5% 16 18 20 5%
KV-Match* 259 536 793 124% 10 20 30 5%
MASS 315 646 964 150%| 315 646 964 150%
MS-Index 968 1923 2861 452% | 1094 2248 3348 522%
DSTree* 1491 3230 4773 731%| 620 1276 1900 296%
ST-Index* 2904 5771 8584 1355% | 3282 6746 10045 1567%

5.1.2 Leaf size DSTree”*, ST-Index”, and MS-Index support tuning
of the leaf size L, i.e., the maximum number of entries per leaf.
Similar to the number of DFT coefficients, we tuned the leaf size for
query time through a grid search over values ranging from 0.0001%
to 100% (i.e., no constraints on the leaf size) of the total number of
entries to index.” Looking at the results in Table 4, we see that a
leaf size of 0.05% provides consistently good performance across all
datasets for MS-Index. Therefore, this leaf size was chosen for all
experiments. For ST-Index”, the optimal leaf size was also 0.05%. For
DSTree”, the optimal leaf size was found to be 10%. This contradicts
the results of Echihabi et al. [25], who showed that the optimal leaf
size for query time was 0.9% for time series of size 256. Both 0.9%
and 10% had a similar query time in our experiments, but the 10%
choice had a substantially lower initialization cost.

5.1.3 KV-Match™ segment size The segment size parameter in KV-
Match” controls the number of piecewise means and variances used
to index each subsequence. We found the optimal segment size to
be 1 for all datasets. For raw subsequences, this reduces the index
to a single lookup table per channel and time series. For normalized
subsequences, all entries end up in the same bucket due to zero
mean and unit variance, effectively reducing KV-Match* to MASS
with overhead.

5.2 Evaluation Results

5.2.1 Initialization time Figures 6a-b show the initialization time
of all index-based algorithms on the Stocks dataset as the number
of MTS (n) increases. All methods scale linearly with n, which is
expected since initialization of these methods requires iterating
over all time series subsequences. MS-Index and ST-Index* have
comparable initialization times, both primarily spent on comput-
ing DFT approximations. The remainder of the initialization cost

9ST-Index*’s leaf size was tuned after tuning the number of DFT coefficients, using a
leaf size of 0.1% in the first step.

relates to index construction which for ST-Index* involves building
channel-level trees (scaling linearly with the number of channels).
In contrast, MS-Index builds a single tree for all channels, making
it 2-3 times faster for this phase. DSTree* shows comparable ini-
tialization time to other methods for normalized subsequences, but
is two orders of magnitude slower for raw subsequences. This dif-
ference occurs because raw subsequences with varying scales and
means cause DSTree” to create deep, unbalanced trees with costly
node splitting operations, while normalized subsequences lead to
more balanced trees based on pattern differences. KV-Match* and
MULISSE have the lowest initialization time. This is because KV-
Match* only requires a small lookup table for each time series, and
MULISSE is originally build and parameterized for variable-length
subsequence search, which adds an additional degree of freedom
to the problem and makes indexing performance a key priority.

5.2.2 Size of the data structures Table 5 presents the memory re-
quirements of each algorithm for the Stocks dataset both in MB
and as a percentage of the dataset size. All methods scale linearly
with n, with MULISSE being the most space-efficient (storing only
n envelopes in a shallow iSAX tree), followed by KV-Match*, MASS,
MS-Index, DSTree*, and ST-Index*. MS-Index and ST-Index* have a
worst-case space complexity of O(n % (mmax — |Q]) * f * ¢), with
ST-Index* requiring approximately three times more space than
MS-Index due to its channel-level indices. Reflecting on the relative
memory requirements, we see that many methods require more
than 100% of the dataset size to store their indices. While this may
sound counterintuitive, recall that these structures index the space
of subsequences, which is significantly larger than the dataset, given
that subsequences overlap. Indicatively, while a n = 1000 subset of
Stocks is 210 MB large, storing all subsequences of length |Q| = 730
would require 133 GB of memory, implying that MS-Index already
compresses this space by a factor of 138. Still, the memory footprint
of subsequence indices may be a concern for some applications, and
is a commonly acknowledged limitation of these methods [45, 60].

