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The ever-growing collections of data series create a pressing need for efficient similarity search, which serves

as the backbone for various analytics pipelines. Recent studies have shown that tree-based series indexes

excel in many scenarios. However, we observe a significant waste of effort during search, due to suboptimal

pruning. To address this issue, we introduce LeaFi, a novel framework that uses machine learning models

to boost pruning effectiveness of tree-based data series indexes. These models act as learned filters, which

predict tight node-wise distance lower bounds that are used to make pruning decisions, thus, improving

pruning effectiveness. We describe the LeaFi-enhanced index building algorithm, which selects leaf nodes and

generates training data to insert and train machine learning models, as well as the LeaFi-enhanced search

algorithm, which calibrates learned filters at query time to support the user-defined quality target of each

query. Our experimental evaluation, using two different tree-based series indexes and five diverse datasets,

demonstrates the advantages of the proposed approach. LeaFi-enhanced data-series indexes improve pruning

ratio by up to 20x and search time by up to 32x, while maintaining a target recall of 99%.
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1 Introduction
Background. With the rapid advancements and implementations of modern sensors, there is

a significant rise in the generation, collection, and analysis of large datasets consisting of data

series across various scientific fields [43]. Common techniques employed in the analysis of data

series include classification [19], clustering [45], pattern mining [10], anomaly detection [46],

visualization [23], etc. However, as the data series collection grows largely in scale, it becomes

crucial to incorporate similarity search methods to maintain their efficiency and effectiveness [42].

Data series similarity search is the technique used to identify the most similar series (usually the

nearest neighbors) in a dataset, given a query series and a specific similarity measure (usually

Euclidean distance [11]).

Indexes are widely employed to speed up series similarity search. Among various series indexing

techniques, tree-based indexes have demonstrated state-of-the-art (SOTA) performance in numerous
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(a) Average recall-at-1 compared to the number of searched DSTree
leaf nodes. The search algorithm continues after finding the nearest
neighbors.
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(b) Using the LeaFi predictions (★) instead of current lower bounds
(+) boosts the pruning ratio for an Astro query from 23% to 89.4%
(examples above the best-so-far curve can be pruned). Particularly,
the pruning enhancement brought by LeaFi is observed both before
and after the nearest neighbors are found. The LeaFi filters are
trained to predict the optimal lower bounds (×), which can prune
99% leaf nodes.

Fig. 1. A waste of data series search time, caused by insufficient pruning, is observed across various datasets.
Employing the LeaFi predictions for the optimal lower bounds, instead of the current summarization-based
lower bounds, improves the pruning ratios significantly.

scenarios [15, 16], including in the context of hybrid solutions [4, 66, 69]. A tree-based index is

built using lower-dimensional summarizations of data series [55, 65]. Its index structure consists

of internal nodes, which determine the order of visiting nodes, and leaf nodes, which store the

original series values. Each node uses an aggregated summarized representation of the series it

contains, in order to calculate a distance lower bound, which is compared with the best-so-far

result to determine if this node can be pruned during query answering.

Motivation. Tree-based indexes greatly enhance the efficiency of series similarity search. However,

we argue that there are still significant opportunities for further acceleration. This potential is

highlighted in Figure 1a by the large gap in search time
1
, between when the nearest neighbor

results are found and when they are actually returned [22, 33]. The search algorithm spends this

significant amount of extra time trying to verify that there is no other better answer. We attribute

1
We use the number of searched leaf nodes as a hardware-agnostic surrogate for search time [3]. In our context, searching a

leaf node means calculating the distances for all series it contains. Visiting a node, on the other hand, refers to checking its

lower bound to determine whether it can be pruned. A leaf node may be visited during a query, but not searched.
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Fig. 2. An illustration of a LeaFi-enhanced tree-based index structure, along with an example of its search
procedure.

this inefficiency to the inability of existing tree-based series indexes to provide tight distance lower

bounds for effective pruning. Figure 1b reveals that only 23% of the summarization-based lower

bounds (cf. Figure 1b, Lower bounds without LeaFi) exceed the best-so-far distances (cf. Figure 1b,

black line), resulting in a 23% pruning ratio for a query on the Astro dataset, which is a rather poor

performance.

Our key insight to this problem focuses on the introduction of the optimal lower bound for

a leaf node, which is the smallest distance between a query and all the series that the leaf node

contains; we call this distance the node-wise nearest neighbor distance. By leveraging these node-

wise distances, 99% of the leaf nodes (up from 23%) can be pruned (cf. Figure 1b, Optimal lower

bounds). However, directly calculating these distances by searching each leaf node is impractical.

To overcome this challenge, we opt to employ machine learning models to predict the node-wise

nearest neighbor distances. These models act as Learned Filters (LeaFi), improving the pruning

effectiveness of tree-based series indexes.

Our solution: LeaFi. In this paper, we introduce LeaFi, a novel general framework that introduces

machine learning models into tree-based series indexes to improve their pruning capability for

search acceleration. We name these machine learning models learned filters, and the index that

uses them LeaFi-enhanced index. In essence, LeaFi carefully places learned filters in a selected

subset of leaf nodes, with each filter dedicated to one leaf node. These learned filters are trained to

predict the node-wise nearest neighbor distances for a given query, which serve as lower bounds

for comparison against the best-so-far distance. Since the predictions are much tighter than the

original node summarization-based lower bounds, the leaf node pruning ratios are largely improved.

In our example, we go from 23% pruning to 90% pruning (cf. Figure 1b, Lower bounds with LeaFi).

Though, this comes at the expense of a slight reduction in accuracy, which is controlled by the user

and can be determined at query time (independently for each query). Note that a LeaFi-enhanced

index can always provide exact results (guaranteed 100% recall) for a specific query, simply by

disabling the filter-based pruning strategy at query time. Our experimental evaluation shows that

LeaFi-enhanced indexes achieve a remarkable improvement in pruning ratio (up to 20x more) and

search time (up to 32x faster), while maintaining almost perfect accuracy (i.e., 99% recall).
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Figure 2 illustrates the structure of a LeaFi-enhanced index. For the selected leaf nodes 𝐿2, 𝐿3
and 𝐿𝑖 , learned filters are paired with their node summarizations. When these nodes are visited

by a query, a cascade of summarization-based lower bounds and filter predictions are computed

to determine whether these nodes should be pruned. To the best of our knowledge, LeaFi is the

first framework that incorporates machine learning models into data series indexes for improving

pruning during similarity search.

Technical challenges. Incorporating learned filters into tree-based series indexes is not straight-

forward. The LeaFi workflow unfolds in three main stages. It starts by selecting the subset of leaf

nodes for filter insertion. Next, it prepares the training data needed to train these filters. The last

step is to calibrate the filters’ predictions to better serve as lower bounds. We outline these steps

along with their challenges and our solutions as follows.

First, effectively inserting learned filters requires identifying the subset of leaf nodes that offer

the most significant reduction in search time. As modern machine learning models are accelerated

using Graphics Processing Devices (GPU) [40], indiscriminately adding one learned filter to every

leaf node could overwhelm the GPU memory. Typical number of leaf node in tree-based series

indexes can reach the range of 100K [67]). Moreover, applying learned filters might not always

improve search time. For example, directly searching a small leaf node of 100 series can be faster

than predicting a lower bound using a Multilayer Perceptron (MLP) [1] model. To address these

issues systematically, we design a general formalization that treats leaf node selection as a knapsack

problem [27]. In this analogy, adding a learned filter to a leaf node is considered adding an "item",

where its "value" is the expected reduction of this node’s search time. Given the constraint of

available GPU memory, our goal in this setup is to identify which leaf nodes will yield the highest

expected search time savings, when equipped with learned filters. We further show that under

certain assumptions, this general formalization can be simplified and solved by a greedy algorithm.

Second, training the inserted filters requires generating appropriate training data. A key challenge

is that the majority of the node-wise nearest neighbor distances fall out of the value range of global

nearest neighbor distances. Figure 1b, shows that node-wise nearest neighbor distances lie around

the value of 20, while the global nearest neighbor distance is 4.9. Traditional training data generation

methods, which typically involve random sampling combined with Gaussian noise [13], tend to

bias training towards these larger, node-wise distances, neglecting the global distances [63]. To

resolve this issue, we propose a novel twofold strategy for training data generation. It consists of

generating global training queries that are derived from the entire series collection and applicable

to all leaf nodes, alongside node-wise training queries that are derived from and specific to each

leaf node. Our twofold approach ensures that the training data encompasses both local (node-wise)

and global contexts, facilitating unbiased filter training across all necessary value ranges.

Lastly, learned filters, being machine learning models, cannot ensure consistent prediction

quality [32]. This compromises the exactness of the search result in original series indexes [62].

To mitigate the uncertainty of the search quality, we propose conformal auto-tuners, a method

inspired by conformal regressions [2] to enable support for user-requested search quality (e.g.,

recall, tightness, etc.) targets. Our conformal auto-tuners calibrate the filter prediction using a

learned offset, determined by a certain quality target that can be set at query time, independently for

each query. We employ a separate calibration set [44] to simulate search under different offsets and

collect the result qualities. The conformal auto-tuners learn the mapping between observed result

qualities and corresponding calibration offsets, such that the calibration offset can be dynamically

obtained for any given quality target.

Contributions. Our contributions can be summarized as follows.

(1) We introduce the first approach that uses learned filters to improve the pruning effectiveness

of tree-based series indexes, and hence accelerate data series similarity search.
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(2) We design LeaFi, a novel general framework that effectively integrates learned filters into

(different) tree-based series indexes. LeaFi carefully selects an optimal subset of leaf nodes for filter

insertion, and generates appropriate training data for filter training.

(3) We propose conformal auto-tuners to mitigate the uncertainty in the results of machine

learning models. Conformal auto-tuners calibrate learned filters at query time to support the

user-defined quality target, independently for each query (the user may also choose to disable the

learned filters).

(4) Our experimental evaluation, using two diverse tree-based series indexes and five diverse

datasets, demonstrates the benefits of the proposed approach, and its advantages when compared

to alternatives. LeaFi-enhanced series indexes improve pruning ratio by up to 20x and search time

by up to 32x, while maintaining a target recall of 99%. Codes and datasets are available online
2
.

2 Related Work
Data series indexes. The most prominent data series indexing techniques can be categorized into

graph-based indexes [38], quantization [21] and inverted indexes [5], locality-sensitive hashes [24],

and tree-based indexes [55, 65]. Recent studies [15, 16] have demonstrated that tree-based in-

dexes [47] achieve SOTA performance under several conditions (e.g., large-scale dataset).

iSAX [55] and DSTree [65] are two SOTA tree-based indexes for series similarity search of

different strengths [15, 16]. iSAX is based on Symbolic aggregate approximation (SAX) [55], a

discretized series summarization based on piecewise aggregate approximation (PAA) [28]. PAA first

transforms the data series into 𝑙 real values, and then SAX quantizes each PAA value using discrete

symbols. iSAX (indexable SAX) [55] enables the comparison of SAXs of different cardinalities, that

makes SAX indexable through a prefix trie [7]. DSTree [65] is a dynamic splitting tree based on

the adaptive piecewise constant approximation (EAPCA). Furthermore, ADS+ [74] makes iSAX

continuously adaptive to queries, ULISSE[36, 37] supports variable-length queries, Coconut [30]

delivers a sortable iSAX variant, DPiSAX [71] and Odyssey [8] make iSAX distributed, ParIS [49],

MESSI [47, 48] and SING [50] bring in modern hardware, FreSh [18] adds lock-freedom, Dumpy [67]

and DumpyOS [68] introduce a data-adaptive multi-ary structure, while Hercules [13] and Elpis [3]

combine the iSAX and EAPCA [65] summarizations.

