DARTH: Declarative Recall Through Early Termination for
Approximate Nearest Neighbor Search

MANOS CHATZAKIS, LIPADE, Université Paris Cité, France
YANNIS PAPAKONSTANTINOU, Google Cloud, USA
THEMIS PALPANAS, LIPADE, Université Paris Cité, France

Approximate Nearest Neighbor Search (ANNS) presents an inherent tradeoff between performance and
recall (i.e., result quality). Each ANNS algorithm provides its own algorithm-dependent parameters to allow
applications to influence the recall/performance tradeoff of their searches. This situation is doubly problematic.
First, the application developers have to experiment with these algorithm-dependent parameters to fine-tune
the parameters that produce the desired recall for each use case. This process usually takes a lot of effort.
Even worse, the chosen parameters may produce good recall for some queries, but bad recall for hard queries.
To solve these problems, we present DARTH, a method that uses target declarative recall. DARTH uses a
novel method for providing target declarative recall on top of an ANNS index by employing an adaptive
early termination strategy integrated into the search algorithm. Through a wide range of experiments, we
demonstrate that DARTH effectively meets user-defined recall targets while achieving significant speedups,
up to 14.6x (average: 6.8x; median: 5.7x) faster than the search without early termination for HNSW and up to
41.8x (average: 13.6x; median: 8.1x) for IVF.

CCS Concepts: « Information systems — Query optimization.
Additional Key Words and Phrases: Approximate Nearest Neighbor Search, Vector Collections

ACM Reference Format:

Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas. 2025. DARTH: Declarative Recall Through
Early Termination for Approximate Nearest Neighbor Search. Proc. ACM Manag. Data 3, 4 (SIGMOD), Arti-
cle 242 (September 2025), 26 pages. https://doi.org/10.1145/3749160

1 Introduction

Motivation. Approximate Nearest Neighbor Search (ANNS) for high-dimensional vector databases [32,
88] is heavily used for semantic search in multiple application areas [31], including web search
engines [17, 19], multimedia databases [35, 79], recommendation systems [20, 23, 76], image re-
trieval [94, 101], Large Language Models (LLM) [2, 67, 83] and Retrieval Augmented Generation
(RAG) [40, 58, 60]. ANNS has attracted massive industrial interest recently as new generations of
embedding models have enabled powerful semantic search. In response, multiple SQL and NoSQL
database vendors have recently announced ANN indices in support of ANNS [1, 3, 22, 33, 64, 65, 68]
and, furthermore, multiple purpose-built vector databases featuring ANNS have been launched by
startups [75, 82, 85] and from cloud providers [45, 63].

ANNS presents an inherent tradeoff between performance and recall [6, 32, 49, 56, 77, 86, 100]:
At a mere recall loss of, say, 5% the search is accelerated by many orders of magnitude. Higher
recall loss leads to higher performance, and vice versa, lower recall loss leads to lower performance.

Authors’ Contact Information: Manos Chatzakis, manos.chatzaki@gmail.com, LIPADE, Université Paris Cité, Paris,
France; Yannis Papakonstantinou, yannispap@google.com, Google Cloud, San Diego, USA; Themis Palpanas, themis@mi.
parisdescartes.fr, LIPADE, Université Paris Cité, Paris, France.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).

ACM 2836-6573/2025/9-ART242

https://doi.org/10.1145/3749160

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

https://doi.org/10.1145/3749160
https://creativecommons.org/licenses/by/4.0/legalcode
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.1145/3749160

242:2 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

1.0) B ® Wasted
T Effort
0.8 =
T0.6
o4 —0— Query 1
0.2 — 8uery§
uer
0.0 Y
4 6 8 10 12 14

Search Time (ms)

Fig. 1. Early Termination margins for target recall 0.80. Curve represents recall improvement for queries in
the HNSW index vs query answering time. The last point of each curve represents the point where the HNSW
search normally terminates. All queries have significant potential for speedups in achieving the desired recall
target (i.e., 0.80).

Problem. Different applications and different (classes of) users have diverse requirements for
search quality. Some users expect better search quality by the ANNS algorithm at the expense of
search time, while others expect fast query response times by willingly compromising some result
quality. Unfortunately, each algorithm provides its own algorithm-dependent parameters to enable
applications to influence the recall/performance tradeoff. This situation is problematic in more than
one way. First, the application developers have to experiment with these parameters to fine-tune
them and produce the desired recall for each use case. Second, the chosen parameters may produce
good recall for some queries, but bad recall for other, hard queries. Last, if these parameters are
tuned for the hard queries, then the ANNS algorithm will be unnecessarily slow and will needlessly
spend resources for the easy queries. Query hardness corresponds to the computational effort
required to process a query to achieve a given recall target. In several ANNS approaches, this is
reflected by the number of distance calculations performed [89]. Typical query workloads in ANNS
applications often contain queries of varying hardness, and this diverse range of required search
effort is prevalent across many scenarios [14, 89, 92, 102, 103].

Towards the solution of this problem, recent ANNS systems and research works [25, 68, 100]
introduced declarative target recall. The application and/or user declares an acceptable target recall
level. Consequently, the ANNS algorithm aims to deliver the declared target recall while optimizing
performance as much as possible.

The first approaches for declarative recall adjust an ANN index, such as HNSW [61], by finetuning
the index parameters for a single target recall of interest [25, 100]. However, such approaches
require extensive tuning, as they must navigate a complex, multidimensional parameter space to
optimize the index and search parameters and meet the declared recall target on average for a
given query workload. In addition, they are unable to adapt to the hardness of the query, since the
parameters are fixed for a query workload and cannot be dynamically adjusted. Another approach
is to create an ANNS index once and then map various target recall levels to their corresponding
search parameters. In HNSW, for example, this approach is Recall to efSearch Mapping (REM),
which operates by establishing a mapping between each declarative recall target and the efSearch
parameter, which influences the amount of search effort. REM offers a significant advantage over
previous alternatives, as it requires substantially less tuning time, because only a single parameter
(efSearch) requires tuning. The mapping can be established through a single linear scan over
multiple efSearch values for all declarative target recall levels, rather than fine-tuning parameters
separately for each recall target. However, REM still relies on fixed parameters for the entire query
workload and cannot adjust to the hardness of individual queries.

Therefore, we propose an alternative, run-time adaptive approach, which can adapt to the query
hardness. We develop our approach for the popular HNSW [61] algorithm (and also extend it

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:3

to other ANNS methods). We observe that a query configured with parameters that enable it to
achieve very high recall in an HNSW index will naturally achieve all lower recall levels during
the search process. This is illustrated in Figure 1, where each curve represents the progression of
recall for a query on the SIFT [55] dataset using the HNSW index. For example, if we stopped the
algorithm early, at 2ms, Query 1 (the blue curve) would deliver 0.80 recall. In contrast, the “easy”
Query 2 has already achieved 1.00 recall around the 1.75ms mark and 0.80 recall since the 1.0ms
mark. The time spent afterwards is wasted. In contrast, Query 3 is only at 0.60 recall at the 2ms
mark. Figure 1 shows that multiple recall targets for each query can be achieved well before the
HNSW search naturally completes. This implies that, if we could precisely estimate the recall of a
query at any point during the search, we could offer an efficient declarative recall solution that
requires no parameter tuning for each query, and naturally accommodates any user-declared recall
target as long as it is fundamentally achievable by the index.! However, determining the current
recall is not a trivial task, since different queries have different hardness, and diverse points in time
where they reach the target recall. In Figure 1, we observe that we can terminate the search for
Query 2 well before 4ms, while Query 3 goes on until 4ms to reach the same recall target.

Our Approach: DARTH. We present DARTH, a novel approach to solving the problem of declar-
ative recall for ANNS applications. We integrate DARTH into the HNSW algorithm, which is a
popular choice and exhibits very good empirical performance [6, 86, 88]. DARTH exploits a carefully
designed recall predictor model that is dynamically invoked at carefully selected points during the
HNSW search to predict the current recall and decide to either early terminate or continue the
search, based on the specified recall target.

Designing an early termination approach is a complex task, as it requires addressing multiple
challenges to develop an efficient and accurate solution. First, we need to identify the key features
of the HNSW search that serve as reliable predictors of a query’s current recall at any point during
the search. Our analysis shows that the current recall can be accurately estimated by employing
features related to the HNSW search process. These features capture both the progression of the
search (by tracking metrics such as distance calculations) and the quality of the nearest neighbors
found by examining specific neighbors and their distance distributions.

Moreover, we need to select an appropriate recall predictor model to train on our data. We chose
a Gradient Boosting Decision Tree (GBDT) [66], because of its strong performance in regression
tasks and its efficient training time. The GBDT recall predictor results in extremely fast training
times, which are negligible compared to the typical index creation times for HNSW.

Note that an accurate recall predictor is not enough to provide an efficient solution for declarative
recall: if the frequency with which the recall predictor is invoked is high, then the cost of inference
will cancel-out the benefits of early termination. Frequent predictor calls, or small prediction
intervals (pi), provide more accurate early termination, at the cost of increased prediction time;
infrequent predictor calls, or large pi, risk missing the optimal termination point, resulting in
unnecessary computations. To address this challenge, we develop an adaptive prediction interval
method, which dynamically adjusts the invocation frequency. The method invokes the recall
predictor more frequently as the current recall gets close to the recall target, ensuring both accuracy
and efficiency.

In addition, we demonstrate how DARTH can be effectively integrated to other ANNS methods,
such as other Graph-based approaches and the IVF [28] index.

We evaluate the efficiency of DARTH through an extensive experimental evaluation using 5
popular datasets of varying sizes and dimensionalities. Our results demonstrate that the early
termination recall of DARTH is accurate: DARTH is always able to meet the user-declared recall

THNSW indices are known to be able to be set up to achieve more than 0.99 recall for any realistic dataset.

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

242:4 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

targets while offering significant speedups. Specifically, we show that our approach achieves up to
14.6x (average 6.8x, median 5.7x) speedup compared to the HNSW search without early termination.
DARTH terminates the search very near the optimal point, performing on average only 5% more
distance calculations than the optimal. We compare our approach to several other approaches for
declarative recall, and we show that DARTH provides State-of-the-Art (SotA) search quality results,
while delivering efficient search times. We show the superiority of DARTH for query workloads
that include harder and Out-Of-Distribution (OOD) queries, demonstrating that DARTH is the
method that achieves the best results. Lastly, we demonstrate that DARTH is efficient for IVF as
well, always meeting the declared recall targets and achieving up to 41.8x (average 13.6x, median
8.1x) speedup compared to IVF search without early termination.

Contributions. We summarize our contributions as follows.

e We present DARTH, a novel approach for declarative recall for ANNS indexes using early
termination, natively supporting any recall target attainable by the index, without the need for
tuning. To the best of our knowledge, DARTH is the first solution to achieve declarative recall
through early termination for ANNS.

e We describe the training of an accurate recall predictor model for DARTH, by carefully examining
and identifying descriptive search features that reveal the current recall for a query during the
search, and by designing an efficient training data generation method that allows us to prepare the
training data and to train our recall predictor efficiently.

e We propose an efficient adaptive prediction interval method that carefully chooses when to invoke
our recall predictor As a result, DARTH early terminates queries (almost) exactly when needed,
avoiding overheads from needless invocations and/or computations. Our method achieves this by
utilizing adaptive prediction intervals. In addition, we describe a generic hyperparameter selection
method that removed the need to fine-tune our approach, making it essentially parameter-free.

e We conduct a wide experimental evaluation using 5 popular, diverse datasets, which validate the
superiority of DARTH, both in terms of speed and accuracy. The experimental evaluation shows
that DARTH achieves significant speedup, up to 14.6x, 6.8x on average, and median 5.7x for HNSW,
and up to 41.8x, 13.6x on average, and median 8.1x for IVF. Furthermore, its early termination
prediction is near-optimal: It performs only 5% more distance calculations than the true optimal of
each query. Note that the true optimal of each query is not attainable in practice, since we obtain it
(for the purpose of experimentation) by extensively analyzing the search of each query, collecting
the exact point it reaches the declared target recall. In addition, we show that DARTH achieves
SotA search quality results, outperforming competitors in most cases, and remaining efficient in
search times. At the same time, it is the only approach that manages to maintain robust recall
results for workloads of increasing hardness and Out-Of-Distribution (OOD) queries.

