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Data Series Similarity Search e Search Is Slow! )

 Data series present in virtually every domain * Tree-based indexes are among SOTA solutions
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sequences similar to some query sequence Number of searched leaf nodes
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* Similarity search is a key operation for scalable
data series analysis

How to Insert Learned Filters?

O
* Lower bounds are used to prune nodes -[ — C% ” Céi

Loose lower bounds without Learned Filters
Original index LeaFi-enhanced index

30 === Best-so-far distances X Optimal lower bounds
Lower bounds without LeaFi + Lower bounds with LeaFi A. Which nodes to insert learned filters?

v Model it as a knapsack problem, then simplify

e anitem - a filter, value - search speedup,
weight > GPU memory
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Pruning threshold

"""""" 1k 2k 3k ak
Number of visited leaf noces  not pruned B. How to control result quality?

v'  Posterior statistical adjustment

 Tight lower bounds with Learned Filters L .
* inspired by conformal predictors

e Experiments: almost perfect recall, at a fraction of exact search time
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12.7x speedup ¢ : 99% recall

g 1- | < Scan for more LeaFi!
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