The proposed LeaFi framework is index agnostic.We instantiate and evaluate it on bothMESSI [48]

and DSTree [65], making its improvements translatable to most tree-based indexes.

Machine learning applications in series indexes. Machine learning techniques have proven

effective in enhancing various components of databases [34, 54], such as indexes [12, 31, 35, 39, 62],

cardinality estimators [29, 58, 70], etc. A few existing works are also motivated by the fact that there

is waste in search time [14, 22]. These works can be divided into two categories, early stopping

approaches [14, 16, 22] and leaf node reordering approaches [26].

In the context of data series similarity search, 𝜖-search identifies heuristic stopping criteria when

best-so-far results are in the 𝜖 neighborhood of nearest neighbor results [16]. 𝛿𝜖-search extends

𝜖-search by supporting a confidence level 𝛿 , based on estimated pairwise distance distribution [16].

Progressive Search (ProS) incorporates machine learning models to estimate when the exact

results are retrieved, using the query and best-so-far distances [14, 22]. Learned Reordering (LR)

determines the visiting order of the leaf nodes by predicting their probabilities of containing the

nearest neighbor results for a given query [26].

Figure 3 illustrates the improvement potential for DSTree index on Astro dataset, as in Figure 1a,

of early stopping approaches (𝜖-search, 𝛿𝜖-search, ProS and FLT), leaf node reordering approaches

(LR), and our proposed learned filter approach (LeaFi). These optimal performance is simulated by

2
https://github.com/qtwang/LeaFi
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Fig. 3. The optimal search time that can be possibly achieved by early-stopping approaches [14, 16, 22], leaf
node reordering approaches [26] and LeaFi for DSTree index on Astro dataset. The axes are the same as
Figure 1b (x-axis in Figure 3c has a different scale).

assuming all machine learning models make no mistake. Leaf node reordering approaches help

series indexes find the nearest neighbor results in the first node being visited and employ the

tightest best-so-far distance. However, as shown in Figure 1b, a tight best-so-far distance provide

marginal help in pruning more leaf nodes - most of the summarization-based lower bounds are still

smaller than that. Early stopping approaches can terminate search right after the nearest neighbor

results are retrieved, but it cannot reduce the search time before the retrieval.

On the other hand, LeaFi helps series indexes to search only those leaf nodes that can update

the best-so-far distances, as the tightest lower bounds are employed in pruning decision, hence

attaining a significant and consistent improvement potential. Moreover, as trained using the node-

wise distance information instead of index-wise leaf node searching information, LeaFi can be

efficiently trained using 2k examples (0.002% of the collection), compared to 100k to 1m examples

(0.1% of the collection) in the literature [26, 33]. As far as we are aware, LeaFi represents the

first framework that incorporates learned filters in data series indexes and provides substantial

improvement in pruning ratio and search time.

FAISS Learned Termination (FLT) is an early-termination technique proposed for vector similarity

search using kNN graphs [33]. Its stopping criterion is predicted by a nontrivial expert-crafted

feature set, which cannot be directly applied to tree-based series indexes, and, in contrast to LeaFi,

it does not offer a mechanism to set search quality targets.

Conformal regressions. Conformal regression is a statistical approach that enhances existing

regression methods by providing predictive intervals with a guarantee on their coverage proba-

bility [61]. It involves fitting a regression model to a dataset and then generating predictions that

include an interval which, with a specified level of confidence (e.g., 95%), is expected to cover the

true target values. This process relies on the computation of nonconformity scores that measure

how unusual new observations are compared to training data [2, 44].

However, the direct application of existing conformal regression techniques cannot help LeaFi

support the user-requested search quality. This is because the conformal prediction intervals are

derived independently for each model, whereas achieving an expected target of a LeaFi-enhanced

search result, e.g., 99% recall, requires tuning all learned filters collaboratively at the same time.

Hence, in LeaFi, we further design our auto-tuning approach based on the conformal regression

framework. To the best of our knowledge, LeaFi demonstrates the first effort to introduce conformal

regression techniques into the domain of learned indexes.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 51. Publication date: February 2025.



LeaFi: Data Series Indexes on Steroids with Learned Filters 51:7

3 Preliminaries
Data series. A data series, 𝑆 = {𝑝1, ..., 𝑝𝑚}, is a sequence of points, where each point 𝑝𝑖 = (𝑣𝑖 , 𝑡𝑖 ),
1 ≤ 𝑖 ≤ 𝑚 is associated to a real value 𝑣𝑖 and a position 𝑡𝑖 . We call𝑚 the length of the series. S
denotes a collection of data series, i.e., S = {𝑆1, ..., 𝑆𝑛}. We call 𝑛 the size of the series collection.
A summarization 𝐸 = {𝑒1, ..., 𝑒𝑙 } of a series 𝑆 is its lower-dimensional representation, that

preserves some desired properties of S. For example, SAX in MESSI [55] and APCA in DSTree [65]

are two popular series summarizations. In series similarity search, summarizations can be utilized

to calculate lower bounds between a series or a set of series and a query.

Similarity search. Given a query series 𝑆𝑞 , a series collection S of size 𝑛, a distance measure

𝑑 , similarity search targets to identify the series 𝑆𝑐 ∈ S whose distance to 𝑆𝑞 is the smallest, i.e.,

∀𝑆𝑜 ∈ S, 𝑆𝑜 ≠ 𝑆𝑐 , 𝑑 (𝑆𝑐 , 𝑆𝑞) ≤ 𝑑 (𝑆𝑜 , 𝑆𝑞).
The LeaFi framework works for any distance measure supported by the backbone index, in-

cluding Euclidean and Dynamic Time Warping (DTW), two popular distances for series similarity

search [11].

Tree-based indexes. Tree-based series indexes, including DSTree [65] and MESSI [55], are con-

stituted by internal nodes 𝐼𝑖s and leaf nodes 𝐿𝑖s, as shown in Figure 2. We use 𝑁𝑖 to denote a node

when there is no need to distinguish between it being an internal node or leaf node. Only leaf nodes

store the raw series. An internal node routes a series to one of its child node that this series should

be inserted into. Both types of nodes contain a node summarization 𝐸𝑁𝑖 that aggregates the series

summarizations of all series it contains. Node summarizations are used to calculate distance lower

bounds for search routing and leaf node pruning.

During query answering, internal nodes navigate the query series 𝑆𝑞 to visit leaf nodes according

to their lower bounds to the query. Only the leaf nodes whose subtree cannot be pruned are visited.

We maintain a best-so-far result 𝑑bsf (𝑆𝑞, 𝑁𝑖 ), i.e., the smallest distance before visiting a node 𝑁𝑖 .

Given a node 𝑁𝑖 , we first calculate the node summarization-based lower bound 𝑑 lb (𝑆𝑞, 𝑁𝑖 ) for the
distances between 𝑆𝑞 and all series 𝑁𝑖 contains. When the context is clear, we remove inputs (·)
or subscripts 𝑖 in the equations for clarity. We then compare 𝑑 lb with 𝑑bsf. 𝑑 lb > 𝑑bsf indicates all

series in a leaf node 𝐿𝑖 or a subtree 𝐼𝑖have larger distances to 𝑆𝑞 , thus 𝐿𝑖 or 𝐼𝑖can be safely pruned.

Otherwise, there might be a series that has smaller distance to 𝑆𝑞 . For 𝐿𝑖 , we have to search 𝐿𝑖 to

get its node-wise nearest neighbor distance 𝑑L (𝑆𝑞, 𝐿𝑖 ) = min𝑘 𝑑 (𝑆𝑞, 𝑆𝑘 ), 𝑆𝑘 ∈ 𝐿𝑖 , and check whether

𝑑L can update 𝑑bsf. For 𝐼𝑖 , we repeat the pruning checking for the nodes in its subtree. After all

nodes are either visited or pruned, 𝑑bsf is returned as the true nearest neighbor result.

Conformal regression. Conformal regression utilizes posterior statistics to auto-tune machine

learning predictions to target at a certain confidence level [2]. Suppose we collect a training set

{(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑙 , 𝑦𝑙 )} of 𝑙 examples. In our case, 𝑥𝑖 is a training query (i.e., 𝑆𝑞) and 𝑦𝑖 is the

node-wise nearest neighbor distance 𝑑N. Given a confidence level 1 − 𝛿 , conformal regression [2]

predicts an interval, instead of a single value, such that the true 𝑦𝑙+1 of a new example 𝑥𝑙+1 will be
covered by this interval with a 1 − 𝛿 confidence.
In LeaFi, we embrace the core designs from the classic inductive conformal regression [44] as a

proof-of-concept study. Inductive conformal regression splits the training data into two subsets: the

proper training set {(𝑥1, 𝑦1), (𝑥2, 𝑦2), ..., (𝑥𝑚, 𝑦𝑚)} and the calibration set {(𝑥𝑚+1, 𝑦𝑚+1), (𝑥𝑚+2, 𝑦𝑚+2),
..., (𝑥𝑙 , 𝑦𝑙 )}. After training a machine learning model on the proper training set, we calculate and sort

the non-conformity measures on the calibration set: 𝛼𝑖 ≔ |𝑦𝑚+1 − �̂�𝑚+𝑖 |, 𝑖 = 1, 2, ..., 𝑙 −𝑚, where �̂�𝑚+𝑖
is the prediction of a sample 𝑥𝑚+𝑖 . We use [𝛼 (1) , 𝛼 (2) , ..., 𝛼 (𝑙−𝑚) ] to denote the descending-ordered

𝛼s on the calibration set. Let 𝑗𝑠 = |{𝛼𝑖 : 𝛼𝑖 ≥ 𝛼 (𝑠) }|, 𝑠 = 1, 2, ..., 𝑙 −𝑚 be the number of 𝛼s that are at

least as large as 𝛼 (𝑠) . Given the confidence level 1 − 𝛿 and a new example 𝑥𝑙+1, the predictive region
is derived as (�̂�𝑙+1 − 𝛼 (𝑠) , �̂�𝑙+1 + 𝛼 (𝑠) ), by choosing the 𝑗𝑠 such that 𝛿 = 𝑗𝑠/(𝑙 −𝑚 + 1).
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Fig. 4. The index building and query answering workflow of a LeaFi-enhanced series index.

In Section 4.4, we further discuss how to establish the mapping between 𝛼s and search result

quality, and then identify the corresponding 𝛼s to auto-tune the filter predictions for the support

of search quality targets.

4 The LeaFi Framework
In this section, we present the algorithm details of enhancing data series indexes with learned filters.

We start with developing the notations for a LeaFi-enhanced index structure. Then, in Section 4.1,

we outline the LeaFi-enhanced series index building and search workflow, illustrated in Figure 4.

The details of leaf node selection, training data generation and filter conformal auto-tuning, are

presented in Section 4.2, Section 4.3 and Section 4.4, respectively.

