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Abstract—We present FreSh, a lock-free data series index that
exhibits good performance (while being robust). FreSh is based
on Refresh, which is a generic approach we have developed for
supporting lock-freedom in an efficient way on top of any locality-
aware data series index. We believe Refresh is of independent
interest and can be used to get well-performed lock-free versions
of other locality-aware blocking data structures. For developing
FreSh, we first studied in depth the design decisions of current
state-of-the-art data series indexes, and the principles governing
their performance. This led to a theoretical framework, which
enables the development and analysis of data series indexes in
a modular way. The framework allowed us to apply Refresh,
repeatedly, to get lock-free versions of the different phases of a
family of data series indexes. Experiments with several synthetic
and real datasets illustrate that FreSh achieves performance that
is as good as that of the state-of-the-art blocking in-memory data
series index. This shows that the helping mechanisms of FreSh
are light-weight, respecting certain principles that are crucial for
performance in locality-aware data structures.

I. INTRODUCTION

Processing big collections of data series is of paramount
importance for a wide spectrum of applications, across many
domains, such as: operation health monitoring in data cen-
ters, vehicles and manufacturing processes, internet of things
data analysis, environmental and climate monitoring, energy
consumption analysis, decision taking in financial markets,
telecommunications traffic analysis, detection of medical and
health problems, improvement of web-search results, identifi-
cation of pests invading agricultural crops, etc. [1]-[3]. In
the heart of analyzing such collections lies the process of
similarity search. Given a query series (), similarity search
returns a set of data series from the collection that have the
closest distance to ). Similarity search comes at consider-
able cost, due to very large size of data series collections,
and the high dimensionality (i.e., length) of the data series
that modern applications need to analyze. To address these
challenges, current state-of-the-art data series indexes [4]-
[13] are based on data series summarization. They develop
a tree index containing data series summaries used to prune
the series collection in order to restrict the execution of costly
computations only to a small subset of it.

State-of-the-art data series indexes [4f], [[7], [O1-[12]], [[14]
exploit the parallelism supported by modern multicore ma-
chines, but are largely lock-based to achieve synchronization.
Using locks results in blocking implementations: if a thread
that holds a lock delays, other threads block, without making
any progress, until the lock is released. Such thread delays can
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degrade performance. Some applications (eg, operation health-
monitoring in nuclear plants, or gravitational-wave detection in
astrophysics), are sensitive to delays, and would benefit from
our approach. Locks may also result in known problems, such
as deadlock, priority inversion, and lock convoying [[15].
Lock-freedom [16] is a widely-studied property when de-
signing concurrent trees [17]—[20] and other data struc-
tures [15], [16], [21]. It avoids the use of locks, ensuring
that the system, as a whole, makes progress, independently
of delays (or failures) of threads. The relative performance
of lock-free vs. lock-based algorithms depends on the setting:
when threads are pinned to distinct cores, algorithms using
fine-grained locks do well. However, in oversubscribed set-
tings (more threads than cores), lock-based algorithms can
suffer due to threads getting de-scheduled while holding a
lock. Lock-free algorithms address these issues, but may be
complicated and result in worse performance in settings with
no delays/failures. Designing lock-free data series indexes,
which exhibit good performance, is the focus of this paper: we
develop a lock-free data-series index, which always produces
the correct output, while maintaining the good performance of
state-of-the-art lock-based indexes.
Challenges. To achieve lock-freedom, some form of helping
is usually employed. That is, appropriate mechanisms are
provided to make threads aware of the work that other threads
perform, so that a thread may help others to complete their
work whenever needed. Unfortunately, conventional helping
mechanisms are rather expensive and often introduce high
overheads [15]], [16]], [22], [23]. For this reason, the vast
majority of the software stack is still based on locks. Ensuring
lock-freedom while maintaining the good performance of
existing data series indexes is a major challenge.
State-of-the-art indexes are designed to (a) maintain some
form of data locality, and (b) avoid synchronization as much as
possible. For instance, they often separate the data into disjoint
sets, and have a distinct thread manipulate the data of each
set [8]], [1O], [11]. This processing pattern enables threads to
work in parallel and independently from each other, resulting
in reduced synchronization and communication costs. These
principles for reduced communication and synchronization
are easily achieved when locks (or barriers) are utilized [7],
[O]-[11]. However, the way helping works in conventional
lock-free data structures is inherently incompatible to these
principles, thus making it challenging to implement helping on
top of such indexes without sacrificing them. Providing lock-



freedom while maintaining load-balancing among threads, and
ensuring good data pruning are further challenges to address.

State-of-the-art data series indexes encompass several data
processing phases, which often employ different data struc-
tures to accomplish their efficient processing. Coming up with
lock-free versions of these data structures, while respecting
the communication and synchronization cost principles that
govern existing indexes, is another major challenge to address.

In order to develop a generalized approach for supporting
lock-freedom on top of data series indexes in a systematic
way, we need to study and understand the design decisions
of state-of-the-art indexes and the performance principles that
govern them. Then, we need appropriate abstractions for the
data series processing stages and their properties, as well as a
set of design principles that need to be respected for efficiency.
Accomplishing these goals leads to additional challenges.
Our approach. We propose FreSh, a novel lock-free data
series index, that efficiently addresses all of the above chal-
lenges. Our experimental analysis shows that the performance
of FreSh is as good as that of MESSI [[10]], the state-of-the-
art concurrent data-series index, which is lock-based. This
attests to the high efficiency of the helping scheme we propose
for FreSh. Moreover, in many cases, FreSh performs better
than MESSI, as it allows for increased parallelism when
constructing the tree index. Note that if threads crash, MESSI
(and all other lock-based approaches [7[], [[10]-[12]]) never
terminate (so, we do not provide experiments for this case).
FreSh always successfully and correctly terminates.