2 Background and Related Work
2.1 Preliminaries

k-Nearest Neighbor Search (NNS). Given a collection of vectors V, a query g, a distance (or
similarity) metric D, and a number k, k-Nearest Neighbor Similarity Search (NNS) refers to the task
of finding the k most similar vectors (nearest neighbors) to g in V, according to D [32]. Without
loss of generality, we use the Euclidean distance (L2) as the distance metric. The nearest neighbors
can be exact or approximate (in the case of Approximate Nearest Neighbor Search, ANNS). When
dealing with approximate search, which is the focus of this paper, search quality is evaluated
using two key measures: (i) search quality, usually quantified using recall (the fraction of actual
nearest neighbors that are correctly identified) and relative distance error (RDE, the deviation of

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:5

the distances of retrieved nearest neighbors from the actual nearest neighbors), and (ii) search time,
i.e., the time required to perform the query search.

ANNS Indices. ANNS tasks are efficiently addressed using specialized ANNS indices [9, 88].
These approaches construct an index structure over the vector collection V, enabling rapid query
answering times. Such indices generally fall into four main categories: Tree-based [16, 29, 34, 69, 72,
73, 87, 90, 91, 98, 99], LSH-based [24, 50], Quantization-based [39, 42, 62], Graph-based [38, 44, 46,
53, 86, 88]. In addition, several hybrid methods have emerged, such as ELPIS [8] (Tree-Graph-based),
DET-LSH [96] (Tree-LSH-based), ScaNN [47] and IVF-PQ [28, 54] (Tree-Quantization-based), and
others [19, 27, 95]. Graph-based indices, which are the primary focus of this work, create a graph over
V by representing vectors as nodes, with edges between them reflecting some measure of proximity
between the nodes. There are numerous variations in graph-based methods, such as HNSW [61],
DiskANN [53] and others [26, 38, 46]. Still, the search process for a query remains largely consistent
between all approaches since the main operation is to traverse the graph, collecting the nearest
neighbors of a query.

Hierarchical Navigable Small World (HNSW) graph. The HNSW graph [61] is one of the most
efficient and accurate SotA indices for ANNS [6, 86, 88]. It organizes vectors into a multi-layered
hierarchical structure, where each layer represents different levels of proximity. Vectors are inserted
starting from the base (lowest) layer, with higher layers being created probabilistically. The key
parameters that influence the performance of HNSW graph creation are M, efConstruction, and
efSearch. The parameter M defines the maximum number of neighbors a vector can have. A higher
value of M improves search quality by making the graph denser, but it also increases memory usage
and search time. The parameter efConstruction controls the number of candidates considered
during graph construction, with larger values resulting in a more accurate graph at the cost of longer
construction times. An overview of the query phase is illustrated in Figure 2(a). The search for a
query starts from the top layer of the graph, from a predefined entry point. The search progresses
greedily, progressively using the closest node of each layer as an entry point for the next layer, until
the base layer of the graph (which contains all vectors of the dataset) is reached. Once the search
reaches the base layer, it continues with a detailed traversal of candidate neighbors (shown in green)
to retrieve the most similar vectors, putting the candidate vectors in a priority queue, and by putting
the collected nearest neighbors in a result set, usually implemented as a heap. The amount of search
effort in the base layer is influenced by the parameter efSearch, which determines the number
of candidate neighbors to examine during query processing. A higher efSearch leads to better
recall but at the expense of longer search times. The HNSW search in the base layer terminates
when no better candidates remain to be added to the priority queue—meaning all vectors in the
priority queue are closer to the query than their unexplored neighbors—or when the entire base
layer has been searched (a very rare occurrence). These termination points, occurring without early
termination, are referred to as natural termination points, and the HNSW index that employs the
search algorithm described above, terminating at the natural termination points is referred to as
plain HNSW.

2.2 Related Work

Vector Data Management Systems (VDMS). The growing demand for applications that leverage
ANNS algorithms has spurred substantial research into designing systems capable of managing
large-scale vector collections [1, 18, 28, 85]. A VDMS encompasses a collection of mechanisms,
algorithms, and metrics that support efficient and scalable similarity search by implementing
diverse similarity search indices and associated technical functionalities. Comprehensive overviews
are provided in [48, 70, 97].

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

242:6 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

Entry Point Query
- @ o
Layer 2 -7
¢ @
n1-n4: Actual Nearest Neighbors of Query

n4-A: 4" Nearest Neighbour retrieved by Algor. A
H
: Query
Layer1 A. et

n4-B: 4" Nearest Neighbour retrieved by Algor. B
Base
Layer

Fig. 2. (a): Example of locating the nearest neighbor of a query in an HNSW Graph. (b): Algorithms A and B
achieve the same recall, yet, the algorithm A results are of higher quality.

(a)

Automated Performance Tuning. Currently, several approaches are using automated parameter
tuning VDMS to reach a specific recall target for a query collection while also optimizing search
time as much as possible. These methods navigate the complex, multidimensional parameter space
of ANNS indices. Some techniques are designed specifically for vector collections [25, 100], while
others are adapted from methods originally developed for relational databases [5, 84]. However,
these approaches incur substantial overheads, as they iteratively build multiple index types with
many parameter configurations during the tuning process. In addition, they have to be tuned from
the start if the recall target changes, while they do not adapt the parameters for each query, being
unable to adapt to the query hardness.

Early Termination Approaches. To the best of our knowledge, DARTH is the only approach that
directly and natively tackles the problem of declarative recall using early termination. Recently,
early termination techniques for ANNS have been proposed. These methods aim to terminate
the search for a query as soon as a specific algorithm-specific objective is met (e.g., all nearest
neighbors are found), thus improving search time. The current SotA approaches are ProS [30, 43]
and Learned Adaptive Early termination [59]. Both approaches leverage the observation that, in
nearest neighbor search (both exact and approximate), the k nearest neighbors of a query are
typically found early in the search process, allowing a significant portion of the search to be
skipped. ProS employs statistical and Machine Learning (ML) models to terminate the search
early once all nearest neighbors are found, focusing on exact similarity search for Data Series
using the iISAX [13] index. It is a progressive approach, meaning that during the search for the
neighbors of a query, the model is utilized multiple times to decide if all nearest neighbors are found,
allowing for progressively better and more accurate predictions. In contrast, Learned Adaptive
Early Termination uses an ML model to predict how many distance calculations are required for a
query to retrieve all nearest neighbors that the index search algorithm would find, targeting the
HNSW and IVF-PQ [54] indices. In this method, the model is called only once at a specific time
during the search, indicating the total number of distance calculations that need to be performed.

2.3 Declarative Target Recall Definition

DARTH supports ANNS with declarative target recall. In particular, DARTH expects calls of the
form ANNS(q, G, k, R;), where q is the query vector, G is an HNSW index, k is the number of
nearest neighbors to be retrieved, and R; is the declarative target recall value. The objective is to
approximately retrieve the k-nearest neighbors of q using G, achieving a recall of at least R; with
high probability, while optimizing the search time. We assume that the user-declared target recall

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:7

R; should be attainable by the index G; specifically, if the recall that the graph index G achieves
using plain HNSW for the query q is Rf]’ then R; < Rg. This condition is easy to satisfy practically
by setting up the index creation parameters and the ef_search parameter to levels that enable
very high recall (e.g., >0.99) by the plain HNSW. For the ranges of the HNSW parameters to be
used, refer to corresponding benchmarks [6, 61, 86] and guidelines[4, 41, 93].

Further refining the objective of DARTH, we note that the quality of the nearest neighbors
retrieved, and thus the quality of the algorithm, while it can be measured by the recall, is even
better measured by the Relative Distance Error (RDE) [71]. Indeed, when comparing declarative
target recall approaches, comparing the RDE is crucial, since this measure quantifies the quality in
deeper detail compared to the recall. This is explained visually in Figure 2(b), where we compare
two declarative target recall Algorithms A (orange) and B (blue), that are searching for the 4 nearest
neighbors of a query. The nearest neighbors (green) are annotated as n1-n4. Consider that both
algorithms correctly retrieved n1-n3, but A retrieved n4-A (orange) as the 4th nearest neighbor,
while B retrieved n4-B (blue). Although the recall of both approaches is the same, as they retrieved
the same number of correct nearest neighbors, the overall quality of the retrieved nearest neighbors
is better for A. This is because n4-A is much closer to the actual 4th nearest neighbor. In this case,
the RDE for algorithm A would be significantly lower, indicating its superiority. We note that the
importance of the RDE measure has been highlighted in previous works [71].

3 The DARTH Approach

Every ANNS query g in DARTH is associated with a declarative target recall R;, a value k for the
number of nearest neighbors to retrieve, and a plain HNSW index G capable of achieving high
recall levels. DARTH introduces a modified HNSW search method that early terminates as soon
as the search for g reaches Ry, significantly earlier than the natural termination point of the plain
HNSW search. This is achieved through a run-time adaptive approach that utilizes a recall predictor
model, which is dynamically invoked at various stages of the query search. The predictor model,
trained on a small set of training queries, estimates the current recall at each stage by analyzing
specific input features. Based on these predictions, DARTH determines whether to early terminate
the query search.

In the following sections, we provide a detailed explanation of our approach. We outline the
input features utilized, describe the efficient training process for developing an accurate recall
predictor model, explain the strategy for determining the frequency of model invocations during
each query search, and demonstrate how our approach is seamlessly integrated into HNSW and
easily extended to work with IVF as well.

3.1 Recall Predictor

3.1.1 Descriptive Input Features. Given our choice of a dynamic recall predictor capable of estimat-
ing the recall at any point during the search of a query, we analyzed several search-related features
by periodically collecting observations throughout the search process of a small set of training
queries. Each observation includes the selected input features and our target variable, which is
the actual recall measured at the specific time of observation. We define three categories of input
features (summarized in Table 1).

e Index features: These features provide insight into the progression of the search process. They
include the current step of the search conducted at the base layer of the HNSW at the time of
observation (nstep), the number of distance calculations performed (ndis), and the number of
updates to the nearest neighbor result set up to that point (ninserts).

e Nearest Neighbor (NN) Distance features: These features capture information about the
distances of the nearest neighbors found for the query up to a given point in the search. This

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

242:8 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas
[[Type [Features [Description [l
nstep Search step
Index ndis No. distance calculations
ninserts No. updates in the NN result set
firstNN Distance of first NN found
NN Distance closestNN Distance of current closest NN
furthestNN Distance of current furthest (k-th) NN
avg Average of distances of the NN
var Variance of distances of NN
NN Stats med Median of distances of NN
perc25 25th percentile of distances of NN
perc75 75th percentile of distances of NN

Table 1. Selected input features of DARTH’s recall predictor.

category includes the distance to the first nearest neighbor calculated when the search began at
the base layer of the HNSW graph (firstNN), the current closest neighbor distance (closestNN),
and the furthest neighbor distance found so far (furthestNN).

o Nearest Neighbor (NN) Stats features: These features provide descriptive summary statistics
of the nearest neighbors found for the query up to a given point in the search. They include the
average (avg), the variance (var), the median (med), and the 25th and 75th percentiles (perc25,
perc75) of the nearest neighbor distances in the result set.

The choice of our search input features is guided by the observation that to correctly predict
the current recall of a query at any point of the search, we should take into consideration the
progression of the search in the base layer of the HNSW graph (observed by the Index features),
the distances of descriptive neighbors already identified (observed by the NN Distance features) as
well as the distribution of the distances of all the identified neighbors (summarized by the NN Stats
features).

3.1.2 Recall Predictor Model. For our predictor model, we opted for a Gradient Boosting Decision
Tree (GBDT) [36, 37, 66]. GBDT operates by training decision trees sequentially, with each new
tree aiming to minimize the errors of the combined predictions from the previously trained trees
(GBDT in DARTH operates with 100 trees, called estimators). Initially, a single decision tree is
trained, and the algorithm then iteratively adds more trees, each one trained on the errors of its
predecessor. This process allows GBDT to achieve highly accurate results, making it an effective
model for regression tasks. For this work, we trained our GBDT predictors using the LightGBM [57]
library instead of XGBoost [21], due to its excellent inference time for single-input predictions (0.03
ms on average for our 11 input features, running on a single CPU core).