As illustrated in Figure 2, a LeaFi-enhanced tree-based series index contains learned filters in

a selected subset of its leaf nodes. A learned filter 𝑀𝑖 in a node 𝐿𝑖 is a trained machine learning

model, which takes in a query 𝑆𝑞 and predicts 𝑑L. We denote the prediction as 𝑑 f (𝑆𝑞, 𝑀𝑖 ), and the

conformal adjusted prediction as 𝑑F (𝑆𝑞, 𝑀𝑖 ). Hence, the learned filter-based pruning decision can

be made by comparing the best-so-far distance 𝑑bsf with the predicted lower bound 𝑑F. If 𝑑F > 𝑑bsf,

we prune 𝐿𝑖 , otherwise we search 𝐿𝑖 .

4.1 LeaFi-enhanced Series Index Workflow
We modify both the index building workflow and the search workflow of original tree-based series

indexes to enable learned filters, as illustrated in Figure 4. We outline these procedures as follows,

and present the details in later sections.

4.1.1 LeaFi-enhanced Index Building Overview. For index building, we add three main steps after

the original index is built, illustrated in Figure 4a. These steps are (a) select leaf nodes for filter

insertion, (b) generate training data from both global (index-wise) context and local (node-wise)

context, and train the inserted filters, and (c) collect conformal training data and fit the conformal

auto-tuners.
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Algorithm 1 LeaFi-enhanced Index Building

Input: a series collection S of size 𝑛, a tree-based index 𝐼 , the training data size 𝑛𝑞 = 𝑛𝑞 (𝑔) + 𝑛𝑞 (𝑙) ,
and the available GPU memory 𝑐M

Output: the LeaFi-enhanced index 𝐼 F

1: {𝑁 F

𝑖 } = SelectLeafNode(𝐼 , 𝑐M)

2: S𝑞 (𝑔) = GenerateGlobalQueries(S)
3: 𝑇𝑔 ≔ {(𝑑𝑏𝑠 𝑓 , 𝑑L)} = SearchGlobalQueries(𝐼 , 𝑛𝑞 (𝑔) , {𝑁 F

𝑖 })
4: S𝑞 (𝑙) = ∅, 𝑇𝑙 = ∅
5: for all 𝑁 F

𝑖 ∈ {𝑁 F

𝑖 } do
6: S𝑞 (𝑙),𝑖 = GenerateLocalQueries(𝑁 F

𝑖 , 𝑛𝑞 (𝑙) , 𝑇𝑔)
7: 𝑇𝑙,𝑖 ≔ {𝑑L} = SearchLocalQueries(𝑁 F

𝑖 , 𝑛𝑞 (𝑙) ,)
8: S𝑞 (𝑙) = S𝑞 (𝑙) ∪ S𝑞 (𝑔),𝑖 , 𝑇𝑙 = 𝑇𝑙 ∪𝑇𝑙,𝑖
9: 𝐼 f = TrainFilters({𝑁 F

𝑖 }, S𝑞 (𝑔) , 𝑇𝑔, S𝑞 (𝑙) , 𝑇𝑙 )

10: 𝐼 F = FitAutoTuners(𝐼 f, S𝑞 (𝑔) , 𝑇𝑔)
11: return 𝐼 F

Select leaf nodes (Section 4.2). We first establish a general framework that selects the optimal

subset of leaf nodes that maximize the benefit of learned filter insertion, using knapsack solvers [27].

We show that, under certain assumptions, we can simplify the framework and select leaf nodes

using a greedy algorithm. In brief, LeaFi calculates a leaf node size threshold 𝑡ℎ, based on the

number of distance calculations that execute in the same time as one filter inference. We then select

the leaf nodes according to their sizes until 𝑡ℎ is met, or the GPU memory is fully occupied.

Generate training data (Section 4.3).We generate training data S𝑞 from both global and local

contexts. Index-wise training data S𝑞 (𝑔) is sampled from the whole dataset and shared among all

selected leaf nodes, while node-wise training data S𝑞 (𝑙) is sampled individually from each node

and is only available to their corresponding node. There is no additional expense by splitting

S𝑞 into S𝑞 (𝑔) ∪ S𝑞 (𝑙) . The collection time for S𝑞 (𝑔) and S𝑞 (𝑙) node-wise data is the same as for

𝑛𝑞 = 𝑛𝑞 (𝑔) + 𝑛𝑞 (𝑙) index-wise training data.
Fit conformal auto-tuners (Section 4.4). After inserted filters fit the training set, we fit the

conformal auto-tuners to enable the support for user-request search quality targets. The absolute

prediction errors {𝛼𝑖 }, i.e., the non-conformity scores in the conformal regression context [2], are

employed as offsets to auto-tune the predictions. One auto-tuner is added to each learned filter.

Index building pseudocode. We describe the LeaFi-enhanced index building pseudocode for a

general tree-based index building algorithm in Algorithm 1. The sub-functions SelectLeafNode is

defined later in Algorithm 3 and FitAutoTuners in Algorithm 4.

Given a series collection S, a tree-based index 𝐼 , the training data size 𝑛𝑞 = 𝑛𝑞 (𝑔) + 𝑛𝑞 (𝑙) , and
the available GPU memory 𝑐M, we first select the subset of leaf nodes {𝑁 F

𝑖 }. We then generate

the collect the index-wise training data from line 2 to line 3. From line 5 to line 8, we iterate

over each selected leaf node 𝑁 F

𝑖 and generate its corresponding node-wise training data. Line 9

trains all the inserted filters using the both index-wise and node-wise training data. We finalize the

LeaFi-enhanced index building workflow by fitting the conformal auto-tuners in line 10.

4.1.2 LeaFi-enhanced Search Overview. There are two new operations in LeaFi-enhanced search

workflow, illustrated in Figure 4b, compared to the original search workflow. Before searching for

a query, we first auto-tune the filters according to the user-request search quality target. Then, we
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Algorithm 2 LeaFi-enhanced Search

Input: a query 𝑆𝑞 , a LeaFi-enhanced index 𝐼
F
, the result quality target𝑄 , and the number of nearest

neighbors 𝑘

Output: the search results S𝑟

1: 𝐼 F = AutoTuneFilters(𝐼 F, 𝑄)

2: 𝑑bsf = INF, S𝑟 = PriorityQueue(∅, 𝑘)
3: for all 𝑁𝑖 ∈ [𝑁 𝑗 ], ordered by 𝐼 F do
4: if 𝑑 lb > 𝑑bsf then
5: continue
6: if 𝑀𝑖 ∈ 𝑁𝑖 & 𝑑F > 𝑑bsf then
7: continue
8: 𝑆𝑟,𝑖 , 𝑑

L
= SearchNode(𝑁𝑖 , 𝑑

bsf
)

9: if 𝑑L <= 𝑑bsf then
10: 𝑑bsf = 𝑑L, S𝑟 = S𝑟 ⊕ 𝑆𝑟,𝑖
11: return S𝑟

visit each leaf node, and check whether it can be pruned using a cascade of summarization-based

strategy and learned filter-based strategy as in Figure 2.

Auto-tune learned filters (Section 4.4). Given a user-specified search quality target 𝑞 𝑗 , we use

the learned mapping 𝑓 𝑐 to calculate the corresponding adjusting offset 𝑜𝑖, 𝑗 = 𝑓 𝑐 (𝑞 𝑗 ) for each filter

𝑀𝑖 . Then, we use the left boundary 𝑑
𝑓

𝑖
− 𝑜𝑖, 𝑗 of the adjusted interval as the predicted lower bound

𝑑𝐹𝑖,𝑗 , to be compared with 𝑑𝑏𝑠 𝑓 for the pruning decision of node 𝑁𝑖 .

Search pseudocode. We describe the LeaFi-enhanced search pseudocode for a general tree-based

index search algorithm in Algorithm 2.

Given a query 𝑆𝑞 , a LeaFi-enhanced index 𝐼 F, the result quality target 𝑄 , and the number of

nearest neighbors 𝑘 , we first auto-tune the learned filters based on the target 𝑄 . A hash table is

employed to avoid redundant computation for the same 𝑄s, which we omitted in Algorithm 2 for

simplicity. We then iterate across the leaf nodes according to the order suggested by 𝐼 F. When

visiting a node 𝑁𝑖 , we first check whether it can be pruned using 𝑑 lb in line 4. Otherwise, we check

whether 𝑁𝑖 can be pruned using 𝑑F, if a learned filter𝑀𝑖 resides in 𝑁𝑖 in line 6. If neither 𝑑 lb nor 𝑑F

can prune 𝑁𝑖 , we search 𝑁𝑖 for 𝑆𝑞 to obtain its node-wise nearest neighbor results S𝑟,𝑖 and update

S𝑟 from line 8 to line 10.

4.2 Leaf Node Selection
In this section, we present how the problem of leaf node selection can be formalized as a knapsack

problem [27] in Section 4.2.1. We show that this general formalization can be simplified under

certain assumptions and solved efficiently by a greedy algorithm.

Briefly speaking, our greedy leaf node selection algorithm works as follows. First, we sort all leaf

nodes {𝑁𝑖 } by their sizes {|𝑁𝑖 |} in a non-increasing order. Then, we select those nodes whose sizes

exceed a threshold 𝑡ℎ to insert filters, until all available GPU memory is occupied. We describe how

𝑡ℎ is derived from a simplified knapsack formalization and how it is determined in Section 4.2.2.

4.2.1 A general solution framework as a knapsack problem. We start with a brief review of the

knapsack problem, and then built the analogy between the knapsack problem and leaf node

selection.
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The knapsack problem is a classic example of combinatorial optimization [27]. It is a type of

resource allocation problem where the objective is to maximize the total value of items placed in a

knapsack without exceeding its capacity. Given a set of 𝑛 items, each with a weight𝑤𝑖 and a value

𝑣𝑖 , and a knapsack with a weight capacity𝑊 , the goal is to determine the subset of items to include

in the knapsack such that the total weight does not exceed𝑊 and the total value is maximized.

This can be represented by the following optimization problem: maximize

∑︁𝑛
𝑖=1 𝑣𝑖𝑥𝑖 , subjective to

𝑥𝑖 ∈ {0, 1} and ∑︁𝑛
𝑖=1𝑤𝑖𝑥𝑖 ≤𝑊 . Here, 𝑥𝑖 is a binary decision variable that indicates whether item 𝑖

is included (𝑥𝑖 = 1) or excluded (𝑥𝑖 = 0) in the knapsack. There are several variants of the knapsack

problem, among which we only consider 0/1 knapsack problem in this paper.

The analogy between a knapsack problem is built as the following. For 𝑛𝑁 leaf nodes, we consider

that there are 𝑛𝑁 filters, each of which is corresponding to one specific node. In this case, a filter

𝑀𝑖 can be considered as an item. Its value is the expected reduction of search time, denoted by

𝑏𝑖 , induced by inserting 𝑀𝑖 into its corresponding leaf node 𝑁𝑖 . The weight of an item 𝑀𝑖 is its

GPU memory footprint, and the weight capacity of the knapsack is the volume of available GPU

memory 𝑐M. Hence, by solving the mapped knapsack problem, we identify the subset of leaf nodes

that obtain the optimal search time improvement by learned filter insertion. We formalize the leaf

node selection as a knapsack problem in Equation 1:

max

∑︂
𝑖

𝑏𝑖𝑥𝑖

s.t.

