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1. INTRODUCTION 
Big data is perceived as a fundamental ingredient for 
fostering the progress of science in a variety of disciplines. 
However, we believe that the current ICT solutions are not 
adequate for this challenge. Abstractions and languages for 
big data management are tailored to vertical domains and 
influenced by underlying ICT platforms, hence unsuitable 
for supporting “computational interdisciplinarity”, as it is 
required if one wants to use the best of, e.g., analytical, 
inductive, and simulation techniques, all at work on the 
same data. In other words, “our society is data-rich, but it 
lacks the conceptual tools to handle it” [1].  

In previous work [2], we advocate the need for a new 
approach to data analysis, based on mega-modeling as a 
new holistic data and model management system for the 
acquisition, composition, integration, management, 
querying and mining of data and models, capable of 
mastering the co-evolution of data and models and of 
supporting the creation of what-if analyses, predictive 
analytics and scenario explorations.  

In this paper, we provide some evidence that mega-
modeling is a viable approach to data analysis by using a 
bottom-up, inductive method. We consider several 
experiences of data analysis research performed at our 
home institutions and examine them in retrospective, 
inducing their mega-modularization a-posteriori. This 
exercise convinces us that the mega-modeling approach 
could be highly beneficial. 

2. MEGA-MODELING 
In this section, we provide a historical perspective on the 
development of the mega-modeling concept and a self-
contained summary of our previous work on Mega-
modeling [2]. 

2.1 Unifying Data-centric Disciplines 
Big Data analytics calls for a comprehensive theory and 
technology that blend simulation, analytical, ontological 
and data-driven models into one picture. Modeling, as we 

know it today, is required to scale up to a higher level, that 
we call mega-modeling [2]. 

The database/data mining community has been 
investigating approaches that unify data analysis and 
mining, since the seminal paper on inductive databases and 
data mining as a querying process by Imielinski and 
Mannila [11]. A fundamental aspect of [11] is the 
representation of data mining activities through patterns, 
whereas patterns can be seamlessly integrated with data and 
can therefore be the subject of queries; such view attempts 
a conceptualization and generalization of data mining. Yet, 
this idea has found concrete realizations only lately and 
partially; e.g., it is used in [12], where extracted data 
patterns are defined as views on top of data tables, and as 
such can be composed with domain-specific data 
representing spatio-temporal trajectories expressing human 
mobility [12].  

The roots of mega-modeling can be traced to an article 
appeared in 1992 on “Mega-programming” [13] – large, 
autonomous computing systems whose interfaces are 
described through a data-centric approach and whose 
execution behaviour can be inspected – and to another one 
that appeared about one decade later on “mega-models” 
[14] –  models of which at least some elements represent 
and/or refer to other models or meta-models – that paved 
the road to the school on Model-Driven Engineering 
(MDE) [15].  

However, the innovative aspects of mega-modeling go 
beyond classical model-driven software generation. Mega-
modeling aims at defining a comprehensive theory and 
technology of model construction (with an emphasis on 
incremental bottom-up approaches), model search, model 
fitness evaluation, model composition, model reuse and 
model evolution. We need entirely new models of models, 
namely algebras of objects representing patterns, rules, 
laws, equations, etc., which are either mined/induced from 
data, or based on deep mathematical findings or agent-
based reasoning – an overarching algebra of data and 
models that allow us to devise a new holistic system for 
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integrated data and model acquisition, integration, querying 
and mining, capable of mastering the complexity of the 
knowledge discovery process. 

2.2 Mega-Modules  
The building block of mega-modeling is the mega-module 
– a software component capable of processing “big data” 
for analytical purposes. Every mega-module performs a 
well  identified computation, which can be considered a 
unitary transformation from inputs to outputs. Inputs and 
outputs take the form of data and of patterns, where data 
are domain-specific both in terms of their schema end 
instances, while patterns are forms of data regularity or 
rules whose schema is domain-independent and whose 
content typically reflects collective or aggregated data 
properties; patterns may be extracted by data analysis 
algorithms, which may in turn be embodied within mega 
modules. Every mega-module can internally use data and 
patterns that are considered as invariant in the context of 
the computation, whose extension can be either local (e.g., 
organization-specific) or global (e.g., stored in public 
databases or ontologies).  

Every mega-module exhibits a format that consists of three 
distinct phases of information processing, although such 
phases can vary significantly for their internal organization: 
data preparation, analysis, and evaluation. 

