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Streaming Time Series Summarization Using
User-Defined Amnesic Functions
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Abstract—The past decade has seen a wealth of research on time series representations, because the manipulation, storage, and
indexing of large volumes of raw time series data is impractical. The vast majority of research has concentrated on representations that
are calculated in batch mode and represent each value with approximately equal fidelity. However, the increasing deployment of
mobile devices and real-time sensors has brought home the need for representations that can be incrementally updated and can
approximate the data with fidelity proportional to its age. The latter property allows us to answer queries about the recent past with
greater precision, since in many domains, recent information is more useful than older information. We call such representations
amnesic. While there has been previous work on amnesic representations, the class of amnesic functions possible was dictated by the
representation itself. In this work, we introduce a novel representation of time series that can represent arbitrary user-specified
amnesic functions. For example, a meteorologist may decide that data that is twice as old can tolerate twice as much error and thus
specify a linear amnesic function. In contrast, an econometrist might opt for an exponential amnesic function. We propose online
algorithms for our representation and discuss their properties. Finally, we perform an extensive empirical evaluation on 40 data sets
and show that our approach can efficiently maintain a high-quality amnesic approximation.

Index Terms—Time series, streaming data, time-decaying, amnesic, approximation, summarization.

1 INTRODUCTION

TIME series is one of the most frequently encountered forms
of data. Many applications in diverse domains produce
voluminous amounts of time series [40], [33]. The sheer
number and size of the time series we need to manipulate in
many of the real-world applications mentioned above
dictates the need for a more compact representation of time
series than the raw data itself, and a plethora of representa-
tions have been proposed to that effect [22].

The problem of approximating time series becomes more
interesting and challenging in the context of streaming time
series, where data values are continuously generated,
potentially forever. Furthermore, most current time series
representations treat every point of the time series equally.
This means that when computing the approximation, the
time position of a point does not make a difference in the
fidelity of its approximation. This may be desirable for
some applications such as archiving; however, there exist
many real world situations where we would like to take
into account the time dimension in the approximation of the
time series. The intuition behind this requirement may be
stated as follows: While we are willing to accept some
margin of error in the approximation, we would like the
most recent data to have a low error, and we would be more
forgiving of error in older data. We call this kind of time
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series approximation amnesic, since the fidelity of approx-
imation decreases with time, and it therefore requires less
memory for the events further in the past.

The potential utility of such a representation has been
documented in many domains. Consider the following
motivating examples:

e The Environmental Observation and Forecasting
System [33] is a large-scale distributed system
designed to monitor, model, and forecast wide-area
physical processes such as river systems. They note
that in their current model, the loss of a repeater
station results in the loss of real-time information.
Allowing the stations to record some data to a buffer
can mitigate this problem. However, since the
station does not know how long it will be offline
and has a finite buffer, amnesic approximation is the
only logical way to record the data.

e NASA is developing robots to be used in an urban
setting [18]. Typical applications include search and
rescue and inspection of hazardous environments. In
many situations, information about the path tra-
versed must be known if the robot is to back up to a
more promising avenue of exploration after reaching
a dead end. Power and size constraints prohibit the
robot from storing all the data with perfect fidelity,
so the utility of an amnesic approximation has been
noted for this domain [18].

Although this work suggests that the usefulness of data
can diminish with age, we note that the rate at which its
utility decays depends on the application. The function that
determines the amount of error we can tolerate at each
point in the time series is called an amnesic function. Ideally,
we would like to allow arbitrary amnesic functions, so that
we can match the requirements of a wide variety of
applications. For example, a meteorologist may decide that
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Fig. 1. Depiction of an amnesic approximation, using the piecewise
linear approximation technique.

data that is twice as old can tolerate twice as much error and
thus specify a linear amnesic function. In contrast, an
econometrist using classic models might well specify an
exponential amnesic function. Fig. 1 depicts an amnesic
approximation of a static time series and the amnesic
function that was used. Note that as we get to older points
(to the right), the approximation gets coarser.

In this paper, we describe a framework for online
amnesic approximation of streaming time series. We
characterize the different classes of amnesic functions and
present corresponding algorithms for performing amnesic
approximation. We study two distinct cases of the problem.
First, the case when we are interested in approximating the
entire time series seen so far. We refer to this case as the
unrestricted window. Second, the sliding-window case, where
at any point in time, we are only interested in a fixed
number of the last values of the time series. We present
efficient algorithms that solve the problem in both the above
cases, given a constraint on the amount of memory that can
be used for the approximation. Furthermore, we also
discuss a variation of the problem that allows the user to
specify the maximum allowable error for the approximation
of the time series. This formulation is useful when the
application requires quality guarantees for the approxima-
tion of the time series. The algorithms we propose for this
variation operate for both the unrestricted- and the sliding-
window cases but do not have a set bound for the amount
of memory they will need for the approximation.

While some recent work [10], [6] has proposed tools and
techniques for computing special cases of amnesic approx-
imations of time series, as we discuss in Section 7, these
solutions are specific and rather restrictive in the variety of
applications they can accommodate. In particular, the
representation schemes used by these techniques dictate
the form of the amnesic functions and restrict those to a
very limited set. In contrast, our framework is general and
able to operate with a wide class of amnesic functions,
which are defined by the user.

Our contributions can be summarized as follows:

e We introduce the notion of general amnesic func-
tions. We present a taxonomy of these functions,
discuss their properties, and describe how they
affect the solution of the problem of online amnesic
approximation.

e We formulate the above problem as optimization
problems, where we wish to either minimize the

reconstruction error given the available amount of
memory for the approximation or minimize the
amount of memory required for the approximation
given the maximum allowable error for the recon-
struction. We study important variations of the
above problems, namely, the unrestricted- and the
sliding-window cases.

e We propose efficient algorithms for solving the
above optimization problems. The time complexity
of the algorithms we propose is independent of the
size of the time series. The time to process each new
point is essentially constant (logarithmic on the
number of segments used in the approximation).
These are the first algorithms proposed for solving
the general case of the problem.

e We present an extensive experimental evaluation of
our techniques, using more than 40 synthetic and
real data sets. The experiments show the applic-
ability of our approach and the quality of solutions
of our algorithms.

The rest of the paper is organized as follows: In Section 2,
we give the necessary background. In Section 3, we
introduce some new terminology and formally define the
problems we study. The algorithms we propose are
presented in Sections 4 and 5. Section 6 discusses the
experimental evaluation. Section 7 reviews related work,
and Section 8 concludes the paper.

2 TIME SERIES APPROXIMATION

A time series T7i] is a series of data points, each one arriving
at a distinct time instance ¢;. T[i..j] defines a range of data
points. When the total number of data points in the time
series IV is known in advance, we call the time series static,
and we say that is has length N. When data points are
arriving continuously, in a streaming fashion, the value of
N represents the number of data points seen in the time
series so far, and we call the time series streaming. The focus
of our work is on streaming time series.

Several techniques have been proposed in the literature
for the approximation of time series, including Discrete
Fourier Transform (DFT) [30], [13], Discrete Cosine Transform
(DCT), Piecewise Aggregate Approximation (PAA) [38], Discrete
Wavelet Transform (DWT) [28], [9], Adaptive Piecewise
Constant Approximation (APCA) [8], [25], Piecewise Linear
Approximation (PLA) [23], Piecewise Quadratic Approximation
(PQA) [17], and others. Before we consider which of these
representations is best suited for the task at hand, it is
natural to ask which is best, simply in terms of reconstruc-
tion accuracy. In order to answer this question, we
experimentally compare the above approaches using many
real-world data sets. We conducted such an experiment on
40 diverse time series from the UCR Time Series Data
Mining Archive [1].