∑︂
𝑖

𝑤𝑖𝑥𝑖 ≤ 𝑐M

𝑥𝑖 ∈ {0, 1},∀𝑖 = 1, ..., 𝑛N.

(1)

where𝑤𝑖 and 𝑐
M
can be calculated analytically [20] or measured empirically using GPU profiling

tools [41]. In this work, we only consider the case where all learned filters share the same neural

network architecture. As a result, they also share the same memory footprint, i.e., 𝑤𝑖 = 𝑤,∀𝑖 =
1, ..., 𝑛N. This general framework can also tackle the case where different filters have different

network architectures by extending it to a multiple-choice knapsack problem [27]. We will study

this case in our future work.

Formulate the expected time reduction 𝑏𝑖 . To solve Equation 1, we need to estimate the only

unknown variable 𝑏𝑖 , i.e., the reduced search time by adding a filter𝑀𝑖 to a specific leaf node 𝑁𝑖 .

We observe that 𝑏𝑖 is influenced by the following factors: the node size |𝑁𝑖 |, the summarization-

based pruning probability 𝑝 lb, the filter-based pruning probability 𝑝F. A larger |𝑁𝑖 | or a smaller

𝑝 lb indicates the original index 𝐼 spent more effort on node 𝑁𝑖 , and a larger 𝑝F hints that filter𝑀𝑖

works well for node 𝑁𝑖 . Hence, 𝑏𝑖 can be formulated using |𝑁𝑖 |, 𝑝 lb and 𝑝F as Equation 2:

𝑏𝑖 = (1 − 𝑝 lb𝑖 ) × (𝑝F𝑖 × 𝑡S × |𝑁𝑖 | − 𝑡F) (2)

where 𝑡S denotes the distance calculation time for one series and 𝑡F𝑗 denotes the inference time for

filter𝑀𝑖 . Note that 𝑏𝑖 can be negative in cases where |𝑁𝑖 | is small or 𝑡F is large. We describe how

we prohibit such insertions by automatically establishing a threshold for |𝑁𝑖 | using 𝑡S and 𝑡F in
Section 4.2.2.

Challenge: estimate the filter-based pruning probability 𝑝F. Although we can measure the

wall-clock time for 𝑡S and 𝑡F empirically using trial experiments, there are two other variables in

Equation 2 that cannot be directly calculated or measured, i.e., the summarization-based pruning

probability 𝑝 lb and the filter-based pruning probability 𝑝F.

In our preliminary studies, we find 𝑝 lb can be estimated by collecting 𝑑 lb along with 𝑑bsf and 𝑑L

using trial experiments. However, estimating 𝑝F means to accurately estimate the performance of
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Algorithm 3 Leaf Node Selection

Input: the leaf nodes {𝑁𝑖 } of index 𝐼 F, the available GPU memory 𝑐M and hyperparameter 𝑎

Output: a selected subset of leaf nodes {𝑁 𝐹
𝑖 } for filter insertion

1: 𝑤 =MeasureFilterGPUMemory(𝑀)

2: 𝑡F =MeasureFilterInferenceTime(𝑀)

3: 𝑡S =MeasureDistanceCalculationTime(·)
4: 𝑡ℎ = 𝑎 × 𝑡F/𝑡S
5: [𝑁 (𝑖) ] = SortBySize({𝑁𝑖 })
6: N𝑟 = ∅,𝑤M

= 0

7: for all 𝑁 ( 𝑗) ∈ [𝑁 (𝑖) ] do
8: if |𝑁 ( 𝑗) | ≥ 𝑡ℎ & 𝑤M < 𝑐M then
9: N𝑟 = N𝑟 ⊕ 𝑁 ( 𝑗) ,𝑤

M = 𝑤M +𝑤
10: return N𝑟

machine learning models without fully fitting their respective training data. This is a nontrivial task,

and has been under extensive studies in the automatedmachine learning (AutoML) literature [53, 72].

Considering the positioning of LeaFi is a proof-of-concept study to demonstrate the potential of

embracing learned filters in series indexes, we opt to simplify Equation 2 by assuming that 𝑝 lb and

𝑝F are the same across leaf nodes.

4.2.2 The Greedy Selection Algorithm. To tackle the challenge of accurately estimating the perfor-

mance of machine learning models, we propose to assume that 𝑝 lb and 𝑝F are the same across leaf

nodes in LeaFi. That is, ∀𝑖 = 1, ..., 𝑛N, both 𝑝 lb𝑖 = 𝑝 lb and 𝑝F𝑖 = 𝑝F hold. Although this assumption is

coarse-grained, we show later in Equation 4 that it can derive a safe greedy algorithm that has no

negative effect. Under this assumption, Equation 2 can be simplified into Equation 3:

𝑏𝑖 = (1 − 𝑝 lb) × (𝑝F × 𝑡S × |𝑁𝑖 | − 𝑡F) (3)

where 𝑏𝑖 is only correlated to |𝑁𝑖 | (𝑡S and 𝑡F are also the same across leaf nodes). Moreover, the

correlation between 𝑏𝑖 and |𝑁𝑖 | is positive. That is, a larger node size |𝑁𝑖 | introduces larger search
time reduction 𝑏𝑖 under this assumption. Hence, we can sort the leaf nodes based on their sizes and

select them the larger nodes until consuming all available GPU memory.

However, as mentioned in Section 4.2, 𝑏𝑖 can be negative in cases where |𝑁𝑖 | is small or 𝑡F is

large, which should be prohibited. To formalize the constraint, we set 𝑏𝑖 > 0, transform Equation 3

and get a threshold 𝑡ℎ for leaf node size |𝑁𝑖 | in Equation 4:

𝑏𝑖 > 0 ⇒ |𝑁𝑖 | >
1

𝑝F
× 𝑡F

𝑡S
⇒ |𝑁𝑖 | > 𝑎

𝑡F

𝑡S
(4)

where 𝑎 ≔ 1/𝑝F is a hyperparameter. 𝑡F/𝑡S is the number of series that its distance calculation

time is equivalent to the inference time of a learned filter. By its definition 1/𝑝F, 𝑎 has an intrinsic

interpretation as being the inverse of the filter-based pruning probability 𝑝F. Hence, it is intuitive

to set 𝑎 by choosing a lower bound for 𝑝F to ensure 𝑏𝑖 > 0. In our experiments, we set 𝑎 = 2 (i.e.,

𝑝F = 50%) and evaluated that it worked well across different index prototypes, datasets, query noise

levels and search quality targets.

Leaf node selection pseudocode. Putting all these designs together, we present our leaf node

selection approach of the LeaFi index building workflow in Algorithm 3.

We first collect all necessary runtime statistics, including the GPU memory footprint of a filter in

line 1, the filter inference time in line 2 and the series distance calculation time in line 3. Then, we
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(b) Both global (×) and local (★ in figure, L in table) training data.

Fig. 5. The value distribution of the training targets (x-axis) for filters. Considering the global examples only
overlooks the more important small value ranges, where the global nearest neighbor results are found.

calculate the node size threshold 𝑡ℎ based on Equation 4 in line 4. In line 5, we sort all the leaf node

in a non-increasing order in line 5. From line 6 to line 9, for each leaf node 𝑁 ( 𝑗) , if its size |𝑁 ( 𝑗) |
exceeds 𝑡ℎ and there is GPU memory available, we add 𝑁 ( 𝑗) into the set of selected leaf nodes N𝑟 .

After checking all leaf nodes, we return N𝑟 as in line 10.

4.3 Training Data Generation
After inserting filters into the selected subset of leaf nodes, we need to train these filters using

proper training data.

Challenge: imbalanced target value range. However, we observe that even in the presence of a

large real workload, preparing training data for the filters is nontrivial. The challenge lies in the

fact that the majority of the node-wise nearest neighbor distances fall out of the value range of

global nearest neighbor distances. This observation holds in general, because the tree-based series

indexes are expected to group similar series into the same leaf nodes. Only a few leaf nodes should

have similar series to the query, which have small node-wise nearest neighbor distances close to

the global nearest neighbor distances.

Figure 5 further illustrates this observation and demonstrates its pollution in filter training. In

Figure 5a, only five example fall into the global nearest neighbor distance range around [3, 5], and
only 𝑆3 finds its nearest neighbor in 𝐿𝑖 with a distance 2.3. The majority of the node-wise nearest

neighbor distances are located in [7.5, 12.5]. Thus, the model being trained on targets of [7.5, 12.5],
also predicts 𝑑 𝑓 (𝑆3, 𝐿1) = 7.7, which is much larger than the actual 2.3. This causes the model

to generate inaccurate predictions, hence, requiring large adjusting ranges, and leading to small
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Fig. 6. Collect training examples on calibration set for conformal auto-tuners, and learn the mapping between
search result qualities and prediction adjusting offsets.

pruning enhancements. This disparity not only brings harmful target bias on filter training [51, 73],

but also invalidates the conformal regression as the absolute prediction errors will possess difference

different distributions for the examples in different target ranges [44, 61].

Our solution: generating both global and local data. To resolve this issue, we propose a novel

twofold strategy for training data generation. It consists of generating global training queries that

are derived from the entire series collection and applicable to all leaf nodes, alongside node-wise

training queries that are derived from and specific to each selected leaf node. As illustrated in

Figure 5b, our twofold approach ensures that the training data encompasses both global (index-wise)

and local (node-wise) contexts, providing unbiased training target value ranges.

In LeaFi, we employ the conventional query generating approach from the data series litera-

ture [13, 15, 16] for both index-wise and node-wise training data. We uniformly select 𝑛𝑞 (𝑔) random
seriesS𝑞 (𝑔) from the entire collection, as well as𝑛𝑞 (𝑙) random seriesS𝑞 (𝑙),𝑖 from each select leaf node

𝑁 𝐹
𝑖 , and then add random Gaussian noise. We then search the index for S𝑞 (𝑔) to collect the training

targets 𝑇𝑔 ≔ {(𝑑𝑏𝑠 𝑓 , 𝑑L)}, i.e., the node-wise nearest neighbor distances {𝑑L} and the best-so-far

distances {𝑑bsf}. {𝑑bsf} is utilized later to fit the auto-tuners for the support of user-requested search
quality targets. For each set of node-wise training series S𝑞 (𝑙),𝑖 , we only search its corresponding

leaf node 𝑁 𝐹
𝑖 to collect the training targets 𝑇𝑙,𝑖 ≔ {𝑑L}. To train the filter𝑀𝑖 inserted into 𝑁 𝐹

𝑖 , we

use S𝑞 (𝑔) ∪S𝑞 (𝑙),𝑖 as the input and𝑇𝑔 ∪𝑇𝑙,𝑖 as the targets. In our experiments, we empirically set the

split 𝑛𝑞 (𝑔)/𝑛𝑞 (𝑙) = 3 to obtain a balanced target values ranges. This process is presented in lines 5-8

of Algorithm 1.