To get FreSh, we developed a generic approach, called
Refresh, which can be applied on top of a family of state-
of-the-art blocking indexes to provide lock-freedom without
adding any cost. Refresh introduces the concept of locality-
aware lock-freedom which encompasses the properties of data
locality, high parallelism, low synchronization cost, and load
balancing met in the designs of many existing parallel data
series indexes. None of the conventional lock-free techniques
we are aware of has been designed with the goal of respecting
these properties. Indeed, our experiments show that such con-
ventional techniques result in significantly lower performance.

Refresh respects the workload and data separation of the
underlying data series index, in order to not hurt the degrees of
parallelism and load balancing of the index. Moreover, it pro-
vides a mechanism for threads to determine whether a specific
part of a workload has been processed, and help only whenever
necessary. Refresh introduces two modes of execution for each
thread: (i) expeditive and (ii) standard. A thread executing
in standard mode may incur synchronization overhead, as it
needs to synchronize with helper threads; a thread executing in
expeditive mode executes a code that avoids synchronization
altogether. A thread starts by processing its assigned workload
in expeditive mode. Helping is performed only after a thread
has finished processing its own workload. Then, threads have
to synchronize to execute on standard mode. This way, Refresh
maintains the synchronization and communication costs as low
as that of the underlying index.

Refresh can be applied on top of any locality-aware al-

gorithm (Section to get a lock-free version of it. FreSh
(Section follows the design decisions of locality-aware
iSAX-based indexes [[10]], [14] (see Section [[). However, to
develop FreSh, we had to replace all data structures of the
original index [10] with corresponding locality-aware lock-
free versions; we present lock-free implementations of several
concurrent data structures, such as binary trees and priority
queues (Section [V). The proposed lock-free tree contains
several new ideas. Previous solutions [17], [[19], [44], [57
require that when a key is inserted in a leaf ¢, ¢ is copied
and updated locally, and then replaced in the shared tree.
This results in bad performance. Instead, we designed a
novel algorithm for updating leaves, which provides enhanced
parallelism compared to existing algorithms. Another novelty
is the support of the new implementations for the expeditive
and standard execution modes, which was a challenge by itself,
as synchronisation is needed to transfer from one mode to
the other. We believe that these implementations, as well as
Refresh, could be employed to get highly-efficient lock-free
versions of several other big data-processing solutions.

To be able to apply Refresh in a systematic way throughout
all processing stages of an iSAX-based index, we introduce
the abstraction of a traverse object (Section [[I). The tra-
verse object is an abstract data type that leads to a generic
methodology for designing an iSAX-based index in a modular
way. It abstracts the main processing pattern used during the
operation of iSAX-based indexes. Specifically, the iSAX-based
index can be implemented via traverse object operations. The
introduction of the traverse object is one of the novelties of
our work.

Contributions. Our contributions are summarized as follows.
e We develop a theoretical framework for supporting lock-
freedom in a systematic way on top of highly-efficient data
series indexes. In particular, we present Refresh, a novel
generic approach that can be applied on top of any locality-
aware data series algorithm to ensure lock-freedom.

e Based on Refresh, we develop FreSh, the first lock-free, effi-
cient iSAX-based data series index. To get FreSh, we present
new lock-free implementations of several data structures which
support the needed functionality.

e Our experiments, with large synthetic and real datasets,
demonstrate that FreSh performs as good as the state-of-the-
art blocking index, thus paying no penalty for providing lock-
freedom (and in many cases achieves better performance).

e Experiments show that by providing lock-freedom with-
out jeopardizing locality-awareness, FreSh outperforms by
far several lock-free baselines we have designed, based on
conventional approaches for ensuring lock-freedom.

e We present a theoretical framework, which introduces the
traverse object, and utilizes it to enable the development of
locality-aware data series indexes in a modular way.

II. PRELIMINARIES AND RELATED WORK

Data Series, Indexing, and Similarity Search. A data
series (DS) of size (or dimensionality) n is a sequence of n
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Fig. 1: From data series to iSAX index

(value, position) pairs. The Piecewise Aggregate Approxima-
tion (PAA) [24] of a data series is a vector of w components
which are calculated by splitting the x-axis into w equal
segments, and representing each segment with the mean value
of the corresponding points (depicted by the black horizontal
lines in Figure [T{b)). To calculate the iSAX summary [25]
of the data series, the y axis is partitioned into a number of
regions and a bit representation is introduced for each region.
The iSAX summary is a vector of w components that represent
each of the w segments of the series not by the real value of
the PAA, but with the symbol of the region the PAA falls into,
forming the word 102002112 shown in Figure c) (subscripts
denote the number of bits used to represent the symbol of
each segment). The number of bits can be different for each
region, and this enables the creation of a hierarchical tree index
(iSAX-based tree index), as shown in Figure d). The index
is implemented as a leaf-oriented tree with each leave storing
up to M keys. During an insertion, if the appropriate leaf ¢
has room, the new key is placed in ¢. Otherwise, ¢ is split: it
is replaced by a subtree consisting of an internal node and two
leaves that receive the keys of £. If one of the newly created
leaves is empty, the splitting process is repeated. For more
details on iISAX-based indices, see [[14].