3.1.3 Predictor Training. To train our GBDT recall predictor, we generate the training data from
the observations gathered from the training queries, that contain the input features from Table 1.
We employ a data generation routine that generates observations for several queries in parallel,
periodically flushing the data into log files. We observed optimal predictor performance when
observations are collected as frequently as possible for every dataset (i.e., after every distance
calculation), as this provides the predictor with a detailed view of the search process and information
from any time in the search. The data collection process is efficient, taking only a few minutes per
dataset, a negligible time compared to the HNSW index creation times. We present detailed results
about the training data generation and training times in our evaluation (Section 4).

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:9

3.2 Prediction Intervals

DARTH requires the trained recall predictor to be called periodically, after a number of distance
calculations. Note that we use distance calculations as a unit of interval, i.e., the periodic dynamic
invocations to the predictor take place every pi distance calculations. Determining the value for this
prediction interval (pi) is crucial, as it exposes an interesting tradeoff: frequent predictor calls (i.e., a
small pi) enable closer monitoring of the search process, allowing for termination immediately after
reaching the target recall. However, this may introduce overhead due to the time required for each
prediction, since in HNSW, the search process for a query takes only a few milliseconds. Conversely,
less frequent predictor calls (i.e., a larger pi) reduce prediction overhead but risk delaying the
identification that the target recall is reached, potentially resulting in unnecessary computations
and delayed early termination. The above tradeoff signifies the challenge of determining correct
prediction intervals.

3.2.1 Adaptive Prediction Interval. We identified that a natural solution to this problem is to call
the predictor more frequently when the search is close to the target recall, allowing for early
termination at the optimal moment, and to call the predictor less often when the search is still
far from the target recall. Thus, we opted for adaptive prediction intervals allowing us to call the
predictor often when we are close to the target recall, and less often when are far away from it. Our
adaptive prediction interval technique decides a new prediction interval (pi) every time a predictor
call takes place, according to the following formula:

pi = mpi+ (ipi —mpi) - (R = Rp) M

where pi is the new (updated) prediction interval, mpi is the minimum prediction interval allowed,
ipi is the initial prediction interval (the recall predictor will be called for the first time after ipi
distance calculations), R; is the target recall and R, is the predicted recall as predicted from the
model. This linear formula generates smaller prediction intervals when R,, is close to R;, and larger
prediction intervals when R, is far from R;.

3.2.2 Hyperparameter Importance. The introduction of two hyperparameters, ipi (initial/max
prediction interval) and mpi (minimum prediction interval), is a crucial aspect of our approach.
These hyperparameters control how frequently the predictor is called, with pi € [mpi, ipi]. Setting
appropriate values for these hyperparameters is essential: for instance, a very high value for ipi may
delay the initial predictor call, missing early opportunities for termination, while a very low value
for mpi could lead to an excessive number of predictor invocations, thereby introducing unnecessary
overhead. The values for the hyperparameters can be selected either by classic grid-search tuning
(or other sophisticated hyperparameter tuning approaches) or by a generic, heuristic-based selection
method. For the generic heuristic-based method, to find a suitable value of ipi for a specific recall
target R;, we calculate the average number of distance calculations needed to reach this target from
the training queries, denoted as distsg,. This information is readily available during the generation
of training data from our training queries, incurring no additional costs. We then set the values
for our hyperparameters as ipi = dls% and mpi = dlslth’ In addition, this method imposes an
interesting baseline for comparison to our approach. In our experimental evaluation (Section 4),
we analyze several aspects of hyperparameter selection, including the superiority of adaptive
intervals compared to static intervals, as well as the comparison between the generic heuristic
selection approach and the extensively tuned selection approach. Our evaluation shows that the
heuristic parameters result in a very close performance to that achieved with the extensively tuned
parameters. This means that DARTH requires no hyperparameter tuning, which is a significant
improvement over the available competitors. Also, our experimental evaluation compares DARTH

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

242:10 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

against a Baseline for early termination which early terminates every HNSW search after distsg,
distance calculations for a recall target R,, showing that this approach is not sufficient to solve our
research problem.

3.3 Integration in ANNS methods

3.3.1 Integration in HNSW. Algorithm 1 presents how DARTH can be integrated into the HNSW
search. The search begins by traversing the upper layers of the HNSW graph, proceeding as normal
until reaching the base layer (line 1). Upon reaching the base layer, we calculate the distance of the
query from the first visited base layer node (lines 2-3) and we initialize the necessary structures
and variables (lines 4-8). Then, we put the information of the first visited base layer node to the
candidateQueue and we start the base layer search. During the search, the algorithm searches for
nearest neighbors and updates the candidateQueue and resultSet when a new neighbor closer to
the query vector is found (lines 11-23). Once the predictor model call condition is triggered (line 24),
the recall predictor model processes the input features as described in Table 1 to estimate the current
recall (lines 25-26). If the predicted recall, R,, meets or exceeds the target recall, R;, the search
terminates early (line 28). Otherwise, the next prediction interval is adaptively recalculated using
our adaptive prediction interval formula (lines 30-31) and the search continues. This algorithm
highlights DARTH’s feature of supporting a declarative recall target R; per query and demonstrates
that our approach can be integrated into an existing ANNS index such as HNSW without excessive
implementation changes. Algorithm 1 focuses on the HNSW index, but can be generalized to other
graph-based ANNS methods [26, 38, 53] without modifications, as their search procedures are very
similar.

3.3.2 Integration in IVF. We discuss the implementation of DARTH for the IVF [28] index as well,
a popular Tree-based ANNS index. IVF performs k-means clustering over the vector collection,
generating nlist centroids. Each centroid operates as a bucket, and the collection vectors are placed
in the bucket of their nearest centroid. IVF searches through the vectors of the nearest nprobe
cluster buckets to search for the nearest neighbors of a query vector.

DARTH can be effectively used for IVF with minimal changes to the input features of Table 1.
Specifically, in DARTH for IVF, the firstNN input feature represents the distance of the query to
the closest centroid, while the nstep feature represents the number of the cluster bucket we are
currently searching. All other input features, as well as the dynamic recall predictor invocations
with adaptive intervals, are the same as the HNSW implementation.

4 Experimental Evaluation

Setup. We conduct our experimental evaluation on a server with Intel® Xeon® E5-2643 v4 CPUs
@ 3.40GHz (12 cores, 24 hyperthreads) and 500GB of available main memory. All algorithms are
implemented in C/C++, embedded in the FAISS [28] library, with SIMD? support for the Euclidean
Distance calculations. Our predictor models are implemented using the LightGBM [57] library. All
implementations are compiled using g++ 11.4.0 on Ubuntu 22.04.4.

Datasets. We focus on 5 datasets widely used in the literature. The selected datasets cover a wide
range of dataset sizes, dimensionality, and structure. Their details are summarized in Table 2.
Queries. We randomly sample queries from the learning sets provided in each dataset repository for
our training and validation query workloads. For testing, we sample 1K queries from the provided
query workloads of each dataset repository. This serves as our default testing query workload. To
generate harder query workloads (i.e., queries that require higher search effort than the default

2Single Instruction Multiple Data (SIMD): A parallel computing method where a single instruction operates simultaneously
on multiple data points.

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:11

Algorithm 1: DARTH early termination integrated into the HNSW search

Require: HNSW Graph G, Query Vector g, Initial Prediction Interval ipi, Minimum Prediction Interval mpi,
Recall Predictor model, Number of neighbors to return k, Target Recall R;, Search effort parameter efSearch

: Traverse the upper layers of G with beam search width 1 to reach the base layer (BL)

: Npr < Entry node of the base layer (BL)

: firstNN « Distance(q, Npr)

: Initialize resultSet as a heap of size k

: Initialize counters: ndis, nstep, inserts < 0

: Initialize counter: idis < 0

: Set initial prediction interval: pi « ipi

: Initialize priority queue candidateQueue of size ef Search

: Add (NBL.firstNN) to candidateQueue

: while candidateQueue is not empty do

Extract node ¢ from candidateQueue with the minimum distance

12: ndis <« ndis + 1, idis « idis+1

13: Compute cDis « Distance(q, c)

14: if ¢Dis < GetMaxDistance(resultSet) then

U
= O 0 ® N U AW R

15: Add (c, cDis) to resultSet

16: inserts < inserts +1

17: end if

18: for each unvisited neighbor node n of ¢ do

19: Compute nDis « Distance(q, n)

20: if nDis < GetMaxDistance(resultSet) or |candidateQueue| < efSearch then
21: Add (n, nDis) to candidateQueue

22: end if

23: end for

24: if idis mod pi = 0 then

25: Prepare input vector input with features from Table 1

26: Rp < model.predict(input)

27: if R, > R, then

28: return resultSet

29: end if

30: Adjust prediction interval: pi « mpi + (ipi — mpi) - (Ry — Rp)
31: Reset interval counter: idis < 0

32: end if

33: nstep « nstep +1
34: end while
35: return resultSet

H Dataset [Dimension | Base Vectors Description]
SIFT100M [55] 128 100M Image Descriptors
DEEP100M [10] 96 100M Deep Image Embeddings
T21100M [81] 200 100M Image and Text Embeddings
GLOVE1M [6, 74] 100 1.1M Word Embeddings
GIST1M [55] 960 M Spatial Image Descriptors

Table 2. Datasets used in our evaluation.

ones) we generate harder queries for each dataset by adding varying values of Gaussian noise to
the default workloads [14, 89, 102, 103]. The o2 of the added Gaussian Noise is a percentage of the
norm of each query vector, with a higher percentage leading to noisier (and thus, harder) queries.
The multimodal T2I100M dataset is a special case, since the dataset vectors are text embeddings

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

242:12 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

H Dataset [M [efC [efS [Index Time | Avg. Recall H

SIFT100M | 32 | 500 500 23h 0.995
DEEP100M | 32 | 500 750 20h 0.997
T2I100M 80 | 1000 | 2500 40h 0.970
GLOVEIM | 16 | 500 500 2h 0.992
GISTIM 32 | 500 | 1000 6h 0.994

Table 3. HNSW indexing summary using 12 cores.

while the queries are image embeddings. Thus, the corresponding query workloads represent
Out-Of-Distribution (OOD) queries. For this reason, we study this dataset separately.
Dataset Complexity. To characterize the complexity of each dataset, we report the Local Intrinsic
Dimensionality (LID) [7, 52] of the default query workloads. LID quantifies the intrinsic hardness
of a dataset based on the distribution of ground truth nearest neighbor distances for a given query.
Higher LID values indicate greater dataset complexity. We calculated the average LID for the
queries of each dataset to be 13,14, 57, 32, and 24 for SIFT100M, DEEP100M, T2I100M, GLOVE1M,
and GIST1M, respectively. For GLOVE1M, the elevated LID value is explained by the nature of the
dataset, which is a collection of word embeddings. This category of data is known to exhibit high
clustering [15, 80], leading to dense and complex vector neighborhoods. For T2I1100M, the higher
LID values are influenced by its multimodal nature, which includes text and image embeddings as
base and query vectors, which originate from different data distributions [51, 81].
Index. For each dataset, we build a separate plain HNSW index once, using appropriate parameters
that allow the index to reach an average recall > 0.99 for the default query workloads. The M,
efConstruction (efC), and efSearch (e f'S) parameters for each dataset vary, since we need different
parameters to reach high recalls for each dataset. The indexing details are shown in Table 3. The
indexing times reported are obtained by creating the plain HNSW index using 12 processing cores.
Note that the selected plain HNSW index parameters, including efSearch, have been selected to
enable the index to reach high recall values, as shown in Table 3. The values for such parameters
are selected based on the recommended parameter ranges of relevant works [4, 41, 61, 86, 93].
Real-world application scenarios correspond to high recall targets, starting from 0.80 [100]. Thus,
we use recall target R, € {0.80,0.85,0.90, 0.95,0.99}. For T21100M, where R; = 0.99 could not be
attained using reasonable parameter ranges (and hence index generation and query answering
times), we stopped our evaluation at R; = 0.95. In order to cover a wide range of configurations, we
experiment using k € {10, 25, 50, 75, 100}.
Comparison Algorithms. We compare the results of DARTH with the Baseline we presented
in Section 3.2.2. We also compare the performance of our approach against REM. The recall to
efSearch mapping procedure is performed using 1K validation queries sampled from the learning
sets of our datasets. Lastly, we compare our approach with the HNSW Learned Adaptive Early
Termination (LAET) approach [59]. Note that LAET does not natively support declarative target
recall with recall targets, since it is designed to terminate when all the nearest neighbors of a query
have been found. For each query, after a fixed amount of HNSW search, LAET predicts the total
number of distance calculations needed for this query to find all nearest neighbors. This value is
then multiplied by a (hand-tuned) hyperparameter (called multiplier) to ensure that the number of
distance calculations is sufficient. This hyperparameter tuning is performed using 1K validation
queries sampled from the learning sets of our datasets. Then, the HNSW search terminates after
the indicated distance calculations are performed. To achieve declarative recall with LAET, we
manually tune the multiplier to adjust the performance for each desired target recall R;. Note that
this implementation is not discussed in the original paper. During query answering, all algorithms

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:13

use only a single core to answer each query, but multiple queries can be executed in parallel,
exploiting all available cores.