• The first phase, data preparation, consists of the 
processing of input data and patterns for the purpose of 
assembling input objects that will be the subjects of the 
analysis. The distinction between data and object is of 
semantic nature: data preparation typically assembles 
several elementary data in the input to generate a single 
object for the purpose of analysis. The aggregative 
process that builds a object can be driven by a variety of 
purposes – abstracting irrelevant differences, 
recognizing common features, aggregating over 
elementary items which satisfy given predicates – thus, 
semantically interpreting and reconstructing data. The 
keywords for the preparation phase are: data sensing, 
acquisition, integration, transformation, semantic 
enrichment.  

• The second phase, data analysis, consists of extracting 
computed objects from input data, possibly using the 
input patterns as references. Data analysis produces the 
response to a specific problem by performing the core 
scientific processing, and uses a variety of methods, 
ranging from mathematical to statistical models, from 
data mining to machine learning, from simulation to 
prediction, including crowd-sourcing as a way for asking 
social responses. The keywords for the analysis phase 
are: mining, learning, modeling, simulation, forecast. 

• The third phase, data evaluation, consists of preparing 
the output objects, which may in turn be presented as 
data and/or patterns. This phase consists of filtering or 
ranking computed objects based on their relevance, and 

possibly of a post-processing so as to observe the result 
in the most suitable way for the mega-module enclosing 
environment or user. The keywords for the evaluation 
phase are: quality assessment, filtering, significance 
measurements, presentation, delivery, visualization. 

In Fig. 1, we propose a mega-module graphical element, 
which visually captures the characteristics of a mega-
module as described above.  

 
Figure 1: Visual presentation of a generic mega-module. 

The presence of the three phases allows us to define two 
standard inspection points within a mega-module, used for 
asynchronous control and feedback that mega-modules 
should provide to their enclosing environment. The first 
one, after preparation, provides a view on objects 
abstracted/reconstructed from data; the second one, after 
analysis, provides a view of the objects resulting from the 
analysis.  

A mega-module inspection consists in extracting its 
controls asynchronously, during its execution; this in turn 
allows the enclosing environment to trace mega-module 
execution, to estimate completion time, and to anticipate 
the quality of its results. We regard the data and patterns 
that may be exchanged by a mega-module during its 
execution as the mega-module controls. A mega-module 
should expose commands to the enclosing environment that 
may alter its behavior, for instance by rising or by lowering 
confidence levels during analysis based on the quality of 
intermediate results or on the expected completion time. It 
should also be possible to suspend, resume, and terminate 
the mega-module computation.  

Wrapping up, we associate to each mega-module the 
potential of expressing classes of computations on top of 
big data, thereby highlighting the computational nature of 
the modules and the support of dynamic aspects related to 
inspection, adaptation, and integration. In the design or 
reverse engineering of Mega-Modules, data come first: 
clarifying their input and output data by using known 
pattern types is the key aspect for guaranteeing module 
interoperability and reuse. Emphasizing the role of data 
transformers for Mega-Modules opens up to 
using/inventing algebraic languages for data-driven 
orchestrations and optimizations. Moreover, the possibility 
of declaring the streaming or ordered nature of data opens 
up possibilities for a different class of optimizations that 
emphasize recent and ordered data. 
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2.3 Mega-modularizing Big Data Analysis 
In mega-modeling, a big data analysis problem is modeled 
as a data-driven workflow involving several Mega-
Modules. Composition abstractions are the means of 
combining mega-modules to the purpose of creating 
sophisticated analytical processes. Composition 
abstractions reflect the classical ways of assembling 
modules into higher order computations. Every abstraction 
induces a hierarchical decomposition, singling out an 
enclosing mega-module and one or more enclosed mega-
modules; our goal is to describe computations over big data 
as top-down recursive applications of a well-designed 
collection of abstractions. In [2], we present an initial set of 
abstractions; they are orthogonal, but most likely 
incomplete, and further investigation is needed to 
consolidate them. The set includes traditional pipeline and 
parallel composition, but also typical data mining ones such 
as what-if control, drift control and component-based graph 
decomposition. 

