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ABSTRACT
Time series exploration and mining has many applications across

several industrial and scientific domains. In this paper, we consider

the problem of detecting locally similar pairs and groups, called

bundles, over co-evolving time series. These are pairs or groups

of subsequences whose values do not differ by more than ϵ for

at least δ consecutive timestamps, thus indicating common local

patterns and trends. We first present a baseline algorithm that per-

forms a sweep line scan across all timestamps to identify matches.

Then, we propose a filter-verification technique that only exam-

ines candidate matches at judiciously chosen checkpoints across

time. Specifically, we introduce two block scanning algorithms for

discovering local pairs and bundles respectively, which leverage

the potential of checkpoints to aggressively prune the search space.

We experimentally evaluate our methods against real-world and

synthetic datasets, demonstrating a speed-up in execution time by

an order of magnitude over the baseline.
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1 INTRODUCTION
Time series are important in many applications both in industry, e.g.

in energy and finance, as well as in science, e.g. in astronomy and
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biology [16]. Therefore, efficient management and mining of time

series is a task of critical importance, but also highly challenging

due to the large volume and complex nature of this data.

Co-evolving time series are time series that are time-aligned, i.e.

they contain observation values at the same timestamps all along

their duration. In this work, we focus on discovering all pairs or
groups (called bundles) of locally similar co-evolving time series and

extracting the subsequences where this local similarity occurs. We

consider two time series as locally similar if the pairwise distance
of their values per timestamp is at most ϵ for a time interval that

lasts at least δ consecutive timestamps.

Several research efforts have focused on similarity search over

time series to detect patterns within a single or across a set of time

series [14, 17, 22, 27]. However, to the best of our knowledge, the

problem of discovering pairs or groups of similar time-aligned subse-
quences within a set of co-evolving time series has been overlooked.

Discovering such pairs and bundles is useful in various applica-

tions. For instance, public utility companies employ smart meters

to collect time series measuring consumption per household (e.g.,

for water or electricity). Identifying such bundles of time series

(i.e., a number of similar subsequences over certain time intervals)

can reveal similar patterns of consumption among users, allowing

for more personalized billing schemes. In finance, examining time

series of stock prices can identify pairs or bundles of stocks trend-

ing similarly at competitive prices over some trading period, hence

offering precious insight for possible future investments.

Figure 1 illustrates an example comprising four time series de-

picted with different colors. We observe that from timestamp 1 to 5

the values of T1 and T2 are very close to each other, thus forming a

locally similar pair. Similarly, from timestamp 8 to 12, the values of

T1, T2 and T4 are close to each other, forming a bundle with three

members. Note that values in each qualifying subsequence may fluc-

tuate along a bundle as long as they remain close to the respective

values per timestamp of the other members in that bundle.

Figure 1: A pair and a bundle of locally similar time series.
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Figure 2: Pair of locally (but not globally) similar time series.

Figure 3: Bundles of locally similar time series.

A real-world example is depicted in Figure 2. These two time

series represent per-hour average water consumption during a day

of the week for two different households. We can observe that their

respective values per timestamp (at granularity of hours, in this

example) are very close to each other during a certain time period

(hours 2-11), but are farther apart in the rest. Hence, an algorithm

that measures the global similarity between two time series might

not consider this pair as similar; however, the subsequences in-

side the gray strip are clearly pairwise similar, and might indicate

an interesting pattern. Identifying such local similarities within a

sufficiently long time interval is our focus in this paper.

Furthermore, Figure 3 depicts several bundles of locally similar

time series detected by our algorithms in a real-world dataset con-

taining smart water meter measurements. The detected bundles

represent different per-hour average water consumption patterns

during a week. There is a wider pattern detected among 6 house-

holds during the first 30 hours of the week indicating reduced

consumption (probably no permanent residence). The orange and

yellow patterns indicate different morning routines during the third

and fourth day of the week. The green and purple patterns repre-

sent a reduction in consumption during the late hours of the fourth

and sixth day, respectively, with some intermediate consumption

taking place during the night. Finally, the shorter red and light

blue bundles suggest different evening patterns for two other days

(respectively, decreasing and increasing consumption).

Discovering all possible pairs and bundles of locally similar time

series, along with the corresponding subsequences, within large

sets is a computationally expensive process. To find matches, a

filter-verification technique can be applied. At each timestamp,

the filtering step can discover candidate pairs or groups having

values close to each other; then, the verification step is invoked

to determine whether each such candidate satisfies the required

conditions, essentially whether this match occurs throughout a

sufficiently large time interval. However, both the filtering and the

verification steps are expensive. The computational cost becomes

especially high for the case of bundle discovery, as it has to examine

all possible subsets of locally similar time series that could form a

bundle. Hence, such an exhaustive search is prohibitive when the

number and/or the length of the time series is large.

In this paper, we employ a value discretization approach that di-

vides the value axis in ranges equal to the value difference threshold

ϵ , in order to reduce the number of candidate pairs or bundles that

need to be checked per timestamp. Leveraging this, we first pro-

pose two sweep line scan algorithms, for pair and bundle discovery

respectively, which operate according to the aforementioned filter-

verification strategy. However, this process still incurs an excessive

amount of comparisons, as it needs to scan all values at every times-

tamp. To overcome this, we introduce a more aggressive filtering

that only checks at selected checkpoints across time, but ensuring

that no false negatives ever occur. This approach incurs significant

savings in computation cost, as we only need to examine candidate

matches on those checkpoints only instead of all timestamps. To

further reduce the number of examined candidates, we propose a

strategy that judiciously places these checkpoints across the time

axis in a more efficient manner. We then exploit these optimizations

introducing two more efficient algorithms that significantly reduce

the execution cost for both pair and bundle discovery.

