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Abstract—In the context of entity resolution (ER) in highly heterogeneous, noisy, user-generated entity collections, practically all block

building methods employ redundancy to achieve high effectiveness. This practice, however, results in a high number of pairwise

comparisons, with a negative impact on efficiency. Existing block processing strategies aim at discarding unnecessary comparisons at

no cost in effectiveness. In this paper, we systemize blocking methods for clean-clean ER (an inherently quadratic task) over highly

heterogeneous information spaces (HHIS) through a novel framework that consists of two orthogonal layers: the effectiveness layer

encompasses methods for building overlapping blocks with small likelihood of missed matches; the efficiency layer comprises a rich

variety of techniques that significantly restrict the required number of pairwise comparisons, having a controllable impact on the

number of detected duplicates. We map to our framework all relevant existing methods for creating and processing blocks in the

context of HHIS, and additionally propose two novel techniques: attribute clustering blocking and comparison scheduling. We evaluate

the performance of each layer and method on two large-scale, real-world data sets and validate the excellent balance between

efficiency and effectiveness that they achieve.

Index Terms—Information integration, entity resolution, blocking methods
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1 INTRODUCTION

THE amount of global, digital information has exhibited
an annual increase of 30 percent in the last few years

[16], due to the distributed production of information in
businesses and organizations, the increased ability and
interest for automatic extraction of information from raw
data, and the contributions of valuable information from
individual users worldwide through Web 2.0 tools. The
combined effect of these factors gives rise to highly
heterogeneous information spaces (HHIS), manifested in
Dataspaces [17] and the Web of data [4].

The main characteristics of HHIS are the following.
1) nonstructured data: HHIS principally comprise semistruc-
tured data, loosely bound to a rich diversity of schemata,
even when describing the same entity types. 2) high levels of

noise: they suffer from incomplete information, as their user-
generated part involves missing or inconsistent data, with
extraction errors. 3) large scale: users contributing to HHIS
are rather prolific, conveying an exponential growth in the
content of Web 2.0 platforms, for example, Wikipedia [1].

To leverage the investment in creating and collecting the
massive volume of HHIS, the linked data vision was recently
proposed [4], advocating the combination of related

resources in a unified way. A core part of this large-scale
integration process is entity resolution (ER), which is the
process of automatically identifying sets of profiles that
pertain to the same real-world entities.

In the context of HHIS, ER comes in two different forms:
as dirty ER, where the input comprises a single entity
collection, and as clean-clean ER, which is the process of
detecting pairs of matching entities among two large,
heterogeneous, individually clean (i.e., duplicate-free), but
overlapping collections of entities [5], [11], [21]. As an
example for the former, consider the task of identifying
duplicate Web pages in the index of a search engine; in the
latter case falls the task of merging individual collections of
consumer products, which stem from different online stores
and, thus, have slightly varying descriptions and proprie-
tary identifiers. Among these two versions of ER, clean-
clean ER constitutes a more specific problem that is
principally solved through specialized techniques relying
on the cleanness of the input data collections. On the other
hand, dirty ER is a more generic task that shares many
challenges with clean-clean ER. For this reason, we
exclusively focus on clean-clean ER in the following and
highlight, where necessary, the techniques that are generic
enough to handle dirty ER, as well.

Clean-clean ER constitutes an inherently quadratic task
(every entity of a collection has to be compared to all
entities of another collection). To scale to large volumes of
data, approximate techniques are employed. These signifi-
cantly enhance efficiency (i.e., reduce the required number
of pairwise comparisons), by trading—to a limited
extent—effectiveness (i.e., the percentage of detected
duplicates). The most prominent among these techniques
is data blocking, which clusters similar entities into blocks
and performs comparisons only among entities in the
same block. There is a plethora of techniques in this field,
but the vast majority of them assumes that the schema of

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. X, XXXXXXX 2013 1

. G. Papadakis, C. Niederée, and W. Nejdl are with the L3S Research Center,
Leibniz University of Hanover, Hannover 30167, Germany.
E-mail: {papadakis, niederee}@L3S.de, nejdl@kbs.uni-hannover.de.