What-if control is a classical 
way of mining big data by 
exploring many alternative 
solutions that would occur for 
different choices of initial 
setting of models and/or 
parameters. Essentially, this 
control abstraction is a form 
of iteration driven by an analytical goal, allowing to repeat 
a mega-module under different parameterizations of input 
data and patterns, until a final analytical result is obtained, 
which possesses a desired level of, e.g., quality, precision 
or statistical significance; the preparation phase can be 
modeled by a decision tree. Many possible instances of this 
“what-if” iteration control may be envisage, pertaining to 
many existing alternatives for exploring a space of 
patterns/models studied, e.g., in machine learning, data 
mining, statistical physics and (agent-based) simulation. 

Many mega-module computations are 
based upon the validity of underlying 
assumptions. Thus, if the assumptions 
cease to be valid, the mega-module itself 
must be invalidated, and then either 
corrected or abandoned. For instance, a 
credit risk predictor used by a bank for 
granting mortgages may become obsolete as an effect of an 
economic crisis that impact household incomes. The 
phenomenon of “drifting” describes the progressive 
invalidation of assumptions under which a model has been 
learned from data. A mega-module M, which is potentially 
subject to drifting, should be paired to an associated drift-
control mega-module C, which assumes the output of M as 
input. The controller normally has no output, however if it 
perceives that the drift has occurred, then it interacts with 
M, by providing suitable controls.      

Many mega-module computations apply to input data 
representing (large) networks and graphs thus making 

parallelization more difficult; if instead a graph has 
modular structure of components (namely sub-networks) 
with high intra-module connectivity and relatively low 
inter-module connectivity, then a natural parallelization can 
be achieved by mapping each sub-network to an internal 
mega-module before 
integrating the results 
using one additional 
combining mega-
module. Such an 
approach enables a 
component-based graph 
decomposition. 

Data-driven mega-modularization should also facilitate 
dynamic adaptation, performed by the invoking 
environment in the context of a mega-module orchestration. 
The presence of mega-module inspection points allows for 
asynchronously extracting parameters describing data 
analysis execution, while the execution is ongoing; in this 
way, the enclosing environment might include a Mega-
Module controller which traces Mega-Module execution, 
estimates the completion time of data analysis, and 
anticipates the quality of its results. The controller may 
adaptively alter the  behavior of a module, for instance by 
raising or by lowering the confidence levels that control the 
output production. 

3. DATA ANALYSIS PROBLEMS 
We reviewed seven recent research experiences, three in 
the mobility data context, and four in the data stream 
context. 
• Problem P1: INDIVIDUAL PROFILING. Given spatio-

temporal information, reconstruct trajectories and find 
trajectory clusters that correspond to routine daily 
commutes of individual citizens [3].  

• Problem P2: COLLECTIVE PROFILING. Given 
spatio-temporal information, reconstruct trajectories and 
aggregate them to find typical traffic routes, each of 
them consisting of sequences of regions [4]. 

• Problem P3: REGION IDENTIFICATION. Given 
spatio-temporal information, reconstruct trajectories and 
map them to edges among cells of a spatial tessellation, 
then partition the resulting network of cells so as to 
recognize regions with high connectivity [5]. 

• Problem P4: TRACKING OF CROWD MOVES. Given 
streams of geo-tagged micro-posts (e.g., geo-tagged 
tweets, foursquare check-ins) from a geographic area, 
detect where crowds are assembling and show how they 
are moving using a stream of heatmaps [6]. 

• Problem P5: BURST OF INTEREST DETECTION. 
Given streams of micro-posts (e.g., tweets, facebook 
status), enrich them with semantic entities they talk 
about, before detecting bursts of interest w.r.t. the 
described entities [7].  

• Problem P6: SENTIMENT SHIFTING. Given streams 
of micro-posts, extract topic(s) and the sentiment 
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relative to the topic(s) and monitor topic-sentiment pairs 
to detect sentiment shifts [8].  

• Problem P7: DATA OUTLIER DETECTION. Given 
streams of data representing measures, summarize them 
by their probability density functions and then detect 
different kinds of outliers [9].   

4. MOBILITY USE CASES 
The common aspects of problems P1-P3 is the presence of 
trajectories as fundamental data pattern, and of trajectory 
reconstruction and clustering as fundamental computational 
steps. 