4.4 Filter Conformal Auto-tuning
In this section, we describe how the LeaFi-enhanced indexes can be auto-tuned to support some

user-defined qualities of the query answers. The conformal auto-tuners make use of the prediction

statistics from a separate calibration set [44] to build a mapping between the search quality and
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Algorithm 4 Auto-tuner Learning

Input: a set of learned filters {𝑀𝑖 } for index 𝐼 F, a set of calibration series S𝑞 (𝑐)
Output: learned auto-tuners {𝑓 𝑐𝑖 }
1: for all𝑀𝑖 ∈ {𝑀𝑖 } do
2: 𝐸𝑖 = ∅
3: {𝛼}𝑖 = CalAbsPredErrors(𝑀𝑖 , S𝑞 (𝑐) )
4: [𝛼]𝑖 = Sort({𝛼}𝑖 )
5: for all 𝑗 ∈ [1, |S𝑞 (𝑐) |] do
6: for all𝑀𝑖 ∈ {𝑀𝑖 } do
7: 𝑜 𝑗,𝑖 = 𝛼𝑖,( 𝑗)

8: for all 𝑆𝑞 (𝑐),𝑘 ∈ S𝑞 (𝑐) do
9: S𝑟,𝑘 = SimulateSearch(𝐼 F, {𝑜𝑖 } 𝑗 , 𝑆𝑞 (𝑐),𝑘 )
10: 𝑞 𝑗,𝑘 = EvaluateQuality(S𝑟,𝑘 )

11: for all𝑀𝑖 ∈ {𝑀𝑖 } do
12: 𝐸𝑖 = 𝐸𝑖 ⊕ (𝑞 𝑗,𝑘 , 𝑜 𝑗,𝑖 )
13: for all𝑀𝑖 ∈ {𝑀𝑖 } do
14: 𝑓 𝑐𝑖 = FitSplineRegression(𝐸𝑖 )

15: return {𝑓 𝑐𝑖 }

prediction adjusting offset for each trained filter. In LeaFi, the calibration set is a subset of the

index-wise training data.

Briefly speaking, we employ absolute prediction errors 𝛼 as the adjusting offsets 𝑜 , following the

common exercise of inductive conformal regression [44]. During LeaFi-enhanced index building, the

training data for auto-tuners are the examples of the mapping between offsets 𝑜 and search result

qualities 𝑞, simulated and collected using the calibration set. We then fit a spline regression [57]

on these examples to obtain a learned mapping 𝑓 𝑐 : 𝑞 → 𝑜 . In LeaFi-enhanced search, given a

user-requested quality target 𝑞, we first determine the corresponding adjusting offset 𝑜𝑖 = 𝑓
𝑐
𝑖 (𝑞) for

each learned filter𝑀𝑖 . Then, the adjusted filter prediction 𝑑F𝑖 = 𝑑 f𝑖 − 𝑜𝑖 is calculated to help prune

node 𝑁𝑖 if necessary.

4.4.1 Conformal Auto-tuner Learning in Index Building. Figure 6 shows howwe prepare the training

data for the conformal auto-tuners in three steps.

First, we calculate the absolute prediction errors {𝛼}𝑖 on the calibration set for each learned filter

𝑀𝑖 . {𝛼}𝑖 are then employed as the candidate adjusting offsets 𝑜𝑖 . To avoid enumerating all possible

combinations of candidate offsets for all inserted leaf nodes, we sort 𝑜𝑖 (Step 1 in Figure 6), such

that we can iterate over the sorted positions ( 𝑗), instead of enumerating the combinations. Second,

we iterate over sorted positions ( 𝑗) to get the corresponding result quality 𝑞 ( 𝑗) on the calibration

set. For each ( 𝑗), we select the corresponding error 𝑜𝑖,( 𝑗) as the adjusting offset of 𝑀𝑖 . We then

simulate LeaFi-enhanced search for the calibration queries, and calculate the result quality 𝑞 ( 𝑗)
(Step 2 in Figure 6). After checking all sorted positions, we collect the examples {(𝑞 ( 𝑗) , 𝑜𝑖,( 𝑗) } of the
mapping between the result quality and the adjusting offset for each 𝑀𝑖 . Using these examples,

we train a spline regression model [57] as the auto-tuner to fit the mapping 𝑓 𝑐𝑖 : 𝑟 → 𝛼 (Step 3 in

Figure 6).

Auto-tuner learning pseudocode. We present the auto-tuner training pseudocode in Algorithm 4.

In line 1 to line 4, we traverse each inserted filter𝑀𝑖 , evaluate it on the calibration setS𝑞 (𝑐) , calculate
and sort the absolute prediction errors. We then iterate over all sorted position in line 5. For each
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sorted position 𝑗 , we set the adjusting offset 𝑜 𝑗𝑖 to be the sorted error 𝛼𝑖,( 𝑗) for each filter 𝑀𝑖 in

line 7. We simulate the LeaFi-enhanced search for the calibration queries S𝑞 (𝑐) and calculate their

achieved result qualities {𝑞 𝑗,𝑘 } in line 9 to line 10, and add the (adjust offset, result quality) pair

(𝑞 𝑗,𝑘 , 𝑜 𝑗,𝑖 ) to𝑀𝑖 ’s auto-tuner training set in line 12. Finally, we train and return the auto-tunes {𝑓 𝑐𝑖 }.

4.4.2 Filter Prediction Auto-tuning in Search. In LeaFi-enhanced search stage, given a user-requested
quality target 𝑞, we first determine the corresponding adjusting offset 𝑜𝑖 using the learned mapping

𝑓 𝑐𝑖 (𝑞) for each learned filter𝑀𝑖 . The filter prediction is adjusted accordingly, i.e., 𝑑F𝑖 = 𝑑 f𝑖 − 𝑜𝑖 , based
on which the filter-based pruning for node 𝑁𝑖 is triggered.

4.5 Complexity Analysis
In this section, we briefly analyze the time and space complexity for the LeaFi framework. The cost

of LeaFi is mainly from LeaFi-enhanced index building. In LeaFi-enhanced search, the overhead of

filter inference is expected to be covered by search time reduction through the leaf node selection

procedure in Section 4.2.

Among the four steps in LeaFi-enhanced index building, we note that the time bottleneck lies

in training data generation and filter learning, rather than leaf node selection and conformal

auto-tuner learning. The complexity of training data generation is O(𝑛𝑞 × 𝑛), linear to the training

data size 𝑛𝑞 and dataset size 𝑛. The filter training is proportional to the number of inserted filters

𝑛𝐹 as well as the training time of an individual filter 𝑡𝐹 , resulting in a complexity of O(𝑡𝐹 × 𝑛𝐹 ).
Hence, the time complexity of LeaFi enhancement in index building (i.e., besides the original index

building time complexity) is O(𝑛𝑞𝑛 + 𝑡𝐹𝑛𝐹 ).
The space complexity of LeaFi O(𝑛𝑞 + 𝑠𝐹𝑛𝐹 ), although proportional to the training data size 𝑛𝑞

and number of inserted filters 𝑛𝐹 , is negligible compared to the dataset size 𝑛.

We note that with a reasonable training data size (2K series in our experiments) and a proper

node size threshold (𝑡ℎ = 𝑎 · 𝑡F/𝑡S in our experiments), LeaFi can provide considerable benefits

when compared to the original indexes.

5 Experiments
In this section, we report our experiment evaluation using two different tree-based series indexes

and five diverse datasets. The source code and datasets are available online
2
.

5.1 Evaluation Setup
The experiments were carried out on a server equipped with an Intel(R) Xeon(R) Gold 6242R

CPU, 520 GB RAM, and an NVIDIA Quadro RTX 6000 with 24 GB GDDR6 memory. The soft-

ware environments were gcc/9.4.0, cuda/11.2, libtorch/1.13.1 (for MLP), and gsl/2.7.2 (for spline

regression).

Datasets.We include a variety of datasets in our evaluation, consisting of one synthetic dataset and

four real datasets from different domains. For the synthetic dataset, we choose RandWalk [17], which

is generated by accumulating steps following a standard Gaussian distribution 𝑁 (0, 1). Regarding
the real datasets, we select Seismic [59] from seismology, Astro [56] from astronomy, Deep [6]

and SIFT [25] from image processing. Note that Deep and SIFT are two popular high-dimensional

vector datasets of image descriptors (not data series). The series length is 256, except for Deep

(96) and SIFT (128). Each dataset contains 25 million (i.e., 25M) data series in our experiments. In

addition, we experimented with datasets of sizes between 10M-100M to test the scalability of LeaFi.

Following recent data series studies [13], we create four different query sets with varying levels

of difficulty for every dataset. Each query set consists of 1,000 series, generated by adding 10%, 20%,

30%, and 40% Gaussian noise into uniform random samples. Additionally, we generate one training
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set of 2,000 series for each dataset, by adding random levels of Gaussian noise ∈ [10%, 40%]. The

split of training and validation is 4:1.

Tree-based series indexes.We choose MESSI [47] (the SOTA variant of iSAX [55]) and DSTree [65]

as the backbone indexes. The split threshold of node size is 10k for both indexes. We use 16 threads

in MESSI for index building and query answering.

LeaFi instantiation. We use MLP to instantiate learned filters. Each MLP model have one hidden

layer, whose dimension is set the same as the input series. We train these models using the stochastic

gradient descent (SGD) [52] algorithm for at most 1,000 epochs. The learning rate, initialized as

0.01, is divided by 10 (until 10
−5
) when the validation errors plateau.

We leverage multicore processing to accelerate the collecting of training data and the training of

inserted filters. For the efficient collecting of training data, we propose a two-pass strategy that

works for all tree-based indexes. In the first pass, we detach all the leaf nodes with inserted filters

to calculate their node-wise nearest neighbor distances in parallel. Then in the second pass, we

search for the global queries and collect the best-so-far distances efficiently by reusing the distances

calculated in the first pass. For filter training, we assign one CUDA stream to each thread [40] and

use 16 threads to train the models in parallel.

Comparison approaches. The exact search performance of the original indexes is an important

baseline for LeaFi. Additionally, we choose 𝜖-search, 𝛿𝜖-search [16], ProS [14, 22] and LT [33] to

represent the early-stopping strategy, as well as LR [26] to represent the reordering strategy.

Note that the comparison approaches do not natively support result quality targets. Moreover, LT

employs sets of features designed specifically for graph-based indexes [38] and inverted indexes [5],

which do not apply to the tree-based data-series indexes used in this study. Hence, we need to adjust

these approaches to fit our scenario, and then also pay the cost to fine-tune them. Specifically:

(1) For 𝜖-search, we grid-search for the maximal 𝜖 ∈ [1, 7] that provides ≥ 99% recall on the

validation set [16]. A larger 𝜖 results in larger acceleration but lower recall. We set 𝜖=1 when 99%

recall cannot be achieved.

(2) For 𝛿𝜖-search, we set 𝜖=0 and then grid-search for the smallest 𝛿 ∈ [90%, 99.9%] that provides
≥ 99% recall on the validation set [16]. A larger 𝛿 results in smaller acceleration but higher recall.

We set 𝛿=99.9% when 99% recall cannot be achieved. We estimate the nearest neighbor distances

using the node-wise nearest neighbor distances on the validation set.

(3) For ProS, we choose the early-stopping strategy that predicts whether the nearest neighbor

results have been found after checking certain number of leaf nodes using the best-so-far dis-

tances [14, 22]. We set the early-stopping checking nodes to be [16, 64, 256, 512, 1024, 2048] for

DSTree, and also [4096, 8192] for iSAX.

