
Towards Mega-Modeling: A Walk through Data
Analysis Experiences

Stefano Ceri
DEIB – Politecnico di Milano

stefano.ceri@polimi.it

Themis Palpanas
DISI – University of Trento

themis@disi.unitn.eu

Emanuele Della Valle
DEIB – Politecnico di Milano

emanuele.dellavalle@polimi.it

Dino Pedreschi
KDD Lab - Università di Pisa

pedre@di.unipi.it

Johann-Christoph Freytag
DBIS - Humboldt-Universität zu Berlin
freytag@informatik.hu-berlin.de

Roberto Trasarti

KDD Lab – ISTI,CNR Pisa
roberto.trasarti@isti.cnr.it

1. INTRODUCTION
Big data is perceived as a fundamental ingredient for
fostering the progress of science in a variety of disciplines.
However, we believe that the current ICT solutions are not
adequate for this challenge. Abstractions and languages for
big data management are tailored to vertical domains and
influenced by underlying ICT platforms, hence unsuitable
for supporting “computational interdisciplinarity”, as it is
required if one wants to use the best of, e.g., analytical,
inductive, and simulation techniques, all at work on the
same data. In other words, “our society is data-rich, but it
lacks the conceptual tools to handle it” [1].

In previous work [2], we advocate the need for a new
approach to data analysis, based on mega-modeling as a
new holistic data and model management system for the
acquisition, composition, integration, management,
querying and mining of data and models, capable of
mastering the co-evolution of data and models and of
supporting the creation of what-if analyses, predictive
analytics and scenario explorations.

In this paper, we provide some evidence that mega-
modeling is a viable approach to data analysis by using a
bottom-up, inductive method. We consider several
experiences of data analysis research performed at our
home institutions and examine them in retrospective,
inducing their mega-modularization a-posteriori. This
exercise convinces us that the mega-modeling approach
could be highly beneficial.

2. MEGA-MODELING
In this section, we provide a historical perspective on the
development of the mega-modeling concept and a self-
contained summary of our previous work on Mega-
modeling [2].

2.1 Unifying Data-centric Disciplines
Big Data analytics calls for a comprehensive theory and
technology that blend simulation, analytical, ontological
and data-driven models into one picture. Modeling, as we

know it today, is required to scale up to a higher level, that
we call mega-modeling [2].

The database/data mining community has been
investigating approaches that unify data analysis and
mining, since the seminal paper on inductive databases and
data mining as a querying process by Imielinski and
Mannila [11]. A fundamental aspect of [11] is the
representation of data mining activities through patterns,
whereas patterns can be seamlessly integrated with data and
can therefore be the subject of queries; such view attempts
a conceptualization and generalization of data mining. Yet,
this idea has found concrete realizations only lately and
partially; e.g., it is used in [12], where extracted data
patterns are defined as views on top of data tables, and as
such can be composed with domain-specific data
representing spatio-temporal trajectories expressing human
mobility [12].

The roots of mega-modeling can be traced to an article
appeared in 1992 on “Mega-programming” [13] – large,
autonomous computing systems whose interfaces are
described through a data-centric approach and whose
execution behaviour can be inspected – and to another one
that appeared about one decade later on “mega-models”
[14] – models of which at least some elements represent
and/or refer to other models or meta-models – that paved
the road to the school on Model-Driven Engineering
(MDE) [15].

However, the innovative aspects of mega-modeling go
beyond classical model-driven software generation. Mega-
modeling aims at defining a comprehensive theory and
technology of model construction (with an emphasis on
incremental bottom-up approaches), model search, model
fitness evaluation, model composition, model reuse and
model evolution. We need entirely new models of models,
namely algebras of objects representing patterns, rules,
laws, equations, etc., which are either mined/induced from
data, or based on deep mathematical findings or agent-
based reasoning – an overarching algebra of data and
models that allow us to devise a new holistic system for

SIGMOD Record, September 2013 (Vol. 42, No. 3) 19

integrated data and model acquisition, integration, querying
and mining, capable of mastering the complexity of the
knowledge discovery process.

