
Domain- and Structure-Agnostic
End-to-End Entity Resolution with JedAI

George Papadakis1, Leonidas Tsekouras2, Emmanouil Thanos3,
George Giannakopoulos2, Themis Palpanas4, Manolis Koubarakis1

1National and Kapodistrian University of Athens, Greece {gpapadis,koubarak}@di.uoa.gr
2NCSR “Demokritos”, Greece {ltsekouras, ggianna}@iit.demokritos.gr

3KU Leuven, Belgium emmanouil.thanos@kuleuven.be
4Paris Descartes University, France themis@mi.parisdescartes.fr

ABSTRACT
We present JedAI, a new open-source toolkit for end-
to-end Entity Resolution. JedAI is domain-agnostic
in the sense that it does not depend on background ex-
pert knowledge, applying seamlessly to data of any do-
main with minimal human intervention. JedAI is also
structure-agnostic, as it can process any type of data,
ranging from structured (relational) to semi-structured
(RDF) and un-structured (free-text) entity descriptions.
JedAI consists of two parts: (i) JedAI-core is a library
of numerous state-of-the-art methods that can be mixed
and matched to form (thousands of) end-to-end work-
flows, allowing for easily benchmarking their relative
performance. (ii) JedAI-gui is a user-friendly desktop
application that facilitates the composition of complex
workflows via a wizard-like interface. It is suitable for
both lay and power users, offering concrete guidelines
and automatic configuration, as well as manual config-
uration options, visual exploration, and detailed statis-
tics for each method’s performance. In this paper, we
also delve into the new features of JedAI’s latest version
(2.1), and demonstrate its performance experimentally.

1. INTRODUCTION
Entity Resolution (ER) aims to detect different

entity profiles that describe the same real-world ob-
jects [4]. It is a core task for data integration, with
many applications that range from knowledge bases
to question answering [6]. Yet, the functionality of
the available ER systems is significantly restricted
by the format of the various data collections. We
can actually distinguish the existing systems into
those crafted for structured (relational) data that is
described by a well-defined schema, and those ap-
plying exclusively to semi-structured data that is
associated with loose, diverse schemata and resides
in XML/RDF repositories or SPARQL endpoints.

The latter category encompasses Link Discovery
frameworks, which are surveyed in [20]. LIMES1

1http://aksw.org/Projects/LIMES.html

and Silk2 are the most prominent representatives.
However, most of these tools implement only the
method(s) introduced by their creators, and/or are
suitable for power users, requiring the manual con-
figuration of matching rules, or a labeled dataset
for learning such rules in a supervised way [14]. An-
other drawback is that none of them is applicable to
structured data, while half of them lack a GUI [20].

A larger variety of tools is available for structured
data. A thorough list of 15 commercial and 18 non-
commercial systems (such as Febrl3 and Dedoop4) is
analyzed in [15]. Most of them, though, suffer from
one or more of the following problems: they cover
the ER pipeline partially, they constitute stand-
alone systems with a limited variety of methods, or
they are exclusively meant for power users, provid-
ing insufficient guidelines on how to perform ER ef-
ficiently and effectively [15]. Magellan [16] resolves
these issues, offering various blocking and match-
ing methods. However, it is restricted to Record
Linkage over relational data, lacks a GUI (it merely
offers a command-line interface) and requires heavy
user involvement; its goal is actually to facilitate the
development of tailor-made methods for the data at
hand. Similarly, heavy user involvement is required
by the crowd-sourcing systems Corleone [11] and
Falcon [5], which also address ER in an end-to-end
manner through various efficiency techniques.

To overcome these drawbacks, we developed the
Java gEneric DAta Integration5 toolkit (JedAI
for short), aiming to facilitate researchers, practi-
tioners and lay users in applying ER solutions to
any type of data. At its core lies the end-to-end
ER workflow of Figure 1, which covers both Dirty
ER (Deduplication) and Clean-Clean ER (Record
Linkage). JedAI conveys one of the largest libraries

2http://silkframework.org
3https://sourceforge.net/projects/febrl
4https://dbs.uni-leipzig.de/dedoop
5http://jedai.scify.org

http://aksw.org/Projects/LIMES.html
http://silkframework.org
https://sourceforge.net/projects/febrl
https://dbs.uni-leipzig.de/dedoop
http://jedai.scify.org

Figure 1: The end-to-end workflow for Entity Resolution implemented by JedAI.

with state-of-the-art ER methods, while being one
of the few ER systems that is suitable even for lay
users, providing an intuitive GUI. In more detail,
JedAI has the following advantages:

1) Structure-agnostic functionality. JedAI applies
uniformly to structured, semi-structured and un-
structured (free-text) data.