The bundle discovery problemwe address in this paper resembles

the problem of flock discovery in moving objects, where the goal
is to identify sufficiently large groups of objects that move close

to each other over a sufficiently long period of time [1, 10, 24, 25].

In fact, the baseline algorithm we describe can be viewed as an

adaptation of the algorithm presented in [25]. However, to the best

of our knowledge, ours is the first work to address the problems

of locally similar pair and bundle discovery over co-evolving time

series. Our main contributions can be summarized as follows:

• We introduce the problems of local pair and bundle discovery

over co-evolving time series.

• We suggest an aggressive checkpoint-based pruning method

that drastically reduces the candidate pairs and bundles that

need to be verified, significantly improving performance.

• We conduct an extensive experimental evaluation using both

real-world and synthetic time series, showing that our algo-

rithms outperform the respective sweep line baselines.

The remainder of this paper is organized as follows. Section 2

reviews related work. Section 3 describes the problems. Sections

4 and 5 introduce our algorithms for pair and bundle discovery,

respectively. Section 6 reports our experimental results, and finally

Section 7 concludes the paper.

2 RELATEDWORK
Time series similarity. Similarity search over time series has at-

tracted a lot of research interest [8]. One well-studied family of
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approaches includes wavelet-based methods [5], which rely on Dis-
crete Wavelet Transform [9] to reduce the dimensionality of time

series and generate an index using the coefficients of the trans-

formed sequences. The Symbolic Aggregate Approximation (SAX)

representation [13] has led to the design of a series of indices, includ-

ing iSAX [23], iSAX 2.0 [3], iSAX2+ [4], ADS+ [29], Coconut [12],

DPiSAX [26], and ParIS [21]. However, these indices support similar-

ity search over complete time series, i.e. whole-matching. Recently,

the ULISSE index was proposed [14], which is the first index that

can answer similarity search queries of variable length.

Moreover, many approaches have been proposed for subsequence
matching. In this problem, a query subsequence is provided and

the goal is to identify matches of it across one or more time series,

typically of large length. The UCR suite [22] offers a framework

comprising four different optimizations regarding subsequence

similarity search. In computing full-similarity-joins over large col-
lections of time series, i.e., to detect for each possible subsequence

its nearest neighbor, the matrix profile [27] keeps track of Euclidean

distances among each pair within a similarity join set (i.e., a set

containing pairs of each subsequence with its nearest neighbor).

The problem we address in this paper differs from the above

settings. Instead of identifying matches of a query subsequence

against one, or more time series, we are interested in discovering

locally similar pairs and bundles of time-aligned subsequences

within a given collection of time series.

Correlated time series. Identifying similar subsequences be-

tween time series also indicates some correlation between them.

Several approaches compute pairwise statistics (e.g., Pearson corre-

lation, beta values) especially in streaming time series [6, 18, 28].

There are also works concerning co-evolving time series data, ei-

ther towards detecting and correcting missing values [2] or mining

typical patterns and points of variation to achieve a meaningful

segmentation of large time series [15]. However, none of these ap-

proaches is applicable to our setting, where we require similarity

in the time series values.

Time series clustering. Our work also relates to clustering of
time series, where methods perform either partitioning or density-

based clustering. In the former class, algorithms typically partition

the time series into k clusters. Similarly to iterative refinement

employed in k-means, the k-Shape partitioning algorithm [19, 20]

aims to preserve the shapes of time series assigned to each clus-

ter by considering the shape-based distance, a normalized version

of the cross-correlation measure between time series. In contrast,

density-based clustering methods are able to identify clusters of

time series with arbitrary shapes. YADING [7] is a highly efficient

and accurate such algorithm, which consists of three steps: it first

samples the input time series also employing PAA (Piecewise Ag-

gregate Approximation) to reduce the dimensionality, then applies

multi-density clustering over the samples, and finally assigns the

rest of the input to the identified clusters. However, clustering

methods consider time series in their entirety and not matching

subsequences as we consider in this work.

Discovery of movement patterns in trajectories. Our work
also relates to approaches for discovering clusters of moving ob-

jects, in particular a type of movement patterns that is referred to

as flocks [10]. A flock is a group of at leastm objects moving to-

gether within a circular disk of diameter ϵ for at least δ consecutive

timestamps. Finding an exact flock is NP-hard, hence this work

suggests an approximate solution to find the maximal flock from a

set of trajectories using computational geometry concepts. In [1],

another approximate solution for detecting all flocks is based on a

skip-quadtree that indexes sub-trajectories. Flock discovery over

streaming positions frommoving objects was addressed in [25]. This

exact solution discovers flock disks that cover a set of points at each

timestamp. Their flock discovery algorithm finds candidate flocks

per timestamp and joins them with the candidate ones from the

previous timestamps, reporting a flock as a result when it exceeds

the time constraint δ . An improvement over this technique was

presented in [24], using a plane sweeping technique to accelerate

detection of object candidates per flock at each timestamp, while

an inverted index speeds up comparisons between candidate disks

across time. In our setting, detection of bundles is similar to flocks,

thus for our baseline method we adapt the algorithm from [25].

