Dumpy: A Compact and Adaptive Index for Large Data Series Collections

Zeyu Wang

Fudan Univerisity Shanghai, China

Qitong Wang Université Paris Cité Paris, France

Peng Wang Fudan University Shanghai, China

Themis Palpanas Université Paris Cité & French University Institute (IUF) Paris, France

ACM SIGMOD 2023, Seattle

paper: https://helios2.mi.parisdescartes.fr/~themisp/publications/sigmod23-dumpy.pdf video: https://files.atypon.com/acm/99f6febc21ad6c5a979f504caf188d9a code: https://github.com/DSM-fudan/Dumpy

Wei Wang **Fudan University** Shanghai, China

1-Data Series

Sequence of points ordered along some dimension

ordering dimension

1-Data Series

Sequence of points ordered along some dimension

Classification				
Outlier Detection				
Motif Discovery				
Frequent Patterns				
Clustering				
•••				

1-Problem Definition

- Similarity search
 - given a series set S, a query series S_q and a similarity measure $d(\cdot, \cdot)$
 - *d* is commonly the Euclidean distance (ED) or Dynamic Time Warping (DTW)
 - find the closest series in *S* to *s*_q, i.e.,

 $s_a = \underset{s_i \in S}{\arg\min d(s_q, s_i)}$

- Approximate similarity search
 - find $s_{a'}, d(s_q, s_{a'}) \approx d(s_q, s_a)$
 - core requirements: Accuracy & Scalability

Data Series Index

Exact answers sometimes unnecessary

2-Limitations of Existing Solutions

Problem 1: What's the right splitting decision between these two extremes?

Problem 2: How to efficiently implement splitting?

1. Alessandro Camerra, et al. Beyond One Billion Time Series: Indexing and Mining Very Large Time Series Collections with iSAX2+. KAIS 39(1):123-151, 2014. 2. Zhang, L. et al. 2019. TARDIS: Distributed Indexing Framework for Big Time Series Data. 2019 IEEE 35th International Conference on Data Engineering (ICDE)

9

Raw series

Raw series \rightarrow PAA approximation

PAA(*s*)=[0.25, -0.3, -0.55]

Raw series \rightarrow PAA approximation \rightarrow SAX symbolization

gree o [.] Iction	t		
eg 3		SAX	
		111	
		110	
		101	
		100	time
		011	ume
		010	
		001	
	-	000	

node together with b

22

5-Compactness Problem of full-ary iSAX Index

5-Compactness Problem of full-ary iSAX Index

6-Proximity-Compactness Trade-off

right balance in this trade-off!

27

Multi-ary Index Structure

$2 \leq \text{fanout} \leq 2^w$

w: number of segments

csl(N): list of segments to be split of node N *sid*: concatenation of newly-extended bits compared with parent node

Multi-ary Index Structure

$2 \leq \text{fanout} \leq 2^w$

w: number of segments

csl(N): list of segments to be split of node N *sid*: concatenation of newly-extended bits compared with parent node

Decide fanout and segments to split on-the-fly csl(N)

csl(N) can be any non-empty combination

Totally, $2^{w} - 1$ possible ways to split.

PAA points projected on the segments of the plan *µ*: centroid of these SAX points

PAA points projected on the segments of the plan

33

8-Fast search for optimal split

1. pre-compute variance

$$Var(\mathcal{X'}_N) = \sum_{cs \in csl(N)} Var(\Pi_{cs}(\mathcal{X}_N))$$

ONE time scan for all split plans

8-Fast search for optimal split

1. pre-compute variance

$$Var(\mathcal{X'}_N) = \sum_{cs \in csl(N)} Var(\Pi_{cs}(\mathcal{X}_N))$$

ONE time scan for all split plans

2. restrict the search space

$$\max(1, \log \frac{c_N}{F_r * th}) \le |csl(N)| \le \min(w, \log \frac{c_N}{F_l * th})$$

skip the split plan whose fanout is too large or small

8-Fast search for optimal split

1. pre-compute variance

$$Var(\mathcal{X'}_N) = \sum_{cs \in csl(N)} Var(\Pi_{cs}(\mathcal{X}_N))$$

ONE time scan for all split plans

2. restrict the search space

$$\max(1, \log \frac{c_N}{F_r * th}) \le |csl(N)| \le \min(w, \log \frac{c_N}{F_l * th})$$

skip the split plan whose fanout is too large or small

3. hierarchically compute sizes of child nodes

recursive computing: CONSTANT complexity for most split plans

9-Data Skewness of iSAX Index

w: number of segments

Group small similar leaf nodes into a pack

Input: small leaf nodes under the same parent (siblings)