. E. Ioannou is with the Department of Electronic and Computer
Engineering, Technical University of Crete, Technical University Campus,
Chania 73100, Crete, Greece. E-mail: ioannou@softnet.tuc.gr.

. T. Palpanas is with the Department of Information Engineering and
Computer Science, University of Trento, Via Sommarive 14, Povo, TN
38123, Italy. E-mail: themis@disi.unitn.eu.

Manuscript received 27 Oct. 2011; revised 9 May 2012; accepted 23 July
2012; published online 30 July 2012.
Recommended for acceptance by R. Miller.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-2011-10-0660.
Digital Object Identifier no. 10.1109/TKDE.2012.150.

1041-4347/13/$31.00 � 2013 IEEE Published by the IEEE Computer Society



the input data, as well as its qualitative features, are
known in advance [5]. This requirement is essential to
select the most reliable and distinctive attributes for
assigning entities to blocks according to their values [5].

However, we note that traditional blocking techniques
are incompatible with the inherent characteristics of HHIS
mentioned above, rendering most of these methods
inapplicable to our problem. To illustrate the peculiarities
of HHIS, consider the entity collections E1 and E2 that are
presented in Fig. 1a. Judging from the similar values they
share, we deduce that the entities p1 and p2 of E1 are
matching with p3 and p4 of E2, respectively. However, every
canonical attribute name has a different form in each
profile; the name of a person, for instance, appears as
“FullName” in p1, as “name” in p2, and as “given name” in
p3. This situation is further aggravated by tag-style values,
such as the name of p4, which is not associated with any
attribute name at all. Traditional blocking methods cannot
form any block in the context of so high levels of
heterogeneity and are only applicable on top of a schema
matching method. Although this task seems straightfor-
ward in our example, it is impractical in real-world HHIS;
Google Base1 alone encompasses 100,000 distinct schemata
that correspond to 10,000 entity types [23].

In these settings, block building methods typically rely on
redundancy to achieve high effectiveness: each entity is
placed in multiple blocks, which significantly restricts the
likelihood of missed matches. As an example, consider the
token blocking approach [29], as shown in Fig. 1b; each
created block corresponds to a single token and contains all
entities with that token, regardless of the associated
attribute name. Redundancy, however, comes at the cost
of lower efficiency, since it produces overlapping blocks
with a high number of unnecessary comparisons. In our
example, we observe that the blocks “Gray,” “program-
mer,” and “91456” contain four repeated comparisons
between the pairs p1 � p3 and p2 � p4. Block “91,456” also
involves two unnecessary comparisons between the non-
matching pairs p1 � p4 and p2 � p3. Such comparisons can
be discarded without missing any duplicates, thus enhan-
cing efficiency at no cost in effectiveness. This is actually the
purpose of numerous block processing techniques.

Several blocking methods have been proposed for clean-
clean ER over HHIS. Some of them are competitive
(i.e., serve identical needs), while others are complemen-
tary, as their combination leads to better performance.
However, there is no systematic study on how these
methods relate to each other.

In this paper, we propose a novel framework that
organizes existing blocking methods, and covers the gap
mentioned above. The framework comprises two orthogo-
nal layers, each targeting a different performance require-
ment. The effectiveness layer encompasses methods that
create robust blocks in the context of HHIS, aiming at
placing duplicate entities in at least one common block (this
directly translates to effectiveness, since entities in the same
block will be compared to each other; therefore, the
duplicate entities will be discovered). The main technique
of this layer is token blocking, which requires no background
knowledge of the input data, disregarding completely any
schema information. In this study, we also propose attribute
clustering blocking, which creates blocks of higher perfor-
mance by partitioning attribute names with similar values
into nonoverlapping clusters.