We focus on exact similarity search (ak.a. exact I-NN)
which returns the data series from a collection that is the
most similar to a query data series. Similarity is measured
based on Euclidean Distance (ED), but our techniques are
general enough to work for other popular similarity measures,
such as Dynamic Time Warping (DTW) [26]. We call the
distance between the iSAX summaries of two data series lower-
bound distance. The way this distance is calculated ensures
the pruning property: The lower bound distance between two
data series is always smaller than or equal to their euclidean
distance, which we call real distance. This property enables
pruning of data series during query answering: A data series
can be pruned, if its lower bound distance from the query
series () exceeds any collection series’ real distance to Q).
iSAX-Based Indexing. Concurrent iSAX-based indexes [7]-
[11] work in two phases. During the tree index construction

phase (1st phase), a set of worker threads work on a collection
of input data series (i.e., raw data), calculate an iSAX sum-
mary for each one of them, and build a tree index containing
pairs of iSAX summaries and pointers to the corresponding
data series. In an iSAX-based index, these pairs are first stored
into a set of array buffers, i.e., summarization buffers (buffers
creation stage). Then, the worker threads traverse these buffers
and insert their entries in the tree index (tree population stage).
Data series that have similar summarizations are placed into
the same buffer and later in the same root subtree of the index
tree. This ensures high parallelism, a good degree of locality,
and low synchronization overhead in building the index tree.

Given a query data series (), the following actions occur

during query answering. A thread calculates the iSAX sum-
mary of () and uses it to traverse a path of the tree index,
reaching a leaf /. Then, the thread calculates the real distance
between (Q and each of the data series of ¢, and stores the
smallest distance among them in a variable called BSF. This
distance serves as an initial approximate query answer. Query
answering proceeds in two stages. A set of query answering
threads traverse the tree and use BSF to select those data series
that are potential candidate series for being the final answer to
Q@ (pruning stage). Those nodes whose lower bound distance
to (Q is larger than BSF are pruned. The candidate series are
often stored in (one or more) priority queues [8], [10], [L1].
Multiple threads process the elements of the priority queues by
calculating their real distances from @) (refinement stage), and
updating the BSF each time a new minimum is met. At the end
of the query answering phase, the final answer is contained in
BSF. Barriers among threads are often used at the end of each
stage to ensure correctness. Locks synchronize threads when
they accesss the same parts of data structures.
System. We consider a shared-memory system of N threads
which are executed asynchronously and communicate by ac-
cessing shared objects. A shared object O can be atomically
read or written. Moreover, FAI(O,v) atomically reads the
current value of O, adds the value v to it and returns the
value read. A CAS(O,u,v) reads the value of O and if it is
equal to u, it changes it to v and returns True; otherwise, O
remains unchanged and False is returned.

Threads may experience delays (e.g., due to page faults,
power consumption issues or overheating [27]) or they may
fail by crashing (e.g., due to software errors). An algorithm is
blocking if a thread has to wait for actions to be taken by other
threads in order to make progress. Lock-freedom guarantees
that the system as a whole continues to make progress,
independently of the speed of threads or their failures.

A. Other Related Work

Several tree-based techniques for efficient and scalable
data series similarity search have been proposed in the lit-
erature [4]], [28]-[30], including approximate [31f], [32] and
progressive [33[]-[36] solutions. Out of those, the iSAX-based
indexes [[14] have proven to be very competitive in terms
of both index building and query answering time perfor-
mance [4], [12], [[13]], [28], [37]. These indexes also include



parallel and distributed solutions that make use of modern
hardware (e.g., SIMD, multi-core, multi-socket, GPU), such as
ParIS+ [8]], MESSI [[10], and SING [[11]], as well as distributed
computation, such as DPiSAX [38]], [39] and Odyssey [37].

The first lock-free implementation of a concurrent search
tree appears in [[17]. We use the main ideas from that paper
to come up with a baseline algorithm, which we discuss
and experimentally compare with FreSh in Section Many
other non-blocking concurrent search trees have appeared in
the literature (e.g., [[18]-[20], [40]-[46]. The novelty of the
tree implementation we present in Section [V|is that it allows
multiple insert operations to concurrently update (in a lock-
free way) the array that stores the data in a (fat) leaf. Addi-
tionally, it supports the expeditive-standard mode of execution.
These innovations result in enhanced parallelism and better
performance. Our algorithm is designed to only provide the
functionality needed to implement traverse objects. The above-
mentioned implementations support different functionalities,
have different goals, or have been designed for other settings.

Concurrent priority queues appear in [47]-[52]. In the
baseline lock-free implementations we developed, we use a
skip-list based lock-free priority queue [52], which has been
shown to perform well. Our experiments show that the scheme
of priority queues we designed for FreSh, outperforms by far
this implementation (Section [VI).

The idea of transforming an algorithm to get an implemen-
tation that ensures a different progress guarantee is not new.
Examples of such transformations appear in [53]]-[55] but they
have all been introduced to solve different problems and the
main technique of Refresh departs from all these approaches.

III. TRAVERSE OBJECTS

Each of the last three stages of an iSAX-based index pro-
cesses data that are produced by the previous stage. The first
stage processes the original collection of data. This processing
pattern has inspired the definition of the traverse object, whose
sequential specification is provided below.

Definition IIL.1. Let U be a universe of elements. A traverse
object S stores elements of U (not necessarily distinct) and
supports the following operations:

o PUT(S, e, param), which adds an element e € U in S,
param is an optional argument that allows an implemen-
tation to pass certain parameters in PUT.

o TRAVERSE(S, f, param, del), which traverses S and ap-
plies the function f on each of the traversed elements. If
the del flag is set, then each of the traversed elements is
deleted from S. param plays the same role as in PUT.

S satisfies the traversing property: Each instance of
TRAVERSE in every (sequential) execution of the object ap-
plies f at least once on all distinct elements added in S and
not yet been deleted by the invocation of TRAVERSE.