For our experiment, we randomly extracted a subse-
quence of length 512 from each time series and approximated
it with each of the representations under consideration, using
a 16-to-1 compression ratio. This was a fair comparison,
using the same amount of memory for each representation.
That is, we reduced the 512 raw data points to 32 wavelet
coefficients, 16 complex DFT coefficients, 32 DCT coeffi-
cients, 32 PAA segments, 12 PLA segments, 8 PQA segments,
and 16 APCA segments. Note that we carefully used all
possible optimizations for all representations. For example,
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TABLE 1
Comparison among Various Techniques for
Time Series Approximation

DFT | DCT | PAA | DWT DWT APCA | PLA | PQA
(Haar) | (Daubl12)
0.951 | 0.923 | 0.948 | 0.948 0.902 0.893 | 0.940 | 0.927

we used the complex conjugate property of DFT [30], and
because the sequences were normalized to have zero mean,
we did not use the first coefficient for the wavelet and DFT
approaches (they must be zero). However, for the piecewise
polynomial approaches, the optimal representation requires
quadratic time to produce, and we used a well-known near-
linear-time algorithm instead [20], [23]. We measured the
quality of the approximation using the root-mean-square
error. We repeated this procedure 100 times, averaged the
results, and normalized the performance of each representa-
tion by dividing by the best performing approach. Finally,
we averaged all 40 scores, as shown in Table 1.

The results may appear surprising, because there is little
difference between all the approaches. In fact, similar
results have been documented elsewhere as well [22], [8],
[37]. The overall conclusion from this experiment is the
following. If we want to choose a representation for the task
of approximating time series, then we should not choose the
representation based on approximation fidelity but rather
on other features.

When considering the alternative representations in the
context of amnesic approximation, it is not obvious how
some of them can accommodate the requirements of this
new environment. The DWT representation is intrinsically
coupled with approximating sequences whose length is a
power of two, which severely restricts the choices of amnesic
functions. Using wavelets with sequences that have other
lengths requires ad hoc measures that reduce the fidelity of
the approximation and increase the complexity of the
implementation. While DFT has been successfully adapted
to incremental computation [40], it is not clear that it can be
adapted to perform amnesic approximation, since each DFT
coefficient corresponds to a global contribution to the entire
time series. The same is true for DCT as well.

In contrast to the above, the piecewise polynomial
methods offer several desirable properties for the task at
hand. Much is already known about their incremental
calculation, and because each segment is independent of
each other, we can reduce the fidelity of “older” segments
simply by merging them with their neighbors, without
affecting “newer” segments. The only question remaining is
which piecewise polynomial technique to use. We decide on
PLA for the following reasons. PLAs are already widely
used and accepted in the medical and financial domains
[19], [24], [34]. There are many useful distance measures
defined on PLA, including weighed measures [23], time
warping [34], Markov-model-based measures [14], and
lower bounding approximations to the euclidean distance.
Moreover, many applications like anomaly detection algo-
rithms [21] and rule discovery algorithms [27] use the PLA
representation.

2.1 Properties of PLA Approximation

In PLA, we approximate the data points in a time series
using a number of linear segments whose ends need not be
contiguous [23]. The PLA approximation scheme has some
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Fig. 2. Combining two regression lines.

desirable properties that allow incremental computation of
the solution. These properties are necessary in order for the
algorithm to be able to operate efficiently on large data sets.
In the following paragraphs, we present these properties in
the form of theorems, and we discuss their applications in
Section 4.

Assume that we have N data points of a time series T'[i],
1 <i < N, and we use them to fit two line segments (using
least squares). Let the first line s; approximate points 1 to n,
n < N, and the second line s, approximate points n + 1 to
N (there is no restriction on n). In addition, suppose we use
a single line segment to approximate all the points 1 to NV
and call it s; . The above three lines are depicted in Fig. 2a.
Related to these three lines are the errors E(s;), E(sz), and
E(s12). The error of a segment s is computed according to
the formula E(s) =3, (T[j] - s[j])?, where j ranges over
all the points in segment s, T[] is the value of point j in the
time series, and s[j] is the estimate for point j given by
segment s.

Now, imagine that we keep s; and s and throw away
the original N points and that we want to use a single line
segment to approximate all the original points. The
construction of this new line 573 can be based only on the
information in s; and sy, and we prove that 573 is the same
as s1. Since we no longer have the original points, we
assume that all N points lie on line segments s; and s;, and
we build 37, based on this assumption. This situation is
depicted in Fig. 2b. The residual error of this new line is
E(573). Unlike the previous cases, this is the error between
the points on line 577 and the points on lines s; and s,.
(Remember that line 573 is not calculated based on the
original points of the time series.) It turns out that we can
also calculate E(s;3) without the need to refer to the
original N points.

We can now prove the following theorems regarding the
process of merging two line segments into one.

Theorem 1 (Computing the New Line Segment). The line
segment 13, built from the two line segments sy and sy, is the
same as the line segment s, o, built from the original points of
the time series." That is, s19 = 512

Theorem 2 (Computing the New Error). The error of the
line segment approximating all the original data points can

1. A similar result has also appeared elsewhere [10].
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be computed as the sum of the errors of the two individual
line segments and the error between those two line
segments and the line calculated based on those two. That
is, E(S]‘Q) = E(S]) + E(Sz) + E(m)

Another interesting property of PLA is that for the
computation of the error E(3737), we do not need to process
individually all the points corresponding to line segment
512. We can instead avoid the linear complexity of this
procedure and compute the value of E(573) in constant
time, according to the following lemma.

Lemma 1 (Computing the Error between Two Segments).
The error E(513) of a line segment 313, which was constructed
from two line segments, s1 and sy, can be computed with a
closed-form formula in time O(1), regardless of the length of
the line segments.

Proof. We want to prove that the error between two line
segments can be computed using a closed-form
formula. Let [; and [, be the two line segments
corresponding to the same set of M +1 points,
0,...,M. Let L=|4[0]—-0Ll0], R=|L[M]-I1[M],
c=min(L,R), and A = (max(L,R)—c)/M. In order
to compute the error E, we need to sum the squares
of the pairwise distances for the M + 1 points of the
line segments. The main observation is that each one
of those pairwise distances differs from its neighbors
by A. The shortest distance is ¢, the next one is ¢+ A,
etc., and the last one is ¢+ MA. Then, we can
compute E as follows:

M+1
E = Z(o+(i—1)A)2
- A?M(2M + 1)
=...= (M+1)(c2+cMA+$).

The above analysis assumes that either /; and /s do not
intersect or they intersect at one of their ends (point 0 or
point M). If the two line segments intersect at any other
point, then we consider the parts of the segments on
either side of the intersection point separately and apply
the above formula twice. ]

The properties of PLA, presented in Theorems 1 and 2
and Lemma 1, form the basis for the design of the online
algorithms we propose. These properties enable our
algorithms to merge two line segments and calculate exactly
the resulting line segment along with its residual error in
constant time.

3 PROBLEM FORMULATION

In the following paragraphs, we establish some additional
terminology necessary for the rest of the paper. Then, we
formally define the problems that we address with this work.

3.1 Amnesic Functions

As we mentioned earlier, we need a way to specify for each
point in time the amount of error allowed for the
approximation of the time series. In order to achieve this
goal, we use the ammnesic function A(zx), which returns the
acceptable approximation error for point « = ¢ty — ¢;, where
ty is the current time, and ¢; is the time that point T7{]

995
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Fig. 3. The different classes of amnesic functions. (a) Piecewise
constant. (b) Linear. (c) Piecewise linear. (d) Continuous.

arrived. The time ¢y refers to the time when the last data
point arrived and corresponds to position z =0 of the
amnesic function. Note that the function A(x) is only
defined for x > 0, since ¢; < ty.

A key property that an amnesic function has to satisfy is
the monotonicity property.