3 PROBLEM DEFINITION
A time series is a time-ordered sequence X = {X 1,X 2 . . . ,Xk },
where X i

is the value at the i-th timestamp and k is the length of

the series (i.e., the number of timestamps). We consider a set of

co-evolving time series, so all time series are time-aligned and each

series has a value at each of the k timestamps. Given a set of such

co-evolving time series, our goal is to find pairs of time series that

have similar values locally over some time intervals of significant

duration. More specifically:

Definition 1 (Locally Similar Time Series). Two co-evolving
time series Xi and X j are locally similar if there exists a time inter-
val I spanning at least δ consecutive timestamps such that at every
timestamp in I their corresponding values do not differ by more than
a given threshold ϵ , i.e., ∀t ∈ I , |X t

i − X
t
j | ≤ ϵ .

Note that threshold ϵ expresses the maximum tolerable deviation

per timestamp between two time series, so it actually concerns the

absolute difference of their corresponding values. We wish to find

all such pairs of time series, so the problem is actually a self-join over
the dataset, specifying as join criteria the distance threshold ϵ and

the minimum time duration δ of qualifying pairs. More formally:

Problem 1 (Pair Discovery over Time Series). Given a set of
n co-evolving time series X = {X1,X2, ...,Xn } of equal duration k ,
a distance threshold ϵ > 0, and a time duration threshold δ > 1

timestamps, (δ ∈ N ), retrieve all pairs {Xi ,X j }, 1 ≤ i < j ≤ n of
locally similar time series along with the corresponding time intervals.

For example, in Figure 4, the detected pairs for specified ϵ and δ
would be the locally similar time series within grey ribbons. Since

two time series might be locally similar in more than one intervals,

their matching subsequences are considered as two different pairs,

one for each interval. For instance, in Figure 4 the green and red

time series yield two matching pairs in different time intervals.

The above problem can be extended to the detection of groups,

called bundles, of co-evolving time series. Each such bundle of time

series contains at least a pre-defined number µ > 2 of members,

which are pairwise locally similar to each other over a time interval

of sufficient duration. This problem can be formulated as follows:

Problem 2 (Local Bundle Discovery over Time Series). Given
a set of co-evolving time seriesX = {X1,X2, ...,Xn } of equal length k ,
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Figure 4: Pair discovery over a set of time series.

Figure 5: Bundle discovery over a set of time series.

a minimum bundle size µ > 2, (µ ∈ N), a maximum value difference
ϵ > 0, and a minimum time duration δ > 1 timestamps, (δ ∈ N),
retrieve all groups G of time series such that:
• Each group G ∈ G contains at least µ time series.
• Within each group G ∈ G, all pairs of time series are locally
similar with respect to ϵ and δ .
• Each group G ∈ G is maximal, i.e., there is no other group
G ′ ⊇ G that also forms a bundle for the same time interval.

An illustration of the above problem is shown in Figure 5. Each

grey band covers the subsequences of at least µ = 3 time series

that constitute a bundle. These subsequences are pairwise locally

similar for a specified distance ϵ and duration δ .

4 PAIR DISCOVERY
In this Section, we propose two solutions for the pair discovery

problem. The first (Section 4.2) is a baseline algorithm that uses

a sweep line to scan the co-evolving time series throughout their

duration, while validating and keeping all the pairs that satisfy

the given constraints employing a value discretization scheme per

timestamp (Section 4.1). The second method (Section 4.4) employs

an optimization that reduces the number of pairs to consider by ju-

diciously probing candidates at selected timestamp values (referred

to as checkpoints, Section 4.3). This significantly prunes the search

space without missing any qualifying results.

4.1 Value Discretization
To reduce the candidate pairs that need be checked at each times-

tamp t , we discretize the values of all time series at t in bins, i.e.,
several consecutive value ranges, each one of size ϵ . Time series

with values within the same bin at timestamp t form candidate pairs,

but we also need to check adjacent bins for additional candidate

pairs whose values differ by at most ϵ . Time series having values

at non-adjacent bins are certainly farther than ϵ at that specific

timestamp t , so we can avoid these checks.

To detect all candidate pairs and avoid cross-checking in every

two adjacent bins we consider a value range of size ϵ , whose upper
endpoint coincides with each value under consideration at time t .

Figure 6: Discretization of time series values at timestamp t .

Then, all values of time series contained within this range, form

candidate pairs (see Figure 6). Obviously, values contained in the

same bin j can form candidate pairs. Then, we can cross-check each

value in bin j with values in bin j + 1 for additional candidates with
value difference at most ϵ , as indicated with the red (right) range.

At each timestamp t , the process of finding all the pairs consists

of: (1) Filtering - Search among time series values in adjacent bins

to detect candidate pairs using the aforementioned search method.

(2) Verification - For each candidate pair, check similarity of their

respective values at successive timestamps as long as this pair still

qualifies to the matching conditions (or the end of time series data

is reached). This step resembles to a “horizontal expansion” along

the time axis in an attempt to eagerly verify and report pairs.

4.2 Pair Discovery Using Sweep Line
A baseline method for pair discovery over a set of time series is to

check all the candidate pairs formed at each timestamp, and verify

whether the minimum duration constraint δ is satisfied. Algorithm

1 describes this procedure. Pair discovery (Line 5) considers a time

duration T (as a set of consecutive timestamps) to check for results.

Initially T = {0, . . . ,k}, where k is the total duration of all time

series data. For each timestamp t , we obtain only the subset of time

series whose values are contained in two adjacent bins (Line 7).