We use four instances of a traverse object to implement the
four stages of an iISAX-based index. We call BC, TP, PS, and
RS, the traverse objects that implement the buffer creation,
tree population, prunning, and refinement stages, respectively.

Algorithm 1: Implementation of an iSAX-based index
using the traverse objects BC, TP, PS, RS.

> Shared objects:

TraverseObject BC, initially containing all raw data series
2 TraverseObjects TP, PS, RS, initially empty

3 int BSF

-

> Code for thread ¢;, ¢ € {0,...,n — 1}

Procedure QUERYANSWERING(QuerySeriesSet SQ): returns int
BC.TRAVERSE(&BufferCreation(), BCParam, False)
TP.TRAVERSE(&TreePopulation(), T'PParam, False)
PS.TRAVERSE(&Prunning(), PSParam, False)

RS . TRAVERSE(&Refinement(), RSParam, True)

return BSF

® N A n B

rocedure BUFFERCREATION(DataSeries ds)

9 iSAXSummary SAX := Calculate the iSAX summary for ds
10 Index bind := index to appropriate buffer based on :SAX

11 TP.PUT((iSAX, index of ds ), bind)

~

Procedure TREEPOPULATION(Summary i1SAX, Index ind, Index
bind, Boolean flag)
12 L PS.PUT((iSAX, ind), bind, flag)

Procedure PRUNNING(DataSeries Q, DataSeriesSet E, Boolean
flag): returns boolean

13 iSAXSummary iSAX := Calculate the iSAX summary for £
14 int [bDist := lower bound distance between iSAX and Q

15 if [bDist < BSF then

16 RS .PUT((E,iSAX), flag)

17 return TRUE

18| return FALSE

o]

rocedure REFINEMENT(DataSeries QQ, DataSeriesSet E, Summary
1SAX, Function *UPDATEBSF): returns Boolean

19 int IbDist, rDist

20 IbDist := lower bound distance between i.SAX and Q

21 if [bDist < BSF then

2 for each pair (iSAXyq, indgs) in E do

23 lbDist := lower bound distance between iSA X4 and Q

24 if [bDist < BSF then

25 rDist := real distance between ds and Q

26 if rDist < BSF then

27 *UPDATEBSF(BSF', rDist) > user-provided
routine

28 return True

29 else return False

The buffers creation phase uses an array RawData to store
the raw data series, thus, the elements of BC are stored in
RawData. The tree population phase uses a set of arrays
(summarization buffers) where the pairs of iISAX summaries
and pointers to data series are initially stored. T'P stores these
pairs. The prunning stage employs a leaf-oriented tree to store
these pairs. Thus, PS organizes the pairs into as many sets as
the leaf nodes of the tree. Each set contains the pairs stored
in each leaf. Finally, the refinement stage uses priority queues
to store those tree leaves containing candidate series.
Answering a query is now comprised of a sequence of four
invocations of TRAVERSE on the different traverse objects.
Algorithm [I] provides pseudocode for the implementation of
an iISAX-based index using traverse objects. The four stages
of an iISAX-based index do not overlap with one another. This
is usually ensured with the use of synchronization barriers. In
the scheme of Algorithm |1} the barriers, if needed, (as well



as multithreading processing) should be incorporated in the
implementation of PUT and TRAVERSE. Thus, an iSAX-based
index satisfies the following property.

Definition IIL.2 (Non-Overlapping Property). In every (con-
current) execution of the index and every traverse object .S
accessed in the execution, each instance of TRAVERSE on S
is performed only after the execution of all instances of PUT
that add distinct elements in S has been completed.

Assume that the non-overlapping property holds for BC),
TP, PS, and RS and that RawData initially stores all
raw data series. The traversing property implies that the
BUFFERCREATION function is invoked at least once for each
data series ds in RawData, so at least one appropriate pair is
added for it in TP, i.e., the summarization buffers are popu-
lated appropriately. By the non-overlapping and the traversing
properties, TREEPOPULATION is invoked for all these pairs.
Since TREEPOPULATION invokes PUT on PS, it follows that
at least one pair for each of the data series of the collection is
added in PS (i.e. in the tree index). By the traversing property,
all elements of PS are traversed and PRUNNING is called on
them. Thus, all tree leaves that cannot be pruned are added in
RS. Note that TRAVERSE on RS is invoked with the del flag
being True. This allows to use (one or more) priority queues
for implementing RS, and to employ DELETEMIN to delete
each traversed element during TRAVERSE. REFINEMENT will
be applied on every traversed element of RS. Therefore, those
leaves that cannot be pruned will be further processed by
calculating real distances and for the data series they store,
and by updating BSF whenever needed. Implementations for
PuT and TRAVERSE for BC, TP, PS, and RS in FreSh are
presented in Section [V]

IV. LOCALITY-AWARE LOCK-FREEDOM

Locality-awareness aims at capturing several design prin-
ciples (Definition for data series indexes which are
crucial for achieving good performance. A locality aware
implementation respects these principles.

Definition IV.1. Principles for locality-aware processing:

1) Data Locality. Separate the data into disjoint sets and
have a distinct thread processing the data of each
set. This results in reduced communication cost (cache
misses and branch misprediction) among the threads.

2) High Parallelism & Low Synchronization Cost.
Threads should work in parallel and independently
from each other. Whenever synchronization cannot be
avoided, design mechanisms to minimize its cost.

3) Load Balancing. Share the workload equally to the
different threads, thus avoiding load imbalances between
threads and having all threads busy at each point in time.