(4) For LT, we design our own features for tree-based series indexes following similar intu-

itions [33]: (a) the input query, (b) the ratio between the node-wise nearest neighbor distances of

the first leaf node and the first [2, 4, 8, 16] leaf nodes for DSTree ([8, 16, 32, 64] for MESSI), (c) the

best-so-far distances after examining the first [1, 2, 4, 8, 16] leaf nodes for DSTree ([1, 8, 16, 32,

64] for MESSI), and (d) the ratio between the node-wise nearest neighbor distance of the first leaf

node and the best-so-far distance after examining the 16th node for DSTree (or 64th for MESSI).

Besides the need for a new feature template, we also need to tune the multiplier, a hyperparameter

that expands the predicted number of early-stop nodes. We grid-search for the minimal multiplier

∈ [1, 20] that can provide ≥ 99% recall on the validation set. A larger multiplier results in smaller

acceleration but higher recall. We set multiplier=20 when 99% recall cannot be achieved.

(5) For LR [26], we use the optimal reordering, i.e., the nearest neighbor results lie in the first

examined leaf node, to provide the largest possible acceleration by any reordering strategies.

Evaluation measures.We report the query time (lower is better), recall-at-1 [33] (higher is better)

and series pruning ratio (higher is better) in our experiments.
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Fig. 7. The query time and achieved recalls at a target 99% recall for enhanced DSTree and MESSI indexes
across datasets.

5.2 Main Results
We first report the average query time and actual recalls for a recall target 99% in Figure 7. We also

provide a detailed analysis for the enhanced DSTree indexes by reporting the detailed results over

different query noise levels, in Figure 8.

Overall, we find that LeaFi is the only solution that can provide a substantial search time

improvement while achieving 99% recall in all test cases. LeaFi-enhanced series indexes improved

pruning ratio by up to 20x (by DSTree on SIFT dataset with queries of 40% noise) and search time by

up to 32x (by DSTree on RandWalk dataset with queries of 20% noise), while maintaining a target

recall of 99%. Moreover, LeaFi is the only solution that supports ad-hoc quality targets, chosen at

query time, independently for each query.

On the contrary, despite our best efforts to tune the comparison methods, none of the early-

stopping strategies (𝛿𝜖-search, LT, 𝜖-search, and ProS) can consistently achieve 99% recall across

four query subsets of different noise levels. The reordering strategy (LR) failed to provide query

time improvement. These empirical observations comply to our analysis in Section 2.

5.2.1 Main Results on DSTree. We first discuss the average search time and actual recalls for a

recall target 99% on DSTree in Figure 7a and 7b. The split-down results across different query noise

levels are reported in Figure 8.

LeaFi-enhanced DSTree obtained 99% recall on all 5 datasets, with an average speedup of 9.2x,

and best speedup of 12.7x, when compared to the exact search. This is attributed to the largely

improved pruning capability of DSTree leaf nodes. LeaFi achieved an average pruning ratio of 95.6%,

compared to 59.8% without any learned filters (cf. Figure 8). 𝜖-search and 𝛿𝜖-search for DSTree
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Fig. 8. The actual recall (8a to 8e), average query time (8f to 8j) and average series pruning ratio (8k to 8o) for
enhanced DSTree indexes, targeting at 99% recall.

indexes also provided 99% recall on 5 datasets. However, LeaFi-enhanced DSTree are much more

efficient, i.e., 2.4x faster than 𝜖-search and 8.1x faster than 𝛿𝜖-search on average. This observation

indicates that although heuristic early-stopping approaches can effectively support quality targets,

machine learning-based enhancements can provide larger query acceleration. We also observe

that 𝛿𝜖-search requires the accurate estimation of the nearest neighbor distances [16], which is

extremely hard.

ProS- and LT-enhanced DSTree achieved 99% recall on only 2 datasets, which are RandWalk and

Seismic for ProS, and Deep and Seismic for LT. The average recall of ProS is 96%, largely lagging

behind the 99% target. Although the average recall of LT is 98.9%, LeaFi-enhanced DSTree are 1.9x

faster than LT on average. LT’s inability to achieve 99% recall by tuning the multiplier also implies

that the model training for LT is much harder than LeaFi. This is because LeaFi fits one model to

one leaf node with a small target range ∈[0, 10], while LT fits one model to the whole datasets with

large target range [10
2
, 10

5
].

Detailed analysis at different query noise levels. Breaking down the results across different

query noise levels, we report the average search time, actual recalls and pruning ratios in Figure 8.

LeaFi-enhanced DSTree achieved 99% recall on 17 of 20 (85%) cases, with an average of 99.4% and the

lowest of 97.6%. The 3 cases of <99% recall are with queries of small noise levels, 10% on RandWalk,

10% and 20% on Astro. This is because these cases are equipped with much smaller nearest neighbor

distances than cases of higher noise, hence challenging LeaFi’s conformal auto-tuners. The best

speedup of LeaFi-enhanced DSTree is 32.4x, obtained on RandWalk with queries of 20% noise. LeaFi

achieved an average pruning ratio of 95.6%, compared to 59.8% without any learned filters.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 51. Publication date: February 2025.



51:20 Qitong Wang, Ioana Ileana, & Themis Palpanas

Similarly to the aggregated results in Figure 8, 𝜖-search and 𝛿𝜖-search perform well in achieving

the 99% recall target, but with small time performance improvements. 𝜖-search achieved 99% recall

on all 20 cases, while 𝛿𝜖-search achieved 99% recall on 17 of 20 (85%) cases. On the other hand,

ProS- and LT-enhanced DSTree struggled in achieving 99% recall target. ProS-enhanced DSTree

achieved 99% recall on 7 (35%) cases, while LT-enhanced DSTree achieved 99% recall on 11 (55%)

cases. LR, as expected, provided 100% recall with marginal improvement in terms of search time

and pruning ratio, compared to LeaFi.

In conclusion, LeaFi is the only solution that can provide a substantial improvement in search

time (up to 32.4x faster) and pruning ratio (up to 20x more), while consistently maintaining 99%

recall.

5.2.2 Main Results on iSAX. We provide the average search time and actual recalls for a recall

target 99% on MESSI in Figure 7c and 7d. Due to the lack of space, we remove the splitting-down

figures across query noise levels to an extended version.

MESSI differs from DSTree in the following aspects: (1) MESSI has more leaf nodes, yet with

smaller filling factors, than DSTree; (2) MESSI can provide tighter node summarization than DSTree,

while DSTree better groups similar series into the same leaf nodes [3]. Moreover, the fact that

MESSI utilizes the parallelization capabilities of modern hardware is an additional factor that affects

performance. These elements explain the performance differences between enhanced DSTree and

MESSI.

LeaFi improved MESSI query time on all 5 datasets while maintaining 99% recall, with an average

speedup of 2.7x and the best speedup of 4x. In the splitting-down results across query noise levels,

the best speedup is 13x on RandWalk with queries of 20% noise. The search time improvement is

less than the pruning ratio improvement, which is improved from 55.2% to 86.2% on average (which

is expected to provide a 3.2x speedup). We believe this is due to GPU resource contention as a result

of concurrent filter inference requests. We further verified this speculation by varying the leaf node

thresholds in Section 5.3.3. These results verified LeaFi can provide a substantial improvement in

search time and pruning ratio, while achieving 99% recall for MESSI in a multithread environment.

For the comparison methods, only LT-enhanced MESSI achieved 99% recall on only 2 of the

datasets. Other comparison methods cannot achieve 99% recall in any dataset, despite thorough

tuning using the validation set. In the detailed results across query noise levels, LeaFi-enhanced

MESSI achieved 99% recall on 14 of 20 (70%) cases, while 𝜖-search and LT on 6 (30%) cases, 𝛿𝜖-search

and ProS on 1 (5%) case. Moreover, LeaFi-enhanced MESSI is faster than LT-enhanced MESSI on 3

datasets.

In summary, the results on MESSI are consistent with those on DSTree. LeaFi is the only solution

that maintains 99% recall across queries of all noise levels, while providing considerable query

speedups (up to 13x) and pruning ratio improvements (up to 76.2%).

5.3 Extended Analysis
In this section, we report the actual recalls under different recall targets in Figure 9, the query time

for 100M datasets in Figure 10, and the query time across different leaf node threshold in Figure 11

to better understand the performance of LeaFi-enhanced indexes.

5.3.1 Varying Recall Target. We present the actual recalls of LeaFi-enhanced DSTree and MESSI

for user-requested high recalls ∈[95%, 99.9%] in Figure 9. These results verify that the conformal

auto-tuner of LeaFi can effectively adjust the filter predictions to accommodate user quality targets.

Overall, LeaFi-enhanced DSTree achieved the recall targets on 31 of 35 (88.6%) cases and LeaFi-

enhanced MESSI achieved the recall targets on 28 of 35 (80%). The recall difference when the target

recall cannot be achieved is marginal, i.e., 0.54% for DSTree and 0.35% for MESSI. The largest
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Fig. 9. The target recall and actual (achieved) recall for LeaFi-enhanced DSTree and MESSI indexes across
datasets.
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Fig. 10. The query time improvements at a target 99% recall for LeaFi-enhanced DSTree and MESSI when
varying the dataset size between 10M-100M.

difference was found by DSTree on the SIFT dataset, with a 95% recall target. We believe that the

small number of validation examples (300) resulted in imbalanced statistics, leaving some queries

sensitive to the adjusting offset for the 95% recall target. Even though our focus has been on very

high recall targets, we note that LeaFi-enhanced indexes are effective for smaller recall targets, as

well. As the recall target decreases, LeaFi leads to increased speedups. We omit these results for

brevity.

5.3.2 Varying Dataset Size. In Figure 10, we present the query time improvements of LeaFi-

enhanced DSTree and MESSI for 99% recall target as we vary the dataset size between 10M-100M.

We note that in this experiment, we build a different index structure for each dataset size (i.e., a tree

with a different number of leaves and different sets of series in each leaf), which leads to a different

set of inserted and trained filters in each case. This explains the non-smooth curves shown in the

graphs.

Overall, the results demonstrate that LeaFi-enhanced series indexes consistently improve query

answering times across all dataset sizes (while maintaining the 99% target recall). They also show

a trend for larger query time improvements as the dataset size grows larger. Delving into the

results, we observe that LeaFi-enhanced DSTree obtained an average speedup of 9.2x on the 25M

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 51. Publication date: February 2025.