2) Domain-agnostic functionality. All methods
implemented by JedAI apply to data from any do-
main, ranging from homogeneous census, customer,
product and bibliographic data to heterogeneous
Knowledge Bases. The only requirement is that
their entities contain string-dominated values.

3) High time efficiency. JedAI offers the largest
variety of blocking and block processing methods.
No other toolkit exploits the benefits of schema-
agnostic blocking, which minimizes user involvement,
while maximizing recall [22]. Also, no other toolkit
includes the Block and Comparison Cleaning steps,
which are indispensable for enhancing the time ef-
ficiency of ER by orders of magnitude [26]. JedAI
also uses GNU Trove6 for minimizing its memory
footprint. This is done by operating on primitive
data types instead of objects. E.g., collections of
integer values are handled through the 4-byte int

type instead of the 16-byte Integer objects, thus
occupying up to 75% less memory. This also re-
duces the running time by more than 50% when
compared to native Java [28].

4) Hands-off functionality. JedAI couples every
implemented method with a default configuration
of its internal parameters. Thus, neither manual
parameter fine-tuning nor expert knowledge are re-
quired for building an end-to-end ER workflow; users
simply select one or more methods per step.

5) Learning-free functionality. None of the im-
plemented methods requires a labelled dataset for
its training. Their default configuration renders
them directly applicable to any data. Labelled data
in the form of all true matches in a dataset (i.e.,
positive instances) are only required for evaluating
the performance of a method or workflow and for
fine-tuning its configuration parameters. In con-
trast, the learning-based methods require a labelled
dataset for their operation, i.e., in order to learn
their blocking or matching model. This labelled
dataset includes not only the positive instances con-
sidered by JedAI, but also a carefully selected sam-
ple of non-matches (i.e., negative instances). The

6https://bitbucket.org/trove4j/trove

User

JedAI-core
Data Reading

W
or

kfl
ow

 M
an

ag
er

Block Building

Block Cleaning

Comparison Cleaning

Entity Matching

Entity Clustering

En
tit

y
R

es
ol

ut
io

n
W

or
kfl

ow

Schema Clustering

Data Writing
Evaluation

Te
xt

 P
ro

ce
ss

in
g

D
oc

um
en

ta
tio

n

Input

Data
Store

Data
Store

JedAI-gui

W
iz

ar
d

In
te

rfa
ce

 (J
av

aF
X)

Pa
ra

m
et

er
 C

on
fig

ur
at

io
n

Set methods

Output

Figure 2: JedAI’s architecture.

relative number of positive and negative instances
as well as their representativity affects significantly
the performance of the learned model. No such re-
strictions apply to JedAI’s learning-free methods.

Most importantly, JedAI’s learning-free methods
optimize their performance by fine-tuning their in-
ternal parameters, which are generic in the sense
that they are independent of the data at hand. In
contrast, the features of learning-based methods are
domain or dataset-specific, typically requiring heavy
human intervention for their definition. Note also
that JedAI’s learning-free methods are inherently
crafted for highly noisy and heterogeneous data [24]:
to address possible errors in attribute values, their
domain-agnostic functionality considers all values in
each entity profile rather than relying on a particu-
lar (set of) attribute(s).

JedAI has been presented as a demo to two dif-
ferent communities, namely Semantic Web [27] and
databases [28]. In this work, we present its struc-
ture and characteristics in more detail, introduce
the new features of version 2.1, and provide exper-
imental evidence of its performance over real data.

The rest of the paper is structured as follows:
Section 2 delves into JedAI’s architecture, Section 3
elaborates on the new features in version 2.1, Sec-
tion 4 presents experiments that highlight the po-
tential of JedAI, and Section 5 concludes the paper
along with directions for future work.

2. ARCHITECTURE
JedAI’s architecture appears in Figure 2. It is

modular so that it can be easily extended by expert
users in the future. Every component implements
a simple (Java) interface such that every new class
(algorithm) implementing it can be seamlessly added.

https://bitbucket.org/trove4j/trove

Standard Blocking

Sorted
Neighborhood

Extended
Sorted

Neighborhood

Q-grams
Blocking

Extended
Q-grams
Blocking

Suffix
Arrays

Extended
Suffix
Arrays

LSH
MinHash

LSH
SuperBit

Figure 3: The Block Building methods.