Result Quality Measures. We measure the performance of our recall predictor using the Mean
Squared Error (MSE), Mean Absolute Error (MAE), and R-squared (R?) [12, 78], which are popular
measures for evaluating the performance of regression models [11]. We measure the search quality
performance of the approaches using recall, which represents the fraction of correctly identified
nearest neighbors among the total nearest neighbors retrieved (k). To provide a comprehensive
comparison, we also employ additional measures that quantify the performance of an ANNS search
algorithm [71]. Specifically, we report the Ratio of Queries Under the recall Target (RQUT), which
is the proportion of queries that fail to reach a specified recall target R;, the Relative Distance Error
(RDE), which quantifies the deviation of the distances of the retrieved neighbors from the true
nearest neighbors’ distances. and the Normalized Rank Sum (NRS), which evaluates the quality of
approximate nearest neighbor results by comparing the ranks of retrieved items in the result set
to their ideal ranks in the ground truth. We report the average values over the query workload.
To present a comprehensive analysis of the different approaches, we provide additional measures
that examine the magnitude of the highest errors of each approach. We report the P99 measure,
which is the 99th percentile of the errors. The error is defined as the deviation of the recall of a
query q from Ry, i.e., error = |R; — Ry|, where Ry is the actual recall achieved for the query ¢, and
R, is the declarative recall target. We also report the average error in the most challenging 1% of
the queries (denoted as the Worst 1%) in our graphs, to show the typical performance degradation
for the worst-performing 1% of queries and provide a more detailed view of how each approach
handles extreme cases. We measure the search time performance by reporting the search time
and the Queries-Per-Second (QPS) measures. We report QPS for a single core; note that queries
are executed in parallel, exploiting all available cores. Additionally, in our DARTH evaluation, we
report the speedup (denoted as “Times Faster”) achieved compared to the plain search of the index
without early termination.

4.1 Training and Tuning

4.1.1 Training Queries. Figure 3 presents the validation MSE (using 1K validation queries) of
the predictions from our model for a varying number of training queries. To offer an in-depth
evaluation of the performance, we generate predictions by invoking the model after every 1 distance
calculation (i.e., the most frequently possible), providing insights into the prediction quality for all
possible points of the search. Figure 3 shows the results across our datasets for all values of k. We
observe that for all datasets, the performance improvement plateaus after the first few thousand
training queries, to a very low MSE value. We also note that the configuration of 10K training
queries performs well across all datasets and values of k; in the rest of our evaluation, we use
this number. It is worth noting that 10K queries represent a very small proportion of the datasets,
comprising only 0.01% — 1% of the total dataset size. Additionally, the graph indicates that larger k
values result in better predictor performance, as the features, particularly the NN Distance and NN
Stats, become more descriptive and accurate with an increasing result set size.

The DARTH recall predictor is trained on 10K queries randomly sampled from the learning
sets included in each benchmark dataset. These learning sets consist of vectors designated for
training purposes and do not overlap with the base (dataset) vectors or query vectors. All the
subsequent results presented in this paper are obtained using the recall predictor trained on these
official benchmark learning sets. To provide further insight, Figure 4 presents the distribution of
recall values and distance calculations (we show results for DEEP100M for brevity; similar trends
hold for all datasets). Notably, 98% of the training queries achieve a recall above 0.95, and 90%
reach 0.99 or higher, as shown in Figure 4(a). The effectiveness of the predictor in modeling query

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

242:14 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

H Dataset Generation Time | Training Size [Training Time H
SIFT100M 20min 115M 90s
DEEP100M 30min 160M 155s
GLOVEIM 15min 43M 85s
GISTIM 36min 160M 130s

Table 4. Training details using 10K queries and 12 cores.

search progression is explained by Figure 4(b), which shows the distance calculations performed
for each training query. While the majority of training queries achieve high recall, the amount of
effort needed to reach these recalls follows an approximately normal distribution. This enables
the predictor to learn from a diverse range of training queries, including those that achieve high
recall with minimal distance calculations and others that require significantly more search effort.
In subsequent sections of our evaluation, we study how well our predictor generalizes to more
challenging workloads (e.g., noisy queries), and we demonstrate that DARTH can effectively handle
queries that need significantly more search effort.

4.1.2 Training Time. Now we present the training details of DARTH for 10K training queries. For
all datasets, we report in Table 4 the time required to generate the training data from the 10K queries
(Generation Time), the number of training samples corresponding to the 10K queries (Training
Size), and the Training Time needed for the model (using 100 GBDT estimators, and 0.1 learning
rate). Note that Generation and Training Times are reported when using 12 (all) processing cores.
We note that the entire process can be completed in a few minutes, which is a negligible processing
time compared to the time needed to build the corresponding plain HNSW index (i.e., several hours;
cf. Table 3). The differences in the Generation Times and Training Sizes among datasets are related
to the dimensionality, dataset size, complexity, and index parameters.

4.1.3 Feature Importance. We analyzed the importance scores of the features used across all our
datasets and values of k (on average). The importance score expressed as a percentage of the total
feature importance, was extracted from our GBDT recall predictor. Our analysis revealed that
the features with the highest importance scores are nstep, closestNN, firstNN, ninserts, and var
(with importance scores of 16%, 16%, 16%, 14%, and 12%, respectively). This highlights that the
estimation of the current recall is influenced by various search features, including the extent of the
graph explored in the HNSW search, the nearest neighbors identified so far, and the initial nearest
neighbor found at the beginning of the search.

4.1.4 Feature Ablation Study. We conducted a feature ablation study to evaluate the performance
of our recall predictor when using different combinations of input feature types from Table 1.
Specifically, we compared the average validation MSE, MAE, and R? across all values of k for
various feature combinations for our datasets. The results indicate that using only the Index Metrics
features yields moderate performance, with an MSE of 0.0043, MAE of 0.0318, and R? of 0.83.
Incorporating either NN Distances or NN Stats alongside the Index Metrics improves the predictor’s
performance, both achieving an MSE of 0.0030, MAE around 0.0269-0.0275, and R? of 0.88. In
contrast, using NN Distances and NN Stats without Index Metrics leads to significantly worse
results, with MSE values exceeding 0.0191 and R? dropping below 0.30. As anticipated from the
feature importance analysis, the most effective feature combinations involve both Index Metrics and
at least one of the NN-based features. The overall best performance is achieved when all available
features are used together, resulting in an MSE=0.0030, MAE=0.0269, and R*=0.88. Consequently,
our final recall predictor leverages the complete set of input features.

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:15

4.1.5 Recall Predictor Model Selection. We conducted a model selection study to justify our choice
of the GBDT model. We trained and evaluated additional recall predictor models, including linear
regression, decision tree, and random forest. For the random forest model, we used 100 estimators,
matching the configuration used for GBDT. The best results were achieved by the GBDT model,
which obtained an average MSE of 0.0030 across all datasets and values of k. The random forest
model also performed well, due to its structural similarity to GBDT, achieving an average MSE
of 0.0042. The decision tree and linear regression models showed the poorest performance, with
average MSE of 0.0062 and 0.0142, respectively.

4.1.6 Adaptive Intervals Tuning and Ablation Study. A crucial decision after training our recall
predictor is determining the frequency (intervals) at which it should be called to predict the recall.
As discussed in Section 3.2.1, we introduced an adaptive prediction interval method and proposed
a generic, automatic method for setting the hyperparameters of the adaptive formula.

Here, we assess the effectiveness of the adaptive interval approach compared to a static approach
that uses fixed intervals to invoke the predictor. Additionally, we evaluate the performance of our
heuristic-based approach against extensive grid-search hyperparameter tuning. For grid-search,
we explored a wide range of hyperparameter values, with ipi € [250,500,750,...,5000], and
mpi € [50,100,150,...,2000] Conducting such an extensive search over the parameter space
required significant computational time. Consequently, we focused on experiments with k = 50
and R; € {0.90,0.99}. We picked k = 50 and R; = 0.90, because they are common cases in a wide
variety of scenarios, and we included R, = 0.99 to examine the results for corner cases of very high
target recalls.

For the grid-search, we report the results of two methods: Adaptive prediction interval tuning
and a Static approach (i.e., with a fixed prediction interval, mpi = ipi). These methods are labeled
as Adaptive-Grid-Search and Static-Grid-Search, respectively, and in our legends we refer to them
as Ad-GS and St-GS for brevity. In each experiment, we selected the mpi and ipi configurations
that achieved the best search times. We compared the grid-search methods to our heuristic hy-
perparameter selection method, described in Section 3.2.2, which is labeled Adaptive-Heuristic,
and as Ad-Heur in our legends. To provide a comprehensive ablation study of the hyperparameter
selection method, we also present results from a variant of the heuristic-based approach that does
not employ adaptive prediction intervals, using fixed values of ipi = mpi = dlsf% (we selected
to divide by 4 because this result gave us the best performance for this variant). We label this
variant as Adaptive-Static, and in our legends we present it as Ad-St. Figure 5 illustrates the speedup
achieved by each hyperparameter selection method across all datasets, for R, = 0.90 (Figure 5a)
and R; = 0.99 (Figure 5b), using k = 50. Both graphs show that the Adaptive methods outperform
the corresponding Static methods, being up to 10% faster for the grid-search and up to 13% faster
for the Heuristic method, while the Adaptive-Grid-Search method is the best-performing across all
configurations. This is attributed to the adaptivity of the prediction intervals combined with the
extensive hyperparameter tuning, resulting in excellent search times. Nevertheless, our Adaptive-
Heuristic method, which does not involve any tuning at all, delivers comparable execution times
(Adaptive-Grid-Search is only 5% faster). In DARTH, we automatically set the hyperparameter
values using the Adaptive-Heuristic method, thus avoiding tuning all-together.