5.2.3 Query time Figures 6¢-d present the query execution time
for all methods, when executing queries on subsets of the time
series in the Stocks dataset. We see that MS-Index significantly
outperforms all other methods. In fact, it outperforms its closest
competitor, MASS, by over two orders of magnitude, and the other
methods by over three orders of magnitude. These results can be
explained by the fact that MS-Index adds pruning power to the
MASS algorithm, which already offers a big performance boost
over the Brute-force algorithm. A deeper investigation revealed
that MS-Index reaches a median pruning effectiveness of 99% across
all datasets, i.e., 99% of the subsequences are already pruned from
the index and do not need to be compared with MASS. While
ST-Index*, KV-Match*, and DSTree* also act as a pre-filter on top of
MASS, their pruning power is significantly lower compared to MS-
Index, with pruning effectiveness of 52%, 65%, and 46% respectively
on average on the Stocks dataset with raw subsequences. This
is because the pruning power of these methods depends on the
relative ordering of the subsequences to the partial (per-channel)
results. When this relative ordering differed significantly over the
different query channels, it resulted in relatively high thresholds for
the per-channel distances (set in Lines 5-7 of Alg. 1), and therefore
to a high number of MASS-based comparisons. MS-Index avoids

Stocks, Raw Stocks, Normalized

Stocks, Raw

Stocks, Normalized Stocks, Raw

0 0 I e S = 10°)

20 210 s H I KK 2 z

o hekdekokok| 2 o 10 10 P

E100 - E 10 £ 102 W 2 ~ E 1014 —

510° — 5103 E 1o z e s B SR L

z10 210 > o 2 100 013 017 022 &

& 102 W & 102 ERpsA 0.024 0031 0039 S10-t| 0053 D047 - g1
W % 100 G107 9,001 0.012 O : o 10 0.021 00

] 3 510 10 % o 0.0099 .01

£100 £10° 2103 21073 <

2000 4000 6000 8000 10000
Number of MTS n

2000 4000 6000 8000 10000
Number of MTS n

—8— MS-INDEX —%¥— MASS —&— BRUTE FORCE —<— DSTREE*

<
2000 4000 6000 8000 10000
Number of MTS n

182 365 730 1460 2920 5840
Query length mg

2000 4000 6000 8000 10000
Number of MTS n

~p— ST-INDEX* —— KV-MATCH* MULISSE ¥¢ Timeout

Figure 6: Scalability over number of MTS n on Stocks. (a) Initialization time for raw subsequences, and (b) normalized subse-
quences; (c) Query time for raw subsequences, and (d) normalized subsequences. (¢) Query time for raw subsequences with

varying query length. All y axes are presented in log scale.

Raw

Avg. Query Time (s)
=
o
>

Stocks Weather

Bmm BRUTE FORCE mm MASS s DSTREE*

mm ST-INDEX*

0.58
0.089:

Synthetic

. KV-MATCH* MULISSE Emm MS-INDEX

Figure 7: Query time of algorithms on different datasets. All y axes are presented in log scale.

this issue by querying all query channels simultaneously. Lastly,
MULISSE performs second-slowest (after Brute-force) with only 9%
pruning rate. This shows that while its extremely memory-efficient
design achieves the smallest index size among all methods, this
comes at the cost of loose distance bounds that result in many
exhaustive comparisons.

5.24 Query length Since query length must be specified before in-
dex construction, we evaluate its impact on performance. Figure 6e
shows that all algorithms except Brute-force are invariant to query
length, as they use MASS which scales with subsequence length
(O(mlog m) with m > |QJ) rather than query length. This suggests
MS-Index’s performance is independent of |Q|, allowing users to
choose lengths that best fit their use case.

5.2.5 Different datasets Figure 7 presents the query execution per-
formance across all datasets using default query parameters from
Table 3.19 For the 30 UEA datasets, we present average results as
individual dataset results showed similar patterns. MS-Index con-
sistently outperforms competitors by 2-3 orders of magnitude on
all datasets, with the exception of the UEA datasets where MS-
Index’s advantage is reduced to 5-7 times compared to MASS. This
is because UEA datasets capture short, single events (e.g., a person
lifting their arm, or a duck producing a sound) rather than continu-
ous long series with multiple events. Subsequences in such datasets
are typically more similar to each other than those in the Stocks or
Weather datasets. This creates more challenging queries for index-
based methods, further discussed in Section 5.2.6. Another notable
observation is that MS-Index’s advantage over competitors remains
substantial also on extremely long time series, with a 22x speedup
over MASS and a ~100x speedup over other methods on the Wind
dataset. This is relevant, as such datasets are becoming increasingly
common in domains such as IoT and sensor data [51]. All in all, we
conclude that MS-Index is significantly faster than all competitors
across various datasets with different characteristics and different
domains, confirming its robustness and general applicability.

19The results on normalized subsequences are omitted as they show similar patterns.

Table 6: Relative contrast of queries and percentage of nodes
pruned by MS-Index, over different numbers of query chan-
nels on the DuckDuckGeese dataset (UEA).