2.2 Mega-Modules
The building block of mega-modeling is the mega-module
– a software component capable of processing “big data”
for analytical purposes. Every mega-module performs a
well identified computation, which can be considered a
unitary transformation from inputs to outputs. Inputs and
outputs take the form of data and of patterns, where data
are domain-specific both in terms of their schema end
instances, while patterns are forms of data regularity or
rules whose schema is domain-independent and whose
content typically reflects collective or aggregated data
properties; patterns may be extracted by data analysis
algorithms, which may in turn be embodied within mega
modules. Every mega-module can internally use data and
patterns that are considered as invariant in the context of
the computation, whose extension can be either local (e.g.,
organization-specific) or global (e.g., stored in public
databases or ontologies).

Every mega-module exhibits a format that consists of three
distinct phases of information processing, although such
phases can vary significantly for their internal organization:
data preparation, analysis, and evaluation.

• The first phase, data preparation, consists of the
processing of input data and patterns for the purpose of
assembling input objects that will be the subjects of the
analysis. The distinction between data and object is of
semantic nature: data preparation typically assembles
several elementary data in the input to generate a single
object for the purpose of analysis. The aggregative
process that builds a object can be driven by a variety of
purposes – abstracting irrelevant differences,
recognizing common features, aggregating over
elementary items which satisfy given predicates – thus,
semantically interpreting and reconstructing data. The
keywords for the preparation phase are: data sensing,
acquisition, integration, transformation, semantic
enrichment.

• The second phase, data analysis, consists of extracting
computed objects from input data, possibly using the
input patterns as references. Data analysis produces the
response to a specific problem by performing the core
scientific processing, and uses a variety of methods,
ranging from mathematical to statistical models, from
data mining to machine learning, from simulation to
prediction, including crowd-sourcing as a way for asking
social responses. The keywords for the analysis phase
are: mining, learning, modeling, simulation, forecast.

• The third phase, data evaluation, consists of preparing
the output objects, which may in turn be presented as
data and/or patterns. This phase consists of filtering or
ranking computed objects based on their relevance, and

possibly of a post-processing so as to observe the result
in the most suitable way for the mega-module enclosing
environment or user. The keywords for the evaluation
phase are: quality assessment, filtering, significance
measurements, presentation, delivery, visualization.

In Fig. 1, we propose a mega-module graphical element,
which visually captures the characteristics of a mega-
module as described above.

Figure 1: Visual presentation of a generic mega-module.

The presence of the three phases allows us to define two
standard inspection points within a mega-module, used for
asynchronous control and feedback that mega-modules
should provide to their enclosing environment. The first
one, after preparation, provides a view on objects
abstracted/reconstructed from data; the second one, after
analysis, provides a view of the objects resulting from the
analysis.

A mega-module inspection consists in extracting its
controls asynchronously, during its execution; this in turn
allows the enclosing environment to trace mega-module
execution, to estimate completion time, and to anticipate
the quality of its results. We regard the data and patterns
that may be exchanged by a mega-module during its
execution as the mega-module controls. A mega-module
should expose commands to the enclosing environment that
may alter its behavior, for instance by rising or by lowering
confidence levels during analysis based on the quality of
intermediate results or on the expected completion time. It
should also be possible to suspend, resume, and terminate
the mega-module computation.

Wrapping up, we associate to each mega-module the
potential of expressing classes of computations on top of
big data, thereby highlighting the computational nature of
the modules and the support of dynamic aspects related to
inspection, adaptation, and integration. In the design or
reverse engineering of Mega-Modules, data come first:
clarifying their input and output data by using known
pattern types is the key aspect for guaranteeing module
interoperability and reuse. Emphasizing the role of data
transformers for Mega-Modules opens up to
using/inventing algebraic languages for data-driven
orchestrations and optimizations. Moreover, the possibility
of declaring the streaming or ordered nature of data opens
up possibilities for a different class of optimizations that
emphasize recent and ordered data.

20 SIGMOD Record, September 2013 (Vol. 42, No. 3)

2.3 Mega-modularizing Big Data Analysis
In mega-modeling, a big data analysis problem is modeled
as a data-driven workflow involving several Mega-
Modules. Composition abstractions are the means of
combining mega-modules to the purpose of creating
sophisticated analytical processes. Composition
abstractions reflect the classical ways of assembling
modules into higher order computations. Every abstraction
induces a hierarchical decomposition, singling out an
enclosing mega-module and one or more enclosed mega-
modules; our goal is to describe computations over big data
as top-down recursive applications of a well-designed
collection of abstractions. In [2], we present an initial set of
abstractions; they are orthogonal, but most likely
incomplete, and further investigation is needed to
consolidate them. The set includes traditional pipeline and
parallel composition, but also typical data mining ones such
as what-if control, drift control and component-based graph
decomposition.