Based on these values at t , we obtain all candidate pairs with respect
to the threshold ϵ (Line 9). For each such pair, if it is not already part
of the resulting pairs at that specific timestamp t , we verify it by

first expanding it horizontally (Lines 10-12) and checking whether

this pair meets the duration constraint δ (Line 13) along subsequent

timestamps. If so, we add it to the reported results (Line 14).

For the horizontal expansion, we iterate over the subsequent

timestamps (after the current one – Line 17) and stop when ϵ is

violated (Lines 18–19). Then, we mark the start of this pair with the

current timestamp t , whereas its end is marked by the timestamp

at which ϵ is crossed, and we return this pair (Lines 20-22).

However, searching over all timestamps in such an exhaustive

manner can be expensive, particularly for long time series. Next, we

present an optimization that identifies candidate pairs at selected

timestamps only, so that only those pairs require verification.

4.3 Optimized Filtering at Checkpoints
To prune the search space, we consider checkpoints along the time

axis, so that searching for candidate pairs will be performed at these

specific timestamps only. If the temporal span between two succes-

sive checkpoints does not exceed the minimal duration threshold δ ,
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Algorithm 1: Sweep line scan pair discovery

Input: Set X of co-evolving time series of length k
Parameters: Threshold ϵ , min duration δ
Output: List P with all locally similar pairs of time series

1 B ← CreateBins(X)
2 P ← DiscoverPair s(∅, B, {0, ..., k }, ϵ, δ )
3 return P

4 Procedure DiscoverPair s(P, B, T , ϵ, δ )
5 foreach t ∈ T do
6 foreach z = 0→ B .size do
7 X′ ← Btz ∪ Btz+1
8 foreach X ∈ X′ do
9 Pt ← дetAd jacentPair s(X t , ϵ )

10 foreach p ∈ Pt do
11 if p < P then
12 p ← V er if yPair (p, t, k, ϵ )
13 if p .end − p .star t ≥ δ then
14 P ← P ∪ p

15 return P

16 Procedure V er if yPair (p, t, k, ϵ )
17 foreach t ′ = t + 1→ k do
18 if |p .X t ′

i − p .X t ′
j | > ϵ then

19 break

20 p .star t ← t
21 p .end ← t ′

22 return p

Figure 7: Checkpoints placed every δ timestamps.

we can ensure no false negatives, since any qualifying pair starting

at an intermediate timestamp between two checkpoints will surely

be detected at least on the second one. Figure 7 shows an example

for a set of time series (checkpoints placed every δ = 5 timestamps).

Assume a set of checkpoints placed at time interval δ from each

other, as depicted in Figure 8(a). Let a checkpoint at timestamp t ′

and a qualifying pair of duration δ starting at timestamp t ′ − δ + 1.
This pair cannot have smaller duration, otherwise it would not

meet constraint δ . Consequently, the pair will be detectable on the

checkpoint at t ′, as shown in the figure. Similarly, if a qualifying

pair ends at timestamp t ′ + δ − 1 (Figure 8(b)), it will be detected at
the checkpoint at t ′. Hence, all pairs around a checkpoint at t ′ can
be detected as candidates when we check their values at t ′. Thus,
we can easily conclude to the following observation.

Lemma 1 (Checkpoint Covering Interval). Let the interval
between successive checkpoints not exceed δ . Considering a checkpoint
placed at timestamp t ′, all qualifying pairs starting at s, t ′ − δ + 1 ≤
s < t ′ and ending at f , t ′ < f ≤ t ′ + δ − 1 will satisfy all matching
constraints at timestamp t ′.

This lemma entails that it suffices to check for candidate pairs

only at checkpoints, i.e., every δ timestamps. We denote the set

(a) Pair with a starting point before t ′.

(b) Pair with an ending point after t ′.
Figure 8: A qualifying pair will be detected on a checkpoint.

Figure 9: Sub-optimal checkpoint placement.

of checkpoints as C . Since we skip timestamps and in order to

avoid false misses, we now have to verify pairs with a horizontal

expansion (as in 4.2), but towards both directions, i.e., before and

after a given checkpoint. Overall, at each checkpoint the optimized

process performs: (1) Filtering - Search for candidate pairs among

the values of time series in adjacent bins. (2) Verification - For each

pair, perform a two-way horizontal expansion across the time axis.

Improving placement of checkpoints. Depending on the dataset,

the default checkpoint placement might yield an increased number

of candidate pairs, resulting in too many verifications. Intuitively, if

the time series values at a specific timestamp t ′ are placed in a more

“scattered” manner over the bins, less candidates would be generated.

This is because the values of time series at t ′ would differ from

each other by more than ϵ and thus can be pruned as described in

Section 4.1. Figure 9 depicts such a case of sub-optimal placement

of checkpoints, where the second checkpoint is placed at a rather

dense area and as a result, six candidate pairs are considered. We

can avoid this by shifting all checkpoints together either to the left

or to the right, yet maintaining their temporal span every δ . As
shown in Figure 10, all three checkpoints are collectively shifted to

the left, avoiding the dense area and reducing the total number of

candidate pairs. An extra checkpoint can be inserted before the first

or after the last one, guaranteeing that there is no interval longer

than δ without checkpoints.

Clearly, the placement of the set C of checkpoints influences the

amount of candidate pairs. We wish to find the best such place-

ment, which provides the least number of candidate pairs. The

amount of candidates depends on the cardinality of the bins (i.e.,
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Figure 10: Improved checkpoint placement.