JedAI consists of two parts: (i) JedAI-core7, the
back-end that essentially constitutes a library of
state-of-the-art methods, and (ii) JedAI-gui8, the
front-end that facilitates the use of the library. Be-
low, we describe each part in detail.

2.1 JedAI-core
Figure 1 depicts the workflow implemented by

JedAI-core, which consists of the following eight steps:
1) Data Reading loads from the disk into main

memory the data collection(s) to be processed along
with the respective golden standard. The follow-
ing data formats are supported: CSV, XML, OWL
and RDF files as well as relational databases and
SPARQL endpoints. Any mixture of these formats
is possible in case of Clean-Clean ER. This is made
feasible by transparently converting entities of any
format into a flat name-value pairs model.

2) Schema Clustering is an optional step that
groups together syntactically similar attributes, which
share similar names and/or values. Unlike Schema
Matching, this step does not seek semantically iden-
tical attributes (e.g., “place” and “location”). In-
stead, it aims to improve the performance of the
next steps by raising precision significantly with no
impact on recall [28]. Three methods are currently
supported, Attribute Value Clustering, Attribute
Name Clustering, Attribute Holistic Clustering [23],
but at most one of them can be added in a workflow.
They can be combined with any technique offered
by the Text Processing component (see Figure 2)
for comparing aggregations of strings. All pairs of
attributes with a similarity above a% of the maxi-
mum similarity for either attribute are placed into
the same cluster [29].

3) Block Building clusters similar entities into blocks
so as to drastically reduce the candidate match space
and to cut down on the running time. JedAI in-
cludes the nine methods in Figure 3, where every
edge A→ B denotes that method B is built on top
of A, using the same core structures in a different
way. For more details on the internal functional-

7Code available under Apache License V2.0 at: https:
//github.com/scify/JedAIToolkit
8Code available under Apache License V2.0 at https:
//github.com/scify/jedai-ui.

Comparison
Propagation

Weighted Edge
Pruning (WEP)

Weighted Node
Pruning (WNP)

Canopy
Clustering

BLAST

Cardinality Edge
Pruning (CEP)

Extended
Canopy Clustering

Cardinality Node
Pruning (CNP)

Reciprocal Weighted
Node Pruning (ReWNP)Reciprocal Cardinality

Node Pruning (ReCNP)

Figure 4: Comparison Cleaning methods.

ity of each method, please refer to [22]. All meth-
ods operate in a schema-agnostic fashion, extracting
several signatures from every entity to place it into
multiple blocks. The resulting redundancy yields
high recall at the cost of low precision [4, 22].

4) Block Cleaning is an optional step that im-
proves time efficiency by cleaning the original set of
overlapping blocks from redundant and superfluous
comparisons; the former are repeated across differ-
ent blocks, while the latter involve non-matches [6,
22]. This step includes three complementary meth-
ods that operate at the level of entire blocks: Block
Purging, Block Filtering, Block Clustering [8, 25].

5) Comparison Cleaning is another optional step
that targets superfluous and redundant comparisons.
Unlike Block Cleaning, though, it operates at the
finer level of individual comparisons, offering a more
accurate functionality at a higher computational
cost. This step includes the ten methods that are
depicted in Figure 4, where every edge A → B de-
notes that method B extends method A. Most of
them are Meta-blocking techniques, described in [6,
26]. Only one of them can be selected, as they are
competitive with each other.

6) Entity Matching conveys two schema-agnostic
methods that carry out all comparisons in the fi-
nal set of blocks: Group Linkage [21] and Profile
Matcher, a custom approach that aggregates all at-
tribute values of an entity into a common represen-
tation. Both methods can be combined with a large
variety of graph and bag representation models and
several associated similarity metrics [10] that are
implemented by the Text Processing component (see
Figure 2). This step yields a similarity graph, where
every node corresponds to an entity and a weighted
edge connects every pair of compared entities.

7) Entity Clustering partitions the nodes of the
similarity graph into equivalence clusters such that
every cluster contains all entity profiles correspond-
ing to the same real-world object. For Dirty ER,
this step implements the seven most efficient state-
of-the-art methods evaluated in [13]. For Clean-

https://github.com/scify/JedAIToolkit
https://github.com/scify/JedAIToolkit
https://github.com/scify/jedai-ui
https://github.com/scify/jedai-ui

Clean ER, it offers the prevalent method in the lit-
erature, namely Unique Mapping Clustering [18].