Query channels |co| 16 64 256 1024
Rel. contrast Raw 62 107 110 120
Normalized 14.5 14.4 13.9 13.9
Raw 70.54% 79.36% 92.20% 97.94%

Perc. pruned

Normalized | 89.58% 84.66% 83.68% 83.61%

5.2.6 Effect of query difficulty Pruning-based algorithms rely on
the "left-tail" assumption [3]: only a small fraction of the dataset
is similar to the query. Their performance depends on the relative
contrast between the query and indexed data — the ratio between
distances to the closest and farthest indexed entities [1, 17]. Follow-
ing [4, 78], we test algorithm sensitivity by varying noise levels and
using out-of-distribution (OOD) queries from held-out data. Fig-
ure 8a shows results for Stocks and Weather, revealing that query
times are inversely proportional to relative contrast (grey bars on
secondary y-axis), consistent with previous work [4, 17, 78]. Nor-
malized subsequence queries have lower contrast than raw ones,
making them more challenging. For high-noise or OOD queries,
MS-Index’s pruning power weakens to match MASS (plus tree tra-
versal overhead), suggesting sequential scans are more appropriate
as they don’t rely on pruning. This motivates future work on a
hybrid approach that selects between MS-Index and MASS based
on estimated query difficulty.

5.2.7 Number of query channels We investigate algorithm sensi-
tivity to the number of query channels using the DuckDuckGeese
dataset from UEA, containing 1024 channels. Figure 8b shows MS-
Index’s query time scales sublinearly with the number of channels,
while other methods scale linearly. This improvement comes from
increased pruning power outweighing the cost of additional dis-
tance computations. For instance, query time decreases from 8.4 to
4.4 ms between 8-16 channels, then grows slowly as marginal selec-
tivity diminishes. Table 6 confirms that MS-Index prunes 70.5-97.9%
of R-tree nodes as channels increase from 16 to 1024 when querying
for raw subsequences, demonstrating effective use of multivariate

Raw Normalized

% 10° Stocks Weather Stocks Weather

P —t—< [10° 8
£ e | ,1/—‘ 1 b=
E 10 S Ar: A I %
>

S 10% ¢
S 10°1 =
< ©
};‘ 10-3 100 &

10 30 5000D 10 30 5000D| 10 30 50 OOD

Query Noise € (%)

10 30 50 OOD

== KV-MATCH* == MS-INDEX == MASS

Avg. Query Time (s)

=== ST-INDEX*

DuckDuckGeese, Raw Stocks, Raw

) | 8w
10 :"‘é 103
Es 0

>R 100 B o

gt = -
0

S \“-O-HW_,
5 © 10
©T 102
8 16 32 64 128 256 5121024 = 0 1000 2000 3000

Number of query channels |cg| Number of queries

== DSTREE* MULISSE Rel. contrast

Figure 8: Impact of query workload on algorithms. (a) Query time of algorithms with varying levels of query noise; (b) Query
time over queried channels; (c) Amortized initialization time over queries. All y axes are presented in log scale.

0.31
1.13% 0.13 0.13 013
0.52% 0.46% 0.45%

J9e 0.045 0.044 0.043
> 0.09% 0.08% 0.06%

0.027
7 0.016 0,015 0.015
0-04% 0029 0.02% 0.02%

DuckDuckGeese Stocks Weather

Synthetic

I 1 pivot + Uniform part. (Raw) [1 pivot + Variance-based part. (Raw)

N 3 1 pivot + Uniform part. (Norm) [1 pivot + Variance-based part. (Norm)
10
0.5
100 0.08% 0.2 0.2 0.2
. 8 0% 1.48% .99 0.05 0.03% (.04 0.04
- - —— 0.09% 0.02 0 0.02 0.02
10 0.02%0.009 5.03% 0,099 0007022 135
102 .01% .01%
1073 .
DuckDuckGeese Stocks Synthetic Weather

Figure 9: Impact analysis of the optimizations on MS-Index: (a) Query time over the number of pivots in DFT-bound correction; (b)
Query time of weighted partitioning vs. uniform partitioning. Annotations indicate the average query time and the percentage

of subsequences exhaustively considered (the rest is pruned).

information.!! In contrast, DSTree*, ST-Index*, and KV-Match* suf-
fer with more query channels as their union of per-channel results
grows almost linearly. For normalized subsequences, MS-Index
maintains superior performance but experiences a decreasing prun-
ing power due to the curse of dimensionality — as the number of
channels increases, distances between points become more uni-
form, reducing discriminative power [10, 46]. This effect is less
pronounced for raw subsequences, where the scale of values in a
channel can still provide additional discriminative information that
can help in pruning. The relative contrast values in Table 6 con-
firm this: increasing with |cg| for raw subsequences while slightly
decreasing for normalized ones.