Figure 11: Best checkpoint placement (thick vertical lines).

the number of values in each one, as shown in Fig. 6) at any par-

ticular checkpoint c ∈ C . Given that n is the total number of time

series in the dataset (and hence the number of values at each check-

point), we can identify the most populated bin at checkpoint c by

calculating the maximal density
max{Bc }

n , where Bc represents the

set of bin cardinalities at checkpoint c . Therefore, for a given con-

figuration C of checkpoints, we can estimate an overall cost r by
taking the sum of such maximal densities over all checkpoints, i.e.,

r =
∑
c ∈C

max{Bc }
n . The less this total cost, the smaller the cardinal-

ity per bin at each checkpoint and, thus, the less the candidates that

will be generated. Consequently, we seek to find the minimum r . To
do so, we shift all checkpoints together to the right, one timestamp

at a time, we estimate ratio r again and repeat δ times. This proce-

dure is illustrated in Figure 11, where the checkpoints symbolized

with similar lines belong to the same set as we move them to the

right in order to identify the best placement (indicated with the

thickest vertical dashed lines).

4.4 Pair Discovery Using Checkpoints
After identifying the best checkpoint placement, we can discover

pairs of locally similar time series by applying the exhaustive al-

gorithm presented in Section 4.2, but iterating over the defined

checkpoints instead of all timestamps. To speed up the verification

step, we introduce an optimization that reduces the number of

checks. For each candidate pair p that started at (a possibly previ-

ous) timestamp p.start , we first expand its verification to the left.

In case the current duration of pair p is still less than δ , we jump at

timestamp p.start +δ in order to eagerly prune candidates that will

not last at least δ . There, we check directly whether the values of

these two time series qualify, and we continue this check backwards

in time. If at an intermediate timestamp the ϵ constraint is not met,

we can stop the verification process and discard the candidate pair.

The procedure for pair discovery is listed in Algorithm 2. Initially,

we calculate the best possible checkpoint set (Line 2). Then, we run

the procedure described in Section 4.2 but instead of probing over

all timestamps we iterate over the resulting checkpoint set (Line 3).

Regarding verification, we first move towards the leftmost end-

point (Line 6) and detect the starting timestamp of the pair (Line

9). Then, we iterate from the timestamp tc = p.start + δ towards

Algorithm 2: Checkpoint scan pair discovery

Input: Set X of co-evolving time series of length k
Parameters: Threshold ϵ , min duration δ
Output: A list P containing all the locally similar time series

1 B ← CreateBins(X)
2 C ← GetCheckpoints(k, δ )
3 P ← DiscoverPair s(∅, B, C, ϵ, δ )
4 return P

5 Procedure V er if yPair2Way(p, t, k, ϵ )
6 foreach t ′ = t − 1→ 0 do
7 if |p .X t ′

i − p .X t ′
j | > ϵ then

8 break

9 p .star t ← t ′

10 tc ← p .star t + δ − 1
11 foreach t ′ = tc → t do
12 if |p .X t ′

i − p .X t ′
j | > ϵ then

13 p .f ← t
14 return p

15 foreach t ′ = tc + 1→ k do
16 if |p .X t ′

i − p .X t ′
j | > ϵ then

17 break

18 p .end ← t ′

19 return p

the initial timestamp t (Line 11). If the pair does not qualify at a

timestamp during this interval (Line 12), we set t as its final times-

tamp and return the pair (Line 14). Otherwise, we continue from

timestamp tc and towards the rightmost timestamp until the pair

ceases to qualify (Lines 15-19).

Cost analysis. Let Ntc be the number of examined timestamps

(i.e., checkpoints) considered by the algorithm. For each such times-

tamp, the algorithm needs to perform two operations, namely first

to generate the set of candidate pairs and second to verify each pair.

Let Ccд , Ccv and Nc denote, respectively, the candidate generation

cost, the verification cost per candidate and the number of gener-

ated candidates. Then, the total cost isC = Ntc × (Ccд +Nc ×Ccv ).
The candidate generation cost Ccд is proportional to the number

of candidates Nc , which in turn is O(|X|2). However, in practice,

the algorithm only needs to generate candidate pairs from the time

series corresponding to the same bin. Let β denote the number

of bins (β ≤ (ymax − ymin )/ϵ) and Nβ the maximum number of

time series associated with any bin. Then, the expected cost in

practice would be β × N 2

β . As ϵ increases, β decreases but Nβ in-

creases (in the worst case, Nβ = |X|, i.e., there is a single bin that

contains all time series). Moreover, any candidate that has been

already generated and verified in a previous timestamp need not

be verified again, so the number of candidate pairs to be verified

in the worst case is O(|X|2). Regarding the verification cost Ccv ,
consider a pair of time series (Xi ,X j ) that is generated at timestamp

τ . The algorithm needs to check for each subsequent timestamp

t ∈ (τ ,k) whether |X t
i − X

t
j | ≤ ϵ , as long as this condition holds;

hence, the cost is O(k). Of course, in practice, this will also require

much fewer comparisons in most cases. Notice that the difference

between Algorithm 2 and Algorithm 1 is that the former generates

and verifies candidates only at checkpoints, i.e., Ntc = k/δ , while
the latter at every timestamp, i.e., Ntc = k .
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5 BUNDLE DISCOVERY
We now consider the bundle discovery problem. We propose two

algorithms: an exhaustive one using a sweep line (Section 5.1), and

one using checkpoints (Section 5.2), following the same principles

as in pair discovery.