Enuring locality awareness results in good performance
and is thus a desirable property for big data processing. In
existing iSAX-based indexes, a thread operates on chunks of
RawData and processes disjoint sets of summarization buffers
and subtrees of the index tree. Also, an iSAX-based index

Algorithm 2: Refresh- A general approach for trans-
forming a blocking data structure D of a big-data
application A into a lock-free one.

> Shared variables:

1 workload part W := [wy, wg, ..., wg]
2 boolean F' := [dy,dg,...,dy], initially d; = False, I < i<k
3 boolean H := [hy, ha,..., hg], initially h; = False, I <i<k

> Code for each thread:
Procedure Refresh()

4 // acquire and process parts of W

5 while W has available parts do

6 w; = acquire an available part of W

7 mark w; as acquired

8 if h; = False then

9 process w; in expeditive mode, while checking that
h; remains False; in case h; = True, switch to
standard mode

10 else process w; in standard mode

11 d; := True

// scan flags for unfinished parts of W
and help

12 for each d; € D with d; = False do

13 Backoff() // avoid helping, if possible

14 if d; = False then

15 h; := True

16 process w; in standard mode, while periodically
checking that d; remains False; in case d; = True,
stop processing w;

17 d; := True

employs several priority queues to store leaf nodes containing
candidate series. Thus, iSAX-based indexes are locality-aware.

To describe Refresh in more detail, consider a blocking
locality-aware implementation A, which splits its workload
into disjoint parts and assigns them to threads for processing.
Refresh (Algorithm ) transforms A into a lock-free locality-
aware implementation B that achieves high parallelism.

Let W be the workload that A processes and let wyq, . .., wyg

be the parts it is separated to ensure locality awareness.
Refresh applies the following steps (depicted in Figure [2):
(1) It attaches a flag d;, 1 < ¢ < k, (initially False) with
each w; to identify whether w;’s processing is done. As soon
as a thread finishes processing wj, it sets d; to True (line [TT).
(2) Threads in 3 execute the same algorithm as in A to acquire
parts of W to process, until all parts have been acquired
(lines [SIT). The thread that acquires a workload is its owner.
(3) To achieve lock-freedom, every thread ¢, then, scans all
the flags to find those parts that are still unfinished (line [T2)).
(4) Thread t helps by processing, one after the other, each part
found unfinished during scan. For each part w; that ¢ helps, it
periodically checks d; to see whether other threads completed
the processing of w;. If this is so, ¢ stops helping w; (line [I6).
A thread that completes the processing of w;, changes d; to
true (line [17).
(5) Due to helping, every data structure D, employed in
A, may be concurrently accessed by many threads. Thus, B
should provide an efficient lock-free implementation for all
data structures of A.
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Fig. 2: Refresh flowchart.

In locality-aware implementations, threads are expected
to work on their own parts of the data most of the time
(contention-free phase), and they may help other threads only
for a small period of time at the end of their execution (con-
current phase). In the contention-free phase, Refresh avoids
synchronization overheads incurred to ensure lock-freedom.
Specifically, it employs two implementations for each data
strucutre D of A, one with low synchronization cost that
does not support helping (expeditive mode), and another that
supports helping and has higher synchronization overhead
(standard mode). To enable threads operate on the appropriate
mode, a helping-indicator flag h; (initially False) is attached
with each w;. A thread ¢ starts by processing its assigned
workload on expeditive mode (lines [3and [8}{9). Before ¢ starts
helping some part w;, it sets h; to True (line , to alert w;’s
owner thread to start running on standard mode (line [9).

To avoid helping whenever it is not absolutely necessary,
Refresh provides an optional backoff scheme that is used by
every thread ¢ (line before it attempts to help other threads
(line[T4}{T6). A small delay before switching to standard mode,
often positively affects performance. The delay is usually an
estimate of the actual time a thread requires to finish its
current workload, calculated at run time (see Section [V-A] for
more details). To minimize the work performed by a helper,
Refresh could be applied recursively by splitting each part
w; to subparts. This way, a helper helps only the remaining
unfinished subparts of w,.

Lock-freedom is ensured due to the helping code (lines [I2}
[I7). In Refresh, only after a thread ¢ processes a workload
w;, it sets h; to True and t performs the helping code
after finishing with their assigned workloads. Thus, when ¢
completes its helping code the processing of all parts of the
workload has been completed. This means that ¢ may continue
directly to the execution of the next stage, without waiting for
the other threads to complete the execution of the current stage.
Therefore, this scheme renders the use of barriers useless, as
needed to achieve lock-freedom.

Summarizing, Refresh is a general scheme for processing a
locality-aware workload in a lock-free way, without sacrificing

locality-awareness.

V. FRESH

We follow the data processing flow, described in Section [[TI}
employ BC, TP, PS, and RS (from Section [[II), and repeat-
edly apply Refresh (from Section [[V)) to come up with FreSh.

A. Buffers Creation and Tree Population

BC is implemented using a single buffer, called RawData.
In BC, PUT is never used, as we assume that the data are
initially in RawData. To implement TRAVERSE, we employ
Refresh. We split RawData into k equally-sized chunks of
consecutive elements to get k£ workloads. Threads use a
counter object to get assigned chunks to process. To reduce the
cost of helping, FreSh calls Refresh recursively. Specifically, it
splits each chunk into smaller parts, called groups, and employ
Refresh a second time for processing the groups of a chunk.
In more detail, FreSh maintains an additional counter object
for each chunk of RawData. Each thread ¢ that acquires or
helps a chunk, uses the counter object of the chunk to acquire
groups in the chunk to process. FreSh also applies a third level
of Refresh recursion, where each workload is comprised of the
processing of just a single element of a group.