5.2.8 Amortizing the initialization cost Since algorithms have dif-
ferent initialization costs, their relative efficiency depends on the
number of queries executed. Figure 8c shows the amortized total
cost (initialization + query time) up to 3000 queries. While MASS
is fastest for few queries due to its low initialization cost, MS-Index
becomes more efficient after just 45 queries, with its advantage
growing with more queries due to its superior query performance.

5.2.9 Effect of DFT bound correction optimization Recall from Sec-
tion 3.4 that we tighten the distance bound using a triangle-inequality-
based correction term, enabling more pruning at the cost of added
initialization overhead. We evaluate this correction’s impact on
both initialization and query times with varying number of pivots.
Figure 9a shows that adding just a single pivot improves query
performance by a factor of 2, while additional pivots yield only
marginal improvements. This is known as the coverage saturation
effect, where the effectiveness of pivot-based bounding stabilizes
as the space becomes increasingly well-covered with more piv-
ots [6, 19]. In our case, diminishing returns after the first pivot
indicate that the space of remainders (i.e., the high-frequency DFT
! The pruning percentage of nodes is not the same as the pruning power (the ratio

between number of considered subsequences over all subsequences, around 99.9% for
MS-Index), since many nodes in the tree contain groups of subsequences.

coefficients) has low complexity: the data is concentrated around a
single point. This observation is not surprising, as — by definition -
these remainders comprise lower-energy frequencies that mostly
represent noise following a normal distribution [39]. Nevertheless,
the improvement over not correcting shows that the remainders
still contain valuable information. Our analysis shows pivot com-
parisons increase initialization time by 15%, 30%, and 75% for 1, 2,
and 5 pivots respectively. Given the query time improvements, a
single pivot provides the best cost-benefit tradeoft.

5.2.10 Effect of the optimization for tightening the MBRs We eval-
uate the optimization for tightening MBRs via weighted R-tree
partitioning (Section 3.4) against uniform partitioning. The results
in Figure 9b show that weighted partitioning improves query time
by 1.5-3x by allowing the R-tree to better adapt to dataset char-
acteristics, with larger gains on high-dimensional datasets like
DuckDuckGeese and Synthetic. From these results we can conclude
that the weighted partitioning strategy is beneficial.

6 CONCLUSIONS

We considered the problem of fixed-length subsequence search on
MTS, and proposed MS-Index, an exact algorithm that adaptively
partitions and indexes a DFT-based feature space, allowing for a
cheap pruning of over 99% of the subsequences. Our evaluation
with 34 datasets demonstrated that MS-Index outperforms the state-
of-the-art by two orders of magnitude for both raw and normalized
subsequences, and that it scales sublinearly with the amount of
query channels.

ACKNOWLEDGMENTS

This work has received funding from the Horizon Europe research
and innovation programmes STELAR (101070122), AI4Europe (10107-
0000), TwinODIS (101160009), ARMADA (101168951), DataGEMS
(101188416) RECITALS (101168490), and by YITAIOA & NextGen-
erationEU project HARSH (YTI3T A — 0560901).

REFERENCES

(1]

(2]
(3]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[23]

[24]

Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. 2001. On the
Surprising Behavior of Distance Metrics in High Dimensional Space. In Database
Theory - ICDT 2001, Jan Van den Bussche and Victor Vianu (Eds.). 420-434.
George Arfken. 1985. Mathematical Methods for Physicists (third ed.). Academic
Press, Inc., San Diego.

Martin Aumiiller and Matteo Ceccarello. 2021. The role of local dimensionality
measures in benchmarking nearest neighbor search. Information Systems 101
(2021), 101807. https://doi.org/10.1016/j.i5.2021.101807

Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. ELPIS: Graph-Based
Similarity Search for Scalable Data Science. Proc. VLDB Endow. 16, 6 (Feb. 2023),
1548-1559. https://doi.org/10.14778/3583140.3583166

Martin Bach-Andersen, Bo Remer-Odgaard, and Ole Winther. 2017. Flexible
non-linear predictive models for large-scale wind turbine diagnostics. Wind
Energy 20 (2017), 753-764.

Ricardo Baeza-Yates, Walter Cunto, Udi Manber, and Sun Wu. 1994. Proximity
matching using fixed-queries trees. In Combinatorial Pattern Matching, Maxime
Crochemore and Dan Gusfield (Eds.). 198-212.