Definition 1 (Monotonic Amnesic Functions). A function
A(x) is called monotonic if A(x) < A(x + 1) for every value
of x in its domain.

The approximation of a time series is a lossy compression

technique, which by definition is irreversible. Thus, the

monotonicity property poses a natural restriction in our
setting. It ensures that if at time ¢, we can tolerate some
error in the approximation of point T'[i], E'(T[i]), then we
will not request an approximation of the same point 77¢]

with error E'(T[i]) < E'(Ti]), at any time #' > t.

We now define a taxonomy of amnesic functions (refer to
Fig. 3). The constant amnesic function represents a trivial
case, and we do not discuss it here. As we will discuss in
Section 3.2, each class in the taxonomy has its own special
characteristics, which have to be taken into account when
designing an efficient algorithm for the amnesic approx-
imation of time series.

Piecewise Constant. The piecewise constant function has
the following general form:

c, 0<z<d,
Alx) =< ...
cp, dp1 <,

where ¢y,...,¢p are constants such that 0 < ¢; < ... < ¢p.
We refer to each step of the function as a section to
distinguish it from the segments used in the approximation.
Linear. A linear function has the general form
Alx) =az+ 5, a, > 0.
Continuous Piecewise Linear. The general form of a
piecewise linear function with L sections is given as follows:

air+ B, 0<z<d,
Az) =

arx+fBr, dr-y <,
where a; > 0,1 <j< L, 51 >0, and

Bo = oud + 1 — aady,...,Br = ar_idr_y + Br-1 — ardr_1.
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Continuous. The amnesic functions of this class can take
any form not subsumed by the previous classes. The only
restriction is that the function is monotonic (according to
Definition 1). We do not require that these functions have a
closed-form formula.

We also define two forms of amnesic functions, namely,
the relative RA(x) and the absolute AA(z) amnesic functions.

Relative. A relative amnesic function RA determines the
relative approximation error we can tolerate for every point
in the time series. When we use a relative amnesic function,
we essentially weigh the error of a data point by the inverse
of the amnesic function corresponding to that point so that
the weighted error for point x is E(x)/RA(z). For example,
the relative amnesic function RA(x) = = + 1 specifies that
when we approximate a point that is twice as old, we will
accept twice as much error. When we use relative amnesic
functions, we fix the number of linear segments that we are
allowed to use for the approximation of the data.

Absolute. An absolute amnesic function specifies, for
every point in the time series, the maximum allowable error
for the approximation. The error E(x), at point z, should
satisfy the inequality E(z) < AA(z). When we use absolute
amnesic functions, we allow the approximation to use as
many linear segments as necessary in order to meet the
error bounds.

When we have to apply an amnesic function to a
segment s, we pick a single point from the segment, on
which we apply the amnesic function. Nevertheless, this
computation refers to the entire segment. The reason we do
this is that we do not store the error of each individual point
represented by each segment, and we only have available
the error of the entire segment. For the rest of this paper, we
assume that segment s is represented by its most recent
point, T[i;]. Then, when we want to apply an amnesic
function to s, we simply consider the point of the amnesic
function corresponding to point T[is]. We can also apply
more elaborate schemes. For example, we could consider
taking the average value of the amnesic function corre-
sponding to the first, middle, and last points of s. In any
case, the algorithms we propose do not need to change.

3.2 Problems for Amnesic Approximation

Under the assumptions discussed above, we want to
maintain a PLA model @ with K segments for a streaming
time series with an unrestricted window. More formally, we
define the following two problems.

Problem 1 (Unrestricted Window with Relative Amnesic
(URA)D) Given the number of segments K and a relative
amnesic function RA(z), find an approximation Q using
K segments that minimizes the approximation error of the
time series ;" (E(s;)/RA(ty —ts,)).

Problem 2 (Unrestricted Window with Absolute Amnesic
(UAA)). Given an absolute amnesic function AA(zx), con-
struct a model Q) with the minimum number of segments K,
subject to the constraints E(s;) < AA(ty — tsj), 1<j<K.

We are looking for online algorithms that, when a new
point arrives, update the approximation model in sublinear
time on the number of segments. Note that in the URA and
UAA problems, the optimization objective is different. In
the URA problem, we seek to minimize the approximation
error given the memory space used by PLA, while in the

UAA problem, we want to minimize the space used in the
approximation given the maximum error allowed.
Following the definition of the problems for the unrest-
ricted window, we now define the corresponding problems
for the case where we consider the sliding-window model.

Problem 3 (Sliding window with Relative Amnesic
(SRA)). Given a sliding window of length W, the number of
segments K, and a relative amnesic function RA(x), find an
approximation @ using K segments that minimizes the
approximation error of the time series within the sliding
window Y"1 (E(s;)/RA(ty —t,)), ty-ws1 < £y, < ty.

Problem 4 (Sliding window with Absolute Amnesic
(SAA)). Given a sliding window of length W and an absolute
amnesic function AA(zx), construct a model @ with the
minimum number of segments K, subject to the constraints
E(s;) < AA(tx —ts,), tn-wi1 <t <ty, 1 <j< K.

4 ALGORITHMS FOR RELATIVE AMNESIC
FUNCTIONS

We now describe algorithms for the URA and SRA
problems. In the experimental evaluation, we show that
our algorithms perform very close to optimal. At the end of
the section, we briefly discuss solutions for UAA and SAA.

4.1 Unrestricted Window with Relative Amnesic

4.1.1 Optimal Solution

The optimal solution for the URA problem can be obtained
using dynamic programming [5]. The objective of the
algorithm is to minimize ApErr(b, k), which is the error
resulting from the approximation of data points b,..., N
with k < K segments. The recursion for the dynamic
programming solution is described by the following
formula:

ApErr(b, k) :bI<I}i<I11V(E(T[b g+ ApErr(5+ 1,k —1)). (1)
The algorithm starts by computing the approximation error
E(Tpb...j]), for 1<b< N and b< j< N. Then, at each
iteration, it computes the optimal solution by minimizing
the total approximation error. The minimum error for
approximating data points b,...,N with k segments is
given by the sum of the approximation error of points
b,...,j with one segment and the error of the optimal
approximation of points j+1,..., N with £ — 1 segments.
Finally, the algorithm picks the assignment of segments that
leads to the least overall approximation error.

Note that in order to get the optimal solution in a
streaming environment, we have to run the dynamic
programming algorithm every time that a new data point
arrives. The reason is that we cannot reuse the computa-
tions made during the previous step, because the amnesic
function causes the approximation error of each point and
their interrelationships to change at every time step. The
time complexity for the dynamic programming algorithm
is O(N*K), which renders this approach inapplicable for
the online version of the problem. Nevertheless, in the
experimental section, we show that our algorithms always
find a solution that is very close to optimal.
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1 let H be a min-priority queue on the approximation errors
resulting from merging each pair of consecutive segments;

2 let EQ = 0 be a time-event queue;

3 procedure GrAp-R()

4 when a new point, 7'[i], of the time series arrives at time ¢x

5 pick the minimum element from H, and merge the
corresponding segments, S,, and Sp,1, into a new
segment Smy,m+1;

6 update H with the errors of merging Sy,m+1 With its two
neighboring segments;

7 assign a new segment, St(;, to the newly arrived
point, T[i];

8 update H with the error of merging sp(; with its
neighboring segment;

9 ManageEvents(H, EQ, tN, Sm, Sm+1, Sm,m+1);

10 return;

Fig. 4. The skeleton of the GrAp-R algorithm.

4.1.2 The GrAp-R Algorithm

In this section, we present the skeleton of our algorithm,
GrAp-R, for solving the URA problem.

