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ABSTRACT
We present IQR, a system that demonstrates optimization
based interactive relaxations for queries that return an empty
answer. Given an empty answer, IQR dynamically suggests
one relaxation of the original query conditions at a time
to the user, based on certain optimization objectives, and
the user responds by either accepting or declining the re-
laxation, until the user arrives at a non-empty answer, or a
non-empty answer is impossible to achieve with any further
relaxations. The relaxation suggestions hinge on a proba-
bilistic framework that takes into account the probability of
the user accepting a suggested relaxation, as well as how
much that relaxation serves towards the optimization objec-
tive. IQR accepts a wide variety of optimization objectives
- user centric objectives, such as, minimizing the number of
user interactions (i.e., e↵ort) or returning relevant results, as
well as seller centric objectives, such as, maximizing profit.
IQR o↵ers principled exact and approximate solutions for gen-
erating relaxations that are demonstrated using multiple,
large real datasets.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Storage and
Retrieval—Search process

Keywords
Empty-answer problem; Query Relaxation; Optimization frame-
work

1. INTRODUCTION
Numerous web applications allow users to search for items

of interest like homes, cars, apparel, etc., by specifying their
desired attribute values that are later on turned into con-
junctive query predicates and the query gets executed over
the underlying data source. Information under-load or the
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empty-answer is a frequently encountered problem for such
queries, where the user over-specifies the query conditions
and consequently the system finds no item in the source sat-
isfying them all. To circumvent the empty-answer problem,
query relaxation has been proposed as an e↵ective strategy
that reformulates the original query into a new query by re-
moving or relaxing conditions and is considered as a novel
alternative to the top-k ranked retrieval model [5]. Exist-
ing query relaxation strategies are mostly non-interactive,
i.e., they suggest multiple relaxations to the user at a time,
and are not designed to o↵er relaxations that guarantee the
optimization of certain objectives in the returned results.

In this demonstration paper, we showcase IQR1- an inter-
active query relaxation system that not only proposes step-
by-step relaxation suggestions to the users, but the sugges-
tions are designed to optimize certain objective functions in
the returned non-empty results.2 As such, IQR is meaningful
for scenarios in which the user interacts with the data source
via a small device (e.g., mobile phone), or for applications
where customer-agent interactions unfold step-by-step over
the phone (e.g., purchase of travel insurance, reservation of
a holiday house, etc.).
IQR accepts a wide range of optimization objectives: user-

centric objectives, such as, suggesting relaxations that will
return the user most relevant products, or the cheapest prod-
ucts, or minimize user’s navigational e↵ort by minimizing
the number of relaxation steps, as well as, seller-centric ob-
jectives, such as, suggesting relaxations that will return the

most expensive products. In order to decide what should be
the next proposed relaxation, IQR first computes the likeli-

hood that the user will respond positively to a proposal, as
well as quantify the e↵ectiveness of the proposal with respect
to the optimization objective. Since IQR does not know the
exact user intent before she makes the choice, it resorts to a
probabilistic framework for reasoning about this question.

The IQR Approach: Given a user query that returns an
empty-answer, IQR suggests one relaxation at a time. The
user responds to it with a“yes”/“no”. Based on the response,
the next relaxation is suggested and this iterative process
continues until one of the two conditions are satisfied: (a)
the user has arrived at a non-empty result set; (b) non-
empty result set is impossible to achieve with any further
relaxations. We describe a running example next.

Running Example: Imagine that a user is interested in

1
http://youtu.be/v9CXnQyZ9jw

2Full description of the IQR theory can be found in [6].

http://youtu.be/v9CXnQyZ9jw
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VW Touareg $62K 1 0 0 0 0 1 0 1 0
Askari A10 $206K 0 1 0 0 1 1 1 1 0
Honda Civic $32K 1 0 0 0 0 0 0 0 0
Porsche 911 $126K 0 0 0 0 1 0 1 1 0

Figure 1: An instance of a car database.
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Figure 2: Architecture of the system IQR

a car that has anti-lock braking system (ABS), dusk-sensing
light (DSL), and manual transmission. The data instance of
Figure 1 reveals that no car satisfies these requirements.