Pseudocode for BC'.PUT and BC.TRAVERSE is provided
in Algorithm |3} RawData is comprised of k£ chunks, each
containing m groups; moreover, each group contains r ele-
ments (line [I). FreSh uses three sets of done flags, DChunks,
DGroups, and DElements (line [2), storing one done flag
for each chunk, for each group, and for each element, re-
spectively. Similarly, FreSh employs three sets of counter
objects, Chunks, Groups, and Elements (line ), to count the
chunks, groups and elements, assigned to threads for process-
ing. FreSh also employs two sets of helping flags (line [3),
HChunks (for helping chunks) and HGroups (for helping
groups). In an invocation of TRAVERSE(&BUFFERCREATION,
RawData, Dchunks, DGroups, DElements, HChunks,
HGroups, False, Chunks, Groups, Elements, 1), h is
equal to False. By the way a counter object works, it
follows that no expeditive mode is ever executed at the



Algorithm 3: Pseudocode for TRAVERSE of BC in
FreSh. Code for thread t.

> Shared variables:
Set RawData[l..k][1..m][1..r], initially containing all data series

boolean DChunks|1..k], DGroups[1..k][1..m],
DElements[1..k][1..m][1..r], initially all False

boolean HChunks[1..k], HGroups[1..k][1..m], initially all False

CounterObject Chunks, Groups(1..k], Elements[1..k][1..m]
int Size[1..3] = {k,m,r}

—_

N

w

[N

Procedure TRAVERSE(Function *BufferCreation, DataSeries
RawData[], Boolen D1]]|, Boolean Ds[|, Boolean D3]], Boolean
Hq[], Boolean Ha[], Boolean h, CounterObject Cnt,
CounterObject Cnta[], CounterObject Cnt3|], int rlevel)

6 int 4

// acquire and process parts of W

7 while True do

(i, %) :== Cnt; .NEXTINDEX(&Hh)
9 if ¢ > Size[rlevel] then break
10 mark RawDatali] as acquired
11 if rlevel < 3 then

TRAVERSE(BufferCreation, RawDatali], D [i], Ds|i],
Dgli], He[t], NULL, H[i], Cntg[i], Cnts|i], Cnts|[i])
rlevel + 1)

12 else *BUFFERCREATION(RawDatali])
13
14 | Di[i] = True
// scan flags for unprocessed parts of W
and help
15 for each j such that D;|[j] is equal to False do
16 Backoff() // avoid helping, if possible
17 if D;[j]] = False then
18 H;[j] :== True
19 if rlevel < 3 then

TRAVERSE(BufferCreation, RawDatalj], D2 [j], Ds[j],
Dsj], Holj], NULL, H, [j], Cnts 5], Cnts[j].
Cntglj]), rlevel + 1)

20 else *BUFFERCREATION(RawDatal[j])

21 Dq[j] := True

first level of the recursion. Note that at this level, the roles
of D; and H; are played by the one-dimensional arrays
DChunks and HChunks, respectively. Moreover, DGroups
and D Elements play the role of Dy and Ds, respectively, and
HGroups plays the role of Hs. Each chunk is processed by
recursively calling TRAVERSE (level-2 recursion) on line [T1]
(with rlevel being equal to 2). The goal of a level-2 invocation
of TRAVERSE is to process an entire chunk by splitting it into
groups and calling TRAVERSE once more (level-3 recursion)
to process the elements of each group (recursive call of
line with rlevel being equal to 3). Note that in a level-
2 invocation corresponding to some chunk 4, RawData is the
two-dimensional array containing the elements of the groups
of chunk ¢. Moreover, the role of D; is now played by the
one-dimensional array DGroups[i], and the role of Dy by
the two-dimensional array DElements[i], whereas Ds is no
longer needed and is NULL. The role of H; is now played by
the one-dimensional array H Groups[i]. Helping (lines
follows the general pattern described in Algorithm [2]

The backoff time in FreSh depends on the average execution
time required by each thread to process a group. Each thread

t counts the average time 71y, it has spent to process all the
parts it acquired, and whenever it encounters a group to help, it
sets the backoff time to be proportional to 7, and performs
helping only after backoff, if it is still needed.

FreSh implements TP using a set of 2 summarization
buffers (w is the number of segments of an iSAX summary),
one for each bit sequence of w bits. To decide to which
summarization buffer to store a pair, FreSh examines the
bit sequence consisting of the first bit of each of the w
segments of the pair’s iSAX summary, and places the pair
into the corresponding summarization buffer. Each of the
summarization buffers is split into [N parts, one for each of
the N threads in the system. Each thread uses its own part in
each buffer to store the elements it inserts.

To implement TP.TRAVERSE, we split the elements of
TP into 2" workloads and apply Refresh. Each summariza-
tion buffer could be further split into chunks and groups,
and Refresh could be called recursively. Pseudocode for
TRAVERSE of TP closely follows that for BC. BC' and TP
are lock-free implementations of a traverse object.

B. Prunning and Refinement

In FreSh, PS is implemented as a forest of 2% leaf-oriented
trees, one for each of the summarization buffers. The trees of
the forest are the root subtrees of a standard iSAX-based tree.
To implement PS.TRAVERSE, FreSh uses Refresh to process
the different subtrees of the index tree. Specifically, each
thread ¢ access a counter to get assigned a subtree 7' to process.
To process the nodes of T, Refresh is applied recursively.
A thread t that is assigned node i of 7T, first searches for
the ¢-th node, according to inorder, and then processes it by
invoking the PRUNNING function of Algorithm |1} To find the
i-th node of T in an efficient way, for each node nd of T,
FreSh maintains a counter cnt,, that counts the number of
nodes in the left subtree of nd. FreSh uses these counters to
find the i-th node of T by simply traversing a path in 7. The
total number of nodes in T is calcualted by simply traversing
the righmost path of 7" and summing up the counters stored
in the traversed nodes.