At each time step, the algorithm merges the consecutive
pair of segments whose merge will result in the least
approximation error among all possible merges. The pair of
segments that should be merged, s, and s,,,41, is given by the
heap structure H. We merge those in one segment S, ;41
according to Theorems 1 and 2. Then, we compute the
approximation error that would result by merging the new
segment with each one of its two neighbors s,,_1 and s;,+2
according to Lemma 1. We use these values for the errors to
update the heap H, in order to reflect the new set of possible
merges. This merge results in a spare segment, which we
assign to the newly arrived point of the time series. Once
again, we have to compute the approximation error when
merging this segment with its neighbor and update the heap
H. A high-level description of the algorithm is depicted in
Fig. 4.

The GrAp-R algorithm also makes use of queue EQ). This
structure keeps track of the way that the dependencies
among the segments used for the approximation change as
a result of the amnesic function. The procedure that
manages these dependencies is ManageEvents(), and we
describe it in more detail in the next paragraphs.

In the following sections, we elaborate on the way the
framework of the GrAp-R algorithm described above
changes when we consider the different classes of amnesic
functions. We discuss the specific details of each case and
present the time and space complexities of the solutions we
propose.

4.1.3 Piecewise Constant Amnesic Functions

When the amnesic function belongs to the class of piecewise
constant functions, a change to the relative ordering of the
pair of segments that should be merged during the next
step of the algorithm only happens when a segment crosses
a discontinuity between two sections of the amnesic
function.

Example 1. Assume that we have the amnesic function
RA(z) =1, 0 <z <10, and RA(z) =4, = > 10. Let s12
and s34 be two pairs of segments, candidates for

834 S1.2 834

(a) (b)

Fig. 5. Event example for piecewise constant.

merging, that, at the current time, are at positions = =
7 and x = 2 and have errors E(s;2) =4 and E(s34) =2,
respectively (Fig. 5a). Then, their relative errors are
E(s12)/RA(7) =4 and E(s34)/RA(2) = 2, which means
that s34 is the first candidate for merging. However,
after three time instances, when s; first gets to the
point z =10, its error becomes E(s;2)/RA(10)=1<
E(s34)/RA(5) =2 (Fig. 5b). Thus, s12 is now the
candidate pair for merging.

In order to keep track of these changes, we need to
maintain the heap H and, in addition, a time-event queue
EQ. The heap H determines the next pair of segments that
should be merged. The queue EQ flags the times at which
the segments cross a discontinuity in the amnesic function
(remember that during these computations we assume that
each segment is represented by its most recent point). When
this happens, we update the position of the segment in the
heap, and we compute the next time that it will cross a
discontinuity. Fig. 6 shows the ManageEvents() procedure
for the case of piecewise constant amnesic functions. The
GrAp-R algorithm remains as discussed earlier.

The following theorem states the space and time
complexity of the algorithm.

Theorem 3. The space complexity of GrAp-R with a piecewise
constant amnesic function is O(K), and the time complexity to
process each new point is O(Llog K).

Proof. The algorithm needs O(K) space to store the
K segments used in the approximation. A heap structure
is used to determine the pair of segments that will be
merged at each step of the algorithm. The heap requires
O(K) space to store the K — 1 adjacent pairs of segments.
Finally, we must keep track of the times when segments
cross a discontinuity of the amnesic step function. At each
point in time, we only need to maintain in the time-event
queue one such event for every segment. Therefore, the
queue has a worst space complexity of O(K), and O(K) is
the overall space complexity of the algorithm as well.

At each time unit, the algorithm can pick from the
heap the pair of segments to merge and identify in the
time-event queue the segments that cross a discontinuity
in O(1) time. The time to merge two segments is
constant, because of Theorems 1 and 2 and Lemma 1.
The time to update the heap is O(log K), and since the
size of the time-event queue is O(K), the time to insert or
delete an event from the queue is O(log K) (when the
queue is implemented using skiplists [29] or any other
equivalent data structure that offers logarithmic search
times). Thus, the overall time complexity for each
iteration, when there is only one segment crossing a
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1 proc ManageEvents(H, queue EQ), time ¢, segments
Sms Sm+1, 5m7m+1)
2 remove from E(Q) any events corresponding to segments S,
and Sm+15

if (next event e in EQ is scheduled for time ¢ < t. < ¢+ 1)
remove e, related to segments s.,1 and se2, from EQ;
update in H the position of the pair s.;1 and se,2;
compute the new time when the pair s.,1 and se2 will

cross a discontinuity;

insert in FQ the new event (if any);

insert in £ any new dependencies identified concerning

AN AW

e BEN|

S7n,m+ 1s
9 return;

Fig. 6. The ManageEvents() procedure for piecewise constant amnesic
functions.

discontinuity, is O(log K). In the worst case, for a
particular iteration, different segments may be crossing
all L discontinuities of the amnesic function, so the
worst-case time complexity is O(Llog K). 0

Note that the time complexity mentioned in the above
theorem refers to the worst case, when segments cross all
the discontinuities of the amnesic function at the same time.
In practice, we do not expect this situation to arise often.
Actually, it never occurred in our experiments with an
extensive set of real data sets.

4.1.4 Linear Amnesic Functions

In the case of linear amnesic functions, each event in EQ
specifies the time at which the relative ordering of the
merging error of two pairs of segments changes. It turns out
that if we know the approximation error of each segment
and the closed formula of the amnesic function, we can
compute the times at which these changes will occur. We
refer to those times as the crosspoints.

Example 2. Assume that we have the amnesic function
RA(z) =z + 1,2 > 0. Let s15 and s34 be two pairs of
segments, candidates for merging, that were created at
the current time, at positions * =6 and z =2, and
have errors E(s1s) =24 and E(s34) = 12, respectively
(Fig. 7a). Then, their relative errors are E(s12)/RA(6) =
3.4 and E(s34)/RA(2) = 4, which means that s, is the
first candidate for merging. However, after four time
instances, when s;, first gets to the point x = 10, its
error becomes E(s;2)/RA(10) =2.2 > E(s34)/RA(6) =
1.7 (Fig. 7b). Thus, s34 is now the candidate pair for
merging.

Consider the general case, where we have a linear
relative amnesic function RA(z) = ax + §, and we want to
compute the time when the relative ordering of segments s;
and s, will change. (In fact, each one of s; and s; represents
the merge of a pair of segments.) Let E(s;) and E(s2) be the
approximation errors for s; and s, respectively. Finally,
assume that t;, is the time when s; was created. This time is
defined as the time when the most recent point of s;
arrived. We define t,, in a similar way. Then, their
crosspoint ¢, is given by the following equation:

$34 S12 T $34 S12
02 6 X 0 6 10 x
(a) (b)
Fig. 7. Event example for piecewise constant.
E(s1) E(s2)

a-(te—t )48 a (te—ty)+8 "
(a-ts, = B) - E(s1) = (- ts, — B) - E(s2)
(E(s1) — E(s2)) - a

We only consider the positive solutions of this equation.
Note that it may be the case that their relative ordering
never changes, that is, there is no positive solution.
Furthermore, we do not need to compute the crosspoint
of each segment with all the others. It suffices to consider
only the segments stored in the neighboring nodes in the
heap H and maintain these dependencies up to date as the
heap changes. All these computations can be performed in
constant time according to (2).

The ManageEvents() procedure for the case of linear
amnesic functions is depicted in Fig. 8.

The problem of keeping track of the crosspoints is
reminiscent of the work in the area of kinetic data structures
[4]. However, the above work examines only linear motion
and does not apply to our problem.

The complexity of the algorithm is given in the following
theorem.

(2)

te =

Theorem 4. The space complexity of GrAp-R with a linear
amnesic function is O(K), and the time complexity to process
each new point is O(log K).

Proof. The algorithm requires O(K) space to store the
K segments and the heap. The time-event queue also
requires O(K) space, since it stores one event for every
adjacent pair of segments.