What-if control is a classical
way of mining big data by
exploring many alternative
solutions that would occur for
different choices of initial
setting of models and/or
parameters. Essentially, this
control abstraction is a form
of iteration driven by an analytical goal, allowing to repeat
a mega-module under different parameterizations of input
data and patterns, until a final analytical result is obtained,
which possesses a desired level of, e.g., quality, precision
or statistical significance; the preparation phase can be
modeled by a decision tree. Many possible instances of this
“what-if” iteration control may be envisage, pertaining to
many existing alternatives for exploring a space of
patterns/models studied, e.g., in machine learning, data
mining, statistical physics and (agent-based) simulation.

Many mega-module computations are
based upon the validity of underlying
assumptions. Thus, if the assumptions
cease to be valid, the mega-module itself
must be invalidated, and then either
corrected or abandoned. For instance, a
credit risk predictor used by a bank for
granting mortgages may become obsolete as an effect of an
economic crisis that impact household incomes. The
phenomenon of “drifting” describes the progressive
invalidation of assumptions under which a model has been
learned from data. A mega-module M, which is potentially
subject to drifting, should be paired to an associated drift-
control mega-module C, which assumes the output of M as
input. The controller normally has no output, however if it
perceives that the drift has occurred, then it interacts with
M, by providing suitable controls.

Many mega-module computations apply to input data
representing (large) networks and graphs thus making

parallelization more difficult; if instead a graph has
modular structure of components (namely sub-networks)
with high intra-module connectivity and relatively low
inter-module connectivity, then a natural parallelization can
be achieved by mapping each sub-network to an internal
mega-module before
integrating the results
using one additional
combining mega-
module. Such an
approach enables a
component-based graph
decomposition.

Data-driven mega-modularization should also facilitate
dynamic adaptation, performed by the invoking
environment in the context of a mega-module orchestration.
The presence of mega-module inspection points allows for
asynchronously extracting parameters describing data
analysis execution, while the execution is ongoing; in this
way, the enclosing environment might include a Mega-
Module controller which traces Mega-Module execution,
estimates the completion time of data analysis, and
anticipates the quality of its results. The controller may
adaptively alter the behavior of a module, for instance by
raising or by lowering the confidence levels that control the
output production.

3. DATA ANALYSIS PROBLEMS
We reviewed seven recent research experiences, three in
the mobility data context, and four in the data stream
context.
• Problem P1: INDIVIDUAL PROFILING. Given spatio-

temporal information, reconstruct trajectories and find
trajectory clusters that correspond to routine daily
commutes of individual citizens [3].

• Problem P2: COLLECTIVE PROFILING. Given
spatio-temporal information, reconstruct trajectories and
aggregate them to find typical traffic routes, each of
them consisting of sequences of regions [4].

• Problem P3: REGION IDENTIFICATION. Given
spatio-temporal information, reconstruct trajectories and
map them to edges among cells of a spatial tessellation,
then partition the resulting network of cells so as to
recognize regions with high connectivity [5].

• Problem P4: TRACKING OF CROWD MOVES. Given
streams of geo-tagged micro-posts (e.g., geo-tagged
tweets, foursquare check-ins) from a geographic area,
detect where crowds are assembling and show how they
are moving using a stream of heatmaps [6].

• Problem P5: BURST OF INTEREST DETECTION.
Given streams of micro-posts (e.g., tweets, facebook
status), enrich them with semantic entities they talk
about, before detecting bursts of interest w.r.t. the
described entities [7].

• Problem P6: SENTIMENT SHIFTING. Given streams
of micro-posts, extract topic(s) and the sentiment

SIGMOD Record, September 2013 (Vol. 42, No. 3) 21

relative to the topic(s) and monitor topic-sentiment pairs
to detect sentiment shifts [8].

• Problem P7: DATA OUTLIER DETECTION. Given
streams of data representing measures, summarize them
by their probability density functions and then detect
different kinds of outliers [9].