1) Insert in Leaf-Oriented Tree: Each node of the tree
stores a key and the pointers to its left and right children. A
leaf node stores additionally an array D, where the leaf’s data
are stored. We assume that each data item is a pair containing
a key and the associated information. A node may have its
own key. For instance, in iSAX-based indexes, this key is the
node’s iISAX summary. The proposed implementation allows
multiple insert operations to concurrently update array D of a
leaf. This results in enhanced parallelism and performance. To
achieve this, each leaf ¢ contains a counter, called Elements.
Each thread ¢ that tries to insert data in ¢, uses Elements to
acquire a position pos in the array D of ¢. If D is not full,
t stores the new element in D[pos]. Otherwise, ¢ attempts to
split the leaf.

During spliting, D may contain empty positions, since some
threads may have acquired positions in D but have not yet
stored their elements there. To avoid situations of missing



elements, each leaf contains an Announce array with one
position for each thread. A thread announces its operation
in Announce before it attempts to acquire a position in D.
During spliting, a thread distributes to the new leaves it creates
not only the elements found in D but also those in Announce.

Our approach is a linearizable, lock-free implementation of
a leaf-oriented tree with fat leaves (supporting only insert).

C. Refinement

To implement RS, FreSh uses a set of priorities queues
each implemented using an array. A thread inserts elements
in all arrays in a round-robin fashion. This technique results
in almost equally-sized arrays, which is crucial for achieving
load-balancing.

To implement RS.TRAVERSE, FreSh first comes up with
sorted versions of the arrays, shared to all threads. Then, it uses
Refresh to assign sorted arrays to threads for processing. To
process the elements of a sorted array S A, Refresh is applied
recursively. Processing of an array element is performed by
invoking the REFINEMENT function (Algorithm [I). Helping is
done at the level of 1) each individual priority queue and 2)
the set of priority queues, in a way similar to that in PS. RS
is a linearizable lock-free implementation of a traverse object.

To update BSF, FreSh repeatedly reads the current value
y of BSF, and attempts to atomically change it from v to the
new value v’, using CAS, until it either succeeds or some value
smaller than or equal to v’ is written in BSE.

Theorem V.1. FreSh solves the 1-NN problem and provides
a lock-free implementation of QUERYANSWERING (Alg. [I).

VI. EXPERIMENTAL EVALUATION

Setup. We used a machine equipped with 2 Intel Xeon ES5-
2650 v4 2.2GHz CPUs with 12 cores each, and 30MB L3
cache. The machine runs Ubuntu Linux 16.04.7. LTS and has
256GB of RAM. Code is written in C and compiled using gcc
v11.2.1) with O2 optimizations.

Datasets. We evaluated FreSh and the competing algorithms
(all algorithms are in-memory) using both real and synthetic
datasets. The synthetic data series, Random, are generated
as random-walks (i.e., cumulative sums) of steps that follow
a Gaussian distribution (0,1). This type of data has been
extensively used [4], [S], [28]], [S8]-[60], and models the
distribution of stock market prices [S8]]. Our real datasets come
from the domains of seismology and astronomy. The seismic
dataset, Seismic, was obtained from the IRIS Seismic Data
Access archive [61]. It contains seismic instrument recordings
from thousands of stations worldwide and consists of 100
million data series of size 256, i.e. its size is 100GB. The
astronomy dataset, Astro, represents celestial objects and was
obtained from [62]. The dataset consists of 270 million data
series of size 256, i.e. its size is 265GB. Since the main
memory of our machine is limited to 256GB, we only use
the first 200GB of the Astro dataset in our experiments.
Evaluation Measures. We measure (i) the summarization
time required to calculate the iSAX summaries and fill-in the
summarization buffers, (ii) the tree time required to insert the

items of the receive buffers in the tree-index, and (iii) the
query answering time required to answer 100 queries that are
not part of the dataset. The sum of the above times constitute
the fotal time. Experiments are repeated 5 times and averages
are reported. All algorithms return exact results.

A. Results

FreSh vs MESSI. We compare FreSh against MESSI, which
is the state-of-the-art blocking in-memory data series index.
To enable a fair comparison, we use an optimized version of
the original MESSI implementation, where we have applied
all the code enhancements incorporated by FreSh.

We also compare FreSh against an extended version of
MESSI, called MESSI-enh, that allows several threads to
concurrently populate the same sub-tree, during tree creation
(instead of using a single thread for each subtree). This is
implemented using fine-grained locks that are attached on each
leaf node of a subtree. MESSI-enh allows to compare the lock-
free index creation phase of FreSh against a more efficient
blocking one than that of original MESSI.

Figure E] shows that all algorithms (FreSh, MESSI, and
MESSI-enh) continue scaling as the number of threads is
increasing, for Seismic 100GB. This is true for all three
phases. Moreover, the total execution time of FreSh (Figure
is almost the same as the total execution time of all its
competitors, although it is the only lock-free approach. As
expected, the tree index creation time of FreSh is smaller than
MESSI’s (Figure 3¢, since FreSh allows subtrees to be pop-
ulated concurrently by multiple threads, allowing parallelism
during this phase, in contrast to MESSI. Interestingly, FreSh
achieves better performance than MESSI-enh, in most cases.
The results for Seismic are similar and are omitted for brevity.

Considering scalability as the size of the dataset increases,
Figure [ demonstrates that FreSh scales well on all three
datasets. In most cases, FreSh is faster than MESSI.