4.1 Common Pattern Types 
Our approach to the modeling of data analysis problems 
starts with the definition of the pattern types, i.e. generic 
types used for representing mobility [2]. Considering the 
three mobility problems, they all are based on a big dataset 
of observations of mobile objects, associated to their 
positions in space and time. Observations are assembled 
into trajectories that are sequences of observations of the 
same object, further characterized by the length and 
average speed. Given a set of trajectories, a medoid is the 
result of a statistical process that defines their median 
trajectory and variance. The corresponding pattern types 
are shown below using a simple formalism, where square 
brackets denote tuples, curly brackets denote sets, and the 
“<” “>” symbols denote lists. 

Observation: [oid, position[latitude, longitude], time] 
Trajectory: [tid, <Observation>, length, avgSpeed] 
Medoid: [oid, <Observation>, Variance] 
 
In addition to moving points, mobile applications also 
describe geographic regions, typically characterized by 
their geometry, which is a sequence of positions describing 
the region’s border. Regions are typically related to each 
other in a network, which is a collection of nodes and arcs, 
where nodes are associated to regions and arcs connect two 
regions and are further characterized by a weight. The 
corresponding pattern types are below; note that pattern 
type denote minimal information and can be extended in 
each different application, e.g. regions may have a name 
and additional properties such as size and population. 

Region: [rid, <position[latitude, longitude]>] 
Network: [nid, {Region},{[Region, Region, weight]}] 
 
All the problems essentially deal with trajectory assembling 
and managing. Similar trajectories can be grouped into 
clusters, and trajectories can be aggregated in space so as to 
connect regions rather than individual positions; such 
trajectories may be further characterized by their minimum 
and maximum time.  

T-Cluster: [cid, {Trajectory}] 
T- Pattern: [tid, <Region>, min-time, max-time>] 
 

4.2 Models of Mobility Cases 
We considered the three applications and observed that 
they share many aspects that can be modeled as chains of 
Mega-Module applications that progressively produce the 
relevant data.  

4.2.1 Individual Profiling 
Problem P1 is concerned with aggregating the trajectories 
of a single individual to capture her usual commutes; thus it 
requires combining Mega-Modules for reconstructing 
trajectories from observations, then to cluster the 
trajectories of each individual users, and then compute the 
medoid of each cluster and associate it with labels in order 
to extract opportunities for car-pooling. This chain of 
transformations is described in Fig. 2, which visually shows 
trajectory reconstruction, clustering, and profiling.  

 
Figure 2: Problem P1 

We next describe the Mega-Modules: 

• TRAJECTORY RECONSTRUCTION (TR) – builds 
trajectories from observation of moving points, using a 
semantic description of a “stop”. In the pre-processing, 
spatio-temporal observations received as input are 
cleaned, and the history of each user’s movement is 
obtained by ordering their observations according to 
their time. At this point, the data analysis component 
processes each history by dividing it into several sub-
sequences representing trajectories; each trajectory 
represents an individual user’s trip. Data analysis is 
parametric and uses as input the definition of the 
“semantics of a stop”, defined as conjunction of two 
spatio-temporal constraints: a minimum time span and a 
maximum distance between two consecutive points. 
Finally, the post-processing consists of filtering those 
trips that are not meaningful or contain outlier and 
anomalies that can be detected only at this level of 
abstraction, e.g., one-point or out-of-region trips. 

• TRAJECTORY CLUSTERING (TM) – performs a density-
based clustering of trajectory data. The data analysis is 
parametric, it uses as input a spatio-temporal function 
for computing distances between different trajectories. 
The result is a set of clusters of homogeneous (i.e., 
similar) trajectories. Trajectories may be associated 
with application-specific labels concerning their initial 
and final observations; in the example, we obtain two 
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groups of trajectories, tone moving from north to south 
and the other one moving from south to north. 

• MOBILITY PROFILE (MP) – computes the medoids of 
each cluster. The pre-processing is used to partition the 
analysis process into separate threads and to filter those 
sets whose cardinality is below a given threshold. At 
this point, the data analysis component extracts the 
medoids according to a parametric distance function; 
each medoid is associated with a variance describing its 
statistical representativeness. Post-processing gathers all 
the results from the different execution threads, filters 
low-quality medoids and then constructs user’s mobility 
profiles. In Fig. 2, two profiles are associated with a 
given user: (Home) 8:15 → (Work) 8:30 and (Work) 
18:25 → (Work) 18:45, where “Home” and “Work” are 
two labels assigned to the points where their medoid 
trips begin and end, considering the hour of the day in 
which the trips occurs.  
 