4. MOBILITY USE CASES
The common aspects of problems P1-P3 is the presence of
trajectories as fundamental data pattern, and of trajectory
reconstruction and clustering as fundamental computational
steps.

4.1 Common Pattern Types
Our approach to the modeling of data analysis problems
starts with the definition of the pattern types, i.e. generic
types used for representing mobility [2]. Considering the
three mobility problems, they all are based on a big dataset
of observations of mobile objects, associated to their
positions in space and time. Observations are assembled
into trajectories that are sequences of observations of the
same object, further characterized by the length and
average speed. Given a set of trajectories, a medoid is the
result of a statistical process that defines their median
trajectory and variance. The corresponding pattern types
are shown below using a simple formalism, where square
brackets denote tuples, curly brackets denote sets, and the
“<” “>” symbols denote lists.

Observation: [oid, position[latitude, longitude], time]
Trajectory: [tid, <Observation>, length, avgSpeed]
Medoid: [oid, <Observation>, Variance]

In addition to moving points, mobile applications also
describe geographic regions, typically characterized by
their geometry, which is a sequence of positions describing
the region’s border. Regions are typically related to each
other in a network, which is a collection of nodes and arcs,
where nodes are associated to regions and arcs connect two
regions and are further characterized by a weight. The
corresponding pattern types are below; note that pattern
type denote minimal information and can be extended in
each different application, e.g. regions may have a name
and additional properties such as size and population.

Region: [rid, <position[latitude, longitude]>]
Network: [nid, {Region},{[Region, Region, weight]}]

All the problems essentially deal with trajectory assembling
and managing. Similar trajectories can be grouped into
clusters, and trajectories can be aggregated in space so as to
connect regions rather than individual positions; such
trajectories may be further characterized by their minimum
and maximum time.

T-Cluster: [cid, {Trajectory}]
T- Pattern: [tid, <Region>, min-time, max-time>]

4.2 Models of Mobility Cases
We considered the three applications and observed that
they share many aspects that can be modeled as chains of
Mega-Module applications that progressively produce the
relevant data.

4.2.1 Individual Profiling
Problem P1 is concerned with aggregating the trajectories
of a single individual to capture her usual commutes; thus it
requires combining Mega-Modules for reconstructing
trajectories from observations, then to cluster the
trajectories of each individual users, and then compute the
medoid of each cluster and associate it with labels in order
to extract opportunities for car-pooling. This chain of
transformations is described in Fig. 2, which visually shows
trajectory reconstruction, clustering, and profiling.

Figure 2: Problem P1

We next describe the Mega-Modules:

• TRAJECTORY RECONSTRUCTION (TR) – builds
trajectories from observation of moving points, using a
semantic description of a “stop”. In the pre-processing,
spatio-temporal observations received as input are
cleaned, and the history of each user’s movement is
obtained by ordering their observations according to
their time. At this point, the data analysis component
processes each history by dividing it into several sub-
sequences representing trajectories; each trajectory
represents an individual user’s trip. Data analysis is
parametric and uses as input the definition of the
“semantics of a stop”, defined as conjunction of two
spatio-temporal constraints: a minimum time span and a
maximum distance between two consecutive points.
Finally, the post-processing consists of filtering those
trips that are not meaningful or contain outlier and
anomalies that can be detected only at this level of
abstraction, e.g., one-point or out-of-region trips.

• TRAJECTORY CLUSTERING (TM) – performs a density-
based clustering of trajectory data. The data analysis is
parametric, it uses as input a spatio-temporal function
for computing distances between different trajectories.
The result is a set of clusters of homogeneous (i.e.,
similar) trajectories. Trajectories may be associated
with application-specific labels concerning their initial
and final observations; in the example, we obtain two

22 SIGMOD Record, September 2013 (Vol. 42, No. 3)

groups of trajectories, tone moving from north to south
and the other one moving from south to north.