5.1 Bundle Discovery Using Sweep Line
To exhaustively detect bundles of time series, we can follow a simi-

lar procedure employing a sweep line as in Section 4.2. However,

this time we detect candidate bundles at each timestamp before ver-

ifying whether constraints concerning minimal duration δ and min-

imum membership µ are satisfied. Essentially, this can be thought

of as an adaptation of the flock discovery approach in [25] to the

1-dimensional setting in the case of time series.

Algorithm 3 describes this exhaustive process. Similarly to pair

discovery, at each timestamp t (Line 5) we obtain only the values of

time series contained in adjacent bins (Lines 6–7). Then, each such

value is considered the origin of a search range ϵ , which returns a

candidate group at time t (Line 9). Of course, such a candidate group
may have been already included in the result bundles previously,

during a horizontal expansion at a previous timestamp. In this case,

its examination is skipped. Otherwise, if this group contains more

than µ members, we proceed to verify it as a candidate bundle over

subsequent timestamps via horizontal expansion (Lines 10-12). As

will see next, this expansion may return one or more candidate

bundles; each one is checked against the duration constraint δ
before adding it to the result bundles (Lines 13-16).

Regarding the verification step of a candidate bundle Gt , we
apply its horizontal expansion over all subsequent timestamps (Line

19). For eachmember of such candidate bundle (Lines 21-28), we find

the group Gt ′ of time series having values within range ϵ at time t ′.
Many such new groups may be created, as each member may yield

one group. Such a group Gt ′ may become a new candidate bundle if

it satisfies the µ constraint; if so, it is added to the resulting bundles

with an updated duration (Lines 24–27). As we look at subsequent

timestamps, it may happen that the same bundle may be added to

the results multiple times, but with increasing duration. In the end,

we eliminate duplicates and only keep the one with the longest

duration (Line 28). Expansion stops once no new candidate bundles

can be found in the next timestamp (Lines 29–30).

5.2 Bundle Discovery Using Checkpoints
For bundle discovery using checkpoints, we apply a similar sweep

line approach, but this time we only filter at checkpoints and then

verify towards both directions in the time axis. Algorithm 4 de-

scribes this procedure. After initializing the checkpoints (Line 2),

we run the bundle discovery process as in Algorithm 3, but this

time looking at checkpoints (Line 3) instead of all timestamps. For

the two-way horizontal expansion, we first examine all candidate

bundles in set Q1 detected from the current checkpoint towards

the origin of time axis (Line 7). This is done because a qualifying

bundle could have started earlier, before the current checkpoint.

Afterwards, we apply the same eager pruning strategy as in Sec-

tion 4.4. So, we verify each such candidate bundle jumping forward

at timestamp tc = q.start +δ and continue backwards in time to its

currently known start (Lines 8–10). Among the candidate bundles

Algorithm 3: Sweep line scan bundle discovery

Input: Set X of co-evolving time series of length k
Parameters: Threshold ϵ , min duration δ , min members µ
Output: A list P containing all the discovered bundles

1 B ← CreateBins(X)
2 P ← DiscoverBundles(∅, B, {0, ..., k }, ϵ, δ, µ)
3 return P

4 Procedure DiscoverBundles(P, B, T , ϵ, δ, µ)
5 foreach t ∈ T do
6 foreach z → B .size do
7 X′ ← Btz ∪ Btz+1
8 foreach X ∈ X′ do
9 Gt ← дetAd jacent (X t , ϵ )

10 if Gt < P then
11 if Gt .size ≥ µ then
12 B ← V er if yBundle(Gt , {t, .., k }, ϵ, µ)
13 foreach G ∈ B do
14 if G .end − G .star t ≥ δ then
15 P ← P ∪ G

16 return P

17 Procedure V er if yBundle(Gt , {t1, ..., tϕ }, ϵ, µ, f )
18 P ← Gt
19 foreach t ′ = t2 → tϕ do
20 expanded ← False
21 foreach G ∈ P do
22 foreach X ∈ G do
23 Gt ′ ← дetAd jacent (X t ′, ϵ )
24 if (Gt ′ .size ≥ µ then
25 Rearrange duration of Gt ′ accordingly
26 P ← P ∪ Gt ′

27 expanded ← T rue

28 P ← keepLonдestBundles(P )
29 if expanded = False then
30 break

31 return P

Algorithm 4: Checkpoint scan bundle discovery

Input: Set X of co-evolving time series of length k
Parameters: Threshold ϵ , min duration δ , min members µ
Output: A list P containing all the discovered bundles

1 B ← CreateBins(X)
2 C ← GetCheckpoints(k, δ )
3 P ← DiscoverBundles(∅, B, C, ϵ, δ, µ)
4 return P

5 Procedure V er if yBundle2Way(Gt , t, k, ϵ, µ)
6 P, Q1, Q2 ← ∅
7 Q1 ← V er if yBundle(Gt , {t − 1, ..., 0}, ϵ, µ)
8 foreach q ∈ Q1 do
9 tc ← q .star t + δ − 1

10 Q2 ← Q2 ∪V er if yBundle(q, {tc , ..., q .star t }, ϵ, µ)
11 foreach q ∈ Q2 do
12 if q .end − q .star t ≥ δ then
13 P ← P ∪V er if yBundle(q, {tc , ..., k }, ϵ, µ)

14 return P

(in setQ2) returned from the forward verification (Line 11), we care

only for those that satisfy the minimal duration constraint δ (Line

12). These are further verified from timestamp tc and forward in

time, obtaining all subsequent qualifying bundles (Line 13).



SSTD ’19, August 19–21, 2019, Vienna, Austria G. Chatzigeorgakidis, et al.