At each iteration, the time to find the pair of segments
to merge and the segment that has reached a crosspoint
is O(1). We need O(log K) time to update the heap after
those changes. We also need to update the queue, which
takes O(log K') time. Therefore, the overall time complex-
ity for each iteration is O(log K). O

4.1.5 Piecewise Linear Amnesic Functions

Assume that the amnesic function is comprised of
L sections. Then, we treat each section separately, as in
the case of linear amnesic functions discussed above. We
maintain L heaps, one for each section, and a single time-
event queue. The time-event queue, in addition to keeping
track of all the crosspoints, also maintains the times at
which a segment moves from one section to another. The
above L heaps carry local information, as to which is the
best pair of segments to merge within each section. Then, at
each iteration of the algorithm, it is easy to determine the
overall best pair of segments to merge, either by performing
a linear scan of the top element of the L heaps or by
maintaining a heap of those L elements. For all practical
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1 proc ManageEvents(H, queue E(Q), time ¢, segments
Sms Sm+1, 5m,’m+1)
2 remove from EQ any events corresponding to segments Sy,
and spm+1;

if (next event e in EQ is scheduled for time t < t. <t 4 1)
remove e, related to segments Se,1 and se 2, from EQ;
swap in H the positions of se¢,1 and se,2;
compute crosspoints between se,;1 and se,2 and all their

new neighbors (i.e., parent and children nodes) in H;

insert in /@) events for any new crosspoints identified;

insert in £ any new crosspoints identified concerning
Sm,m+1;

9  return;

AN B~ W
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Fig. 8. The ManageEvents() procedure for linear amnesic functions.

purposes, L is relatively small, in the order of a few dozens.
Therefore, a linear scan is sufficiently fast and avoids the
need for maintaining the extra heap structure, which in the
worst case has time complexity O(Llog L). For the rest of
this work, we only consider the linear-scan approach.

The following theorem gives the space and time
complexity of the algorithm.

Theorem 5. The space complexity of GrAp-R with a piecewise
linear amnesic function is O(K), and the time complexity to
process each new point is O(L + Llog% + log K).

Proof. We assume that an equal number of segments
correspond to each section of the amnesic function.”
The algorithm requires O(K) space for storing the
K segments and the L heaps (since all the heaps
combined store O(K) values). The time-event queue
stores an event for every adjacent pair of the
K segments and also an event for the segments that
will move from one section to the next. Therefore, we
need O(K) space in total.

In terms of time, the algorithm at each iteration needs
O(log K) time to update the time-event queue, O(L log )
time to update the L heaps, and O(L) time to pick the
best pair of segments to merge. ]

4.1.6 Continuous Amnesic Functions

When the amnesic function is continuous, we identify two
cases. First, the amnesic function has a closed-form formula.
In this case, we can compute the crosspoints of the
segments, and we proceed as with the linear amnesic
functions. Second, when the amnesic function does not have
a closed-form formula, we replace the continuous function
with a PLA using L sections. Then, we proceed as with the
piecewise linear amnesic functions. We construct L heaps
and search in those for the best pair of segment to merge.
Since the resulting amnesic function is an approximation of
the original function, instead of examining only the top
element from each heap, we consider the top-¢ elements.
We calculate the exact error (i.e., based on the continuous

2. This assumption is realistic because of the following observation. The
sections of the amnesic function that refer to the newer values of the time
series will tend to be of finer granularity and encompass a smaller portion
of the time series than the sections referring to the older values.
Nevertheless, they will require a higher ratio of segments per data point,
since the requirements for accuracy in the newer data points is higher than
that for the older ones.

amnesic function) of those elements and pick the best pair
of segments among them. This technique proves to work
very well, even for a small q.

The following theorem gives the space and time
complexity of the algorithm.

Theorem 6. Assume that we approximate a continuous
amnesic function with L piecewise linear sections. Further,
assume that we consider the top-q elements of each heap in
order to identify the best pair of segments to merge. Then,
the space complexity of GrAp-R with a continuous amnesic
function is O(K), and the time complexity to process each
new point is O(qL + Llog® + log K).

Proof. We assume that an equal number of segments
correspond to each section of the amnesic function.
The algorithm requires O(K) space for storing the
K segments and the L heaps (since all the heaps
combined store O(K) values). The space required by
the time-event queue is O(K), to store events for all
adjacent pairs of segments and for the segments
crossing a section. Therefore, we need O(K) space in
total.

In terms of time, the algorithm at each iteration needs
O(log K) time to update the time-event queue, O(L log %
time to update the L heaps, and O(¢qL) time to pick the
best pair of segments to merge. a

4.2 Sliding Windows with Relative Amnesic

In this section, we discuss algorithms that solve the online
amnesic approximation problem for a sliding window of a
streaming time series. Assume a sliding window of size W
and that we use PLA to build an approximation model @
with K segments. We refer to the side of the sliding window
from which new points enter the window as the start of the
sliding window. We call the end of the sliding window the
side from where points exit and last segment the segment of
@ that approximates the points of the series at the end of the
sliding window.

The skeleton of the algorithms for the sliding-window
case is the same as the one presented in Section 4.1 for the
amnesic approximation of time series in an unrestricted
window. The only difference is that we now have to adjust
the approximation such that there is no segment that refers
to data points beyond the end of the sliding window. In
order to achieve this goal, we simply discard the last
segment as soon as it gets entirely out of the sliding
window, and we reuse it at the start of the window.
Observe though that the amnesic function is more tolerable
to the approximation error toward the end of the sliding
window. Then, a question that arises naturally is whether it
is possible for the last segment to continue growing by
merging with the second to last segment and consequently
never fall out of the boundaries of the sliding window. The
following lemma addresses this question.

Lemma 2. The last segment of model Q will not grow to
represent the entire set of points beyond the end of the sliding
window.

Proof. We will prove this statement by contradiction.
Assume that the last segment s never falls out of the
sliding window. This necessarily means that the error of
sk, E(sk), is not always the largest among the errors of
all the segments in the sliding window (so that it gets
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picked to be merged with the second to the last
segment si_1). If sk never completely falls out of the
window, then it represents all the points of the time
series beyond the end of the sliding window. As the
window moves forward, more points are being added
to it (or otherwise sx would fall outside the sliding
window). As more points are added to sg, E(sx) keeps
increasing. If we assume an infinite data stream, then
limy 1o E(sk) = +00. The above equation holds even
when we take into account the amnesic function. Thus,
for a sufficiently large time point, t; : E(sg) > E(s;),
1<i< K, Vt>tp, since all the other segments repre-
sent a bounded number of data points and therefore
have a bounded error smaller than E(sk). This violates
our assumption above that E(sk) is not always the
largest among all the segments in the window. ]

The above lemma guarantees that a sliding-window
amnesic approximation will never degenerate to an unrest-
ricted-window approximation of the time series but does
not give us a bound on the size of the last segment. In
Section 6, we experimentally show that the size of the last
segment is always relatively small.

5 ALGORITHMS FOR ABSOLUTE AMNESIC
FUNCTIONS

In this section, we present algorithms for the UAA and SAA
problems, that is, the online amnesic approximation of
streaming time series with absolute amnesic functions. First,
we discuss the algorithms for the unrestricted window and
then extend the discussion for the sliding-window case.

5.1 Unrestricted Window

5.1.1 The GrAp-A Algorithm

When we use absolute amnesic functions, we do not know
in advance the number of segments that will be needed for
the approximation. Furthermore, we can calculate the time
when a neighboring pair of segments will be eligible to
merge. Hence, in this case, we do not have to keep track of
the segments whose merge will result in the least additional
error, and subsequently, there is no need to maintain a heap
structure on the adjacent pairs of segments, as we did for
the case of the relative amnesic functions.