User-centric Optimization: Consider the optimization
objective is to return the most relevant result. Imagine that
the most relevant tuples to the user query are the VW and
the Askari (both satisfy two out of the three query con-
straints). However, if IQR knows that the most users prefer
cars with ABS (i.e., the user has a very high likelihood of
responding “no” to the suggestion), then it would instead
suggest her to relax DSL to return the VW to her.

Seller-centric Optimization: Conversely, if the seller
wants to sell the most expensive car (i.e., Askari) to the user,
IQR would instead propose cars with no ABS.
IQR is designed to take all of these issues into account

while proposing relaxation suggestions based on a certain
optimization objective. The e↵ectiveness of a relaxation
suggestion is quantified by its expected cost by capturing
how well it serves towards the optimization objective and
how likely the user will accept it. Given the initial query,
the underlying solution then relies on constructing a query
relaxation tree [6] that captures the space of possible relax-
ations as well as user responses and computing the expected

cost (probabilistic) for each of them. After that, this tree
needs to be traversed in a top down fashion to suggest a
relaxation that optimizes the expected cost.

A big challenge is raised by the fact that the relaxation
suggestions must be generated in real-time, given that the
size of the query relaxation tree is exponential to the number
of query constraints. IQR o↵ers novel algorithms to ensure
scalability by proposing e�cient exact solutions, as well as
principled approximate solutions.

2. THE IQR SYSTEM
IQR is a web-application (the architecture and flow of in-

formation of the system is shown in Figure 2), which can
be invoked from the computers or from the mobile devices.
The Query Builder tab allows the user to select a data source
and build a conjunctive query from a drop-down list. The
Search tab enables searching. If the initial query returns an
empty-answer, then the interface allows the user to perform
interactive step-by-step relaxation by appropriately select-
ing the optimization objective. The user can also select the
relaxation strategy (i.e., exact or approximate) from the in-
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Figure 3: Query Relaxation tree of the running example.

terface. Finally, the Results tab shows the returned results
along with additional statistics. The back-end consists of
the following three components: (a) Relaxation tree con-

struction, (b) Probabilistic cost model, and (c) Relaxations

generation. The tree construction component interacts with
the database. To enable faster database retrieval, IQR first
converts the database to a Boolean type and then designs
bitmap indexes for fast retrieval. The probabilistic cost
model is abstracted as a framework which could be eas-
ily instantiated for di↵erent objective functions, or di↵erent
implementations for computing probabilities. We describe
these components next.

2.1 Relaxation Tree Construction
To encode the di↵erent relaxation suggestions and user

choices that may occur for a given empty-query Q, we em-
ploy a special tree structure called the query relaxation tree

(Figure 3 represents the running example query). The tree
contains two types of nodes: the relaxation nodes (marked
with double-line rectangles in Figure 3) and the choice nodes
(marked with single-line rectangles in Figure 3). Note that
the children of relaxation nodes are choice nodes, and the
children of choice nodes are relaxation nodes.
A relaxation node represents a relaxed query Q

0. The root
node represents the original queryQ. A relaxation node does
not have any children when the respective query returns a
non-empty answer, or returns an empty-answer but cannot
be relaxed further.
Conversely, a choice node models an interaction with the
user and always has two children: one that corresponds to
a positive (“yes”) response, and one that corresponds to a
negative (“no”) response. A choice node can never be a leaf.
Thus, any root-to-leaf path in the tree starts with a relax-
ation node, ends with a relaxation node, and consists of an
alternating sequence of relaxation and choice nodes.

Constrs(Q) denotes the set of query constraints some of
which may be fundamental; these are referred to as hard

constraints and all the others as soft constraints. We use
the “#” symbol to indicate a hard constraint in a query, and
“?” to indicate a question to the user for the relaxation of the
respective constraint. With every “no” response associated
with a suggested relaxation, it becomes a hard constraint.

2.2 Probabilistic Cost Model
Once the tree is constructed, IQR needs to probabilistically

compute the “cost” associated with each possible relaxation
suggestion. Intuitively, the probability that a user responds
positively to a proposed relaxation depends on the (a) prior
function, prior(Q,Q

0
, t) - which measures the user belief

that a certain tuple t satisfying the relaxed query Q

0 exists
in the database, and the (b) preference function, pref(t, Q)



(a) Query building and search. (b) Exact algorithm for max. relevance suggests “Porch” first.