8) Evaluation estimates the performance of the
end result with respect to the golden standard that
was specified in Step 1. To this end, it reports a se-
ries of measures for effectiveness and time efficiency.
This step also includes Data Writing, which stores
intermediate or end results into any of the sup-
ported data formats. In case a structured format
is selected (CSV or relational database), the out-
put retains the original entity ids. When selecting
a semi-structured format (XML, RDF or SPARQL
endpoint), the user has to specify the URI prefix, in
case it is not available, i.e., when the original data
were structured. To store the output to databases
or SPARQL endpoints, the user should also provide
the necessary credentials, if applicable, along with
the table and the dataset namespace, respectively.

Regarding the use of optional steps, Schema Clus-
tering is indispensable for heterogeneous data sources
that involve a large number of noisy attributes. In
these settings, it reduces the computational cost of
Block Building and provides useful information for
Comparison Cleaning and Entity Matching. Block
Cleaning is indispensable for block collections that
exhibit a Zipf distribution, where the larger a block
size is, the less blocks correspond to it. Compari-
son Cleaning should be used in all cases, at least for
eliminating all redundant comparisons at no cost
in recall via Comparison Propagation. In case of
redundancy-positive blocks, a Meta-blocking approach
should be used to drastically reduce the computa-
tional cost. The exact method that should be se-
lected for every optional step depends on the data
at hand, as there is no clear winner among them.

2.2 JedAI-gui
This desktop application conveys a user-friendly

wizard that allows for building ER workflows in
a straightforward way, simply by selecting among
the available methods per workflow step. A unique
characteristic is that it offers three configuration op-
tions that are suitable for both expert and lay users:

1) The default configuration associates every avail-
able method with recommended parameter values
that consistently achieve high performance, as ver-
ified through an extensive experimental study [26].

2) The manual configuration leverages the Docu-
mentation component of JedAI-core (see Figure 2),
which enriches every method with a JSON file that
provides information about its parameter configu-
ration: the name and a short description of each
parameter, the type of values it receives (e.g., an in-
teger or real number), the range of acceptable values
as well as its recommended default value. JedAI-gui

presents this information to the user in the form of
tooltips that pop-up in the configuration windows.

3) The automatic configuration currently accom-
modates two established approaches [1]: (i) grid
search exhaustively applies to each parameter a set
of reasonable settings that have been determined
experimentally [26], or are typically used by experts
in practice. (ii) random search iteratively tries ar-
bitrary configurations that lay within the range of
acceptable values for each parameter. Both ap-
proaches apply to individual methods and entire
workflows. In the latter case, two operations are
supported: (i) holistic configuration, where all pa-
rameters of all methods in a workflow are simultane-
ously optimized, and (ii) step-by-step configuration,
where the parameters of each method are gradually
optimized, independently of the others, following
the workflow execution order.

To make the most of these options, JedAI-gui sup-
ports a workbench functionality. The evaluation
window summarizes the performance of all exper-
iments, enabling users to investigate the impact of
parameter fine-tuning on the quality of results. This
applies to all possible levels of granularity – from
one or more parameters in a particular method to
one or more methods in an entire ER workflow. The
workbench functionality also facilitates the perfor-
mance evaluation of the >10,000 different workflows
that can be derived from the combination of the
available methods per workflow step.

Another major characteristic of JedAI-gui is the
data exploration functionality. After specifying the
data to be processed, the user is able to go through
the golden standard and the corresponding entity
profiles, observing their properties as well as the
level of noise and heterogeneity they contain. By
the end of a workflow execution, the user can also
examine the equivalence clusters that have been
formed, assessing the quality of the results.

3. NEW FEATURES IN VERSION 2.1
The new JedAI version, 2.1, extends both JedAI-

core and JedAI-gui. The latter is enriched with a
hierarchically-structured benchmark screen, which
is a crucial feature for the workbench functionality,
as it allows users to review all aspects of perfor-
mance per method. In this way, users can identify
the weak link in an end-to-end workflow and as-
sess whether a better parameter configuration is re-
quired or it should be substituted by another method.

Another important new feature is the command-
line interface that has been added to JedAI-core.
This allows developers to easily test changes made
in the implementation of a method and to evalu-

ate new methods in the context of an end-to-end
workflow. It also facilitates users to test JedAI on a
server, exploiting much higher computational power
than commodity hardware.