Table 1: Datasets used in the experiments.
Dataset Size Time series length
Water 822 168

Synthetic 50,000 1,000

Cost analysis. The algorithm follows a similar approach as for

the case of pairs. At selected timestamps, first the candidate bundles

are generated, and then each bundle is verified. In this case, since

we are seeking groups of at least m time series, the number of

candidates Nc is O(|X|µ ), although in practice it is again expected

to be much lower since only those time series corresponding to the

same bin need to be considered. Finally, verification is similar with

only slightly higher cost. Indeed, when checking the condition |X t
i −

X t
j | ≤ ϵ , we first need to determine the time series Xi and X j inside

the bundle that have the highest and lowest values, respectively.

6 EXPERIMENTAL EVALUATION
6.1 Experimental Setup
We evaluate the performance of our methods on pair and bundle

discovery both qualitatively and quantitatively. We compare our

checkpoint (CP) scan approaches for each problem with the respec-

tive sweep line (SL) methods. We use a real-world and a synthetic

dataset as listed in Table 1. Next, we describe their characteristics.

DAIAD Water Consumption (Water). Courtesy of the DAIAD

project
1
, we acquired a time series dataset of hourly water con-

sumption for 822 households in Alicante, Spain from 1/1/2015 to

20/1/2017. In order to get a more representative dataset for our

tests, we first calculated the weekly time series (24 × 7 timestamps,

one value per hour from Monday to Sunday) per household by

averaging corresponding hourly values over the entire period.

Synthetic Dataset. We generated a synthetic dataset of 50,000

time series, each with a length of 1,000 timestamps. So, this dataset

contains 50 million data points in total. The dataset was generated

in a similar manner to the synthetic dataset used in [11].

All experiments were conducted on a Dell PowerEdge M910

with 4 Intel Xeon E7-4830 CPUs, each containing 8 cores clocked

at 2.13GHz, 256 GB RAM and a total storage space of 900 GB.

6.2 Evaluation Results
We conducted two sets of experiments, using the water and syn-

thetic datasets. The water dataset was used for qualitative and

quantitative assessment of our methods on pair and bundle discov-

ery, while the synthetic dataset was used for efficiency evaluation.

6.2.1 Pair and Bundle Discovery over Real Data. We performed

several experiments using the water dataset for various parame-

ter values to detect pairs and bundles using both the SL and CP

approaches. The dataset was z-normalized to eliminate amplitude

discrepancies among time series and focus on structural similarity.

To evaluate our methods against different parameters, we per-

formed preliminary tests to extract ranges of values where the

algorithms would return a reasonable number of results. Table 2

lists the range of values for the parameters used for bundle and

pair discovery tests (recall that parameter µ is not applicable in pair

discovery); default values are in bold. Parameter δ is expressed as

1
http://daiad.eu/

Table 2: Parameters for tests over the water dataset
Parameter Values
δ (% of time series length, i.e., 168) 6%, 5%, 6%, 7%, 8%
ϵ (% of value range, i.e., approx 11.4) 4%, 5%, 6%, 7%, 8%
µ (% of dataset size, i.e., 822) 0.5%, 0.75%, 1%, 1.25%, 1.5%

a percentage of the duration of the time series, ϵ is expressed as a

percentage of the value range (i.e., differencemax −min in values

encountered across the dataset) and µ is expressed as a percentage

of the number of time series in the dataset.

Varying δ . Figure 12 depicts the results for varying minimal

duration δ . In bundle discovery, the CP algorithm outperforms SL

up to an order of magnitude in terms of execution time (Figure 12(a)).

As the threshold δ gets larger, performance is improved due to less

checkpoints being specified and less candidates needing verification.

On the contrary, the SL approach performs similarly irrespective

of δ , as time series must be checked at all timestamps. From Figure

12(b), it turns out that the number of detected bundles is reduced

as the δ value increases, which is expected as fewer bundles can

last longer. In this plot, the blue bars indicate the maximum bundle

duration among the ones that were detected, while the orange bars

indicate the larger detected bundle in terms of membership. It is

clear that the maximum bundle size is drastically reduced as the

number of results diminish, while the maximum duration among

bundles remains the same with the increase of δ , as the longest
bundle is the same in these results.

Regarding pair discovery, since it is an overall faster process, the

differences in terms of efficiency are smaller, but still apparent. In

this case, the execution time (Figure 12(c)) is more abruptly reduced

in both SL and CP methods, since less subsequences qualify as

pairs. The number of results (Figure 12(d)) is now naturally much

larger, as far more pairs are expected to be verified if bundles exist.

The same stands for the maximum duration among pairs, which

tend to last longer compared to bundles. Since a pair is actually

a bundle with µ=2 members, it is easier to find local similarity

over longer intervals between two subsequences rather than an

increased number of them. The maximum duration, as in bundle

discovery, remains the same as δ increases, since this corresponds

to the same pair in the results.

Varying ϵ . Varying threshold ϵ for bundle discovery slightly in-

curs more execution cost for both SL and CP approaches. This is

due to the increased number of bundles that need to be verified.

Nonetheless, the difference in cost remains at levels of at most an

order of magnitude, as shown in Figure 13(a). As expected, the num-

ber of results is also increased (Figure 13(b). So does the maximum

duration bundle, which is also expected due to more qualifying bun-

dles, hence a higher probability to find longer ones. The maximum

bundle size (i.e., membership) is also increased, as more time series

can form a bundle when allowing a wider threshold ϵ in deviation

of their respective values.