Anthony Bagnall, Hoang Anh Dau, Jason Lines, Michael Flynn, James Large,
Aaron Bostrom, Paul Southam, and Eamonn Keogh. 2018. The UEA multivariate
time series classification archive, 2018. arXiv:1811.00075 https://arxiv.org/abs/
1811.00075

Anthony J. Bagnall, Richard L. Cole, Themis Palpanas, and Konstantinos Zoumpa-
tianos. 2019. Data Series Management (Dagstuhl Seminar 19282). Dagstuhl
Reports 9, 7 (2019), 24-39.

A. J. Bagnall and G. J. Janacek. 2004. Clustering time series from ARMA
models with clipped data. In Proceedings of the Tenth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD ’04). 49-58.
https://doi.org/10.1145/1014052.1014061

Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
1990. The R*-tree: an efficient and robust access method for points and rectangles.
SIGMOD Rec. 19, 2 (May 1990), 322-331. https://doi.org/10.1145/93605.98741
Jon Louis Bentley. 1975. Multidimensional binary search trees used for associative
searching. Commun. ACM 18, 9 (Sept. 1975), 509-517.

Kanishka Bhaduri, Qiang Zhu, Nikunj C. Oza, and Ashok N. Srivastava. 2010.
Fast and Flexible Multivariate Time Series Subsequence Search. In 2010 IEEE
International Conference on Data Mining. 48-57. https://doi.org/10.1109/ICDM.
2010.36

Angela Bonifati, Francesco Del Buono, Francesco Guerra, Miki Lombardi, and
Donato Tiano. 2023. Interpretable Clustering of Multivariate Time Series with
Time2Feat. Proceedings of the VLDB Endowment 16, 12 (2023), 3994-3997.
Markus M. Breunig, Hans-Peter Kriegel, Raymond T. Ng, and J6rg Sander. 2000.
LOF: identifying density-based local outliers. In Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data (SIGMOD °00). 93-104.
https://doi.org/10.1145/342009.335388

John S Bridle. 1990. Probabilistic interpretation of feedforward classification
network outputs, with relationships to statistical pattern recognition. In Neuro-
computing: Algorithms, architectures and applications. Springer, 227-236.
Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn Keogh. 2010. iSAX
2.0: Indexing and Mining One Billion Time Series. In 2010 IEEE International
Conference on Data Mining. 58-67. https://doi.org/10.1109/ICDM.2010.124
Matteo Ceccarello, Alexandra Levchenko, Ioana Ileana, and Themis Palpanas.
2025. Evaluating and Generating Query Workloads for High Dimensional
Vector Similarity Search. In Proceedings of the 31st ACM SIGKDD Conference
on Knowledge Discovery and Data Mining V.2 (KDD °25). 5299-5310. https:
//doi.org/10.1145/3711896.3737383

Georgios Chatzigeorgakidis, Dimitrios Skoutas, Kostas Patroumpas, Themis
Palpanas, Spiros Athanasiou, and Spiros Skiadopoulos. 2023. Efficient Range and
kNN Twin Subsequence Search in Time Series. IEEE Transactions on Knowledge
and Data Engineering 35, 6 (2023), 5794-5807.

Edgar Chavez, Gonzalo Navarro, Ricardo Baeza-Yates, and José Luis Marroquin.
2001. Searching in metric spaces. ACM Comput. Surv. 33, 3 (Sept. 2001), 273-321.
Paolo Ciaccia, Marco Patella, and Pavel Zezula. 1997. M-tree: An Efficient
Access Method for Similarity Search in Metric Spaces. In Proceedings of the 23rd
International Conference on Very Large Data Bases (VLDB *97). 426—435.
Michele Dallachiesa, Themis Palpanas, and Thab F. Ilyas. 2014. Top-k nearest
neighbor search in uncertain data series. Proc. VLDB Endow. 8, 1 (Sept. 2014),
13-24. https://doi.org/10.14778/2735461.2735463

Jens E. d’Hondt, Haojun Li, Fan Yang, Odysseas Papapetrou, and John Paparrizos.
2025. A Structured Study of Multivariate Time-Series Distance Measures. Proc.
ACM Manag. Data 3, 3, Article 121 (June 2025), 29 pages. https://doi.org/10.1145/
3725258

Rui Ding, Qiang Wang, Yingnong Dang, Qiang Fu, Haidong Zhang, and Dongmei
Zhang. 2015. YADING: fast clustering of large-scale time series data. Proc. VLDB

Endow. 8, 5 (Jan. 2015), 473-484. https://doi.org/10.14778/2735479.2735481
Jens E. d’Hondt, Odysseas Papapetrou, and John Paparrizos. 2024. Beyond the

Dimensions: A Structured Evaluation of Multivariate Time Series Distance Mea-
sures. In 2024 IEEE 40th International Conference on Data Engineering Workshops

[25

[26

[27

[28

[29

[30]