Fig. 9 shows a high-level description of the GrAp-A
algorithm, which we propose for the solution of the UAA
problem. During each time step, the algorithm assigns the
new data point of the time series to a new segment s; by
itself (line 4). Then, it tries to merge s; with its adjacent
segment (line 6). Note that at this time, there is only one
segment adjacent to s;, since s; represents the last data point
seen so far, at the end of the time series. If the segment that
results from the merge has an error less than what is
specified by the absolute amnesic function, then the merge
is realized (line 7). In either case, the next step involves the
update of the time-event queue EQ (line 11).

The procedure ManageEvents() keeps track of the merges
we know in advance that should happen and updates EQ
correspondingly. First, in line 14, it schedules in EQ an
event specifying when the segment that was formed with
the arrival of the new data point will be able to merge with
its adjacent segment. Then, in lines 15-19, it processes any
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1 let EQ = () be a time-event queue;
2 procedure GrAp-A()
3 when a new point, T'[¢], of the time series arrives at time ¢y

4 assign a new segment s[;) to the new point;

5 let sy, be a hypothetical segment resulting from the merge of
sT[;) and its neighboring segment;

6 if (E(spp)) < AA(N))

7 accept segment s,, in the approximation model;

8 else

9 let spp = ST[i];

10 let sy,41 be the one segment adjacent to Sy ;

11 ManageEvents(EQ, tn, Sm, Sm+1);

12 return;

13 proc ManageEvents(queue EQ, time ¢, segments Sy, Sm+1)

14 insert in Q) an event for the time when s, and s,,+1 will be
able to merge;

15 if (next event e in E'Q is scheduled for time t)

16 remove e, related to segments se,1 and se 2, from FQ);

17 merge segments sc 1 and s¢ 2 into segment Se;

18 let se—1 and s.41 be the segments adjacent to se;

19 insert in Q) events for the times when s._1 and s., and
Se and Se41 Will be able to merge;

20 return;

Fig. 9. The skeleton of the GrAp-A algorithm.

merges that are scheduled to happen at the current time and
updates the queue EQ. In the following paragraphs, we
elaborate on the above issue for the different kinds of
amnesic functions.

5.1.2 Piecewise Constant Amnesic Functions

We observe that given two segments, we can precompute at
which point in time (if any) we will be able to merge them.
Moreover, we can simplify the problem by considering, as
viable time points for merging two segments, only the exact
times at which both segments have crossed a discontinuity
of the amnesic function. Remember that the discontinuity
points di,...,d;—1 are specified in the definition of the
amnesic function and therefore are known (see Section 3.1).
Because of the form of the piecewise constant functions, we
are certain that if two segments cannot merge once they
change sections in the amnesic function, they will definitely
not be able to merge before they change sections again.

For each adjacent pair of segments in our approximation,
s; and s;41, it suffices to take the following three steps:

1. Assume that segments s; and s;;; are merged into
sii+1 and calculate the error of s; 1, E(s;;41).

2. Compute the earliest point in time when E(s;;+1)
becomes less than the specified amnesic absolute
error and call this time ¢,,.,4. This computation is
fast, because we only need to consider the disconti-
nuity points that s; ;11 has not crossed yet. That is, in
order to determine t,,..,, we have to make the
computation L — 1 times in the worst case. It turns
out that if we use the monotonicity property of the
absolute amnesic functions, then we can reduce the
computation effort. The monotonicity property says
that as we move toward the past, the approximation
error allowable by the amnesic function is increasing
monotonically. This means that instead of a linear
scan on the discontinuity points, we can employ a
binary search, which will result in faster computation
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of tyerge. However, for the purposes of this paper, we
only use the linear-scan approach.

3. Schedule an event in queue EQ), regarding segments
s; and s;;1, for time tp,epge.

5.1.3 Linear Amnesic Functions

In the case of linear absolute amnesic functions, we can
compute the time during which two neighboring segments
will be eligible to merge based on a closed-form formula.
This is the time when the resulting segment will have an
approximation error equal to or below the error specified by
the absolute amnesic function.

Consider the case where we are trying to compute the
time ¢, When two existing segments s; and s, can be
merged into segment s. Assume that the linear amnesic
function is described by the equation AA(z) = ax + § and
E(s) is the approximation error for s and let ¢, be the time
when s was created. This is defined as the time when the
most recent point in s arrived. Then, the time ¢, is given
by the following equation:

E(s) -6

o

3)

We only consider the positive solutions of this equation.
(In this case, negative solutions mean that the merge should
have occurred in the past.) Also, note that since the amnesic
function is monotonic, ¢, indicates the earliest point in
time when we can realize the merge. The merge may also
happen at any time ¢ > t,,¢,ge.

When we compute the time t,,¢.q. for a pair of segments,
we insert this time in the time-event queue EQ. After a
merge has occurred, we have to compute the times that the
new segment will be able to merge with its two neighbors
and update the time-event queue.

E(S) = (tmeme - ts) + /8) or tmerge -

5.1.4 Piecewise Linear Amnesic Functions

Assume that there are L sections in the piecewise amnesic
function. Then, we have to treat each section separately and,
for each section, proceed as in the case of linear amnesic
functions. We still need to maintain a single time-event
queue EQ to handle the events from all L sections. The
processing in this case is described as follows:

For section [;, which is specified by the discontinuity
points d;_; and d;, we compute for each pair of segments the
time at which they could merge. If this time falls inside the
interval [d;_1, d;], then we insert in EQ a merge event with
this time. Otherwise, we simply insert in E(@ an event
specifying that the corresponding pair of segments should
be reexamined when it crosses over to the next section ;1.
We do the same for the pairs of segments that span across
two sections of the amnesic function. In this case, the
relevant computations are performed as if they both belong
to the section where their most recent point belongs to.?

5.1.5 Continuous Amnesic Functions

When the amnesic function is continuous, we can only
calculate the times of the possible segment merges if the
function has a closed-form formula. In the general case,
where there is no closed-form formula available, we
approximate the continuous amnesic function with a

3. This choice was made in accordance to the way we apply an amnesic
function to a segment, described in Section 3.1.
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piecewise linear function with L sections. Then, we proceed
by treating the amnesic function as a piecewise linear one,
as described in Section 5.1.4.

Note, however, that we still have to compensate for the
error due to the PLA of the continuous function. Consider a
pair of segments, corresponding to section I, of the
piecewise linear function, that are candidates to merge into
segment s. Assume that we have computed the merging
time for s, terge, according to the PLA M(x) of the amnesic

function AA(z). This means that E(s) < ﬂ(tmerggfts),

where ¢, is the time when the most recent point of s arrived.
We then check whether E(s) < AA(tmerge — ts), which is
what we really want to hold. If the above inequality is true,
then we update E(Q with an event concerning s at time ¢,
as usual. Otherwise, we schedule in E@Q an event to
reexamine the merging time for s when it crosses over to
the next section of the piecewise linear function, /;1;. We
know that the merge is more likely to occur then, because of
the monotonic property of the amnesic function.

We considered other approaches for dealing with this
problem as well. When the inequality E(s) < AA(tmerge —
t;) does not hold, we can test other possible time points
for the merge, before s moves to the next section. On
the other extreme, we can choose the PLA of the
continuous amnesic function in such a way that

AA(z) < AA(x), Vz. In this case, we know that for any
S, E(S) S Z\féf(tmerge - ts) S AA(tmerge - ts)'
that we propose is the middle ground between those
two.