• MOBILITY PROFILE (MP) – computes the medoids of
each cluster. The pre-processing is used to partition the
analysis process into separate threads and to filter those
sets whose cardinality is below a given threshold. At
this point, the data analysis component extracts the
medoids according to a parametric distance function;
each medoid is associated with a variance describing its
statistical representativeness. Post-processing gathers all
the results from the different execution threads, filters
low-quality medoids and then constructs user’s mobility
profiles. In Fig. 2, two profiles are associated with a
given user: (Home) 8:15 → (Work) 8:30 and (Work)
18:25 → (Work) 18:45, where “Home” and “Work” are
two labels assigned to the points where their medoid
trips begin and end, considering the hour of the day in
which the trips occurs.

4.2.2 Collective Profiling
Problem P2 is concerned with understanding, in a broad
sense, how people move across small-scale regions, thus
building “important” trajectories that are relevant for
further analysis (e.g. real-time traffic monitoring getting to
specific locations). The first two steps for solving this
problem turn out to be identical to the previous use case.
However, the third step is quite different, as it involves a
transformation of the most relevant trajectories from
sequences of positions to sequences of regions.

Figure 3: Problem P2

Thus, the second problem reuses the modules TR and TC
and adds to them the Route Identification Mega-Module.

• ROUTE IDENTIFICATION (RI) - uses the trajectory
clusters for mining the typical routes, represented as T-
patterns. The pre-processing filters the clusters by
keeping only those containing trajectories ending in a
specific place specified by the application, e.g. Linate
airport. Then, the data analysis component applies the
T-Pattern discovery algorithm over each set of
trajectories and extracts typical routes.

In the example illustrated in Fig. 3, two T-Patterns are
found: the first one (on the left) represents the people
arriving at Linate from the south exiting the highway at
“Via Mecenate” and turning into “Viale Forlanini”, while

the second (on the right) represents the people arriving at
Linate existing directly in “Viale Forlanini”.

The former is often a smarter choice as the “Viale
Forlanini” exit is often congested.

4.2.3 Region Identification
The third problem focuses on recognizing macro-regions
consisting of regions that are strongly connected, i.e. such
that most of traffic occurs inside the macro-region, while

only a small amount of traffic moves between them. This
problem also uses the Mega-Module for trajectory
reconstruction, but it then characterizes trajectories as T-
patterns traversing regions, and then describe the induced
network of region connections in order to discover the
macro-regions (see Fig. 4). Two new Mega-Modules are
introduced:

• GRAPH CONSTRUCTION (GC) – transforms the
trajectories into a set of sequences using the spatial
tessellation as input. This is done by intersecting all the
points of the trajectories with the cells and removing all
the consecutive repetitions obtained. Thus, a trajectory
is represented as the sequence of traversed cells without
the temporal component. Then, each cell is mapped into
a distinct node of the graph, and trajectories connecting
two cells are mapped to edges; the weight of each edge
is proportional to the number of trajectories.

• COMMUNITY DISCOVERY (CD) – uses Infomap
algorithm, which is based on a combination of
information-theoretic techniques and random walks.
The result is a set of communities, each represented by
a set of nodes. These sets are then remapped to the
spatial dimension and joined obtaining the spatial
borders of the communities.

5. TEXT STREAM USE CASES
Problems P4, P5, and P6 are based on independent
experiences of the authors on text stream analytics. By
studying them, we realized that they could be effectively
modeled by an initial common sequence of Mega-Modules.

Figure 4: Problem P3

SIGMOD Record, September 2013 (Vol. 42, No. 3) 23

5.1 Common Pattern Types
The text items constituting the datasets consist of short
texts associated with their authors and publication times,
potentially containing a set of tags, and possibly annotated
with a geo-position. Each short text is enriched by a set of
topics – e.g. hashtags or semantic entities extracted from a

KBs - and then annotated with the author’s sentiment about
each topic. The corresponding pattern types are shown
below.

ShortText: [sid, {word}, user, {tag}, position[latitude, lon-
gitude},time]
Topic: [tid, {word}]
EnrichedShortText: [eid, ShortText, {Topic, Sentiment}]

Short texts are produced, enriched and analyzed on the fly.
They are managed as continuous flows of textual
information, i.e., text streams. The pattern types for streams
of texts (of both cases) are timestamped sequences:

TextStream: [stid, <ShortText,timestamp>] or
 [stid, <EnrichedShortText,timestamp>]

Further analysis of these text streams may require the
introduction of other pattern types: heatmap streams, which
carry the aggregated information about geographic areas
from where most of the short text come from, topic
popularity streams, which carry the aggregated information
about the most trendy topic under discussion, and
contradictions, which are the time points when positive and
negative sentiments have been simultaneously recorded
with respect to a specific topic, or the time points when a
sentiment shift has occurred (i.e., positive sentiments on a
specific topic have turned into negative, or vice versa).