(32]

[33

(37]

(38]

[39

[41

[42

[43]

[44]

=
i)

[46]

(ICDEW). 107-112. https://doi.org/10.1109/ICDEW61823.2024.00020

Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2018. The lernaean hydra of data series similarity search: an experimental
evaluation of the state of the art. Proc. VLDB Endow. 12, 2 (Oct. 2018), 112-127.
https://doi.org/10.14778/3282495.3282498

Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim.
2019. Return of the Lernaean Hydra: experimental evaluation of data series
approximate similarity search. Proc. VLDB Endow. 13, 3 (Nov. 2019), 403-420.
https://doi.org/10.14778/3368289.3368303

Ronald Fagin, Amnon Lotem, and Moni Naor. 2001. Optimal aggregation algo-
rithms for middleware. In Proceedings of the Twentieth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems (PODS '01). 102-113.
https://doi.org/10.1145/375551.375567

Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1994. Fast
subsequence matching in time-series databases. In Proceedings of the 1994 ACM
SIGMOD International Conference on Management of Data (SIGMOD 94). 419-429.
https://doi.org/10.1145/191839.191925

Kefeng Feng, Peng Wang, Jiaye Wu, and Wei Wang. 2020. L-Match: A Lightweight
and Effective Subsequence Matching Approach. IEEE Access 8 (2020), 71572
71583.

Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi.
2000. Vector approximation based indexing for non-uniform high dimensional
data sets. In Proceedings of the Ninth International Conference on Information and
Knowledge Management (CIKM ’00). 202-209. https://doi.org/10.1145/354756.
354820

Ada Wai-chee Fu, Eamonn Keogh, Leo Yung Hang Lau, and Chotirat Ann
Ratanamahatana. 2005. Scaling and time warping in time series querying. In
Proceedings of the 31st International Conference on Very Large Data Bases (VLDB
’05). 649-660.

Roger Grosse, Rajat Raina, Helen Kwong, and Andrew Y. Ng. 2007. Shift-invariant
sparse coding for audio classification. In Proceedings of the Twenty-Third Confer-
ence on Uncertainty in Artificial Intelligence (UAI'07). 149-158.

Antonin Guttman. 1984. R-trees: a dynamic index structure for spatial searching.
In Proceedings of the 1984 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’84). 47-57. https://doi.org/10.1145/602259.602266

Jon Hills, Jason Lines, Edgaras Baranauskas, James Mapp, and Anthony Bagnall.
2014. Classification of time series by shapelet transformation. Data Min. Knowl.
Discov. 28, 4 (jul 2014), 851-881.

Gisli R. Hjaltason and Hanan Samet. 1999. Distance browsing in spatial databases.
ACM Trans. Database Syst. 24, 2 (June 1999), 265-318.

Pablo Huijse, Pablo A. Estevez, Pavlos Protopapas, Jose C. Principe, and Pablo
Zegers. 2014. Computational Intelligence Challenges and Applications on Large-
Scale Astronomical Time Series Databases. IEEE Computational Intelligence
Magazine 9, 3 (Aug. 2014), 27-39.

Konstantinos Kalpakis, Dhiral Gada, and Vasundhara Puttagunta. 2001. Distance
Measures for Effective Clustering of ARIMA Time-Series. In Proceedings of the
2001 IEEE International Conference on Data Mining (ICDM 01). 273-280.

K. Kashino, G. Smith, and H. Murase. 1999. Time-series active search for quick
retrieval of audio and video. In 1999 IEEE International Conference on Acoustics,
Speech, and Signal Processing. Proceedings., Vol. 6. 2993-2996 vol.6. https://doi.
org/10.1109/ICASSP.1999.757470

Steven M Kay. 1993. Fundamentals of statistical signal processing: estimation
theory. Prentice-Hall, Inc.

Eamonn Keogh, Themistoklis Palpanas, Victor B. Zordan, Dimitrios Gunopulos,
and Marc Cardle. 2004. Indexing large human-motion databases. In Proceedings
of the Thirtieth International Conference on Very Large Data Bases - Volume 30
(VLDB "04). 780-791.

S. Knieling, J. Niediek, E. Kutter, J. Bostroem, C.E. Elger, and F. Mormann. 2017.
An online adaptive screening procedure for selective neuronal responses. Journal
of Neuroscience Methods 291 (2017), 36-42.

Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas.
2018. Coconut: a scalable bottom-up approach for building data series indexes.
Proc. VLDB Endow. 11, 6 (Feb. 2018), 677-690. https://doi.org/10.14778/3199517.
3199519

ST. Leutenegger, M.A. Lopez, and J. Edgington. 1997. STR: a simple and efficient
algorithm for R-tree packing. In Proceedings 13th International Conference on
Data Engineering. 497-506. https://doi.org/10.1109/ICDE.1997.582015

Stefan Liess, Saurabh Agrawal, Snigdhansu Chatterjee, and Vipin Kumar. 2017. A
Teleconnection between the West Siberian Plain and the ENSO Region. Journal
of Climate 30, 1 (2017), 301 - 315.

Michele Linardi and Themis Palpanas. 2018. Scalable, variable-length similarity
search in data series: the ULISSE approach. Proc. VLDB Endow. 11, 13 (Sept. 2018),
2236-2248. https://doi.org/10.14778/3275366.3284968

R. B. Marimont and M. B. Shapiro. 1979. Nearest Neighbour Searches and the
Curse of Dimensionality. IMA Journal of Applied Mathematics 24, 1 (08 1979),
59-70.

[47]

[48]

[49]

[51]

[52]

53]

[54]

[55]

[56]

[57]

[58]

[61]

[62]

Yang-Sae Moon, Kyu-Young Whang, and Wook-Shin Han. 2002. General match:
a subsequence matching method in time-series databases based on generalized
windows. In Proceedings of the 2002 ACM SIGMOD International Conference on
Management of Data (SIGMOD °02). 382-393. https://doi.org/10.1145/564691.
564735

Yang-Sae Moon, Kyu-Young Whang, and Wook-Shin Han. 2002. General match:
a subsequence matching method in time-series databases based on generalized
windows. In Proc. SIGMOD 02. 382-393.

Abdullah Mueen, Suman Nath, and Jie Liu. 2010. Fast approximate correlation for
massive time-series data. In Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data (SIGMOD °10). 171-182. https://doi.org/10.
1145/1807167.1807188

Abdullah Mueen, Sheng Zhing, Yan Zhu, Michael Yeh, Kaveh Kamgar, Krish-
namurthy Viswanathan, Chetan Gupta, and Eamonn Keogh. 2022. The Fastest
Similarity Search Algorithm for Time Series Subsequences under Euclidean
Distance. http://www.cs.unm.edu/~mueen/FastestSimilaritySearch.html.
Carlos Enrique Muniz-Cuza, Seren Kejser Jensen, Jonas Brusokas, Nguyen Ho,
and Torben Bach Pedersen. 2024. Evaluating the Impact of Error-Bounded Lossy
Compression on Time Series Forecasting. In Advances in Database Technology -
EDBT (Advances in Database Technology - EDBT). 650-663. https://doi.org/10.
48786/edbt.2024.56

National Oceanic and Atmospheric Administration. [n.d.]. NOAA Integrated
Surface Dataset. https://www.ncei.noaa.gov/access/search/dataset-search.
Themis Palpanas and Volker Beckmann. 2019. Report on the First and Second
Interdisciplinary Time Series Analysis Workshop (ITISA). SIGMOD Rec. 48, 3
(2019), 36-40.

John Paparrizos and Michael J. Franklin. 2019. GRAIL: efficient time-series
representation learning. Proc. VLDB’19 (2019), 1762-1777.

John Paparrizos and Luis Gravano. 2016. k-Shape: Efficient and Accurate
Clustering of Time Series. SIGMOD Rec. 45, 1 (June 2016), 69-76. https:
//doi.org/10.1145/2949741.2949758

John Paparrizos, Chunwei Liu, Aaron Elmore, and Michael J. Franklin. 2023.
Querying Time-Series Data: A Comprehensive Comparison of Distance Measures.
IEEE Data Engineering Bulletin (DEB 2023) 47 (2023), 69-88.

Pavlos Paraskevopoulos, Thanh-Cong Dinh, Zolzaya Dashdorj, Themis Palpanas,
Luciano Serafini, et al. 2013. Identification and characterization of human be-
havior patterns from mobile phone data. D4D Challenge session, NetMob (2013).
Balazs Pelok and Jens E. d'Hondt. 2025. MULISSE: Variable-Length Similarity
Search for Multivariate Time Series. In 2025 IEEE 41st International Conference
on Data Engineering Workshops (ICDEW). 154-163. https://doi.org/10.1109/
ICDEW67478.2025.00026

Davood Rafiei and Alberto O. Mendelzon. 2000. Efficient Retrieval of Similar Time
Series. 75-89. https://doi.org/10.1007/978-1-4615-1379-7_6

Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,
Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Search-
ing and mining trillions of time series subsequences under dynamic time warping.
In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD °12). 262-270. https://doi.org/10.1145/2339530.
2339576

Chotirat Ann Ratanamahatana and Eamonn Keogh. 2005. Three Myths about
Dynamic Time Warping Data Mining. 506-510. https://doi.org/10.1137/1.
9781611972757.50

John F. Roddick and Kathleen Stewart Hornsby. 2001. Temporal, Spatial, and
Spatio-Temporal Data Mining. In Lecture Notes in Computer Science.