4.2.2 Collective Profiling 
Problem P2 is concerned with understanding, in a broad 
sense, how people move across small-scale regions, thus 
building “important” trajectories that are relevant for 
further analysis (e.g. real-time traffic monitoring getting to 
specific locations). The first two steps for solving this 
problem turn out to be identical to the previous use case. 
However, the third step is quite different, as it involves a 
transformation of the most relevant trajectories from 
sequences of positions to sequences of regions.  

 
Figure 3: Problem P2 

Thus, the second problem reuses the modules TR and TC 
and adds to them the Route Identification Mega-Module. 

• ROUTE IDENTIFICATION (RI) - uses the trajectory 
clusters for mining the typical routes, represented as T-
patterns. The pre-processing filters the clusters by 
keeping only those containing trajectories ending in a 
specific place specified by the application, e.g. Linate 
airport. Then, the data analysis component applies the 
T-Pattern discovery algorithm over each set of 
trajectories and extracts typical routes.  

In the example illustrated in Fig. 3, two T-Patterns are 
found: the first one (on the left) represents the people 
arriving at Linate from the south exiting the highway at 
“Via Mecenate” and turning into “Viale Forlanini”, while 

the second (on the right) represents the people arriving at 
Linate existing directly in “Viale Forlanini”.  

The former is often a smarter choice as the “Viale 
Forlanini” exit is often congested.  

4.2.3 Region Identification 
The third problem focuses on recognizing macro-regions 
consisting of regions that are strongly connected, i.e. such 
that most of traffic occurs inside the macro-region, while 

only a small amount of traffic moves between them. This 
problem also uses the Mega-Module for trajectory 
reconstruction, but it then characterizes trajectories as T-
patterns traversing regions, and then describe the induced 
network of region connections in order to discover the 
macro-regions (see Fig. 4). Two new Mega-Modules are 
introduced:  

• GRAPH CONSTRUCTION (GC) – transforms the 
trajectories into a set of sequences using the spatial 
tessellation as input. This is done by intersecting all the 
points of the trajectories with the cells and removing all 
the consecutive repetitions obtained. Thus, a trajectory 
is represented as the sequence of traversed cells without 
the temporal component. Then, each cell is mapped into 
a distinct node of the graph, and trajectories connecting 
two cells are mapped to edges; the weight of each edge 
is proportional to the number of trajectories.  

• COMMUNITY DISCOVERY (CD) – uses Infomap 
algorithm, which is based on a combination of 
information-theoretic techniques and random walks. 
The result is a set of communities, each represented by 
a set of nodes. These sets are then remapped to the 
spatial dimension and joined obtaining the spatial 
borders of the communities. 

5. TEXT STREAM USE CASES 
Problems P4, P5, and P6 are based on independent 
experiences of the authors on text stream analytics. By 
studying them, we realized that they could be effectively 
modeled by an initial common sequence of Mega-Modules. 

Figure 4: Problem P3 
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5.1 Common Pattern Types 
The text items constituting the datasets consist of short 
texts associated with their authors and publication times, 
potentially containing a set of tags, and possibly annotated 
with a geo-position. Each short text is enriched by a set of 
topics – e.g. hashtags or semantic entities extracted from a 

KBs - and then annotated with the author’s sentiment about 
each topic. The corresponding pattern types are shown 
below.  

ShortText: [sid, {word}, user, {tag}, position[latitude, lon-
gitude},time] 
Topic: [tid, {word}]  
EnrichedShortText: [eid, ShortText, {Topic, Sentiment}] 
 
Short texts are produced, enriched and analyzed on the fly. 
They are managed as continuous flows of textual 
information, i.e., text streams. The pattern types for streams 
of texts (of both cases) are timestamped sequences: 

TextStream: [stid, <ShortText,timestamp>] or  
                   [stid, <EnrichedShortText,timestamp>] 
 
Further analysis of these text streams may require the 
introduction of other pattern types: heatmap streams, which 
carry the aggregated information about geographic areas 
from where most of the short text come from, topic 
popularity streams, which carry the aggregated information 
about the most trendy topic under discussion, and 
contradictions, which are the time points when positive and 
negative sentiments have been simultaneously recorded 
with respect to a specific topic, or the time points when a 
sentiment shift has occurred (i.e., positive sentiments on a 
specific topic have turned into negative, or vice versa). 