HeatmapStream: [stid, <Region, value, timestamp>]
TopicPopularityStreams: [stid, <Topic,value,timestamp>]
Contradiction Stream: [stid, <topic, time, timestamp>]

5.2 Models of Text Stream Cases
In casting problems P4, P5 and P6 as a mega-modeling
process, we identified a pipeline for short text enrichment
that is common to all three problems.

5.2.1 Short Text Enrichment Pipeline

In the pipeline, the (infinite) incoming text stream is
chunked in manageable blocks of short texts using
windows, then each short text is parsed in order to detect
the topics that are mentioned, and subsequently, the
sentiment expressed in the short text for each one of these
topics is extracted. Three new Mega-Modules are
introduced:

• WINDOWING (W) – transforms a portion of a (by
definition infinite) stream in a (finite) window – a block
of processable information. Several types of windows
exist, the most frequently used are: physical windows,
which can hold a fixed number of data items, logical
windows, which contain all the data elements received
in a given time period, tumbling windows, whose
content does not overlap, and sliding windows whose
content overlaps. We use physical tumbling windows.

• TOPIC EXTRACTOR (TE) – extracts the topic, or topics
that are mentioned in a short text. Evidently, when the
short text is large enough, more than one topic may be
mentioned. The topic extraction Mega-Module may
look in the short text for a pre-defined set of topics
(e.g., a list of topics that has been constructed based on
domain knowledge, or a preceding processing step), or
it may discover ad-hoc topics.

• SENTIMENT EXTRACTOR (SE) – extracts the sentiment
corresponding to each of the topics mentioned in the
working block. The sentiment value expresses the
opinion represented as a discrete (e.g.,
negative/neutral/positive) or continuous (e.g., in the
interval [-1,1]) value, of the subject towards a specific
topic. In Fig. 5, sentiments are represented as real
values between -1 and 1.

Figure 5: Problem P4, P5 and P6.

24 SIGMOD Record, September 2013 (Vol. 42, No. 3)

5.2.2 Text Stream Analytics Mega-Modules
The blocks of enriched short texts delivered by the reusable
pipeline can then be further processed. In modeling our past
text analytics experiences, three new Mega-Modules are
introduced:

• CROWD MOVEMENT TRACKER (CMT) – tracks the
movement of the crowds using geo-tagged user
statements, and produces a time series of heat maps.
The analysis can be limited to a given area (e.g., in [6]
the London Olympic stadium and the train and metro
stations around it, in [7] a tourist district of Seoul) and
can be aware of the position (and shape) of the venues,
the calendar of the events, and other background
information. For instance, the series of heat maps in the
upper-right corner of Fig. 5 show a crowd entering the
Olympic stadium for the London 2012 Olympic Games
opening ceremony.

• ATTENTION TRACKER (AT) – tracks the attention of
the crowds using sentiment about a topic in the enriched
short text and outputs a topic popularity stream.

• CONTRADICTION IDENTIFIER (CI) – organizes the
information in the enriched short texts in an
(incrementally maintainable) index structure that is used
for efficiently managing the information on the
sentiments expressed on various topics over time. This
index structure is then used for identifying the time
intervals and topics for which a sentiment-based
contradiction occurs. The contradictions can be either
very different sentiments expressed on the same topic or
sentiment shifts (i.e., change of polarity of the
sentiments expressed on some topic); they can be
identified by examining the index structure at different
time granularities 0. The final result is a stream of such
contradictions, which are represented as peaks in the
data stream shown in the bottom right of Fig. 5.

6. DATA STREAM USE CASE
Problem P7 is concerned with streams of data representing
measures, which need to be first chunked into working sets
using windows, then summarized, and then analyzed for
identifying outliers.

6.1 Common Pattern Types
The datasets to be analyzed consist of streams of several
measures produced by different sensors. The corresponding
pattern types are shown below.