(63

[64]

[65]

[72]

(73]

[74

k=
2

(76

[77

(78]

Alejandro Pasos Ruiz, Michael Flynn, James Large, Matthew Middlehurst, and
Anthony Bagnall. 2021. The great multivariate time series classification bake
off: a review and experimental evaluation of recent algorithmic advances. Data
Mining and Knowledge Discovery 35, 2 (01 Mar 2021), 401-449.

A Salarpour and H Khotanlou. 2018. An Empirical Comparison of Distance Mea-
sures for Multivariate Time Series Clustering. International Journal of Engineering
31, 2 (2018), 250-262.

Hanan Samet. 2005. Foundations of Multidimensional and Metric Data Structures
(The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling).
Morgan Kaufmann Publishers Inc., San Francisco, CA, USA.

Jin Shieh and Eamonn Keogh. 2008. iSAX: indexing and mining terabyte sized
time series. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD 08). 623-631. https://doi.org/10.
1145/1401890.1401966

Ahmed Shifaz, Charlotte Pelletier, Francois Petitjean, and Geoffrey 1. Webb. 2023.
Elastic similarity and distance measures for multivariate time series. Knowledge
and Information Systems 65, 6 (01 Jun 2023), 2665-2698.

Mohammad Shokoohi-Yekta, Bing Hu, Hongxia Jin, Jun Wang, and Eamonn
Keogh. 2017. Generalizing DTW to the multi-dimensional case requires an
adaptive approach. Data Mining and Knowledge Discovery 31, 1 (01 Jan 2017),
1-31. https://doi.org/10.1007/s10618-016-0455-0

Gilbert Strang. 1994. Wavelets. American Scientist 82, 3 (1994), 250-255.
Shreshth Tuli, Giuliano Casale, and Nicholas R. Jennings. 2022. TranAD: deep
transformer networks for anomaly detection in multivariate time series data.
Proc. VLDB Endow. 15, 6 (Feb. 2022), 1201-1214. https://doi.org/10.14778/3514061.
3514067

Michail Vlachos, Marios Hadjieleftheriou, Dimitrios Gunopulos, and Eamonn
Keogh. 2003. Indexing multi-dimensional time-series with support for mul-
tiple distance measures. In Proceedings of the Ninth ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining (KDD "03). 216-225.
https://doi.org/10.1145/956750.956777

Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. 2013. A data-
adaptive and dynamic segmentation index for whole matching on time series.
Proc. VLDB Endow. 6, 10 (Aug. 2013), 793-804. https://doi.org/10.14778/2536206.
2536208

Jiaye Wu, Peng Wang, Ningting Pan, Chen Wang, Wei Wang, and Jianmin Wang.
2019. KV-Match: A Subsequence Matching Approach Supporting Normalization
and Time Warping. In 2019 IEEE 35th International Conference on Data Engineering
(ICDE). 866-877. https://doi.org/10.1109/ICDE.2019.00082

Xiaopeng Xi, Eamonn Keogh, Christian Shelton, Li Wei, and Chotirat Ann
Ratanamahatana. 2006. Fast time series classification using numerosity reduction.
In Proceedings of the 23rd International Conference on Machine Learning (ICML
’06). 1033-1040. https://doi.org/10.1145/1143844.1143974

Fan Yang and John Paparrizos. 2025. SPARTAN: Data-Adaptive Symbolic Time-
Series Approximation. Proc. ACM Manag. Data 3, 3, Article 220 (June 2025),
30 pages. https://doi.org/10.1145/3725357

Kiyoung Yang and Cyrus Shahabi. 2004. A PCA-based similarity measure for
multivariate time series. In Proceedings of the 2nd ACM International Workshop
on Multimedia Databases (MMDB °04). 65-74. https://doi.org/10.1145/1032604.
1032616

Haohan Zhu, George Kollios, and Vassilis Athitsos. 2012. A generic framework
for efficient and effective subsequence retrieval. Proc. VLDB Endow. 5, 11 (July
2012), 1579-1590. https://doi.org/10.14778/2350229.2350271

Kostas Zoumpatianos, Yin Lou, Ioana Ileana, Themis Palpanas, and Johannes
Gehrke. 2018. Generating data series query workloads. The VLDB Journal 27, 6
(01 Dec 2018), 823-846. https://doi.org/10.1007/s00778-018-0513-x