Additionally, we altered the way Block Building
is handled by both the command-line interface and
JedAI-gui. Instead of selecting a single method, they
are now able to combine the results of multiple ap-
proaches. In this way, we satisfy a user requirement,
which was articulated by businesses that applied
JedAI to incomplete or noisy data. As an exam-
ple, consider a customer database that abounds in
profiles with missing or erroneous information. Ap-
plying a single block building technique, such as
bigram blocking, yields a set of blocks with low lev-
els of redundancy. This means that the block co-
occurrence patterns for matching entities are scarce,
downgrading the performance of Block and Com-
parison Cleaning methods, which are crucial for de-
riving high quality candidate matches [26]. To lever-
age their performance, we can apply them to the
union of blocks formed by two or more block build-
ing methods (e.g., bigram and trigram blocking),
which provides much denser co-occurrence patterns.

Another user requirement was to update JedAI’s
output. In version 2, it simply comprised equiva-
lence clusters of matching entities, without provid-
ing any evidence for the degree of similarity. As
a result, the end result of JedAI could not be re-
fined by expert users or domain-specific applica-
tions that incorporate additional, contextual infor-
mation. This is now resolved in version 2.1, as each
pair of matching entities is associated with a confi-
dence score that indicates their profile similarity.

Finally, several new methods have been added in
JedAI-core, such as Correlation Clustering and chi-
squared weighting scheme for Comparison Cleaning.
We also integrated the results of Schema Cluster-
ing into Comparison Cleaning and Entity Match-
ing. As indicated in [29], evidence from attribute
clusters, such as entropy, enhances significantly the
weights assigned to entity pairs in the sense that
it facilitates the distinction between matching and
non-matching ones. The same principle has been
incorporated into Entity Matching, weighting the
contribution of n-grams to the overall pair similarity
according to the corresponding attribute clusters.

4. EXPERIMENTS
We now evaluate the performance of JedAI with

respect to the state-of-the-art in the literature. To
this end, we use the four real-world, structured,
Clean-Clean ER datasets that were introduced in
[17]. Their technical characteristics are listed in
Table 1. Note that D1 and D2 entail product data,

Dataset D1 D2 D3 D4

Source1 Abt Amazon DBLP DBLP
Source2 Buy Google Pr. ACM Scholar
Entities1 1,076 1,354 2,616 2,516
Entities2 1,076 3,039 2,294 61,353
NVP1 2,568 5,302 10,464 10,064
NVP2 2,308 9,110 9,162 198,001
Duplicates 1,076 1,104 2,224 2,308
Cartesian Pr. 1.16·106 4.11·106 6.00·106 1.54·108

Table 1: Dataset technical characteristics.
NVP stands for attribute name-value pairs.

while D3 and D4 involve bibliographic data.
We applied the following workflow to all of them:

Token Blocking for Block Building, Block Purg-
ing with size constraints along with Block Filter-
ing for Block Cleaning, Cardinality Node Pruning
(CNP) for Comparison Cleaning, Profile Matcher
for Entity Matching and Unique Mapping Cluster-
ing (UMC) for Entity Clustering. This workflow
involves five parameters: (i) the maximum block
size (Block Purging), (ii) the ratio of retained blocks
(Block Filtering), (iii) the weighting scheme (CNP),
(iv) the representation model in combination with
the similarity metric (Profile Matcher), and (v) the
minimum similarity for a pair of matches (UMC).

To explore the potential of this workflow, we fine-
tuned these parameters in three ways: (i) step-
by-step random configuration, where we used the
methodology of [26] for independently optimizing
each method until CNP9 and the F-Measure for op-
timizing the last two methods, (ii) holistic random
configuration, whose goal is to maximize the overall
F-Measure, and (iii) step-by-step grid configuration,
where we used the same criteria as the first case. We
compare these configurations against three state-of-
the-art domain-specific, learning-based systems: (i)
COSY, which is a commercial system10 that achieves
the top performance in [17], (ii) DeepMatcher [19],
and (iii) Magellan [16]. For the last two, we con-
sider the top performance that is reported in [19]
among all configurations and dataset versions.