(c) Interaction ends with “no” to “Porch”,“yes” to “Deck”. (d) Final page enlists results and additional statistics.

Figure 4: The interactive query relaxation system IQR.

- which estimates the probability that a user will like a tuple
t (even though it only partially satisfy the initial query).

Even though any prior function or preference function
(i.e, ranking/scoring) [3, 1] could be adapted in IQR, in our
implementation, we use the Iterative Proportional Fitting
(IPF) [4] technique on the instance data to compute the
prior and the Normalized Inverse Document Frequency [1]
to calculate the preference.[6] contains further details.

Therefore, the probability to reject a relaxation Q

0 is:

relPref

no

(Q,Q

0) =
X

t2Q

0

(1� pref(t, Q0)) ⇤ prior(t, Q,Q

0)

which represents the probability of not liking any of the
tuples associated to the relaxation. Thus, the probability
of accepting the relaxation is the probability that the user
likes at least one tuple, namely,

relPref

yes

(Q,Q

0) = 1� relPref

no

(Q,Q

0)

A probabilistic cost value is associated to every node of
the relaxation tree that quantifies how suitable a certain
relaxation is towards a specific optimization objective.

The expected cost of a choice node n can be expressed as:

Cost(n) = relPref

yes

(Q,Q

0) ⇤ (C1 + Cost(n
yes

))+

relPref

no

(Q,Q

0) ⇤ (C1 + Cost(n
no

))
(1)

where the n

yes

and n

no

are the two children (relaxation)
nodes of n, Q is the query corresponding to the parent of n,
and Q

0 corresponds to the suggested relaxation of Q at node
n and the variable C1 is a constant, that is used to quan-
tify any additional cost incurred for answering the current
relaxation proposal.

Since the cost of a node depends on the below subtree, to
produce the optimal solution, we select that relaxation node
which optimizes (maximizes or minimizes) the cost, such as:

Cost(n) = optimize

c2S

Cost(n
c

) (2)
where S is the set of soft constraints in Constrs(Q), and n

c

is the choice child node of n that corresponds to an attempt
to relax the soft constraint c. These equations capture a
generic cost and have to be appropriately instantiated for a
specific application as described in Section 2.2.1.

Finally, the cost of a leaf node depends on the “value” of
the tuples in that leaf which quantifies the e↵ectiveness of
those tuples towards the specific objective, which is poten-
tially di↵erent from the value of the preference function.

2.2.1 Application Specific Cost Computation
Next we describe how to instantiate the above cost model

under di↵erent application scenarios by appropriately mod-
ifying the preference, value, and the cost computation.

The preference for a tuple (1) could be independent of the
query Q and static; or, (2) it could be query dependent, but
only depends on the initial query and does not change after
that; or, (3) it could depend on the latest relaxed query the
user has accepted - this is a very dynamic scenario where
after each step of the interactive session the preference can
change. These di↵erent preference computation approaches
are referred to as Static, Semi-Dynamic, and Dynamic re-
spectively. An astute reader may notice that Static is appli-
cable to optimization objectives that are agnostic to query
constraints (such as minimize cost, maximize profit), Semi-



Dynamic is for applications that require the preference to
be proportional to the original query Q (e.g., maximizing
relevance), and Dynamic is designed for applications where
the preference changes with every accepted relaxation (e.g.,
minimizing user e↵ort). The value calculation of a tuple t is
similar, except that it needs to quantify the contribution of
t towards a specific objective.

Similarly, when the objective is maximize (minimize), the
cost of a relaxation node is the maximum (minimum) cost
of its children. The cost of a choice node is calculated using
Equation 1 by setting C1 = 0 to all optimization objectives
except e↵ort minimization (C1 = 1 in this case), since the
latter case incurs a cost of 1 with every additional relaxation
suggestions. We refer to [6] for further details.

2.3 Relaxations Generation
IQR proposes an exact algorithm and an approximate al-

gorithm to e�ciently generate the relaxation suggestions.