5.2 Sliding Window

We now turn our attention to algorithms that work on a
sliding window of the time series stream. These algorithms
are based on the corresponding ones for the unrestricted
window with only minor modifications. Consider the
example illustrated in Fig. 10. The two figures depict the
amnesic approximation of the values of the time series that
fall in the sliding window for two time instances (the
absolute amnesic function remains the same across time). In
the first time instance (Fig. 10a), two line segments are
enough in order to produce an approximation that has less
error than what is specified by the amnesic function. For the
second time instance (Fig. 10b), we need five segments in
order to meet the same approximation error requirements
(albeit for a different set of values). Note that as time
advances, the number of line segments used for the
approximation may increase or decrease.

In the sliding-window context, we only need to maintain
a representation of the values of the time series in the
window. Consequently, we do not insert in the time-event
queue EQ any events that refer to a time point past the end
of the window. These are events about merges that cannot
occur, since the corresponding segments will be dropped
from the representation () as soon as they fall out of the
sliding window (it is an easy exercise to prove a lemma
similar to Lemma 2).

The approach
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Fig. 10. Example of sliding-window amnesic approximation with absolute
amnesic functions (two time instances shown for a random walk data
set). (a) Time ;. (b) Time ¢ > ;.

5.3 On the Complexity of the Algorithms

The following theorem states the space and time complexity
for all the variations of the GrAp-A algorithm discussed
above.

Theorem 7. Assume that we employ a piecewise constant
amnesic function. Then, the space complexity is O(K), and the
time complexity to process each new point is O(log K).

Proof. The algorithm requires O(K) space to store the
K segments used in the approximation. The queue EQ
has space complexity O(K), since at each point in time,
we only need to maintain in the time-event queue only
one event for every pair of segments. Therefore, the
overall space required is O(K).

At every time step, the algorithm has to insert an event
for the new segment and process any events scheduled
for the current time. Both these operations translate to
inserting new events in EQ. The time to calculate the
error of merging two segments is constant, and the same
is true for calculating the time ¢, at which a merge
becomes viable. (We can safely assume that the number
of discontinuities L — 1 of the amnesic function are far
less than the number of segments and treat them as a
constant. Therefore, ¢,,.,,c can be computed in constant
time.) The insertion of new events in EQ) takes O(log K)
time. Thus, the overall time complexity for each iteration
is O(log K). 0

In this section, we presented time and space complexity
measures for the algorithms solving the UAA and SAA
problems. These measures depend on the number of
segments K used in the approximation. However, when
using absolute amnesic functions, it is not possible to
calculate in advance the value of K or even a range of
values for K. The values that K is going to assume are
determined by the data set and the amnesic function and
can vary greatly. Nevertheless, we expect that in practice,
the users will be able to make, for each application domain,
judicious decisions about the absolute amnesic functions.
These decisions will lead to reasonable values of K, and,
subsequently, to small space and time complexity bounds.
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6 EXPERIMENTAL EVALUATION

We implemented our algorithms and conducted a series of
experiments to evaluate their efficiency. We also imple-
mented the optimal algorithm using dynamic programming
and the traditional BottomUp algorithm for PLA [20], which
is an offline algorithm, to compare against our techniques.
Briefly, BottomUp works as follows: It starts by assigning a
segment to each point in the time series. Then, at each
consecutive step, it merges the two neighboring segments
that will result in the least increase for the overall
approximation error. For our experiments, we also make
use of the amnesic functions, which are used to weigh the
errors of the segments. Then, BottomUp operates on the
weighted errors and proceeds as normal.

In order to evaluate our algorithms, we used an extensive
set of real-world data sets. These are 40 data sets coming
from diverse fields, including finance, medicine, biometrics,
chemistry, astronomy, robotics, networking, and industry
and covering the complete spectrum of stationary/nonsta-
tionary, noisy/smooth, cyclical/noncyclical, symmetric/
asymmetric, etc. [1]. All the data sets have a length of
10,000 points and are studentized (i.e., they have zero mean
and unit standard deviation). When not explicitly men-
tioned, the results reported are averages over all 40 data sets.
For all the experiments shown here, we employed a
piecewise linear amnesic function. The results for other
amnesic functions are similar. In the following paragraphs,
we first discuss the results for the relative amnesic functions
and, subsequently, for the absolute amnesic functions.

6.1 Comparison to BottomUp
In the first set of experiments, we compare the performance
of GrAp to BottomUp, which is essentially a comparison
between an online and the corresponding offline algorithm.
Fig. 11 depicts the approximation error and computation
time for GrAp-R and BottomUp for a single data set (Space
Shuttle STS-57). Similar trends are observed with all 40 data
sets we used in our experiments. We use the unrestricted-
window model and 10 segments, and we report the error
and time as a function of the window size. Our online
algorithm consistently provides approximations that are
very close to those found by the offline algorithm. At the
same time, our algorithm is much faster, requiring only
constant time for processing every new point (actually, as
we discussed in Section 4, the time is independent of V). On
the other hand, BottomUp has time complexity O(N log N).
In the next set of experiments, we quantify the differences
in the performance of the two algorithms. We report the
cumulative relative error (C RE), which measures the relative
increase in the cumulative error when using GrAp-R:

Z;\;l (EGrAp—R(T[l.]]) - EBottomUp(T[l"j]))
Z;'V:1 EBottomUp(T[l“.jD
The second measure of interest is the speedup, which

measures how many times faster GrAp-R or GrAp-A is when
compared to BottomUp:

CRE =100 -

Zi\il TimeBottamUp (T[l . .7] )

Speedup = - -
SN, Timegrap(T(1..5))
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Fig. 11. Typical progression of (a) error and (b) time for GrAp-R and
BottomUp (Space Shuttle STS-57 data set, unrestricted window).

In Fig. 13, we depict CRE as a function of K and N for the
unrestricted-window model. Using 50 segments, our algo-
rithm performs within 3-11 percent of the offline algorithm
for streams of length 1,000-3,000 points (Fig. 13a). Although
for increasing N, we observe a very slow buildup of the
relative error. In the experiment in Fig. 13b, the number of
segments we use is 1 percent, 3 percent, and 5 percent of N.
In this case, where the ratio N/K remains fixed, CRE
remains relatively stable as we increase N. In both cases, our
algorithm performs better as the number of segments
increases.

The graphs shown in Fig. 13 also depict the 95 percent
confidence intervals for the error values we report. These
intervals indicate that there is a small but noticeable
variation in the performance of the algorithm across the
diverse collection of the 40 data sets we used in our study.
Indeed, a close inspection of the experimental results
reveals that for the relatively smooth data sets, like the
ones shown in Fig. 12a, GrAp-R performs extremely close
(and, in some cases, identically) to BottomUp resulting in
similar (or the same) approximation quality. Fig. 12a depicts
the four data sets for which the performance of GrAp-R and
BottomUp is most similar to each other. In other words,
these are the examples where GrAp-R performs the best. For
the more unstructured data sets, like the ones shown in
Fig. 12b, the difference in the performance between GrAp-R
and BottomUp is more pronounced. In Fig. 12b, we depict
the four data sets for which the performance of GrAp-R and
BottomUp is furthest away from each other. Note that these
data sets are much more challenging to approximate, since
they exhibit many sudden variations and unpredictable
patterns. In these cases, BottomlUp has the opportunity to
make better global decisions that affect the overall approx-
imation quality.

Fig. 14 shows the speedup that our algorithm achieves,
which translates to one or two orders of magnitude faster
execution than the offline algorithm (for the experiments we
ran). We observe that the speedup increases significantly for
decreasing K. This is because the amount of work that GrAp-
R does remains almost constant (depends on log K), while

1003

AW AR
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Fig. 12. lllustration of the data sets for which the quality of approximation
achieved by GrAp-R is (a) closest to and (b) furthest away from that of
BottomUp. (a) Top-four performers. (b) Bottom-four performers.

BottomUp requires lots of extra effort for smaller values of K.
As expected, the speedup gets larger when we increase N.