Following previous works [10], [60], we also conducted
experiments with query workloads of increasing difficulty.
For these workloads, we select series at random from the
collection, add to each point Gaussian noise (4 = 0, sigma =
0.01—0.1), and use these as our queries. Figure [6a] presents the
results for the Seismic dataset, where FreSh performs better
than MESSI in most cases.

FreSh vs Baselines. We compare FreSh against several base-
line lock-free implementations of the different stages of an
iSAX-based index. Our results (Figure [6d| shows that FreSh
performs better than all these implementations.

Summarization Baseline: For buffer creation, we have exper-
imented with three implementations: DoAIl-Split, FI-Based,
and CAS-Based. All use a single summarization buffer with
as many elements as RawData. DOAIl-Split splits RawData
into as many equaly-sized chunks as the number of threads.
It stores a done flag with each data series, which is set after
the data series is processed. Each thread traverses RawData
(circularly), starting from the first element of its assigned
chunk. The thread first checks whether the done flag of a
data series is set, and processes it only if not. In Fl-Based,
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threads use FAI to get assigned data series from RawData to
process. When a thread figures out that all RawData elements
have been assigned, it re-traverses RawData to identify data
series whose done flag is still False, and processes them.
CAS-Based works similarly to FI-Based, while it uses CAS
instructions, instead of FAI. FreSh performs significantly better
than all these implementations (Fig. [6d).

Tree Population Baseline: Each thread is assigned elements
of the summarization buffer using FAIl and inserts them in
the index tree. To achieve lock-freedom in traversing the
summarization buffer, we apply the DoAIl-Split, FI-Based,
and CAS-Based techniques we describe above. To achieve
lock-freedom in accessing the tree, we utilize a flagging
technique , in addition to our new tree implementation.
We have also experimented with FI-Based-NoSum, a lock-
free implementation that avoids using the summarization
buffers and inserts directly iSAX summaries in the index tree,
by applying the Fl-Based technique on RawData. FreSh
performs significantly better than all these implementations

(graph omitted for brevity).
Pruning Baseline: All baselines use a single instance of an
existing skip-based lock-free priority queue to store the
candidate data series for refinement. Threads uses FAI to find
the next node to examine in the index tree. When a thread
t discovers that all nodes of the tree have been assigned for
processing, it re-traverses the tree to find nodes that may still
be unprocessed, and processes them.
Refinement Baseline: All threads, repeatedly call DeleteMin to
remove elements from the priority queue, and calculate their
real distance computation. Our results (graph omitted due to
lack of space) show that FreSh performs significantly better
than all these implementations, for query answering time (that
includes pruning and refinement).
Performance breakdown for index creation phase. We
evaluate the techniques incorporated by FreSh to create its tree
index by comparing it against three modified versions of it.
Recall that in FreSh each thread populates each of the subtrees
it acquires in expeditive mode, as long as no helper reaches
the same leaf of the tree; when this happens it changes its
execution mode to standard. So, FreSh allows leaves of the
same subtree to be processed in different modes of execution.
In the first modified version, called Subtree, threads start
again by populating a subtree in expeditive mode, while they
change to standard mode as long as a helper reaches this
subtree (and not when it reaches one of its leaves, as FreSh
does); so, in Subtree all the leaves of a subtree are executed
in a single mode at each point in time. In the second modified
version, called Standard, threads populate subtrees using only
the standard execution mode; i.e., there is no expeditive mode.
In the third modified implementation, called TreeCopy, a
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thread ¢ first populates a private copy of the subtree (i.e. one
that is accessible only to ¢) and only after its creation finishes,
t tries to make it the (single) shared version of this subtree
(by atomically changing a pointer using a CAS instruction);
threads help each other by following the same procedure.
Figures compare FreSh against the modified versions
on Random and Seismic with variable dataset sizes and shows
that it performs better than them, in all cases. Interestingly, for
Seismic 50GB FreSh performs similarly to TreeCopy. Recall
that each thread works on its own private copy and, on each
subtree, they contend at most once on the corresponding CAS
object. So, TreeCopy both restricts parallelism and minimizes
the synchronization cost, which are properties that provide an
advantage on Seismic.
Thread Delays. In order to study systems where processes
may experience delays (e.g., due to page faults, time sharing,
or long phases of updates), we came up with a simplistic
benchmark, where we simulate delays at random points of a
thread’s execution. Figure [7a) illustrates that the delay even of
a single thread causes a linear overhead on the performance of
MESSI, whereas it hardly has any impact in the performance
of FreSh. Moreover, Figure |7_5| shows that MESSI takes (al-
most) the full performance hit of delayed threads right from the
beginning: even a single delayed thread blocks the execution
of all other threads, and hence of the entire algorithm. FreSh
gracefully adapts to the situation of increasing number of
delayed threads, achieving a speedup. Note that these synthetic
benchmarks are designed to simply illustrate the impact of
lock-freedom on performance when threads may experience
delays (or crash), and not to capture some realistic setting.
Note that MESSI will not terminate execution even if a single
thread fails. In the case of failures (see Figure E[), FreSh
always terminates execution, performing almost identical to
MESSI with the same number of non-failing threads. This
demonstrates that FreSh adapts to dynamic thread environ-
ments, maintaining high performance levels.

VII. CONCLUSIONS

Current state-of-the-art data series indexes exploit the par-
allelism supported by modern multicore machines, yet, their
design is lock-based, and therefore, these implementations are
blocking. In this paper, we present FreSh, a lock-free index,
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based on Refresh, our novel generic approach for designing,
building and analyzing highly-efficient data series indexes in a
modular way. The experimental evaluation demonstrates that
FreShperforms as good as the state-of-the-art blocking index,
thus, adhering to the same locality-aware design principles.
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