4.2 Main Results

4.2.1 Recall Predictor Performance. We begin by presenting our recall predictor’s performance
across the default testing query workloads of our datasets. The MSE, MAE, and R? measures are
averaged over all k values (we average to present the overall performance across all configurations),
and are calculated by invoking the recall predictor at every point of the search for each query to

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

242:16 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas
—@— k=10 —®— k=25 —@— k=50 —@— k=75 —@— k=100
< 1.0- o <
~ ~ ~ ~ ——0—¢
B058—o o o o Ho.s— e e s OS5 —e—o (050
s .F ———3 = —g— = —— 5 o025 —8—=0
0 10000 20000 0 10000 20000 0 10000 20000 0 10000 20000
Training Queries # Training Queries # Training Queries # Training Queries
(a) SIFT100M (b) DEEP100M (c) GLOVETM (d) GISTIM
Fig. 3. MSE for a varying number of training queries.
n » 2000-
k) k]
@ . @
€5000 g
& &
#
o 1.00 04" 20000 40000
Recall Dists
(a) Recall Distr. (b) Distance Calcs.
Fig. 4. Training details, DEEP100M, k = 50.
St-GS Ad-GS St-Heur Wl Ad-Heur SIFT100M DEEP100M GLOVE100 GISTIM
. . —
Q 7] = 0.99- 5 16-
w75 @3 ©0.95 3
£ £ £0.90 81
n5.0 [n 8
o 22 Zo. 85]
£25 £] £ 4
- FL Mo et 80 F
S\F‘woe&?mg@ovgxg\gw rnOepotiouent st 0. 800 850. 900 950.99 0.80 0.85 0 90 o 95 0.99
(a) Ry = 0.90 (b) R = 0.99 (a) Achieved Recalls (b) Speedup
Fig. 5. Hyperparameter study, k = 50. Fig. 6. DARTH early termination summary, k =
50.
3200 i 4 DARTH i] DARTH i 80 wparTH i 3 DA i
2200 —Eﬁ&gﬂm i H 'g 200 ~:2vg:0.88 i '% 250- ~avgi0.92 I 'g --avg:0.96 N 5500 f'avg 1 00 E i
] ~Re i 3 -Re i s “Re H s -Re i E] il
o il < i o Vi o i o H
. L - - . il i
0 05 075 100 O 06 08 10 %06 08 1.0 008 0.9 1.0 0 0.95 1.00
Actual Recall Actual Recall Actual Recall Actual Recall Actual Recall
(@A) Ry =0.8 (b) Ry = 0.85 ()R =0.9 (d) Ry =0.95 (e) Ry = 0.99
] i | mDARTH] 3 ‘ $500- 1! 4 P TH ,
S0 | LB § L QLEEner £ § g SEbee o R MESERher g o g e
350N -avgioms 3250 “hetims 2 i ~avgioms 320071 “avgi12ms §200- || i T s
3 f 3 f #* f #* d 5] -avg:12ms
0o 20 % 20 % 20 070 20 30 o -
Search Time (ms) Search Time (ms) Search Time (ms) Search Time (ms) 10 20 30
Search Time (ms)
(f) Rt =0.8 (g) Rt =0.85 (h) Rt =09 (I) Rt =0.95 .
(j) Ry = 0.99
Fig. 7. Detailed analysis of DARTH for SIFT100M, k = 50.
g AT Ak h o AeAde kA A S W RPN e e S S " SIFT100M FEGLOVELM
L1 -aTotal 520 aTotal 5.0 atotal 520 aTotal Lok o DEEPIOOMEGISTIM
= 10- = Optimal o = % Optimal o = - Optimal =l -# Optimal » 5]
) ® DARTH 010 & DARTH “m 225 ®DARTH 010~ @ DARTH poi | 3 5K
2 5 A 2 | @ 2 2 o
o a—a—& 8 a—a—F" . B s—a—a—— 0 5 g —a—& " | * 0
0.80 0.85 0.90 0.95 0.99 0.80 0.85 0.90 0.95 0.99 0.80 0.85 0.90 0.95 0.99 0.80 0.85 0.90 0.95 0.99 0.80 0.85 0.90 0.95 0.99
Re Re Re Re t

(a) SIFT100M

(b) DEEP100M

(c) GLOVEIM

(d) GISTIM

Fig.9. Queries DARTH

processes before LAET

Fig. 8. Early termination optimality, k = 50. is tuned. k = 50.

examine the quality of the predictions fairly. The results are summarized in Table 5. The findings
indicate that for all datasets, our models achieve very low MSE and MAE values, while maintaining
high R? scores, demonstrating their effectiveness in estimating the recall of individual queries at
any search stage.

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:17

[[Dataset [MSE MAE R’ |
SIFT100M [0.0029 0.0285 0.90
DEEP100M | 0.0028 0.0270 0.8
GLOVEIM | 0.0027 0.0189 0.87

GISTIM | 0.0031 0.0307 0.88

Table 5. Recall predictor performance across all values of k.

4.2.2 Overview of Achieved Recall and Speedups. Figure 6 provides an overview of DARTH’s
performance, showing the actual average recall achieved and the corresponding speedups (compared
to the plain HNSW search without early termination performed by each corresponding index)
for each recall target R;, across all datasets, for k = 50 (results are similar for all other values of
k, and we omit them for brevity). The graphs demonstrate that DARTH successfully reaches and
exceeds each Ry, while also delivering significant speedups, up to 15x, on average 6.75%, and median
5.7x compared to the plain HNSW search without early termination. As anticipated, the speedup
decreases for higher recall targets, since more search effort is required before termination as R;
increases.

4.2.3 Per-Query Performance. Figure 7 provides a detailed analysis of DARTH for the SIFT100M
dataset with k = 50 (results for other datasets and k values exhibit similar trends and are omitted
for brevity). For each recall target, the first row of graphs shows the distribution of per-query recall
values (the vertical lines represent the average recall obtain from DARTH and the corresponding
recall target), indicating that the majority of queries achieve a recall that surpasses, yet remains
close to, the corresponding recall target, since roughly 15% of the queries do not meet the target.
The final row of the graph presents the per-query search time distribution achieved by DARTH
(orange bar) and the plain HNSW (dark gray bars) index without early termination. The vertical
lines represent the average search time achieved by DARTH and the plain HNSW without early
termination. The results demonstrate that DARTH significantly reduces the search time needed for
query search, achieving a speedup of up to 4.5x.

Note that those results are achieved by using our recall predictor just a few times for the search
of each query. Specifically, using our adaptive method, we invoke the predictor just 6 times on
average when R; = 0.80 and 11 times on average when R; = 0.99, with the intermediate recall
targets taking average values in between 6-11. Indeed, the number of predictor calls rises with
higher R; values, which is expected due to the bigger amount of search required as R; increases.
However, the selected hyperparameters for the prediction intervals ensure that even for higher
recall targets, the recall predictor will be invoked a reasonable number of times, without resulting
in excessive overheads.

4.2.4 Optimality of Termination Points. We now compare the quality of DARTH early termination
to the optimal case. To perform this experiment, we calculated the exact number of distance
calculations needed to achieve each recall target R; for each query. To determine the exact number
of distance calculations required for each query, we monitored the search process, computing
the recall after every distance calculation, identifying the precise number of distance calculations
needed to reach each R;. This is done for each query individually, and then we report the average
number of distance calculations across the entire workload. We then compared the results with the
corresponding distance calculations that DARTH performs. We present the results in Figure 8, for
all of our datasets, using k = 50 (results for all other k values follow similar trends and are omitted
for brevity). The graph shows that DARTH performs near-optimal distance calculations across all
datasets, performing on average only 5% more distance calculations than the optimal. We also note

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

242:18 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

that the deviation of DARTH slightly increases for the highest recall targets. This is attributed to
the higher values of prediction intervals used for the highest recall targets used in our evaluation,
resulting in more distance calculations performed between the predictor model invocations.

4.2.5 Competitor Tuning Overheads. We now proceed to compare DARTH with competitor ap-
proaches. We note that DARTH is the only approach that natively supports declarative recall
through early termination for any recall target R;. In addition, REM also natively supports declara-
tive recall for any recall target through the recall to efSearch mapping procedure it encapsulates.
In contrast, LAET (with a tuned multiplier), the only related approach that uses early termina-
tion, requires specific tuning for each distinct R;. Consequently, comparing LAET with DARTH
necessitated extensive tuning for each recall target.

To fine-tune LAET for each R;, we first performed a random search to identify the applicable
ranges for the multiplier. We then employed binary search (due to the monotonic nature of
the functions involved) to fine-tune the parameters. Specifically, we searched for multiplier €
0.10,0.15,0.20, ..., 3.00 and we evaluated the average recall values using a validation query set of
1K queries (same as the validation set of DARTH). The ranges and step sizes for the multiplier
were determined based on the results of the initial random search, which established the lower
and upper bounds for the hyperparameter values of LAET. This limitation of the existing early
termination method of LAET to address the problem of declarative recall highlights an important
advantage of DARTH, which can directly start answering queries without the need for tuning.
Figure 9 reports how many queries DARTH can answer before LAET finishes their tuning for
k = 50, demonstrating that DARTH is able to answer thousands of queries before LAET is tuned.
Specifically, our approach can answer on average 6K, and up to 10K queries before LAET is tuned.

These results show that DARTH is the only early termination approach that does not require
any tuning and can start answering queries immediately, which can be beneficial for certain data
exploration tasks and analysis pipelines. We only compare DARTH to LAET, because REM and
Baseline competitors do not require additional tuning, and they can be set up in times similar to
DARTH.

4.2.6 Competitor Per-Query Performance. We now compare the search quality performance of the
different competitor approaches in the default testing query workloads of each dataset. Figure 10
presents the recall distribution across all competitors for all datasets, using R; = 0.95 and k = 50
(results for other recall targets and values of k exhibit similar trends). While all competitors achieve
the target recall of 0.95 on average, clear differences emerge in their per-query performance.
For example, in the DEEP100M dataset, although all competitors achieve an average recall of
approximately 0.95, 28% of the queries fall below the target recall for Baseline, 22% for LAET, and
21% for REM. Additionally, the worst-performing query recall is 0.46 for both Baseline and LAET,
and 0.55 for REM. In contrast, with DARTH, only 13% of the queries fall below the target recall,
and all queries achieve a recall higher than 0.80. This demonstrates the superior results achieved
by our approach.

4.2.7 Competitor Robustness for Hard Queries. One of the major advantages of DARTH as a run-
time adaptive approach is that it can adapt the termination points of the search for harder queries,
without requiring any extra configuration. In contrast, the competitor approaches answer queries
using static parameters, which are the same for all queries of a given workload, and they are
based on the validation query workload. We demonstrate this in practice through a wide range
of experiments comparing the performance of the different approaches for query workloads of
increasing hardness. Figure 11 reports the actual recall achieved by each method, for k = 50 and
R; = 0.90 across all datasets, as the query hardness (represented by the noise percentage) increases

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:19

I Baseline LAET REM DARTH
5] ; 5] ; 510° 5 ;
%102' —Re=0.95 | %1027 SR095 'J i, ~R=0.95 rli_ %102, TRE095 g _,,J
810t ﬁ o B i-' L T ll | g0t .-- i
:100—- ‘ iS00 m ‘ _ J A 0 J100 : -
06 08 1.0 06 08 1.0 0.5 1.0 0.7 08 09 1.0
Actual Recall Actual Recall Actual Recall Actual Recall
(a) SIFT100M (b) DEEP100M (c) GLOVETM (d) GISTIM
Fig. 10. Query recall distribution, R; = 0.95, k = 50.
—— Baseline —<— LAET REM DARTH
s 10w 510m
& & &
Zo. Zos Zos ~o.
2 2 T 2 o 2 L4444
%3 %} %} %}
<003 10 20 30 %%01 10 20 30 <%0;i 10 20 30 %03 10 20 30
Noise % Noise % Noise % Noise %
(a) SIFT100M (b) DEEP100M (c) GLOVETM (d) GISTIM

Fig. 11. Recall for varying noise, Ry = 0.90, k = 50. The red line indicates the maximum attainable recall
from the plain HNSW index.

for each query workload, ranging between 1%-30%. The graphs also show the actual recall achieved
by the plain HNSW index (red line), which represents the maximum attainable recall in each noise
configuration. The results demonstrate that DARTH is the most robust approach, reaching recall
very near to the declared R; across the entire range of noise values, and especially for noise values
where R; is attainable by the plain HNSW index, i.e., up to 10-12%.

The performance of the competitors deteriorates considerably, achieving recall values far away
from the target, especially as the queries become harder in higher noise configurations (results
with other values of k and R; lead to similar results).

DARTH achieves this level of robustness by considering a wide variety of search features to
determine whether to apply early termination, rather than relying solely on the data distribution.
Furthermore, DARTH’s run-time adaptive recall prediction leverages a recall predictor trained on
queries that require varying levels of search effort, as explained earlier. Although the predictor is
not trained on noisy queries, it still outperforms competing methods because it has been exposed
to a broad range of query progressions with diverse characteristics. These factors collectively
contribute to DARTH being the most robust approach among all competitors.