2.3.1 Exact Query Relaxation Algorithm
To avoid computing the entire query relaxation tree, IQR

constructs the tree partially only up to a certain level L <

|Constrs(Q)|, and try to assign the cost of all the nodes in
level L and higher by calculating the upper and lower bound

of cost. From the ranges of the costs that the computation
provides, it identifies those branches that cannot lead to op-
timal cost. For example, when the specific optimization min-
imizes (maximizes) cost, these are the branches starting with
a node that has as a lower bound (upper bound) for its cost

that is higher (lower) than the upper bound (lower bound) of

the cost of another sibling node. By pruning these branches
the required computations are significantly reduced. This
way, the computation proceeds level by level until all query
|Constrs(Q)| constraints are relaxed.

The challenge here is to tightly estimate the upper bound
and lower bound of cost of the tree nodes for di↵erent opti-
mization objectives without compromising the correctness.
As discussed in [6], IQR indeed o↵ers this e�cient alternative
under a variety of optimization objectives.

2.3.2 Approximate Query Relaxation Algorithm
Although the strategy discussed in Section 2.3.1 generates

optimum-cost relaxations and builds the relaxation tree on
demand, it may still have to construct the entire tree first
in the worst case, even before suggesting any relaxation to
the user. Applications that demand fast response time but
allow slight imprecision (such as, online air-ticket or rental-
car reservation systems) may not be able to tolerate such la-
tency. IQR proposes a novel approximate solution that takes
L (# levels) as an input parameter and constructs the tree
only upto level L leading to a significantly smaller tree.
This strategy computes first the exact structure of the

relaxation tree up to level L. Next, it approximates the
cost of each L-th level choice nodes by considering the cost
distributions of its children and proceeds with a bottom-
up computation of the remaining nodes until the root. At
the root node, the best relaxation child node is selected,
and the remaining ones are pruned. Upon suggesting this
new relaxation, the algorithm continues further based on the
user response. Essentially, the task is to probabilistically
compute the cost distribution (or pdf of cost in short) of
the relaxation and choice nodes at level L and higher by
computing the Sum, Min, or Max convolutions [2] of the
respective pdfs. E�ciency is guaranteed by approximating

the convolutions using histograms. We omit the details for
brevity and refer to the main IQR article [6].

3. SYSTEM DEMONSTRATION
In this demonstration, the users will experience IQR’s do-

main independent approach for e�cient interactive relax-
ation suggestions under di↵erent optimization objectives us-
ing both exact and approximate solutions. The users will be
able to select the US Homes or the Yahoo Autos as the un-
derlying data source. The former database has 18 attributes
and over 250,000 tuples, while the latter has 31 attributes
and about 500,000 tuples. The demo will first show the scal-
ability of the system with empty-queries of increasing size.
The users will then select the dataset and build their own
query (Figure 4a), with the guidance of the system. If it
results in an empty-answer, then they will select a specific
optimization objective and an algorithm type (exact or ap-
proximate), as shown in Figure 4b. After that the users will
be suggested interactive relaxations (Figure 4b, 4c) at end
of which the results and additional statistics will be returned
(Figure 4d). Based on users’ interactions, the statistics page
presents interesting information, such as, the e↵ectiveness of
the returned results towards the optimization objective, the
average relaxation time, the total number of suggested relax-
ations, the total number of pruned nodes in the relaxation
tree by the underlying algorithm, etc. Additional statistical
information will be provided, such as the typical response
times and the mean number of interactions computed dur-
ing the demo session. In particular, the users will experience
IQR under three di↵erent optimization objectives.
1. Relevance Maximization - This is an instantiation
of Semi-Dynamic preference computation as shown in Fig-
ure 4b. The process ends when the users arrive at a non-
empty results (Figure 4d), or no further relaxation could
generate non-empty answer. The final results maximize rele-
vance and the exact solution may return di↵erent relaxations
or tuples than the approximate one to the users, while the
latter will appear more interactive. The users will be pre-
sented interesting statistics about her interactive relaxation
session at the end of the relaxation process (Figure 4d).
2. Profit Maximization - This is an instantiation of Static
preference computation and the attendees will experience
that IQR will attempt to return the most expensive homes
or cars to them based on their respective interactions.
3. E↵ort Minimization - This is an instantiation of Dy-
namic preference computation and the users will experience
that IQR will attempt to return non-empty results by sug-
gesting minimum number of relaxations .
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