Measure: [sid, sensor,{oid, variable, value}]
MeasureStream:[stid,<Measure, timestamp>]

6.2 Model of P7 Case
Problem P7 is solved by a pipeline of Mega-Modules: the
first one is the windowing Mega-Module, which chunks the
stream using a sliding window, the second one computes a
summary of the values in the window, and the third one
performs outlier detection (see Fig. 6).

Figure 6: Problem P7

• SUMMARIZER (SR) – builds a concise summary of
the multidimensional features associated to a set of
given objects (e.g., based on histograms, or kernel
density estimators).

• OUTLIER DETECTOR (OD) – given a population of
objects described by multidimensional features and a
notion of distance in the feature space, this module
identifies an object as an outlier when the vector of the
object differs significantly from the median vector of
the population, or when the local neighborhood of the
object is significantly less dense than its extended
neighborhood.

After modeling P7, we realized that the outlier detection
module performs a task that is very similar to the post-
processing of the Trajectory Reconstruction (TR) module
of P1. Indeed, once a trajectory is defined as an appropriate
vector of features, a trajectory is outlier when its features
significantly diverge from the features of the median. Then
a remodeling of P1 takes place, by eliminating the post-
processing from TR and chaining OD between TR and TM.
This experience gives an indication of how we expect
mega-modeling to evolve, with both top-down problem
decompositions and bottom-up identification of reusable
components across problems.
7. MEGA-MODULES IN THE CLOUD
In the following we show how to transform Mega-Modules
into executable programs that use the Map/Reduce (M/R)
paradigm, and could be executed on systems such as
Hadoop, Dryad, or Stratosphere [10]. In particular, we use
the Stratosphere platform, which provides two different
programming models:

1. The PACT programming model, which supports flow
programs based on second order functions (such as
Map and Reduce) and User Defined Functions (UDFs).
For example, the relational SELECTION operator is
modeled by a MAP together with an UDF removing
the input tuples that do not satisfy a filter predicate.

2. For higher level programming, Stratosphere provides a
programming framework called SOPREMO which
allows programmers to define custom packages, the
respective operators and their instantiation.

3. The METEOR language allows programmer to write
programs by specifying sequences of Jason-like
statements using built-in operators or operators from
one or more SOPREMO packages. Each METEOR
statement may refer to output variables of previous
statements or to input variables.

SIGMOD Record, September 2013 (Vol. 42, No. 3) 25

Once a METEOR program has been fully specified
including data sources and data sinks, a compiler compiles
it into a PACT program by:

• replacing library specific operators by their
corresponding instantiations (part of the library);

• “chaining together” all partial PACT programs
according to the variables of the Meteor program.

The result of this compilation is an executable PACT
program which then may be optimized and compiled
further for execution in a cluster based environment.
Similar transformations are possible for target execution
systems such as Hadoop (using the languages PIG or Hive)
or Dryad (using the SCOPE language).

Fig. 7 shows a fragment of METEOR program which
implements the Mega-Module TR (TRAJECTORY
RECONSTRUCTION), which uses functions of previously
defined SOPREMO packages. The program reads
observations from the input, then cleans the observations
that are considered as outlier or inconsistent, then builds
histories as sequences of observations, then reconstructs
trajectories using the StartStopFunction that is provided as
local input to the TrajectoryReconstruction function, and
finally writes trajectories to the output; note that outlier
filtering is omitted from TR and associated with the Mega-
Module OD. Mega-Modules OUTLIER DETECTION (OD),
TRAJECTORY CLUSTERING (TM) and MOBILITY PROFILE
(MP) can be encoded by similar METEOR programs.

Figure 7: METEOR Program Fragment for TR

Problem P1 was used in an application context where
similar profiles of citizen are matched so as to propose car-
pooling options to them. Such an extension can be
supported as follows. First, observation data are extended
with the identity of citizens. Then the high-level
computation is a METEOR program that, for each user,
invokes the function ComputeProfile that embodies the
Mega-Modules TR, OD, TC and MP, and then calls a
match function that produces pairs of candidate commuters.
A simplified version of the corresponding METEOR
program fragment is:

$CitizenData = read from input $ObservationData
$CitizenCommutes =
 Group CitizenData by CitizenID into
 {(CitizenID, Profile:
 ComputeProfile (CitizenData.Observations)};
$Candidates = Match $CitizenCommutes;
write $Candidates to output CandidateCommuters.