We extend our analysis by studying the search quality measures and report the results in
Figures 12-16. Results for other noise levels are similar, and omitted for brevity.

Figure 12 presents the RDE values across all datasets, for several values of R;. DARTH outperforms
all competitors, being 94% better than LAET, 150% better than HNSW, and 210% better than the
Baseline. The superior RDE values that DARTH achieves demonstrate the high quality of the
retrieved nearest neighbors compared to the competitors.

In the same setting, Figure 13 presents the RQUT results. We observe that DARTH achieves
the best results for this measure as well, being 47% better than LAET, 114% better than HNSW,
and 130% better than the Baseline. Such improvements demonstrate the ability of our approach to
handle hard queries and meet the declared R; for the vast majority of those.

Figure 14 presents the NRS™! values. Once again, DARTH outperforms all competitors, being 5%
better than LAET, 14% better than HNSW, and 13% better than the Baseline. In the same setting, we
also study the performance differences of the different approaches for the queries they performed
the worst, by reporting the P99 (99-th percentile of the errors of each model) and the average for the
errors in the worst 1% of the query performance for each method (labeled as Worst 1%). Figure 15

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

242:20 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

presents the results for P99, and Figure 16 presents the Worst 1%, across all datasets. DARTH is the
best performer. For P99, it achieves 51% better results than LAET, 68% better results than HNSW,
and 97% better results than the Baseline. For Worst 1%, DARTH is 37% better than LAET, 38% better
than HNSW, and 53% better than the Baseline.

EE Baseline W LAET REM DARTH noise = 12%, k = 50, Lower is better
00T - M . M o5 :e
g 80.5' l\é}l' § E
0.00-% 50 0,85 0.9 007080 0.85 090 0 080 085 050 0.0 080 085 0.90 0-0 0,80 085 0.9
(a) SIFT100M (a) SIFT100M (a) SIFT100M (a) SIFT100M (a) SIFT100M
= Tl M I8 . 0.5] °\: I I 1
‘éo.or 305 l‘g § ﬁo‘s
L =BE U0 <Rl
0-00-% 80 085 090 007080 0.85 0.90 07080 085 090 00780 085 090 0.0 T80 0.5 0.90
Re Re Re Re
(b) DEEP100M (b) DEEP100M (b) DEEP100M (b) DEEP100M (b) DEEP100M
0.01 e - 2 -
w o il il i i 0.5 S0 r -
a 0.25 9 B ®
* B, 2Lkl ik R
0.00 B 085 o 0.00 %50 085 0.0 0 %080 085 09 00708 085 "0.90. 0.0 75,80 085090
¢ R: ¢ ¢
(c) GLOVETM (c) GLOVETM (c) GLOVETM (c) GLOVETM (c) GLOVETM
0.002 S
B = 7 205 205
ooooi—‘ ﬂk ﬂ:lﬁ) 007080 085 0.90 Z00
’ 080 085 0.90 0.80 085 0.90 0.80 085 0.90 - A 0.80 0‘25 0.90
(d) GISTIM (d) GISTIM (d) GISTIM (d) GISTIM (d) GISTIM
Fig. 12. RDE. Fig. 13. RQUT. Fig. 14. NRS. Fig. 15. P99. Fig. 16. Worst 1%.
REM DARTH B k=10 k=25 BN k=50 B k=75 B k=100 SIFT100M DEEP100M GLOVE100 GIST1IM
2600 7 0.99- 321 50
S400- ’—H gggg: 216 ”090 m3o
200 So.8s- ml]l gl i So.ss rrl_l‘ |
° 2“:& E“:QNSLMNG‘;;M o080 !_!J 0.85 0.90 0.95 £ 2’ 0 80‘ OEJ HO_E; io_g; <o 80 300 850 900 950 99 T 0.800.850, .90 0.95 BJgg
80,085 0.90 0. 80 085 090 0.
Fig. 17. DARTH and
REM, R; = 0.90, (a)Achieved Recall (b) Speedup (a) Achieved Recall (b) Speedup
noise = 12%, k = 50. Fig 18, DARTH summary for T21100M. Fig. 19. DARTH summary for IVF, k = 50.
Il Baseline | LAET DARTH
1 0-01 £o0.2- 71 b
2 3 2 Bo.
Lk, bkl ¢ HWITHH w (L1 I
0-00-9.80 0.85 0.90 0.65 0-0-0.80 0.85 090 0.85 0" 0.80 05 0.90 0.95 0-0 0.80 0.85 090 0.95 005,50 0.85 090 0.85

Re
(a) T21100M RDE. (b) T21100M RQUT. (c) T21T00M NRS. (d) T21100M P99. (e) T21100M Worst
1%.

Fig. 20. Competitor comparison on T21100M OOD queries (no noise), k = 50.

4.2.8 Comparison of DARTH with HNSW/REM Tuned for Hard Workloads. The previous set of
experiments demonstrated that DARTH is a robust approach, effectively handling difficult query
workloads, without the need for additional tuning, thanks to the run-time adaptiveness and its
predictor trained using diverse queries. In this set of experiments, we evaluate the search time
performance of DARTH. Given that the competing approaches do not provide the required accuracy,

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:21

we compare DARTH against the plain HNSW, which is commonly used in practice. In this case, we
need to explicitly tune the HNSW parameters for each recall target, as well as the noise level of the
query workload. Note that this approach corresponds to REM, where the efSearch parameter is
specifically chosen to make it achieve the same results as DARTH. Hence, the REM legend in our
graphs. In contrast to REM, DARTH is only trained once, and can then operate on and adapt to any
recall target and query hardness (i.e., noise level) that emerges at query time. We report results
for R; = 0.90 and noise = 12%, i.e., a hard workload, using k = 50 (results with other recall targets,
noise levels, and values of k are similar, and omitted for brevity).

The results are depicted in Figure 17, which depicts the QPS achieved by both methods, DARTH
outperforms REM, being able to answer up to 280QPS (100QPS on average) more queries than REM,
while being up to 5.8x (3.1x on average) faster than REM.

4.2.9 Comparisons for Out-Of-Distribution (OOD) workloads. We now study the performance of
DARTH for the T2I100M dataset, which contains OOD queries. We follow the same procedure
as the other datasets, generating training data from 10K training queries originating from the
learning set provided with the dataset. The vectors of the learning set follow the same distribution
as the index (dataset) vectors. The training data generation time was 55 minutes, resulting in 340M
training samples. Due to the bigger dataset search parameters, we logged a training sample every
2 distance calculations (instead of 1, like the rest of the datasets) to make sure that our training
dataset size has a manageable size. The training time of the recall predictor was 320 seconds, and it
achieved MSE=0.029, MAE=0.079, and R%=0.54, by testing the predictor on 1K OOD queries from
the default workload of the dataset. As expected, these results are not as good as those for the rest
of the datasets (due to the multimodal nature of T2I100M), yet, they demonstrate the ability of the
DARTH recall predictors to achieve good accuracy for OOD query workloads, just like they do for
noisy workloads.

The DARTH performance summary for T2I100M is presented in Figure 18 for various recall
targets and all values of k. Figure 18(a) shows the actual achieved recall over a query workload of
1K OOD queries, demonstrating that DARTH consistently meets and surpasses all recall targets.
The speedups compared to the plain HNSW search (see Figure 18(b)) are up to 21.5x across all
configurations, with an average of 9.3x and a median of 8.6x. We also evaluated the early termination
quality achieved by DARTH compared to the optimal early termination points for our recall targets.
The results show that DARTH performs accurate early termination, inducing, on average, only 15%
more distance calculations than the optimal.

Figure 20 presents the comparison of DARTH with other competitors on the T2I100M dataset,
using 1K OOD queries. We evaluated the quality of the competitors’ results using RDE, RQUT, NRS,
P99, and Worst 1%. The results show that DARTH is the best-performing approach in almost all
cases, across all evaluated measures and recall targets; the only cases where DARTH is outperformed
by REM is for R; = 0.95, and by LAET only for RQUT and R; = 0.95. However, even in these cases,
DARTH achieves a very low RDE, indicating high result quality, and it is 1.5x faster than REM and
1.1x faster than LAET.

4.2.10 Extensions to IVF. To perform our evaluation with IVF, we created a plain IVF index for all
our datasets, capable of achieving very high recall for our test queries. The IVF index parameters
were nlist = 1000 for GISTIM and GLOVEIM and nlist = 10000 for DEEP100M and SIFT100M. We
also set nprobe = 100 for GLOVE1M, nprobe = 150 for DEEP100M and SIFT100M and nprobe = 200
for GIST1M. These parameters allowed all our IVF indexes to reach very high recalls: 0.996 on
average across all datasets.

After creating the plain IVF index, we executed 10K training queries to generate the training
data for our IVF recall predictor. Note that, since IVF performs many more distance calculations

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

242:22 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

for each query compared to HNSW, we had to reduce the logging frequency of our training data,
gathering a training sample every 20 distance calculations for GLOVEIM and GIST1M, and every
50 distance calculations for DEEP100M and SIFT100M. This resulted in 315M training samples
for SIFT100M, 310M for DEEP100M, 100M for GLOVE1M, and 133M for GIST1M. We trained a
GBDT recall predictor, which achieved an average MSE=0.003 across all datasets, for the 1K testing
queries of the default workloads.

The performance summary of DARTH for IVF is presented in Figure 19 for all of our datasets
using k = 50. Figure 19(a) shows that the recall achieved by DARTH for IVF using 1K testing
queries from the default workloads, always meets and exceeds the target. Figure 19(b) depicts the
corresponding speedups achieved by DARTH: up to a 41.8x when compared to the plain IVF search,
with an average speedup of 13.6x and a median speedup of 8.1x. Similar to the corresponding graphs
for HNSW, higher recall targets result in lower speedups, because longer searches are required
to achieve higher recall. Additionally, we observe that the highest speedup is achieved for the
GLOVE1M dataset. This is expected, given GLOVE’s clustered structure, which allows the retrieval
of the nearest neighbors very early in the search.

5 Conclusions

We presented DARTH, a novel approach for declarative recall for ANNS that leverages early
termination to achieve SotA results. DARTH achieves significant speedups, being up to 14.6x
(average: 6.8x; median: 5.7x) faster than the search without early termination for HNSW and up
to 41.8x (average: 13.6x; median: 8.1x) faster for IVF. Moreover, DARTH achieves the best quality
results among all competitors, even for workloads of increasing hardness or Out-Of-Distribution
queries.

Acknowledgments

Supported by EU Horizon projects TwinODIS (101160009), DataGEMS (101188416), and by YITAI®A
& NextGenerationEU project HARSH (YTI3TA — 0560901).

References

[1] 2024. pgvector. https://openai.comhttps://github.com/pgvector/pgvector

[2] Google AL 2023. Gemini: A Large Language Model. https://geminilang.google

[3] Amazon Web Services. [n.d.]. Amazon Aurora PostgreSQL. https://aws.amazon.com/rds/aurora-postgresql/. Accessed:
2024-11-26.

[4] ANN Benchmarks. [n.d.]. ANN Benchmarks HNSW parameters. https://github.com/erikbern/ann-benchmarks/blob/
main/ann_benchmarks/algorithms/hnswlib/config.yml.

[5] Jason Ansel, Shoaib Kamil, Kalyan Veeramachaneni, Jonathan Ragan-Kelley, Jeffrey Bosboom, Una-May O’Reilly, and
Saman Amarasinghe. 2014. Opentuner: An extensible framework for program autotuning. In Proceedings of the 23rd
international conference on Parallel architectures and compilation. 303-316.

[6] Martin Aumiiller, Erik Bernhardsson, and Alexander Faithfull. 2020. ANN-Benchmarks: A benchmarking tool for
approximate nearest neighbor algorithms. Information Systems 87 (2020), 101374.

[7] Martin Aumiiller and Matteo Ceccarello. 2021. The role of local dimensionality measures in benchmarking nearest
neighbor search. Information Systems 101 (2021), 101807.

[8] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2023. Elpis: Graph-based similarity search for scalable data science.
Proceedings of the VLDB Endowment 16, 6 (2023), 1548-1559.