We also run the same experiments for the sliding-
window model. Fig. 15a illustrates the results for the
speedup, which in this case is mainly a function of the
window size (K does not seem to affect the speedup in this
case, because of the particular choices of K and the window
size). The GrAp-R algorithm is 10-30 times faster than
BottomUp. The results for the error are similar to those for
the unrestricted-window model and are omitted for brevity.

The trends for the error and time remain the same as we
increase K and N. All the above results show that the online
algorithm achieves considerable benefits in terms of speed
while losing little in approximation accuracy, when
compared to the offline algorithm.

With the next experiment, we address a question that
was raised in light of Lemma 2. In the sliding-window
model, we temporarily allow the last segment of the
approximation model to grow beyond the end of the
window until it completely falls out of the boundaries of the
window and we discard it. Fig. 15b depicts the average

I [Stream| = 1000
90 | [ |Stream) = 2000
1 [Stream| = 3000

Avg. % of Relative Error

Avg. % of Relative Error

10 30 80 50 150 250
Number of segments

(b)

100 300 500

Fig. 13. Comparison of the approximation error between GrAp-R and
BottomUp (unrestricted window). (a) Fixed K. (b) Fixed N/K.
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Fig. 14. Speedup of GrAp-R against BottomUp (unrestricted window).
(a) Fixed K. (b) Fixed N/K.

number of points outside the sliding window that are
represented by the last segment, as a percentage of the
window size. In all the cases we tested, this number ranges
between 10-15 percent and therefore is not a restricting

factor for our representation.
In the last set of experiments, we evaluate the perfor-

mance of GrAp-A, which is the algorithm we propose for the
absolute amnesic functions. We run the experiments with
the unrestricted-window model and for three different
stream sizes. In the case of GrAp-A, we are interested in
minimizing the number of segments K used in the amnesic
approximation. Therefore, when we compare this algorithm
to BottomlUp, we measure the cumulative relative increase in
the required number of segments (CRIS):

> (Krap-a(T[L-g)) = Kpottomup(T[L-.4]) .

CRIS =100 - - :
Zj:l KBottomUp(T[l".]])

Avg. Speedup

10 5
Number of segments.

(a)

9% [Seg. Outside Window]/ [Window]

‘window = 200 window = 400

10 ’—‘
[
5 10 20 5 10 20
Number of segments

(b)

Fig. 15. (a) Speedup of GrAp-R against BottomUp and (b) the number of
excess points represented by GrAp-R, both for the sliding-window
model.
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Fig. 16. Average increase in (a) the number of required segments and
(b) speedup for GrAp-A against BottomUp (unrestricted window).

The results (refer to Fig. 16) show that GrAp-A is able to
find a representation with a minimal number of additional
segments when compared to the offline algorithm, that is,
1-3 percent more segments for streams of length 1,000-
10,000. There is only a slight increase in CRIS as we move to
longer streams. As in the case of relative amnesic functions,
the speedup is considerable, with our algorithm running
more than two orders of magnitude faster than BottomUp.

6.2 Comparison to Optimal

In this section, we investigate how our techniques compare
to the optimal algorithm, Opt, implemented with dynamic
programming. Unfortunately, due to the high time com-
plexity of the optimal algorithm, this experiment is only
possible for relatively small data sets.

We use the same set of 40 data sets and perform the
experiment as follows: From each data set, we randomly
extract a subsequence of length 512 and segment it into 16,
32, and 64 segments, using BottomUp and Opt. In the case
of GrAp-R, we treat the data subsequences as streams, have
the algorithm operate on those, and record the perfor-
mance of the algorithm during the last iteration. We
measure the relative increase in error for the GrAp-R and
BottomUp algorithms, defined as (Egrap-r — Eopt)/Eopt
and (Egottomvp — Eopt)/ Eopt, respectively. A zero value for
the relative error means that the algorithm under con-
sideration has found the optimal solution. For each data set
and each number of segments, we average the results over
10 randomly extracted subsequences and then average the
relative error over all 40 data sets. The results are shown in
Table 2. In the same table, we also report how much slower
Opt executes when compared to GrAp-R and BottomUp.
The results suggest that we lose little by using GrAp-R as
opposed to BottomlUp, since both algorithms manage to
find solutions close to the optimal. Note that this excellent
performance comes from tremendous savings in terms of
computational cost. The optimal algorithm is several
orders of magnitude slower than GrAp-R and is clearly
inapplicable for an online environment.

7 RELATED WORK

There exists an extensive literature in the area of time series
approximation [22]. Some of the representations that have
been proposed include the Fourier transform [13], [30],
many different wavelets [28], [9], piecewise polynomials
[38], [8], singular value decomposition [8], and symbolic
approximations [2]. Many of the above approximation
techniques have been adapted to work in an online fashion.
For example, piecewise constant approximation can be
created online with little loss of accuracy [25], as well as
DFT [40]. Most of other time series representations have
been or could trivially be calculated in an incremental
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TABLE 2
Comparison among GrAp-R, BottomUp, and Optimal

K (EGT‘AI)—R — EOpt)/EOpt TiWLeOpt/TimeGrAp—R
16 0.102 1857
32 0.083 1886
64 0.064 1912
K (EBottomUp — EOpt)/EOpt TimeOpt/TimeBottomUp
16 0.058 112
32 0.051 137
64 0.042 173

fashion [20]. There has also appeared work on data stream
summarization, using wavelets [15] and histograms [16].
Cohen and Strauss [11] present a framework for maintain-
ing time-decaying stream aggregates such as sum and
average.

Even though each year seems to produce new represen-
tations for time series [7], [26], the interest in using PLA has
not waned. If anything, the opposite is true. Recent years
have seen an explosion of interest in using PLA to support a
wide variety of data mining and indexing tasks. For
example, in the previous year alone, PLA has been used
to support a finite state automaton to simulate respiratory
motion [36], to do forecasting of the stock market [35], to
support anomaly detection in space telemetry [31], and to
produce text-based weather summaries [32]. This diverse
list merely hints at the broad applicability of PLA to real-
world problems.

Chen et al. [10] describe a framework for multidimen-
sional regression analysis of time series with a tilt time
frame. Nevertheless, they do not explicitly tailor their
representations to match different amnesic functions. Bulut
and Singh proposed using wavelets to represent “data
streams which are biased towards the more recent values”
[6] and successfully implemented their method. Although
the bias to more recent values can be seen as a special case of
an amnesic function, the particular function is dictated by
the hierarchical nature of the wavelet transform. A subse-
quent study [39] generalizes on these ideas, by decoupling
the approximation of the time series from a particular
dimension-reduction algorithm, but requires the user to
specify how the available memory will be used for the
approximation. Our work removes all the restrictions
inherent in the above approaches. The framework we
propose takes into account the form of the amnesic function
as an integral part of the problem and provides an effective
and efficient solution for a much more general class of
amnesic functions.

There has also been relevant work in machine learning
and, more specifically, in the neural network community,
where the main goal is to model time-varying patterns in
time series [3], [12]. What is different in our approach is that
we propose a summarization technique using an arbitrary
user-defined amnesic function that is compatible with
several existing distance measures and can be directly used
by a multitude of indexing and data mining algorithms.

8 CONCLUSIONS

We have introduced the first method to allow the online
approximation of streaming time series, which allows
arbitrary user-defined reduction of quality with time. This
kind of approximation is of increasing importance in many
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diverse application domains such as mobile and real-time
devices. We justified our choice of representation with
extensive comparisons to competing techniques and de-
scribed how we can adapt to allow arbitrary amnesic
functions for streaming data. We empirically evaluated our
algorithms with extensive experiments on 40 different data
sets. The results show that our algorithms offer significant
performance improvements over the direct computational
approach while maintaining the quality of the approxima-
tion close to optimal. Possible directions for future work
include supporting indexed similarity search and other
queries on our representation.
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