Finally, note that current M/R frameworks, including
Stratosphere, do not support streams; however, windows
allow gathering large collections of information during
suitably long periods of time; thus, each window can be
processes as a separate batch. In this way, it is possible to
manage stream problems, such as P4-P7.

ACKNOWLEDGMENT. This work is supported by the
Search Computing (SeCo) Project, sponsored by ERC, and
by the FET-Open project DATASIM.

8. REFERENCES
[1] P. Ball: Why Society is a Complex Matter, Springer-
Verlag,2012.
[2] S. Ceri, E. Della Valle, D. Pedreschi, R. Trasarti: Mega-
Modeling for Big Data Analytics, ER-2012, LNCS 7352,
Springer, pp. 1-15, October 2012.
[3] R. Trasarti, F. Giannotti, M. Nanni, F. Pinelli: Mining mobility
user profiles for car pooling. In ACM International Conference on
Knowledge Discovery and Data Mining, KDD 2011.
[4] F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli: Trajectory
Pattern Mining. In ACM International Conference on Knowledge
Discovery and Data Mining, KDD 2007.
[5] S. Rinzivillo, S. Mainardi, F. Pezzoni, M. Coscia, F. Giannotti,
D. Pedreschi: Discovering the Geographical Borders of Human
Mobility. KI - Künstliche Intelligenz, 2012.
[6] M. Balduini and E. Della Valle: Tracking Movements and
Attention of Crowds in Real Time Analysing Social Streams: The
case of the Open Ceremony of London 2012. Semantic Web
Challenge, 2012.
[7] M. Balduini, I. Celino, D. Dell'Aglio, E. Della Valle, Yi
Huang, T. K. Lee, S. H. Kim, V. Tresp: BOTTARI: An
augmented reality mobile application to deliver personalized and
location-based recommendations by continuous analysis of social
media streams. J. Web Sem. 16: 33-41, 2012.
[8] M. Tsytsarau, T. Palpanas, K. Denecke: Scalable Discovery of
Contradictions on the Web. International World Wide Web
Conference (WWW), Raleigh, NC, USA, April 2010.
[9] S. Subramaniam, T. Palpanas, D. Papadopoulos, V.
Kalogeraki, D. Gunopulos: Online Outlier Detection in Sensor
Data Using Non-Parametric Models. Proc. VLDB, Seoul, Korea,
September 2006.
[10] A. Heise, A. Rheinlander, M. Leich, U. Leser, F. Naumann,
Meteor/Sopremo: An Extensible Query Language and Operator
Model, Workshop on End-to-End Management of Big Data,
Istanbul, Turkey (2012).
[11] Tomasz Imielinski, Heikki Mannila: A Database Perspective
on Knowledge Discovery. Communication of the ACM 39 (11):
58-64, 1996.
[12] F. Giannotti, M. Nanni, D. Pedreschi, F. Pinelli, C. Renso, S.
Rinzivillo and R. Trasarti: Unveiling the Complexity of Human

MegaModule TR { // Trajectory Reconstruction

using Trajectory ; //library used

input $ObservationData ;
input function $TStartStopDef from Trajectory.StartStopFuntion;
output $TrajectoryData ;

$Observations = read from input $ObservationData;
$CleansedObservations = Cleanse $Observations
$Histories = BuildHistory $CleansedObservations
$Trajectories = TrajectoryReconstruction $Histories
 using function $TStartStopDef;
write $Trajectories to output $TrajctoryData ;

} //end MegaModule TR

26 SIGMOD Record, September 2013 (Vol. 42, No. 3)

Mobility by Querying and Mining Massive Trajectory Data. The
VLDB Journal 20(5): 695-719, 2011.
[13] G. Wiederhold, P. Wegner, S. Ceri: Towards Mega-
Programming, ACM Communications, 35:11, 1992.
[14] J. Bezivin, F. Journault, P. Valduriez: On the need for
Megamodels, OOPSLA2004/GPCE Workshop.
[15] J-M. Favre, T. Nguyen: Towards a Megamodel to Model
Software Evolution Through Transformations. Electr. Notes
Theor. Comput. Sci. 127(3), 59-74, 2005.

SIGMOD Record, September 2013 (Vol. 42, No. 3) 27