[9] Ilias Azizi, Karima Echihabi, and Themis Palpanas. 2025. Graph-Based Vector Search: An Experimental Evaluation of
the State-of-the-Art. PACMMOD (2025).

[10] Artem Babenko and Victor Lempitsky. 2016. Efficient indexing of billion-scale datasets of deep descriptors. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2055-2063.

[11] Alexei Botchkarev. 2018. Performance metrics (error measures) in machine learning regression, forecasting and
prognostics: Properties and typology. arXiv preprint arXiv:1809.03006 (2018).

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

https://openai.comhttps://github.com/pgvector/pgvector
https://geminilang.google
https://aws.amazon.com/rds/aurora-postgresql/
https://github.com/erikbern/ann-benchmarks/blob/main/ann_benchmarks/algorithms/hnswlib/config.yml
https://github.com/erikbern/ann-benchmarks/blob/main/ann_benchmarks/algorithms/hnswlib/config.yml

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:23

[12] A Colin Cameron and Frank AG Windmeijer. 1997. An R-squared measure of goodness of fit for some common
nonlinear regression models. Journal of econometrics 77, 2 (1997), 329-342.

[13] Alessandro Camerra, Themis Palpanas, Jin Shieh, and Eamonn Keogh. 2010. isax 2.0: Indexing and mining one billion
time series. In 2010 IEEE international conference on data mining. IEEE, 58-67.

[14] Matteo Ceccarello, Alexandra Levchenko, Ileana Ioana, and Themis Palpanas. 2025. Evaluating and Generating Query
Workloads for High Dimensional Vector Similarity Search. ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD) (2025).

[15] Miriam Cha, Youngjune Gwon, and HT Kung. 2017. Language modeling by clustering with word embeddings for text
readability assessment. In Proceedings of the 2017 ACM on Conference on Information and Knowledge Management.
2003-2006.

[16] Manos Chatzakis, Panagiota Fatourou, Eleftherios Kosmas, Themis Palpanas, and Botao Peng. 2023. Odyssey: A
Journey in the Land of Distributed Data Series Similarity Search. Proc. VLDB Endow. 16, 5 (Jan. 2023), 1140-1153.
https://doi.org/10.14778/3579075.3579087

[17] Manos Chatzakis, Michalis Mountantonakis, and Yannis Tzitzikas. 2021. RDFSIM: similarity-based browsing over
dbpedia using embeddings. Information 12, 11 (2021), 440.

[18] Qi Chen, Haidong Wang, Mingqin Li, Gang Ren, Scarlett Li, Jeffery Zhu, Jason Li, Chuanjie Liu, Lintao Zhang, and
Jingdong Wang. 2018. SPTAG: A library for fast approximate nearest neighbor search. https://github.com/Microsoft/
SPTAG

[19] Qi Chen, Bing Zhao, Haidong Wang, Minggin Li, Chuanjie Liu, Zengzhong Li, Mao Yang, and Jingdong Wang. 2021.
Spann: Highly-efficient billion-scale approximate nearest neighborhood search. Advances in Neural Information
Processing Systems 34 (2021), 5199-5212.

[20] Rihan Chen, Bin Liu, Han Zhu, Yaoxuan Wang, Qi Li, Buting Ma, Qingbo Hua, Jun Jiang, Yunlong Xu, Hongbo Deng,
et al. 2022. Approximate nearest neighbor search under neural similarity metric for large-scale recommendation. In
Proceedings of the 31st ACM International Conference on Information & Knowledge Management. 3013-3022.

[21] Tiangi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm
sigkdd international conference on knowledge discovery and data mining. 785-794.

[22] Google Cloud. 2024. AlloyDB for PostgreSQL. https://cloud.google.com/alloydb/docs/overview Accessed: 2024-12-22.

[23] Abhinandan S Das, Mayur Datar, Ashutosh Garg, and Shyam Rajaram. 2007. Google news personalization: scalable
online collaborative filtering. In Proceedings of the 16th international conference on World Wide Web. 271-280.

[24] Anirban Dasgupta, Ravi Kumar, and Tamas Sarlés. 2011. Fast locality-sensitive hashing. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining. 1073-1081.

[25] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. 2020. Differentiable expected hypervolume improvement
for parallel multi-objective Bayesian optimization. Advances in Neural Information Processing Systems 33 (2020),
9851-9864.

[26] Wei Dong, Charikar Moses, and Kai Li. 2011. Efficient k-nearest neighbor graph construction for generic similarity
measures. In Proceedings of the 20th international conference on World wide web. 577-586.

[27] Ishita Doshi, Dhritiman Das, Ashish Bhutani, Rajeev Kumar, Rushi Bhatt, and Niranjan Balasubramanian. 2020.
LANNS: a web-scale approximate nearest neighbor lookup system. arXiv preprint arXiv:2010.09426 (2020).

[28] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré, Maria
Lomeli, Lucas Hosseini, and Hervé Jégou. 2024. The faiss library. arXiv preprint arXiv:2401.08281 (2024).

[29] Karima Echihabi, Panagiota Fatourou, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim. 2022. Hercules
against data series similarity search. arXiv preprint arXiv:2212.13297 (2022).

[30] Karima Echihabi, Theophanis Tsandilas, Anna Gogolou, Anastasia Bezerianos, and Themis Palpanas. 2023. ProS: data
series progressive k-NN similarity search and classification with probabilistic quality guarantees. The VLDB Journal
32,4 (2023), 763-789.

[31] Karima Echihabi, Kostas Zoumpatianos, and Themis Palpanas. 2020. Scalable Machine Learning on High-Dimensional
Vectors: From Data Series to Deep Network Embeddings. In International Conference on Web Intelligence, Mining and
Semantics WIMS. 1-6.

[32] Karima Echihabi, Kostas Zoumpatianos, Themis Palpanas, and Houda Benbrahim. 2020. Return of the lernaean hydra:
Experimental evaluation of data series approximate similarity search. arXiv preprint arXiv:2006.11459 (2020).

[33] Elastic. [n.d.]. Elasticsearch. https://www.elastic.co/. Accessed: 2024-11-26.

[34] Panagiota Fatourou, Eleftherios Kosmas, Themis Palpanas, and George Paterakis. 2023. FreSh: A Lock-Free Data
Series Index. In SRDS.

[35] Hakan Ferhatosmanoglu, Ertem Tuncel, Divyakant Agrawal, and Amr El Abbadi. 2001. Approximate nearest neighbor

searching in multimedia databases. In Proceedings 17th International Conference on Data Engineering. IEEE, 503-511.
[36] Jerome H Friedman. 2001. Greedy function approximation: a gradient boosting machine. Annals of statistics (2001),
1189-1232.

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

https://doi.org/10.14778/3579075.3579087
https://github.com/Microsoft/SPTAG
https://github.com/Microsoft/SPTAG
https://cloud.google.com/alloydb/docs/overview
https://www.elastic.co/

242:24 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

[37] Jerome H Friedman. 2002. Stochastic gradient boosting. Computational statistics & data analysis 38, 4 (2002), 367-378.

[38] Cong Fu, Chao Xiang, Changxu Wang, and Deng Cai. 2017. Fast approximate nearest neighbor search with the
navigating spreading-out graph. arXiv preprint arXiv:1707.00143 (2017).

[39] Jianyang Gao and Cheng Long. 2024. RaBitQ: Quantizing High-Dimensional Vectors with a Theoretical Error Bound
for Approximate Nearest Neighbor Search. Proceedings of the ACM on Management of Data 2, 3 (2024), 1-27.

[40] Yunfan Gao, Yun Xiong, Xinyu Gao, Kangxiang Jia, Jinliu Pan, Yuxi Bi, Yi Dai, Jiawei Sun, and Haofen Wang. 2023.

Retrieval-augmented generation for large language models: A survey. arXiv preprint arXiv:2312.10997 (2023).

GASS. [n.d.]. GASS HNSW parameters. https://github.com/zeraph6/GASS_Repo/blob/main/code/README.md.

Tiezheng Ge, Kaiming He, Qifa Ke, and Jian Sun. 2013. Optimized product quantization. IEEE transactions on pattern

analysis and machine intelligence 36, 4 (2013), 744-755.

[43] Anna Gogolou, Theophanis Tsandilas, Themis Palpanas, and Anastasia Bezerianos. 2019. Progressive similarity

search on time series data. In BigVis 2019-2nd International Workshop on Big Data Visual Exploration and Analytics.

Siddharth Gollapudi, Neel Karia, Varun Sivashankar, Ravishankar Krishnaswamy, Nikit Begwani, Swapnil Raz, Yiyong

Lin, Yin Zhang, Neelam Mahapatro, Premkumar Srinivasan, et al. 2023. Filtered-diskann: Graph algorithms for

approximate nearest neighbor search with filters. In Proceedings of the ACM Web Conference 2023. 3406-3416.

[45] Google Cloud. [n.d.]. Vertex AL https://cloud.google.com/vertex-ai/docs/vector-search/overview. Accessed:
2024-12-19.

[46] Yutong Gou, Jianyang Gao, Yuexuan Xu, and Cheng Long. 2024. SymphonyQG: Towards Symphonious Integration of
Quantization and Graph for Approximate Nearest Neighbor Search. arXiv preprint arXiv:2411.12229 (2024).

[47] Ruiqi Guo, Philip Sun, Erik Lindgren, Quan Geng, David Simcha, Felix Chern, and Sanjiv Kumar. 2020. Accelerating
large-scale inference with anisotropic vector quantization. In International Conference on Machine Learning. PMLR,
3887-3896.

[48] Yikun Han, Chunjiang Liu, and Pengfei Wang. 2023. A comprehensive survey on vector database: Storage and
retrieval technique, challenge. arXiv preprint arXiv:2310.11703 (2023).

[49] Jui-Ting Huang, Ashish Sharma, Shuying Sun, Li Xia, David Zhang, Philip Pronin, Janani Padmanabhan, Giuseppe
Ottaviano, and Linjun Yang. 2020. Embedding-based retrieval in facebook search. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 2553-2561.

[50] Qiang Huang, Jianlin Feng, Yikai Zhang, Qiong Fang, and Wilfred Ng. 2015. Query-aware locality-sensitive hashing
for approximate nearest neighbor search. Proceedings of the VLDB Endowment 9, 1 (2015), 1-12.

[51] Shikhar Jaiswal, Ravishankar Krishnaswamy, Ankit Garg, Harsha Vardhan Simhadri, and Sheshansh Agrawal. 2022.
Ood-diskann: Efficient and scalable graph anns for out-of-distribution queries. arXiv preprint arXiv:2211.12850 (2022).

[52] Daniel Jasbick, Lucio Santos, Paulo M Azevedo-Marques, Agma JM Traina, Daniel de Oliveira, and Marcos Bedo. 2023.
Pushing diversity into higher dimensions: The LID effect on diversified similarity searching. Information Systems 114
(2023), 102166.

[53] Suhas Jayaram Subramanya, Fnu Devvrit, Harsha Vardhan Simhadri, Ravishankar Krishnawamy, and Rohan Kadekodi.
2019. Diskann: Fast accurate billion-point nearest neighbor search on a single node. Advances in Neural Information
Processing Systems 32 (2019).

[54] Herve Jegou, Matthijs Douze, and Cordelia Schmid. 2010. Product quantization for nearest neighbor search. IEEE
transactions on pattern analysis and machine intelligence 33, 1 (2010), 117-128.

[55] Hervé Jégou, Romain Tavenard, Matthijs Douze, and Laurent Amsaleg. 2011. Searching in one billion vectors: re-rank
with source coding. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE,
861-864.

[56] Zhi Jing, Yongye Su, Yikun Han, Bo Yuan, Haiyun Xu, Chunjiang Liu, Kehai Chen, and Min Zhang. 2024. When large
language models meet vector databases: a survey. arXiv preprint arXiv:2402.01763 (2024).

[57] GuolinKe, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei Ye, and Tie-Yan Liu. 2017. Lightgbm:
A highly efficient gradient boosting decision tree. Advances in neural information processing systems 30 (2017).