The F-Measure of all systems is reported in Fig-
ure 5(a). We observe that JedAI outperforms all
baseline systems over D1 by 15% to 45%, depend-
ing on its configuration. For D3, the differences be-
tween all approaches are negligible (±1.5%), as they
all achieve practically perfect performance. For D2

and D4, DeepMatcher achieves the top performance

9This methodology aims to maximize for each method
the measure PC(B)·RR(B,B′), where B stands for the
input blocks, B′ for the output ones, PC(B) for the
pairs completeness, i.e., the recall of blocks B, and

RR(B,B′)=1- ||B
′||

||B|| for the reduction ratio - the decrease

in pairwise comparisons when transforming B into B′.
10Due to license restrictions, its name is not disclosed.

40
50
60
70
80
90

100

D1 D2 D3 D4

F1 (%)

datasets

COSY DeepMatcher Magellan Step-by-step Random Holistic Random Step-by-step Grid

40

50

60

70

80

90

100

D1 D2 D3 D4

F-
M

ea
su

re
 (%

)

datasets
(a)

0

5

10

15

D1 D2 D3 D4

Ru
n-

tim
e

(s
ec

)

datasets
(b)

Figure 5: (a) Effectiveness of 3 different configurations of a JedAI workflow in comparison with
3 state-of-the-art domain-specific systems, and (b) the corresponding running times of JedAI.

to a significant extent, due to the external con-
textual information that is encapsulated in its fea-
tures (i.e., word embeddings). JedAI is very close
to COSY and outperforms Magellan to a significant
extent over D2, and vice versa over D4.

It is worth associating these measurements with
the corresponding time efficiency of each system.
To measure JedAI’s running time, we used a lap-
top with an Intel i7-4710MQ @ 2.50GHz, running
Ubuntu 18.04.3 LTS and Java 8. We applied each
configuration to every dataset11, allocating 1 GB
of RAM and performing 10 iterations with a clear
Java cache. The average running times appear in
Figure 5(b). We do not report the time perfor-
mance of the baseline systems, as they all rely on
manually-defined blocks of high performance, which
are not reproducible, due to lack of details. We ob-
serve the high efficiency of JedAI’s configurations, as
they process every dataset within few seconds - less
than 2 seconds for D1 and D3, from 3 to 8 seconds
for D2 and from 8 to 14 seconds for D4. D2 and
D4 are the most time consuming datasets, because
they involve higher levels of noise and, thus, a larger
number of candidate matches is processed. D4 also
involves the largest number of entities by far. Sim-
ilar running times are reported in [17] for COSY,
while Magellan and DeepMatcher require few sec-
onds and few hours, respectively, for training their
matching models, after having performed blocking
with the help of an expert and labelling a consid-
erable number of comparisons [19], operations that
are very expensive in time. Therefore, we conclude
that JedAI is much faster than the last two systems.

Another advantage of JedAI over Magellan is its
ability to process Dirty ER datasets that Magel-
lan cannot handle. This is illustrated in Table 2,
which reports JedAI’s performance over two estab-
lished dirty datasets [3, 26]: Cora (1,295 entities,

11The corresponding code is available here:
https://github.com/scify/JedAIToolkit/tree/
mavenizedVersion/jedai-core/src/test/java/org/
scify/jedai/configuration/version2_1.

Cora CdDb
F-Measure Run-time F-Measure Run-time

HRC 85.55% 514 msec 89.45% 266 sec
SRC 82.16% 294 msec 89.66% 155 sec
SGC 77.29% 3,752 msec 89.23% 127 sec

Table 2: Performance of JedAI over two Dirty ER

datasets in combination with holistic random con-

figuration (HRC) and step-by-step random and grid

configuration (SRC and SGC, respectively).

17,184 pairs of duplicates) and CdDb (9,763 enti-
ties, 299 pairs of duplicates). We used the same sys-
tem and approach for the time measurements and
the same end-to-end workflow, except that UMC is
replaced by Connected Components Clustering (re-
call that UMC does not apply to Dirty ER). We
observe that JedAI achieves very high effectiveness,
combined with very high time efficiency. The only
exception is the high running time that is required
for CdDb (between 2 and 4.5 minutes). This is
caused by the large entity profiles, which involve
17.75 name-value pairs, on average (against 5.5 for
Cora), and, thus, yield high levels of redundancy
and a large number of candidate matches after CNP.