51:22 Qitong Wang, Ioana Ileana, & Themis Palpanas

100 300 500 700 900
Node size threshold

0.5

1.0

1.5

2.0

Qu
er

y 
tim

e 
(s

ec
on

ds
)

(a) Query time vs. node size
threshold

100 300 500 700 900
Node size threshold

10k

20k

30k

40k

Nu
m

be
r o

f f
ilt

er
s

(b) Number of inserted filters
vs. node size threshold

100 300 500 700 900
Node size threshold

0.4
0.5
0.6
0.7
0.8
0.9

Pr
un

in
g 

ra
tio

(c) Pruning ratio vs. node size
threshold

0 4 8 12 16 20 24
GPU memory (GB)

0.50

0.55

0.60

0.65

0.70

0.75

Qu
er

y 
tim

e 
(s

ec
on

ds
)

(d) Query time vs. GPU mem-
ory size

Fig. 11. Tradeoff between the available GPU memory and leaf node size threshold 𝑡ℎ, and the query time,
pruning ratio, and number of inserted filters (for LeaFi-enhanced MESSI).

datasets, and a 13.6x average speedup on the 100M datasets. This increase in speedup is attributed

to the increased pruning ratio for the 100M dataset (from 94.5% to 97.6%). On the other hand,

LeaFi-enhanced MESSI obtained a 2.7x average speedup on the 25M datasets, and a 2.4x speedup

on the 100M datasets. This behavior is due to the increased number of inserted filters (from ∼10k
to ∼30k), which overwhelms the GPU access. Exploring techniques for efficient GPU utilization

would be a promising direction going forward [64].

5.3.3 Varying Node Size Threshold. Figures 11a-c depict the search time and pruning ratios of

LeaFi-enhanced MESSI across a range of leaf node thresholds on the 25M Deep dataset, with queries

of 40% noise. With the increase of leaf node size threshold 𝑡ℎ, the search time first decreased

then increased, while the pruning ratios kept decreasing. The decrease of the search time came

from both the filter inference time and the multithreading GPU access competition overhead.

Empirically, we measured 𝑡F/𝑡S ≈ 279 for the Deep dataset. By setting the hyperparameter 𝑎 = 2,

LeaFi used 𝑡ℎ = 558 for Deep dataset, which provided near-optimal performance on iSAX. Without

the multithreading GPU access competition, LeaFi-enhanced DSTree has a turning point of ∼100.

5.3.4 Varying GPU Memory. We present in Figure 11d the search time of LeaFi-enhanced MESSI

across a range of GPU memory limits under the same setting as in Figures 11a-c. All reported

results targeted at 99% recall, and achieved at least 99.3% actual recall. Overall, the query time starts

to decrease and then stabilizes as we increase the available GPU memory. The decreasing phase

is bounded by GPU memory, while the stabilization phase is bounded by the number of filters

that are expected to improve query time. The point where improvement stops is at 6.9 GB, which
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Table 1. Filter inference time (𝜇s)
and the node size threshold 𝑡ℎ de-
rived for Deep (length 96).

Type Time 𝑡ℎ

MLP 46 558

CNN 258 3,129

RNN 11,695 141k

𝑑 (·, ·) 0.16 -
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Fig. 12. LeaFi with CNN filters on
DSTree.

Table 2. Query time (seconds) and actual recall for LeaFi-enhanced DSTree without (−Local) and with (+Local)
local training data, for 99% recall target; +Local corresponds to our proposed LeaFi solution.

Query time (s) Actual recall

Dataset Exact −Local +Local −Local +Local

RandWalk 1.2 0.4 0.1 0.98 ✗ 1.0 ✓

Deep 3.6 0.7 0.3 0.96 ✗ 0.99 ✓

SIFT 5.3 1.3 1.0 0.94 ✗ 0.99 ✓

Seismic 4.9 0.3 0.4 0.99 ✓ 1.0 ✓

Astro 5.5 1.0 1.6 0.91 ✗ 0.99 ✓

corresponds to inserting filters to the 14K leaf nodes with more than 𝑡ℎ = 500 series. Inserting

more filters would mean that these additional filters would end up in leaf nodes with less the 500

series: in such cases, the filter inference time would be larger than the time to scan all series in the

leaf, bringing no additional benefit. (The LeaFi-enhanced DSTree results are similar, and omitted

for brevity.)

5.3.5 Varying Model Type. Table 1 and Figure 12 illustrate the results on instantiating LeaFi filters

with Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN) models. The

CNN model has 2 convolutional layers with kernel size 3 and latent channel size equal to the series

length. Similarly, the RNN model contains 2 LSTM blocks. Both CNN and RNN are much more

computationally expensive than MLP, resulting in 5.6x and 254x larger node size thresholds. These

high thresholds render the deployment of RNN filters not suitable in our setting (the RNN inference

time would only be justified for leaf nodes of size ≥ 11𝑘/0.16 ∗ 2 = 141𝐾 series, while our leaves

have a maximum capacity of 10K). Having 𝑡ℎ = 3𝑘 , the benefit of CNN is also limited, leading to

a much smaller number of inserted filters (when compared to MLP), and in general, significantly

smaller pruning ratios and query time improvements.

5.3.6 Without Local Training Data. We study the impact of local training data in Table 2. We

observe that training LeaFi without local training data can still bring improvements in query time,

but it cannot consistently achieve the 99% recall target. This is because the nodewise NN distances

of the global queries are larger than the distances of their query results. Removing the local training

queries also removes the query results’ distance ranges from the training data, making these lower

ranges ignored by the filters and conformal auto-tuners. These results confirm that local training

data is necessary for LeaFi.
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Table 3. Indexing time breakdown (minutes) for
LeaFi-enhanced DSTree andMESSI on Seismic 100M.

DSTree MESSI

Indexing 28.6 5.3

Collecting data 104.2 67.5

Training 46.4 48.3

Table 4. Additional space overhead (GB) for LeaFi-
enhanced DSTree and MESSI on Seismic 100M.

DSTree MESSI

Data 100 100

Index structure 1.5 0.3

Filters 4.7 4.8

5.3.7 Training Time. We report the indexing and training time for LeaFi-enhanced indexes in

Table 3. LeaFi-enhanced DSTree spends more time in indexing and collecting training data, because

it employs a more complex summarization (EAPCA), while LeaFi-enhanced MESSI needs longer

training time, because it employes more filters than DSTree (19k vs. 18k). We note that if training

time is a critical resource, the users can choose to train fewer filters, yet, still benefit from the

improved pruning ratios. As Figure 11a shows, reducing the number of filters from ∼14k to ∼7k
reduces the training time to half, while the query time only increases from ∼0.5 to ∼0.75 seconds,
still outperforming the baseline.

5.3.8 Space Overhead. We report the space overhead for LeaFi-enhanced indexes in Table 3. The

additional space needed by the filters is comparable for DSTree and MESSI, and is in both cases a

small percentage (<5%) of the data size.

6 Conclusions and Future Work
In this paper, we present LeaFi, a framework that enhances tree-based series indexes with learned

filters in order to accelerate data series similarity search, while satisfying a user-defined target

recall. LeaFi can improve pruning ratio by up to 20x, and query answering time by up to 32x, while

maintaining a target recall of 99%. These results set the foundations for future advancements in

employing learned filters for data series similarity search, including the development of algorithms

for inserting filters into both internal nodes and leaf nodes, estimating filter-based pruning ratios

effectively, choosing among different learned filter models, and supporting updates. As updates

may trigger node splitting, incremental learning [60] could play an important role in efficiently

training the new filters of the children nodes based on the filter of the parent [9]. It would also be

interesting to study the potential of LeaFi to enhance the performance of other index types, such as

inverted indexes [5] and Locality-Sensitive Hashing (LSH) [24].

Acknowledgments
Work partially supported by EU Horizon projects AI4Europe (101070000), TwinODIS (101160009),

ARMADA (101168951), DataGEMS (101188416) and RECITALS (101168490).

References
[1] Shun-ichi Amari. 1967. A Theory of Adaptive Pattern Classifiers. IEEE Transactions on Electronic Computers 16, 3

(1967), 299–307.

[2] Anastasios N. Angelopoulos and Stephen Bates. 2023. Conformal Prediction: A Gentle Introduction. Found. Trends
Mach. Learn. 16, 4 (2023), 494–591.

[3] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. Elpis: Graph-Based Similarity Search for Scalable Data Science.

PVLDB 16, 6 (2023), 1548–1559.

[4] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2025. Graph-Based Vector Search: An Experimental Evaluation of

the State-of-the-Art. PACMMOD (2025).

[5] Artem Babenko and Victor S. Lempitsky. 2015. The Inverted Multi-Index. TPAMI 37, 6 (2015), 1247–1260.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 51. Publication date: February 2025.



LeaFi: Data Series Indexes on Steroids with Learned Filters 51:25

[6] Artem Babenko and Victor S. Lempitsky. 2016. Efficient Indexing of Billion-Scale Datasets of Deep Descriptors. In

CVPR. 2055–2063.
[7] Rene De La Briandais. 1959. File searching using variable length keys. In IRE-AIEE-ACM Computer Conference (Western).

295–298.

[8] Manos Chatzakis, Panagiota Fatourou, Eleftherios Kosmas, Themis Palpanas, and Botao Peng. 2023. Odyssey: A

Journey in the Land of Distributed Data Series Similarity Search. PVLDB 16, 5 (2023), 1140–1153.

[9] Tianyi Chen, Jun Gao, Hedui Chen, and Yaofeng Tu. 2023. LOGER: A Learned Optimizer towards Generating Efficient

and Robust Query Execution Plans. PVLDB 16, 7 (2023).

[10] Bill Yuan-chi Chiu, Eamonn J. Keogh, and Stefano Lonardi. 2003. Probabilistic discovery of time series motifs. In KDD.
493–498.

[11] Hui Ding, Goce Trajcevski, Peter Scheuermann, Xiaoyue Wang, and Eamonn J. Keogh. 2008. Querying and mining of

time series data: experimental comparison of representations and distance measures. PVLDB 1, 2 (2008), 1542–1552.

[12] Jialin Ding, Vikram Nathan, Mohammad Alizadeh, and Tim Kraska. 2020. Tsunami: A Learned Multi-dimensional

Index for Correlated Data and Skewed Workloads. PVLDB 14, 2 (2020), 74–86.

[13] Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim. 2022. Hercules

Against Data Series Similarity Search. PVLDB 15, 10 (2022), 2005–2018.

[14] Karima Echihabi, Theophanis Tsandilas, Anna Gogolou, Anastasia Bezerianos, and Themis Palpanas. 2023. ProS: data

series progressive k-NN similarity search and classification with probabilistic quality guarantees. VLDBJ 32, 4 (2023),
763–789.

[15] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim. 2018. The Lernaean Hydra of Data

Series Similarity Search: An Experimental Evaluation of the State of the Art. PVLDB 12, 2 (2018), 112–127.

[16] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim. 2019. Return of the Lernaean Hydra:

Experimental Evaluation of Data Series Approximate Similarity Search. PVLDB 13, 3 (2019), 403–420.

[17] Christos Faloutsos, M. Ranganathan, and Yannis Manolopoulos. 1994. Fast Subsequence Matching in Time-Series

Databsases. In SIGMOD. 419–429.
[18] Panagiota Fatourou, Eleftherios Kosmas, Themis Palpanas, and George Paterakis. 2023. FreSh: A Lock-Free Data Series

Index. In SRDS. 209–220.
[19] Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain Muller. 2019. Deep

learning for time series classification: a review. DMKD 33, 4 (2019), 917–963.

