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ABSTRACT
Data series motif discovery represents one of the most useful prim-
itives for data series mining, with applications to many domains,
such as robotics, entomology, seismology, medicine, and clima-
tology, and others. The state-of-the-art motif discovery tools still
require the user to provide the motif length. Yet, in several cases, the
choice of motif length is critical for their detection. Unfortunately,
the obvious brute-force solution, which tests all lengths within a
given range, is computationally untenable, and does not provide
any support for ranking motifs at different resolutions (i.e., lengths).
We demonstrate VALMOD, our scalable motif discovery algorithm
that efficiently finds all motifs in a given range of lengths, and
outputs a length-invariant ranking of motifs. Furthermore, we sup-
port the analysis process by means of a newly proposed meta-data
structure that helps the user to select the most promising pattern
length. This demo aims at illustrating in detail the steps of the pro-
posed approach, showcasing how our algorithm and corresponding
graphical insights enable users to efficiently identify the correct
motifs.
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1 INTRODUCTION
State of the artmotif discovery.Over the last decade, data series1
motif discovery has emerged as perhaps the most used primitive

1If the dimension that imposes the ordering of the series is time, then we talk about
time series. However, a series can also be defined through other measures (e.g., angle in
radial profiles in astronomy, mass in mass spectroscopy, position in genome sequences,
etc.). Throughout this paper, we will use the terms time series, data series, and sequence
interchangeably.
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for data series data mining, and it has many applications to a wide
variety of domains [6, 7], including classification, clustering, and
rule discovery. More recently, there has been substantial progress
on the scalability of motif discovery, and now massive datasets can
be routinely searched on conventional hardware [6]. The state-of-
the art algorithm [2] only requires the user to set a single parameter,
which is the desired length of themotifs. Moreover, themotif mining
is supported by the Matrix profile output, which is a meta data
series storing the z-normalized Euclidean distance between each
subsequence and its nearest neighbor. The Matrix profile does not
exclusively provide the motif, i.e., the subsequence pair with the
smallest distance, but also permits to rank and filter out the other
pairs, giving also a convenient and graphical representation of their
occurrences and proximity. In order to categorize motifs, we call
the k subsequences, with the k smallest best match distances, top-k
motif pairs.
Motif discovery of different lengths. Exact Motif discovery has
merely become a single input parameter problem, namely the length
of the patterns we want to mine. Unfortunately, this technique
comes with an important lack. It does not provide an effective solu-
tion for trying several motif length in a range. If one has no cues
about an effective fixed length, the simplest solution would be to
run the algorithm over all lengths in the range and rank the various
motifs discovered, picking eventually the patterns, which contain
the desired insight. Clearly, this possibility is not optimal for at
least two reasons; the scalability, since finding motif of one fixed
length takes O(n2) time, and also because it does not provide an ef-
fective way to compare motifs of different lengths. In this work, we
demonstrate the solution to this problem, we recently introduced
in [4], to mine Motif discovery of variable lengths. In our contri-
bution we propose VALMOD , the first approach for mining top-k
motif pairs of variable length, which is up to orders of magnitude
faster/more scalable than the alternatives that have been proposed
in the literature.

In order to show the superiority of variable-length motif discov-
ery, consider the following example. In Figure 1 (left) swe depict
a snippet of an Electrocardiogram (ECG) recording in (a), paired
with its Matrix profile, computed with fixed subsequence length:
ℓ = 50 in (b). Note that each value in the Matrix profile corresponds
to a point in the data, which is the representative starting point of
a subsequence of length ℓ. Hence, given a data series D of length
|D |, a Matrix profile records |D | − ℓ + 1 distances, avoiding trivial
matches [4]. In Figure 1.(c) we plot the Index profile, which contains
the offsets of the best matches.
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Figure 1: Left) (a) Snippet of ECG recordingwith highlightedmotifs of length 50, (b)Matrix profile computedwith subsequence
length 50. (c) Index profile, reporting the offsets of the bestmatch.Right) (d) Snippet of ECG recording with highlightedmotifs
of length 400, (e) VALMAPMPn , (f) VALMAP Length profile.

Looking at the Matrix profile in this example, we note four deep
valleys, which suggest the presence of very close matches, namely
the motifs. Starting from the Matrix profile, it suffices to follow
the dotted lines upwards, in order to detect the motifs, and down-
wards for finding the position of each subsequence best match.
Despite the motifs (heartbeats) are easily detectable to the naked
eye, since the snippet is relatively short, the highlighted motifs in
Figure 1.(a) (red/orange subsequences), just report the second half
of a ventricular contraction, giving thus a partial and unsatisfactory
result.

In the next sectionwe present the complete details of theVALMOD
algorithm.

2 VALMOD MOTIF MANAGEMENT
VALMOD algorithm As previously introduced, our algorithm,
VALMOD (Variable Length Motif Discovery), given a data series
D, starts by computing the Matrix profile using the smallest subse-
quence length, namely ℓmin , within a specified input range [ℓmin , ℓmax ].
The key idea of our approach is to minimize the work that needs to
be done for succeeding subsequence lengths (ℓmin + 1, ℓmin + 2,
. . ., ℓmax ). To explain the main components and the idea of our
algorithm we present a short example in Figure 2.