Combined with the results in Figure 5, we ob-
serve a trade-off between the holistic and the step-
by-step configurations. The former optimizes the
parameters of all methods in an end-to-end work-
flow simultaneously: in every iteration, a new ran-
dom, but valid value is assigned to each internal
parameter and the iteration achieving the highest
F-Measure is selected as optimal. As a result, holis-
tic random configuration is crafted for identifying
the global maximum, unlike the step-by-step con-
figurations, which optimize every workflow step in-
dependently of the subsequent ones and, thus, are
prone to confining themselves in local maxima. Yet,
step-by-step configurations yield very low running
times, because every method is fine-tuned to min-
imize its computational cost for the best possible
effectiveness. In contrast, holistic random config-
uration consistently exhibits a significantly higher
computational cost, since it exclusively considers
the F-Measure in its optimization. As a result, its

https://github.com/scify/JedAIToolkit/tree/mavenizedVersion/jedai-core/src/test/java/org/scify/jedai/configuration/version2_1
https://github.com/scify/JedAIToolkit/tree/mavenizedVersion/jedai-core/src/test/java/org/scify/jedai/configuration/version2_1
https://github.com/scify/JedAIToolkit/tree/mavenizedVersion/jedai-core/src/test/java/org/scify/jedai/configuration/version2_1

blocking methods are configured to return a rela-
tively high number of candidate matches.

On the whole, these results indicate that with
proper configuration, JedAI produces learning-free,
domain-agnostic workflows with an effectiveness that
is comparable to, or better than, high-end, learning-
based, domain-specific ER solutions, while exhibit-
ing very low running times and limited memory con-
sumption across various domains.

5. CONCLUSIONS
We presented JedAI, a user-friendly ER toolkit

that fulfills the two main challenges arising in data
integration [12]: the development of extensible, open-
source tools, and the provision of solutions that ap-
ply not only to structured, but also to semi- or even
unstructured data. We described JedAI’s unique
characteristics and elaborated on its main compo-
nents, highlighting the new features in version 2.1.
We demonstrated the high performance of its work-
flows and verified that it is ideal for the development
phase of ER solutions, as it facilitates the identifica-
tion of the best end-to-end workflows for a particu-
lar dataset and use case. Yet, the resulting workflow
should be optimized for production systems.

In the future, JedAI will support pre-trained em-
beddings and will also allow for combining multi-
ple algorithms and/or representations models for
the pairwise comparisons during Entity Matching.
Special care will be taken to progressively evalu-
ate the performance of end-to-end workflows, a fea-
ture that is particularly useful when processing very
large datasets. In later versions, we intend to enrich
JedAI with support for supervised learning tech-
niques. To comply with its domain-agnostic foun-
dations, we will begin with approaches that leverage
generic, schema-agnostic features, like those in [2].
Upon successful completion of this extension, we
will also consider schema-based features and con-
straints, which call for fundamental changes for their
incorporation. Special care will be taken to add ac-
tive learning techniques from top crowd-sourced ER
approaches [7, 9], thus addressing the sensitivity to
cluster size for some of JedAI’s workflows.

Acknowledgements. This work was partially
funded by the EU project ExtremeEarth (825258).

References
[1] J. Bergstra and Y. Bengio. Random search for hyper-

parameter optimization. JMLR, 13:281–305, 2012.
[2] G. D. Bianco, M. A. Gonçalves, and D. Duarte. BLOSS:

effective meta-blocking with almost no effort. Inf. Syst.,
75:75–89, 2018.

[3] P. Christen. A survey of indexing techniques for scalable
record linkage and deduplication. IEEE Trans. Knowl.
Data Eng., 24(9):1537–1555, 2012.

[4] V. Christophides, V. Efthymiou, and K. Stefanidis. En-
tity Resolution in the Web of Data. Morgan & Claypool
Publishers, 2015.

[5] S. Das, P. S. G. C., A. Doan, J. F. Naughton, G. Krishnan,
R. Deep, E. Arcaute, V. Raghavendra, and Y. Park. Falcon:
Scaling up hands-off crowdsourced entity matching to build
cloud services. In SIGMOD, pages 1431–1446, 2017.

[6] X. L. Dong and D. Srivastava. Big Data Integration. Mor-
gan & Claypool Publishers, 2015.

[7] D. Firmani, B. Saha, and D. Srivastava. Online entity res-
olution using an oracle. PVLDB, 9(5):384–395, 2016.

[8] J. Fisher, P. Christen, Q. Wang, and E. Rahm. A clustering-
based framework to control block sizes for entity resolution.
In KDD, pages 279–288, 2015.