Output: A group of leaf packs within the

Group small <u>close</u> leaf nodes into a pack

How to measure?

Input: small leaf nodes under the same parent (siblings)

Output: A group of leaf packs within the

- Input: <u>Small</u> leaf nodes under the same parent (siblings)
- Output: A group of leaf node packs within the size constriant

) triant

only <mark>ONE</mark> different symbol

*N*₁: iSAX: 0-1-*-1

0101

- Input: <u>Small</u> leaf nodes under the same parent (siblings)
- Output: A group of leaf node packs within the size constriant

different symbol

3 different symbols

- Input: <u>Small</u> leaf nodes under the same parent (siblings)
- Output: A group of leaf node packs within the size constriant
- Core idea: limit the number of different symbols (#(*)) in the leaf pack.

) triant **in the leaf pack.**

Greedily select the best pack or create a new one

Greedily select the best pack or create a new one

find a pack for this leaf

Greedily select the best pack or create a new one

Greedily select the best pack or create a new one

Greedily select the best pack or create a new one

49

Greedily select the best pack or create a new one

11-Dumpy-Fuzzy

An example of *Boundary Issue*:

11-Dumpy-Fuzzy

An example of *Boundary Issue*:

11-Dumpy-Fuzzy

An example of *Boundary Issue*:

belongs to 2 leaves

12-Experimental Setup

Datasets

- synthetic: Rand
- real: DNA, ECG, Deep
- Comparison methods
 - iSAX2+ (2-ary iSAX-based)
 - TARDIS (full-ary iSAX-based)
 - DSTree (EAPCA-based)

Dataset	Length	Dataset size
RandomWalk	256	100m (100GB)
DNA	1024	26m (113GB)
ECG	320	97m (117 GB)
Deep1B	96	100m (38GB)

✓ fastest index building, 2.5x~5.3x faster than SOTA

Most compact structure

✓ fastest index building, 2.5x faster than TARDIS (SOTA)

• Most compact structure

✓ linear scalability (R^2 > 0.99)

✓ fastest index building, 2.5x faster than TARDIS (SOTA)

• Most compact structure

✓ linear scalability

for 800GB data

\checkmark up to 4x faster than SOTA

14-Search Accuracy (search one node)

✓ highest MAP (Mean Average Precision)

- Best proximity of nodes
- 11%~84% higher MAP than SOTA

14-Search Accuracy (search more nodes)

✓ 16%~125% higher MAP than SOTA

14-Search Accuracy (search one node)

✓ 16%~125% higher MAP than SOTA

✓ 60% more accurate than DSTree when visiting 25 nodes (~100ms query time)

15-Pruning-based (approximate) search

15-Pruning-based (approximate) search

✓ Best throughput under the same accuracy
✓ 67% higher throughput than DSTree under 80% MAP

16-Conclusions

- Identify the inherent proximity-compactness trade-off in the structural design of SOTA iSAX-index family
- Propose Dumpy, a compact and adaptive multi-ary data series index striking the right balance of this trade-off
 - faster index-building and better scalability
 - more accurate and efficient simialrity searh
- Devise Dumpy-Fuzzy that further improves search accuracy by mitigating the hard boundary issue

66

Thanks!

Dumpy: A Compact and Adaptive Index for Large Data Series Collections Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas and Wei Wang

ACM SIGMOD 2023, Seattle

paper: https://helios2.mi.parisdescartes.fr/~themisp/publications/sigmod23-dumpy.pdf video: https://files.atypon.com/acm/99f6febc21ad6c5a979f504caf188d9a code: https://github.com/DSM-fudan/Dumpy