[20] Yanjie Gao, Yu Liu, Hongyu Zhang, Zhengxian Li, Yonghao Zhu, Haoxiang Lin, and Mao Yang. 2020. Estimating GPU

memory consumption of deep learning models. In ESEC/FSE. 1342–1352.
[21] Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2014. Optimized Product Quantization. TPAMI 36, 4 (2014), 744–755.
[22] Anna Gogolou, Theophanis Tsandilas, Karima Echihabi, Anastasia Bezerianos, and Themis Palpanas. 2020. Data Series

Progressive Similarity Search with Probabilistic Quality Guarantees. In SIGMOD. 1857–1873.
[23] Anna Gogolou, Theophanis Tsandilas, Themis Palpanas, and Anastasia Bezerianos. 2019. Comparing Similarity

Perception in Time Series Visualizations. TVCG 25, 1 (2019), 523–533.

[24] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015. Query-Aware Locality-Sensitive Hashing

for Approximate Nearest Neighbor Search. PVLDB 9, 1 (2015), 1–12.

[25] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011. Searching in one billion vectors: Re-rank

with source coding. In ICASSP. 861–864.
[26] Rong Kang, Wentao Wu, Chen Wang, Ce Zhang, and Jianmin Wang. 2021. The case for ml-enhanced high-dimensional

indexes. In AIDB@VLDB.
[27] Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2004. Knapsack problems. Springer.
[28] Eamonn J. Keogh, Kaushik Chakrabarti, SharadMehrotra, andMichael J. Pazzani. 2001. Locally Adaptive Dimensionality

Reduction for Indexing Large Time Series Databases. In SIGMOD. 151–162.
[29] Kyoungmin Kim, Jisung Jung, In Seo, Wook-Shin Han, Kangwoo Choi, and Jaehyok Chong. 2022. Learned Cardinality

Estimation: An In-depth Study. In SIGMOD. 1214–1227.
[30] Haridimos Kondylakis, Niv Dayan, Kostas Zoumpatianos, and Themis Palpanas. 2018. Coconut: A Scalable Bottom-Up

Approach for Building Data Series Indexes. PVLDB 11, 6 (2018), 677–690.

[31] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Polyzotis. 2018. The Case for Learned Index Structures.

In SIGMOD. 489–504.
[32] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. 2015. Deep learning. Nature 521, 7553 (2015), 436–444.
[33] Conglong Li, Minjia Zhang, David G. Andersen, and Yuxiong He. 2020. Improving Approximate Nearest Neighbor

Search through Learned Adaptive Early Termination. In SIGMOD. 2539–2554.
[34] Guoliang Li, Xuanhe Zhou, and Lei Cao. 2021. AI Meets Database: AI4DB and DB4AI. In SIGMOD. 2859–2866.
[35] Mingjie Li, Ying Zhang, Yifang Sun, Wei Wang, Ivor W. Tsang, and Xuemin Lin. 2020. I/O Efficient Approximate

Nearest Neighbour Search based on Learned Functions. In ICDE. 289–300.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 51. Publication date: February 2025.



51:26 Qitong Wang, Ioana Ileana, & Themis Palpanas

[36] Michele Linardi and Themis Palpanas. 2018. Scalable, Variable-Length Similarity Search in Data Series: The ULISSE

Approach. PVLDB 11, 13 (2018), 2236–2248.

[37] Michele Linardi and Themis Palpanas. 2020. Scalable data series subsequence matching with ULISSE. VLDBJ 29, 6
(2020), 1449–1474.

[38] Yury A. Malkov and Dmitry A. Yashunin. 2020. Efficient and Robust Approximate Nearest Neighbor Search Using

Hierarchical Navigable Small World Graphs. TPAMI 42, 4 (2020), 824–836.
[39] Vikram Nathan, Jialin Ding, Mohammad Alizadeh, and Tim Kraska. 2020. Learning Multi-Dimensional Indexes. In

SIGMOD. 985–1000.
[40] NVIDIA Corporation and Affiliates. 2023. CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/. [Online;

accessed 29-July-2023].

[41] NVIDIA Corporation and Affiliates. 2023. NVIDIA Management Library (NVML). https://developer.nvidia.com/nvidia-

management-library-nvml. [Online; accessed 3-July-2023].

[42] Themis Palpanas. 2015. Data Series Management: The Road to Big Sequence Analytics. SIGMOD Rec. 44, 2 (2015),
47–52.

[43] Themis Palpanas and Volker Beckmann. 2019. Report on the First and Second Interdisciplinary Time Series Analysis

Workshop (ITISA). SIGMOD Rec. 48, 3 (2019), 36–40.
[44] Harris Papadopoulos, Kostas Proedrou, Volodya Vovk, and Alexander Gammerman. 2002. Inductive Confidence

Machines for Regression. In ECML, Vol. 2430. 345–356.
[45] John Paparrizos and Luis Gravano. 2015. k-Shape: Efficient and Accurate Clustering of Time Series. In SIGMOD.

1855–1870.

[46] John Paparrizos, Yuhao Kang, Paul Boniol, Ruey S. Tsay, Themis Palpanas, and Michael J. Franklin. 2022. TSB-UAD:

An End-to-End Benchmark Suite for Univariate Time-Series Anomaly Detection. PVLDB 15, 8 (2022), 1697–1711.

[47] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2020. MESSI: In-Memory Data Series Indexing. In ICDE.
337–348.

[48] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. Fast Data Series Indexing for In-Memory Data. VLDBJ
(2021).

[49] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. ParIS+: Data Series Indexing on Multi-Core Architectures.

TKDE 33, 5 (2021), 2151–2164.

[50] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. SING: Sequence Indexing Using GPUs. In ICDE. 1883–1888.
[51] Rita P. Ribeiro and Nuno Moniz. 2020. Imbalanced regression and extreme value prediction. Machine Learning 109,

9-10 (2020), 1803–1835.

[52] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method. The Annals of Mathematical Statistics
(1951), 400–407.

[53] Shubhra Kanti Karmaker Santu, Md. Mahadi Hassan, Micah J. Smith, Lei Xu, Chengxiang Zhai, and Kalyan Veera-

machaneni. 2022. AutoML to Date and Beyond: Challenges and Opportunities. ACM Computing Survey 54, 8 (2022),

175:1–175:36.

[54] Gaurav Saxena, Mohammad Rahman, Naresh Chainani, Chunbin Lin, George Caragea, Fahim Chowdhury, Ryan

Marcus, Tim Kraska, Ippokratis Pandis, and Balakrishnan (Murali) Narayanaswamy. 2023. Auto-WLM: Machine

Learning Enhanced Workload Management in Amazon Redshift. In SIGMOD. 225–237.
[55] Jin Shieh and Eamonn J. Keogh. 2008. iSAX: indexing and mining terabyte sized time series. In KDD. 623–631.
[56] S Soldi, Volker Beckmann, Wayne H Baumgartner, Gabriele Ponti, Chris R Shrader, P Lubiński, HA Krimm, F Mattana,

and Jack Tueller. 2014. Long-term variability of agn at hard x-rays. Astronomy and Astrophysics 563 (2014), A57.
[57] Matthias Steffen. 1990. A simple method for monotonic interpolation in one dimension. Astronomy and Astrophysics

239 (1990), 443.

[58] Ji Sun, Guoliang Li, and Nan Tang. 2021. Learned Cardinality Estimation for Similarity Queries. In SIGMOD. 1745–1757.
[59] Chad Trabant, Alexander R Hutko, Manochehr Bahavar, Richard Karstens, Timothy Ahern, and Richard Aster. 2012.

Data products at the IRIS DMC: Stepping stones for research and other applications. Seismological Research Letters 83,
5 (2012), 846–854.

[60] Gido M. van de Ven, Tinne Tuytelaars, and Andreas S. Tolias. 2022. Three types of incremental learning. Nature
Machine Intelligence 4, 12 (2022).

[61] Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. 2005. Algorithmic learning in a random world. Vol. 29.
Springer.

[62] Qitong Wang and Themis Palpanas. 2021. Deep Learning Embeddings for Data Series Similarity Search. In KDD.
1708–1716.

[63] Qitong Wang, Stephen Whitmarsh, Vincent Navarro, and Themis Palpanas. 2022. iEDeaL: A Deep Learning Framework

for Detecting Highly Imbalanced Interictal Epileptiform Discharges. PVLDB 16, 3 (2022), 480–490.

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 51. Publication date: February 2025.

https://docs.nvidia.com/cuda/
https://developer.nvidia.com/nvidia-management-library-nvml
https://developer.nvidia.com/nvidia-management-library-nvml


LeaFi: Data Series Indexes on Steroids with Learned Filters 51:27

[64] Shang Wang, Peiming Yang, Yuxuan Zheng, Xin Li, and Gennady Pekhimenko. 2021. Horizontally Fused Training

Array: An Effective Hardware Utilization Squeezer for Training Novel Deep Learning Models. In MLSys.
[65] Yang Wang, Peng Wang, Jian Pei, Wei Wang, and Sheng Huang. 2013. A Data-adaptive and Dynamic Segmentation

Index for Whole Matching on Time Series. PVLDB 6, 10 (2013), 793–804.

[66] Zeyu Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2023. Graph- and Tree-based Indexes for High-dimensional

Vector Similarity Search: Analyses, Comparisons, and Future Directions. IEEE Data Eng. Bull. 46, 3 (2023), 3–21.
[67] Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2023. Dumpy: A Compact and Adaptive

Index for Large Data Series Collections. PACMMOD 1, 1 (2023), 111:1–111:27.

[68] Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2024. DumpyOS: A data-adaptive multi-ary

index for scalable data series similarity search. VLDBJ 33, 6 (2024), 1887–1911.
[69] Jiuqi Wei, Botao Peng, Xiaodong Lee, and Themis Palpanas. 2024. DET-LSH: A Locality-Sensitive Hashing Scheme

with Dynamic Encoding Tree for Approximate Nearest Neighbor Search. PVLDB 17, 9 (2024), 2241–2254.

[70] Ziniu Wu, Parimarjan Negi, Mohammad Alizadeh, Tim Kraska, and Samuel Madden. 2023. FactorJoin: A New

Cardinality Estimation Framework for Join Queries. PACMMOD 1, 1 (2023), 41:1–41:27.

[71] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas. 2017. DPiSAX: Massively Distributed

Partitioned iSAX. In ICDM. 1135–1140.

[72] Chengrun Yang, Jicong Fan, Ziyang Wu, and Madeleine Udell. 2020. AutoML Pipeline Selection: Efficiently Navigating

the Combinatorial Space. In KDD. 1446–1456.
[73] Yuzhe Yang, Kaiwen Zha, Ying-Cong Chen, HaoWang, and Dina Katabi. 2021. Delving into Deep Imbalanced Regression.

In ICML, Vol. 139. 11842–11851.
[74] Kostas Zoumpatianos, Stratos Idreos, and Themis Palpanas. 2014. Indexing for interactive exploration of big data

series. In SIGMOD. 1555–1566.

Received July 2024; revised September 2024; accepted November 2024

Proc. ACM Manag. Data, Vol. 3, No. N1 (SIGMOD), Article 51. Publication date: February 2025.


	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 The LeaFi Framework
	4.1 LeaFi-enhanced Series Index Workflow
	4.2 Leaf Node Selection
	4.3 Training Data Generation
	4.4 Filter Conformal Auto-tuning
	4.5 Complexity Analysis

	5 Experiments
	5.1 Evaluation Setup
	5.2 Main Results
	5.3 Extended Analysis

	6 Conclusions and Future Work
	Acknowledgments
	References