[58] Patrick Lewis, Ethan Perez, Aleksandra Piktus, Fabio Petroni, Vladimir Karpukhin, Naman Goyal, Heinrich Kiittler,
Mike Lewis, Wen-tau Yih, Tim Rocktéschel, et al. 2020. Retrieval-augmented generation for knowledge-intensive nlp
tasks. Advances in Neural Information Processing Systems 33 (2020), 9459-9474.

[59] Conglong Li, Minjia Zhang, David G Andersen, and Yuxiong He. 2020. Improving approximate nearest neighbor
search through learned adaptive early termination. In Proceedings of the 2020 ACM SIGMOD International Conference
on Management of Data. 2539-2554.

[60] Huayang Li, Yixuan Su, Deng Cai, Yan Wang, and Lemao Liu. 2022. A survey on retrieval-augmented text generation.
arXiv preprint arXiv:2202.01110 (2022).

[61] Yu A Malkov and Dmitry A Yashunin. 2018. Efficient and robust approximate nearest neighbor search using
hierarchical navigable small world graphs. IEEE transactions on pattern analysis and machine intelligence 42, 4 (2018),
824-836.

(41
(42

—

[44

=

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

https://github.com/zeraph6/GASS_Repo/blob/main/code/README.md
https://cloud.google.com/vertex-ai/docs/vector-search/overview

DARTH: Declarative Recall Through Early Termination for Approximate Nearest Neighbor Search 242:25

[62] Yusuke Matsui, Yusuke Uchida, Hervé Jégou, and Shin’ichi Satoh. 2018. A survey of product quantization. ITE
Transactions on Media Technology and Applications 6, 1 (2018), 2-10.

[63] Microsoft. [n.d.]. Vectors in Azure Al Search. https://learn.microsoft.com/en-us/azure/search/vector-search-overview.
Accessed: 2024-11-26.

[64] Microsoft Azure. [n.d.]. Azure Cosmos DB. https://learn.microsoft.com/en-us/azure/cosmos-db/vector-database.

Accessed: 2024-12-19.

] MongoDB, Inc. [n.d.]. MongoDB. https://www.mongodb.com/. Accessed: 2024-12-19.

66] Alexey Natekin and Alois Knoll. 2013. Gradient boosting machines, a tutorial. Frontiers in neurorobotics 7 (2013), 21.

] OpenAl 2024. ChatGPT (November 2024 version). https://openai.com Accessed: 2024-11-30.

] Oracle Corporation. [n. d.]. Oracle Al Vector Search. https://www.oracle.com/database/ai-vector-search/. Accessed:

2024-11-26.

[69] Themis Palpanas. 2020. Evolution of a Data Series Index: The iSAX Family of Data Series Indexes: iSAX, iSAX2.
0, iSAX2+, ADS, ADS+, ADS-Full, ParIS, ParIS+, MESSI, DPiSAX, ULISSE, Coconut-Trie/Tree, Coconut-LSM. In
Information Search, Integration, and Personalization: 13th International Workshop, ISIP 2019, Heraklion, Greece, May
9-10, 2019, Revised Selected Papers 13. Springer, 68—83.

[70] James Jie Pan, Jianguo Wang, and Guoliang Li. 2024. Survey of vector database management systems. The VLDB
Journal 33, 5 (2024), 1591-1615.

[71] Marco Patella and Paolo Ciaccia. 2008. The many facets of approximate similarity search. In First International
Workshop on Similarity Search and Applications (sisap 2008). IEEE, 10-21.

[72] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2020. Messi: In-memory data series indexing. In 2020 IEEE
36th International Conference on Data Engineering (ICDE). IEEE, 337-348.

[73] Botao Peng, Panagiota Fatourou, and Themis Palpanas. 2021. SING: Sequence indexing using GPUs. In 2021 IEEE 37th
International Conference on Data Engineering (ICDE). IEEE, 1883-1888.

[74] Jeffrey Pennington, Richard Socher, and Christopher D Manning. 2014. Glove: Global vectors for word representation.

In Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP). 1532-1543.

Pinecone, Inc. [n. d.]. Pinecone. https://www.pinecone.io/. Accessed: 2024-12-19.

Shashank Rajput, Nikhil Mehta, Anima Singh, Raghunandan Hulikal Keshavan, Trung Vu, Lukasz Heldt, Lichan

Hong, Yi Tay, Vinh Tran, Jonah Samost, et al. 2023. Recommender systems with generative retrieval. Advances in

Neural Information Processing Systems 36 (2023), 10299-10315.

[77] Jie Ren, Minjia Zhang, and Dong Li. 2020. Hm-ann: Efficient billion-point nearest neighbor search on heterogeneous
memory. Advances in Neural Information Processing Systems 33 (2020), 10672-10684.

[78] Jason D Rights and Sonya K Sterba. 2019. Quantifying explained variance in multilevel models: An integrative
framework for defining R-squared measures. Psychological methods 24, 3 (2019), 309.

[79] Viktor Sanca, Manos Chatzakis, and Anastasia Ailamaki. 2024. Optimizing Context-Enhanced Relational Joins. (2024),
501-515. https://doi.org/10.1109/ICDE60146.2024.00045

[80] Min Shi, Jianxun Liu, Dong Zhou, Mingdong Tang, and Buqing Cao. 2017. WE-LDA: a word embeddings augmented
LDA model for web services clustering. In 2017 ieee international conference on web services (icws). IEEE, 9-16.

[81] Harsha Vardhan Simhadri, George Williams, Martin Aumiiller, Matthijs Douze, Artem Babenko, Dmitry Baranchuk, Qi
Chen, Lucas Hosseini, Ravishankar Krishnaswamny, Gopal Srinivasa, et al. 2022. Results of the NeurIPS’21 challenge
on billion-scale approximate nearest neighbor search. In NeurIPS 2021 Competitions and Demonstrations Track. PMLR,
177-189.

[82] SeMI Technologies. 2019. Weaviate: Open-Source Vector Search Engine. https://weaviate.io. Accessed: 2025-01-15.

[83] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix, Baptiste
Roziére, Naman Goyal, Eric Hambro, Faisal Azhar, et al. 2023. Llama: Open and efficient foundation language models.
arXiv preprint arXiv:2302.13971 (2023).

[84] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. 2017. Automatic database management system
tuning through large-scale machine learning. In Proceedings of the 2017 ACM international conference on management
of data. 1009-1024.

[85] Jianguo Wang, Xiaomeng Yi, Rentong Guo, Hai Jin, Peng Xu, Shengjun Li, Xiangyu Wang, Xiangzhou Guo, Chengming
Li, Xiaohai Xu, et al. 2021. Milvus: A purpose-built vector data management system. In Proceedings of the 2021
International Conference on Management of Data. 2614-2627.

[86] Mengzhao Wang, Xiaoliang Xu, Qiang Yue, and Yuxiang Wang. 2021. A comprehensive survey and experimental
comparison of graph-based approximate nearest neighbor search. arXiv preprint arXiv:2101.12631 (2021).

[87] Qitong Wang, Ioana Ileana, and Themis Palpanas. 2025. LeaFi: Data Series Indexes on Steroids with Learned Filters.
Proc. ACM Manag. Data (2025).

[88] Zeyu Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2023. Graph-and Tree-based Indexes for High-dimensional
Vector Similarity Search: Analyses, Comparisons, and Future Directions. IEEE Data Eng. Bull. 46, 3 (2023), 3-21.

(75
[76

—_

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

https://learn.microsoft.com/en-us/azure/search/vector-search-overview
https://learn.microsoft.com/en-us/azure/cosmos-db/vector-database
https://www.mongodb.com/
https://openai.com
https://www.oracle.com/database/ai-vector-search/
https://www.pinecone.io/
https://doi.org/10.1109/ICDE60146.2024.00045
https://weaviate.io

242:26 Manos Chatzakis, Yannis Papakonstantinou, and Themis Palpanas

[89] Zeyu Wang, Qitong Wang, Xiaoxing Cheng, Peng Wang, Themis Palpanas, and Wei Wang. 2024. Steiner-Hardness:
A Query Hardness Measure for Graph-Based ANN Indexes. Proceedings of the VLDB Endowment (PVLDB) Journal
(2024).

[90] Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2023. Dumpy: A compact and adaptive
index for large data series collections. Proceedings of the ACM on Management of Data 1, 1 (2023), 1-27.

[91] Zeyu Wang, Qitong Wang, Peng Wang, Themis Palpanas, and Wei Wang. 2024. DumpyOS: A data-adaptive multi-ary
index for scalable data series similarity search. The VLDB Journal 33, 6 (2024), 1887-1911.

[92] Zeyu Wang, Haoran Xiong, Qitong Wang, Zhenying He, Peng Wang, Themis Palpanas, and Wei Wang. 2024.
Dimensionality-Reduction Techniques for Approximate Nearest Neighbor Search: A Survey and Evaluation. IEEE
Data Eng. Bull. 48, 3 (2024), 63-80.

[93] WEAVESS. [n.d.]. WEAVESS HNSW parameters. https://github.com/Lsyhprum/WEAVESS/tree/dev/parameters.

[94] Chuangxian Wei, Bin Wu, Sheng Wang, Renjie Lou, Chaoqun Zhan, Feifei Li, and Yuanzhe Cai. 2020. AnalyticDB-V:
a hybrid analytical engine towards query fusion for structured and unstructured data. Proceedings of the VLDB
Endowment 13, 12 (2020), 3152-3165.

[95] Jiuqi Wei, Xiaodong Lee, Zhenyu Liao, Themis Palpanas, and Botao Peng. 2025. Subspace Collision: An Efficient and
Accurate Framework for High-dimensional Approximate Nearest Neighbor Search. PACMMOD (2025).

[96] Jiugi Wei, Botao Peng, Xiaodong Lee, and Themis Palpanas. 2024. DET-LSH: A Locality-Sensitive Hashing Scheme
with Dynamic Encoding Tree for Approximate Nearest Neighbor Search. Proc. VLDB Endow. 17, 9 (2024), 2241-2254.

[97] Xingrui Xie, Han Liu, Wenzhe Hou, and Hongbin Huang. 2023. A Brief Survey of Vector Databases. In 2023 9th
International Conference on Big Data and Information Analytics (BigDIA). IEEE, 364-371.

[98] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas. 2017. DPiSAX: Massively Distributed
Partitioned iSAX. In IEEE International Conference on Data Mining, ICDM. IEEE Computer Society, 1135-1140.

[99] Djamel Edine Yagoubi, Reza Akbarinia, Florent Masseglia, and Themis Palpanas. 2020. Massively Distributed Time
Series Indexing and Querying. IEEE Trans. Knowl. Data Eng. 32, 1 (2020), 108-120.

[100] Tiannuo Yang, Wen Hu, Wanggqi Peng, Yusen Li, Jianguo Li, Gang Wang, and Xiaoguang Liu. 2024. VDTuner:
Automated Performance Tuning for Vector Data Management Systems. arXiv preprint arXiv:2404.10413 (2024).

[101] Hangjun Ye and Guangyou Xu. 2003. Fast search in large-scale image database using vector quantization. In
International Conference on Image and Video Retrieval. Springer, 477-487.

[102] Kostas Zoumpatianos, Yin Lou, Ioana Ileana, Themis Palpanas, and Johannes Gehrke. 2018. Generating data series
query workloads. The VLDB Journal 27 (2018), 823-846.

[103] Kostas Zoumpatianos, Yin Lou, Themis Palpanas, and Johannes Gehrke. 2015. Query workloads for data series
indexes. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
1603-1612.

-

Received January 2025; revised April 2025; accepted May 2025

Proc. ACM Manag. Data, Vol. 3, No. 4 (SIGMOD), Article 242. Publication date: September 2025.

https://github.com/Lsyhprum/WEAVESS/tree/dev/parameters

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Preliminaries
	2.2 Related Work
	2.3 Declarative Target Recall Definition

	3 The DARTH Approach
	3.1 Recall Predictor
	3.2 Prediction Intervals
	3.3 Integration in ANNS methods

	4 Experimental Evaluation
	4.1 Training and Tuning
	4.2 Main Results

	5 Conclusions
	References