HeatmapStream: [stid, <Region, value, timestamp>] 
TopicPopularityStreams: [stid, <Topic,value,timestamp>] 
Contradiction Stream: [stid, <topic, time, timestamp>] 
 

5.2 Models of Text Stream Cases 
In casting problems P4, P5 and P6 as a mega-modeling 
process, we identified a pipeline for short text enrichment 
that is common to all three problems. 

5.2.1 Short Text Enrichment Pipeline 

In the pipeline, the (infinite) incoming text stream is 
chunked in manageable blocks of short texts using 
windows, then each short text is parsed in order to detect 
the topics that are mentioned, and subsequently, the 
sentiment expressed in the short text for each one of these 
topics is extracted. Three new Mega-Modules are 
introduced: 

• WINDOWING (W) – transforms a portion of a (by 
definition infinite) stream in a (finite) window – a block 
of processable information. Several types of windows 
exist, the most frequently used are: physical windows, 
which can hold a fixed number of data items, logical 
windows, which contain all the data elements received 
in a given time period, tumbling windows, whose 
content does not overlap, and sliding windows whose 
content overlaps. We use physical tumbling windows. 

• TOPIC EXTRACTOR (TE) – extracts the topic, or topics 
that are mentioned in a short text. Evidently, when the 
short text is large enough, more than one topic may be 
mentioned. The topic extraction Mega-Module may 
look in the short text for a pre-defined set of topics 
(e.g., a list of topics that has been constructed based on 
domain knowledge, or a preceding processing step), or 
it may discover ad-hoc topics. 

• SENTIMENT EXTRACTOR (SE) – extracts the sentiment 
corresponding to each of the topics mentioned in the 
working block. The sentiment value expresses the 
opinion represented as a discrete (e.g., 
negative/neutral/positive) or continuous (e.g., in the 
interval [-1,1]) value, of the subject towards a specific 
topic. In Fig. 5, sentiments are represented as real 
values between -1 and 1. 

Figure 5: Problem P4, P5 and P6. 
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5.2.2 Text Stream Analytics Mega-Modules 
The blocks of enriched short texts delivered by the reusable 
pipeline can then be further processed. In modeling our past 
text analytics experiences, three new Mega-Modules are 
introduced: 

• CROWD MOVEMENT TRACKER (CMT) – tracks the 
movement of the crowds using geo-tagged user 
statements, and produces a time series of heat maps. 
The analysis can be limited to a given area (e.g., in [6] 
the London Olympic stadium and the train and metro 
stations around it, in [7] a tourist district of Seoul) and 
can be aware of the position (and shape) of the venues, 
the calendar of the events, and other background 
information. For instance, the series of heat maps in the 
upper-right corner of Fig. 5 show a crowd entering the 
Olympic stadium for the London 2012 Olympic Games 
opening ceremony. 

• ATTENTION TRACKER (AT) –  tracks the attention of 
the crowds using sentiment about a topic in the enriched 
short text and outputs a topic popularity stream.  

• CONTRADICTION IDENTIFIER (CI) –   organizes the 
information in the enriched short texts in an 
(incrementally maintainable) index structure that is used 
for efficiently managing the information on the 
sentiments expressed on various topics over time. This 
index structure is then used for identifying the time 
intervals and topics for which a sentiment-based 
contradiction occurs. The contradictions can be either 
very different sentiments expressed on the same topic or 
sentiment shifts (i.e., change of polarity of the 
sentiments expressed on some topic); they can be 
identified by examining the index structure at different 
time granularities 0. The final result is a stream of such 
contradictions, which are represented as peaks in the 
data stream shown in the bottom right of Fig. 5.  

6. DATA STREAM USE CASE 
Problem P7 is concerned with streams of data representing 
measures, which need to be first chunked into working sets 
using windows, then summarized, and then analyzed for 
identifying outliers.  

6.1 Common Pattern Types 
The datasets to be analyzed consist of streams of several 
measures produced by different sensors. The corresponding 
pattern types are shown below.  

Measure: [sid, sensor,{oid, variable, value}] 
MeasureStream:[stid,<Measure, timestamp>] 
 
6.2 Model of P7 Case 
Problem P7 is solved by a pipeline of Mega-Modules: the 
first one is the windowing Mega-Module, which chunks the 
stream using a sliding window, the second one computes a 
summary of the values in the window, and the third one 
performs outlier detection (see Fig. 6). 