Regarding pair discovery, the results are again similar to bundle

discovery for varying ϵ . For very small ϵ values of up to 7% of

the value range, the CP algorithm returns results almost instantly.

The SL approach is at least five times slower, with its performance

deteriorating more rapidly with increasing ϵ values. Again, as in
bundle discovery, the results are growing with greater ϵ , as does

http://daiad.eu/
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(a) Bundle discovery execution time (b) Bundle discovery results (c) Pair discovery execution time (d) Pair Discovery results

Figure 12: Assessment against real data for varying δ .

(a) Bundle discovery execution time (b) Bundle discovery results (c) Pair discovery execution time (d) Pair Discovery results

Figure 13: Assessment against real data for varying ϵ .

the maximum duration among pairs, especially for ϵ equal to 8% of

the value range.

Varying µ. When varying the minimum membership parameter

µ in bundle discovery (Figure 14), the results regarding execution

time are again very similar to the rest of the tests as indicated in

Figure 14(a). Again, the CP algorithm outperforms SL up to one

order of magnitude. The execution time is very slightly decreased

for larger µ values in both algorithms, as more candidate bundles

are pruned. Results from CP are reported almost instantly, since

the number of time series is rather small and scanning through

the limited number of checkpoints is very fast. This explains why

performance of SL does not get drastically improved as µ gets

larger, since filtering and verification has to be repeated at every

timestamp. The number of results (Figure 14(b)) is reduced as µ
increases, which is expected, as less bundles get detected with a

larger membership. The maximum duration among bundles also

decreases; interestingly, the maximum size detected among bundles

increases as the number of results diminishes, due to the growing

number µ of required number of members per bundle.

6.2.2 Efficiency against Synthetic Data. To evaluate the efficiency

of our methods, we used the synthetic dataset. Regarding parameter

(a) Bundle discovery execution time (b) Bundle discovery results

Figure 14: Assessment against real data for varying µ .

(a) Bundle discovery (b) Pair discovery

Figure 15: Efficiency with varying numbers of time series.

Table 3: Parameters for tests against synthetic data
Parameter Values
Dataset Size 10000, 20000, 30000, 40000, 50000
Time Series Length 600, 700, 800, 900, 1000
δ (% of time series length) 2.5%
ϵ (% of value range) 0.2%
µ (% of dataset size) 1.25%

values, as in the previous experiments, we performed preliminary

tests to extract ranges of values where the algorithms return a

reasonable number of results. Table 3 lists the range of values for

all parameters used in these efficiency tests for bundle and pair

discovery, with the default values emphasized in bold (again, µ is

not applicable in pair discovery).

Varying Dataset Size. Figure 15 depicts the performance compar-

ison between CP and SL algorithms for bundle and pair discovery.

We omit cases where execution of an algorithm was taking more

than 15 hours (cutoff). As illustrated in Figure 15(a), an increase in

the dataset size leads to a very abrupt deterioration of performance

for the SL algorithm of up to several hours of execution for 20,000

time series. For larger dataset sizes, the execution time was signifi-

cantly longer than the cutoff time. On the other hand, CP reports
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(a) Bundle discovery (b) Pair discovery

Figure 16: Efficiency with varying length of time series.

results in all cases. Its execution time increases for larger dataset

sizes, but manages to finish in a few hours in the worst case (for

50,000 time series). It is worth noting that membership parameter

µ is more relaxed for larger dataset sizes, as it is expressed in terms

of percentage of the total number of time series in the dataset. This

explains the slight improvement in performance for dataset sizes of

20,000 and 30,000 for the CP method. In general, CP is more than

an order of magnitude faster than SL, which also stands for the case

of pair discovery, as illustrated in Figure 15(b). As the number of

time series in the dataset grows, it is natural that more pairs will

be detected, hence the linear increase in the execution cost for the

CP algorithm. Of course, baseline SL requires more time, as it must

check many more combinations of time series.

Varying Time Series Length. For time serieswith increasing length

(Figure 16(a)), the CP algorithm for bundle discovery again con-

stantly outperforms SL. Similarly to previous experiments, δ is

expressed as a percentage of the time series length. We observe that

the execution time initially decreases for both algorithms, as more

bundles are pruned. However, as the time series length (and δ ) gets
larger, the performance of both algorithms slightly worsens. Only

in the case of 1,000 timestamps the execution time starts to drop for

the CP algorithm due to the even larger δ . This is not the case with
the SL method, which has to evaluate more timestamps. Notice

that the difference between the SL and CP algorithms is smaller,

compared to the real dataset. This is due to the larger number of ex-

isting bundles in the synthetic dataset, which were detected on the

checkpoints and had to be verified. Similar observations stand for

pair discovery, with the CP algorithm significantly outperforming

SL in all cases (Figure 16(b)).

7 CONCLUSIONS
In this paper, we addressed the problems of pair and bundle discov-

ery over co-evolving time series, according to their local similarity.

We introduced two efficient algorithms for pair and bundle discov-

ery that utilize checkpoints appropriately placed across the time

axis in order to aggressively prune the search space and avoid

expensive exhaustive search at each timestamp. Our methods suc-

cessfully detect locally similar subsequences of co-evolving time

series, as demonstrated in our experimental evaluation over real-

world and synthetic data. Also, they were orders of magnitude faster

compared to baseline methods that apply a sweep line approach,

confirming their effectiveness in pair and bundle discovery. In the

future, we plan to further improve the scalability of our algorithms

to extend their applicability over very large time series datasets,

both in terms of cardinality, as well as in terms of length.
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