We start to consider the data series D in (a) (snippet of ECG
recording). To compute the Matrix profile, VALMOD considers all
the contiguous subsequences of length ℓmin, computing for each
one the Distance profile in O(|D |) time. This latter, contains the
z-normalized Euclidean distance between a subsequence and all the
other in D. In Figure 2.(a) we report a distance profile for the subse-
quence D160,600 (the subscript denotes offset=160 and length=600).
The minimum distance of each distance profile is a point of the
Matrix profile.

Wemoreover introduce a new lower bounding distance[4], which
lower bounds the true Euclidean distances between longer subse-
quences in the distance profiles. We initially compute this lower
bound from scratch, using as a base the true Euclidean distances
computation of subsequences with length 600. For the larger lengths,
we update the lower bound, considering only the variation gener-
ated by the trailing points in the longer subsequences. This mea-
sure enjoys an important property: if we rank the subsequences
according to this measure (ascending order), the same rank will be
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Figure 2: (a) ECG snippet with distance profile of subse-
quence D160,600, (b) Partial distance profiles computation for
length 601.

preserved along all the lower bound updates. We want to exploit
this property, in order to prune computation. Hence, when the
distance profiles are computed (in this example for length=600), we
keep in memory the p Euclidean distances, which have the smallest
lower bounding distance (LB); this is done for each distance pro-
file. We show in Figure 2.(b) how the algorithm proceeds for the
length 601. Instead of computing from scratch the whole distance
profiles, we consider just the elements we stored in the previous
step. Here, each distance profile is denoted as partial distance profile.
We proceed computing the true Euclidean distances of each partial
distance profile, updating the relative LB (this result is depicted in
Figure 2.(b). After this operation, we may have two cases: if in a new
computed distance profile the minimum true distance (minDist) is
shorter than the maximum lower bound (maxLB), we know that no
elements, among those not computed, can be smaller than minDist.
In this case a partial distance profile becomes a valid distance pro-
file, as in the case of the subsequence D160,601. On the other hand,
when maxLB is smaller than minDist, as in the case of subsequence
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Figure 3: (top) Time over motif length ranges (default
ℓmin=1024, data series length= 0.5M. (bottom) Time over se-
ries length (default length range=100).

D620,601, no true minimum distance is found within the distance
profile. At the end of this process, we pick the minimum maxLB of
all the non-valid distance profile, which is denoted as minLBAbs.
Hence, all themindist in the valid (parital) distance profiles, smaller
than minAbsLB are considered top-k motif distances. If no mindist
are smaller thanminAbsLB, we recompute only the distance profiles,
which have the maxLB smaller than the smallest mindist found,
since only those may contain better matches than the already com-
puted ones. We keep extracting in this way, the top-k motifs of
each length, until ℓmax .
Experimental Evaluation. To benchmark VALMOD , we use sev-
eral different datasets in [4], comparing it with two types of algo-
rithms. The first are two state-of-the-art motif discovery algorithms,
which receive a single subsequence length as input: QUICKMO-
TIF [3] and STOMP [1]. In our experiments, they have been adapted
to find all the motifs for a given subsequence length range. The
other approach in the comparative analysis is MOEN [5], which
accepts a range of lengths as input, producing the best motif pair
for each length. We report in Figure 3 a sample of the experiments
we conducted (detailed experimental results on several datasets are
reported elsewhere [4]). Here, we show the results of VALMOD ,
which finds motifs in an Electrocardiogram recording (ECG) and in
a data series representing celestial objects (ASTRO) [4]. We couple
the VALMOD results with those of its competitors. In the plots, we
report the total execution time of VALMOD , which includes all the
operations performed by the algorithm (also the VALMAP computa-
tion introduced later), varying motif length ranges (Figure 3 (top))
and the size of the input data series, considering different prefix
snippets (Figure 3 (bottom)). From this experiment, we observe
that VALMOD maintains a good and stable performance across
datasets and parameter settings, quickly producing results, even in
cases where the competitors do not terminate within a reasonable
amount of time.
Rank Motif Pairs of Variable Lengths. Since we can discover
motifs of different lengths, we propose a ranking method, suitable
for comparing different-length patterns. We aim to favor longer and
similar sequences in the ranking process of matches that have differ-
ent lengths. As a consequence, we factorize the Euclidean distance