 
Figure 6: Problem P7 

• SUMMARIZER (SR) – builds a concise summary of 
the multidimensional features associated to a set of 
given objects (e.g., based on histograms, or kernel 
density estimators).  

• OUTLIER DETECTOR (OD) – given a population of 
objects described by multidimensional features and a 
notion of distance in the feature space, this module 
identifies an object as an outlier when the vector of the 
object differs significantly from the median vector of 
the population, or when the local neighborhood of the 
object is significantly less dense than its extended 
neighborhood.  

After modeling P7, we realized that the outlier detection 
module performs a task that is very similar to the post-
processing of the Trajectory Reconstruction (TR) module 
of P1. Indeed, once a trajectory is defined as an appropriate 
vector of features, a trajectory is outlier when its features 
significantly diverge from the features of the median. Then 
a remodeling of P1 takes place, by eliminating the post-
processing from TR and chaining OD between TR and TM. 
This experience gives an indication of how we expect 
mega-modeling to evolve, with both top-down problem 
decompositions and bottom-up identification of reusable 
components across problems. 
7. MEGA-MODULES IN THE CLOUD 
In the following we show how to transform Mega-Modules 
into executable programs that use the Map/Reduce (M/R) 
paradigm, and could be executed on systems such as 
Hadoop, Dryad, or Stratosphere [10]. In particular, we use 
the Stratosphere platform, which provides two different 
programming models: 

1. The PACT programming model, which supports flow 
programs based on second order functions (such as 
Map and Reduce) and User Defined Functions (UDFs). 
For example, the relational SELECTION operator is 
modeled by a MAP together with an UDF removing 
the input tuples that do not satisfy a filter predicate. 

2. For higher level programming, Stratosphere provides a 
programming framework called SOPREMO which 
allows programmers to define custom packages, the 
respective operators and their instantiation.  

3. The METEOR language allows programmer to write 
programs by specifying sequences of Jason-like 
statements using built-in operators or operators from 
one or more SOPREMO packages. Each METEOR 
statement may refer to output variables of previous 
statements or to input variables.  
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Once a METEOR program has been fully specified 
including data sources and data sinks, a compiler compiles 
it into a PACT program by: 

• replacing library specific operators by their 
corresponding instantiations (part of the library); 

• “chaining together” all partial PACT programs 
according to the variables of the Meteor program. 

The result of this compilation is an executable PACT 
program which then may be optimized and compiled 
further for execution in a cluster based environment. 
Similar transformations are possible for target execution 
systems such as Hadoop (using the languages PIG or Hive) 
or Dryad (using the SCOPE language). 

Fig. 7 shows a fragment of METEOR program which 
implements the Mega-Module TR (TRAJECTORY 
RECONSTRUCTION), which uses functions of previously 
defined SOPREMO packages. The program reads 
observations from the input, then cleans the observations 
that are considered as outlier or inconsistent, then builds 
histories as sequences of observations, then reconstructs 
trajectories using the StartStopFunction that is provided as 
local input to the TrajectoryReconstruction function, and 
finally writes trajectories to the output; note that outlier 
filtering is omitted from TR and associated with the Mega-
Module OD. Mega-Modules OUTLIER DETECTION (OD), 
TRAJECTORY CLUSTERING (TM) and MOBILITY PROFILE 
(MP) can be encoded by similar METEOR programs.  

 
Figure 7: METEOR Program Fragment for TR 

Problem P1 was used in an application context where 
similar profiles of citizen are matched so as to propose car-
pooling options to them. Such an extension can be 
supported as follows. First, observation data are extended 
with the identity of citizens. Then the high-level 
computation is a METEOR program that, for each user, 
invokes the function ComputeProfile that embodies the 
Mega-Modules TR, OD, TC and MP, and then calls a 
match function that produces pairs of candidate commuters. 
A simplified version of the corresponding METEOR 
program fragment is: 

$CitizenData = read from input $ObservationData 
$CitizenCommutes =  
    Group CitizenData by CitizenID into  
         {(CitizenID, Profile: 
                  ComputeProfile (CitizenData.Observations)}; 
$Candidates = Match $CitizenCommutes; 
write $Candidates to output CandidateCommuters. 
 
Finally, note that current M/R frameworks, including 
Stratosphere, do not support streams; however,  windows 
allow gathering large collections of information during 
suitably long periods of time; thus, each window can be 
processes as a separate batch. In this way, it is possible to 
manage stream problems, such as P4-P7.   
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