[9] S. Galhotra, D. Firmani, B. Saha, and D. Srivastava. Ro-
bust entity resolution using random graphs. In SIGMOD,
pages 3–18, 2018.

[10] G. Giannakopoulos, P. Mavridi, G. Paliouras, G. Papadakis,
and K. Tserpes. Representation models for text classifi-
cation: a comparative analysis over three web document
types. In WIMS, pages 13:1–13:12, 2012.

[11] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli,
J. W. Shavlik, and X. Zhu. Corleone: hands-off crowdsourc-
ing for entity matching. In SIGMOD, pages 601–612, 2014.

[12] B. Golshan, A. Y. Halevy, G. A. Mihaila, and W. Tan. Data
integration: After the teenage years. In ACM PODS, pages
101–106, 2017.

[13] O. Hassanzadeh, F. Chiang, R. J. Miller, and H. C. Lee.
Framework for evaluating clustering algorithms in duplicate
detection. PVLDB, 2(1):1282–1293, 2009.

[14] R. Isele and C. Bizer. Learning expressive linkage rules us-
ing genetic programming. PVLDB, 5(11):1638–1649, 2012.

[15] P. Konda, S. Das, P. S. G. C., A. Doan, A. Ardalan,
J. R. Ballard, H. Li, F. Panahi, H. Zhang, J. F. Naughton,
S. Prasad, G. Krishnan, R. Deep, and V. Raghavendra.
Magellan: Toward building entity matching management
systems. PVLDB, 9(12):1197–1208, 2016.

[16] P. Konda and S. D. et. al. Technical perspective: : Toward
building entity matching management systems. SIGMOD
Record, 47(1):33–40, 2018.

[17] H. Köpcke, A. Thor, and E. Rahm. Evaluation of entity res-
olution approaches on real-world match problems. PVLDB,
3(1):484–493, 2010.

[18] S. Lacoste-Julien, K. Palla, A. Davies, G. Kasneci, T. Grae-
pel, and Z. Ghahramani. Sigma: simple greedy matching
for aligning large knowledge bases. In KDD, 2013.

[19] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Kr-
ishnan, R. Deep, E. Arcaute, and V. Raghavendra. Deep
learning for entity matching: A design space exploration.
In SIGMOD, pages 19–34, 2018.

[20] M. Nentwig, M. Hartung, A. Ngomo, and E. Rahm. A sur-
vey of current link discovery frameworks. Semantic Web,
8(3):419–436, 2017.

[21] B. On, N. Koudas, D. Lee, and D. Srivastava. Group link-
age. In ICDE, pages 496–505, 2007.

[22] G. Papadakis, G. Alexiou, G. Papastefanatos, and
G. Koutrika. Schema-agnostic vs schema-based configura-
tions for blocking methods on homogeneous data. PVLDB,
9(4):312–323, 2015.

[23] G. Papadakis, E. Ioannou, T. Palpanas, C. Niederée, and
W. Nejdl. A blocking framework for entity resolution in
highly heterogeneous information spaces. IEEE Trans.
Knowl. Data Eng., 25(12):2665–2682, 2013.

[24] G. Papadakis and W. Nejdl. Efficient entity resolution
methods for heterogeneous information spaces. In ICDE
Workshops, pages 304–307, 2011.

[25] G. Papadakis, G. Papastefanatos, T. Palpanas, and
M. Koubarakis. Scaling entity resolution to large, heteroge-
neous data with enhanced meta-blocking. In EDBT, pages
221–232, 2016.

[26] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas. Compar-
ative analysis of approximate blocking techniques for entity
resolution. PVLDB, 9(9):684–695, 2016.

[27] G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopou-
los, T. Palpanas, and M. Koubarakis. Jedai: The force
behind entity resolution. In ESWC, pages 161–166, 2017.

[28] G. Papadakis, L. Tsekouras, E. Thanos, G. Giannakopou-
los, T. Palpanas, and M. Koubarakis. The return of
jedai: End-to-end entity resolution for structured and semi-
structured data. PVLDB, 11(12):1950–1953, 2018.

[29] G. Simonini, S. Bergamaschi, and H. V. Jagadish. BLAST:
a loosely schema-aware meta-blocking approach for entity
resolution. PVLDB, 9(12):1173–1184, 2016.

	Introduction
	Architecture
	JedAI-core
	JedAI-gui

	New features in version 2.1
	Experiments
	Conclusions