by the following quantity: sqrt(1/ℓ), where ℓ is the length of the
sequences. We call the new distance, length normalized distance [4].
VALMAP.While the proposedmotif rankweights the subsequences
importance according to the ratio distance-length, we want to know
also, whether and how the motif pairs changes, helping the user
to extract the desired insights at the correct length. To that ex-
tent, we introduce a new meta-data, called Variable Length Matrix
Profile (VALMAP), maintaining the same logic and structure of
the Matrix profile depicted in Figure 1 (top), with the difference
that this new structure carries length normalized distances and
it is coupled with a new vector called Length profile, which con-
tains the lengths of the subsequences. More formally, given a data
series D, and a range of subsequence lengths, whose extremes
are denoted by ℓmin and ℓmax , we define VALMAP as a triple
⟨MPn ∈ R |D |−ℓmin+1, IP ∈ N |D |−ℓmin+1,LP ∈ N |D |−ℓmin+1⟩,
where MPn is the Matrix profile containing length normalized
distances, whereas IP and LP are the relative Index and Length
Profile. If we consider just a fixed length, VALMAP will coincide
with the length normalized version of the Matrix profile, with a flat
Length profile. This is basically the structure that VALMOD builds,
considering subsequences of length ℓmin . In the second stage, we
can update VALMAP using the top-k motif pairs, computed for each
length until ℓmax . We thus consider each (Di, ℓmin+1,D j, ℓmin+1) ∈
top-k motif pairs, where i, j are the subsequences offsets, ℓmin + 1
their lengths and dni, j their length normalized Euclidean distance.
Note that in a motif pair the right subsequence is the one with the
absolute shortest distance to the one at the left. Hence, VALMAP ,
MPn [i] is updated with dni, j if d

n
i, j < MPn [i], which was containing

the distance between Di, ℓmin and its best match. If this update
takes place, the Index and Length profile are respectively assigned
with j, the offset of the new best match, and ℓmin + 1 the new
length. The update operation takes place for each top-k motif pair
of any length between ℓmin and ℓmax . Once the algorithms ends,
VALMAP contains a picture of the motif pairs showing, at which
length the last update takes place. If a motif pair is updated, this
implies that a longer pattern represent a better match and thus it
might reveal either a new event or the same event lasting longer.
Example of VALMAP Expressiveness. In order to show the ex-
pressiveness of VALMAP , we ran VALMOD on the ECG data snippet
previously considered, showing the VALMAP structure in Figure 1
(right). We use the following input parameter: ℓmin = 50 and
ℓmax = 400. We note that VALMAP reports the motif with the
shortest length normalized distance of length 56, which is the same
partial event detected by the Matrix profile in the fixed length case,
at the top of the picture. If we look at the Length profile in Fig-
ure 1.(f), we observe that, at an earlier time than the discovered
motifs pair, a sequence of contiguous updates took place, as we
reported. The subsequences concerned have distances almost as
short as the one of the best motifs in VALMAP , thus, remaining
longer and possibly valid matches.

In Figure 1.(d) we depict and highlight themotif pair of length 400.
Immediately, we can note that, the subsequences in red, which com-
pose this motif, are a better representation of a recurrent heartbeat.
In fact, the two typical components (Artia and Ventricles contract)
are correctly detected.
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3 SYSTEM DESCRIPTION
We now describe the architecture of our system, depicted also in
Figure 4. The input is represented by a data series of interest. As
a starting point, the user has the possibility to inspect the data
and also setting the desired parameter (lengths range [ℓmin ,ℓmax ]).
Afterwards, she can run the VALMOD algorithm, which is a part
of the system back-end we implemented in C. Once terminated,
VALMOD outputs the VALMAP meta-data. This latter is thus sent to
the front-end, implemented in Python. Here, the user can interact
with the system analyzing the showcased elements, such as:

• the checkpoints of the VALMAP, namely all the updates
occurred from the length ℓmin till the desired length, selected
with a dedicated slider.

• all the top-k motifs of variable length, which VALMAP re-
ports.

• expand a selected motif pair to the relative Motif Set, con-
taining all the similar subsequences of the pair in the data.

In Figure 5 we show a screen-shot of the VALMAP analysis in our
demonstration.

4 DEMONSTRATION
We now present the scenarios proposed to the audience. Need for
Variable Length Motifs. We will showcase variable length motif
discovery using VALMOD on different real datasets [4], including
ECG and ASTRO, as well as datasets coming from the domains
of Entomology and Seismology. In these two particular cases, the
user can understand the importance of using variable length motif
detection (with the support of VALMAP ), in order to identify pat-
terns of interesting behavior exhibiting themselves as sequences of
different lengths.
Traditional Motif discovery VS VALMOD. In this scenario, we
will challenge the user to find the motifs without having any knowl-
edge of their lengths, just by inspecting the data themselves When
this takes place, the user can experience the VALMOD support in
finding motif pairs that can be of variable length, understanding
the quantity and quality of the insights that are not achievable with
a simple raw data visual analysis.
VALMOD VS Competitors. In this scenario, the user can com-
pare VALMOD to alternative approaches used for motif discovery.

Figure 5: GUI interface showing the interaction with
VALMAP.

Specifically the audience will note the performance improvement,
concerning fixed and variable length motif discovery, and the in-
creased expressiveness provided by VALMAP .

5 CONCLUSIONS
In this work, we present VALMOD , a system that can efficiently
find data series motif of variable length. As opposed to the other
approaches, our framework provides a new meta data-series
(VALMAP ), which ranks motif pairs of variable length, using a new
length normalized distance. Our system provides enriched insights,
which help to detect not only the correct resolution (length) of
an interesting event, but also the occurrences of repeated patterns
with different meanings, which are typical in numerous domains.
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