The efficiency layer aims at processing blocks efficiently,
discarding the repeated and unnecessary comparisons they
contain. To describe their functionality in an unambiguous
way, we introduce a novel, 2D taxonomy that categorizes
efficiency techniques according to the type of comparisons
they target, and the granularity of their functionality (i.e.,
whether they operate on the coarse level of blocks or on the
finer level of individual comparisons). We also propose a
novel technique, called comparison scheduling, which speci-
fies the processing order of individual comparisons so as to
increase the number of superfluous comparisons that are
discarded at no cost in effectiveness.

The goal of our framework is to facilitate practitioners
in their effort to combine complementary blocking
methods into highly performing ER solutions that can be
easily tailored to the particular settings and requirements
of each application (see Section 4.1). It also facilitates and
guides the development of new methods that specialize in
specific types of comparisons to yield higher efficiency
enhancements. Of particular utility in this effort is the
metric space we present in Section 3.2, which estimates the
performance of blocking methods a-priori. Our framework
is general in that it accommodates the existing methods for
creating and processing blocks for clean-clean ER over
HHIS, and can incorporate new methods as well. To this
effect, we have publicly released its implementation, as
well as the data of our experimental study.2 Even though
our framework focuses on a particular subtask of ER, most
of the ideas it conveys could also be applied to other
versions of the ER problem.

Our main contributions are as follows:

. We define a framework for blocking-based clean-
clean ER over HHIS that consists of two orthogonal
layers. It is generic and flexible to accommodate a
variety of methods that in combination form
comprehensive, highly performing ER approaches.

. We explain the incorporation of new blocking
methods in our framework. For this, we introduce
attribute clustering blocking, a novel approach to
block building that achieves equally high effective-
ness with token blocking, but at a significantly lower
redundancy and higher efficiency. We also introduce
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Fig. 1. (a) Two entity collections, and (b) the generated blocks.

1. http://www.google.com/base. 2. http://sourceforge.net/projects/erframework.



comparison scheduling, a novel approach to block
processing that enhances efficiency at no cost in
effectiveness by specifying the processing order of
all individual comparisons so that duplicates are
detected first.

. We report evaluation results on two large-scale,
real-world data sets that in total comprise over three
million entities.

2 RELATED WORK

ER constitutes a traditional problem in computer science
[9], [11], [12], [22], [27], and numerous methods have been
proposed over the years for tackling it, ranging from string
similarity metrics [6] to methods relying on entity relation-
ships [10]. Blocking is one of the established techniques for
scaling ER to large data collections, and existing blocking
methods can be distinguished in three broad categories:
block building, block processing, and hybrid ones.

Block building methods aim at producing a set of blocks
that offers a good balance between the number of detected
duplicates and the number of required comparisons. In the
context of homogeneous information spaces, these methods
typically consider the frequency distribution of the values
of attribute names, as well as their quality (i.e., presence of
noise or missing values), to derive the most suitable blocking
key(s) [5]. Given a collection of entities, a blocking key is
extracted from every profile and blocks are formed on the
similarity, or equality of the resulting keys. For example, the
suffix array approach [7] considers suffixes of certain
lengths of the blocking keys, placing in each block entities
that share the corresponding suffix. The StringMap method
[20] maps the key of each record to a multidimensional
euclidean space, and employs suitable data structures for
efficiently identifying pairs of similar records. Bigrams
blocking [2] and its generalization, q-grams3 blocking [15],
create clusters of records sharing at least one bi- or q-gram
of their keys. Canopy clustering [25] employs a computa-
tionally cheap string similarity metric for building high-
dimensional, overlapping blocks.

Block processing methods focus on techniques that examine
a set of blocks in such a way that effectiveness, or efficiency
(or both of them) is enhanced. A typical example in this
category is the iterative blocking approach, which relies on
the repetitive examination of individual blocks. It is based
on the principle that more duplicates can be detected and
more pairwise comparisons can be saved through the
iterative distribution of identified matches to the subse-
quently (re-)processed blocks. It was originally introduced
in [33] and was extended in [21] so that it can accommodate
LSH techniques. Another line of research in this area is
presented in [30], which proposes a series of techniques for
processing overlapping blocks such that no comparison is
executed twice.

Hybrid blocking methods deal with the creation and
processing of blocks in an integrated way. For example,
the sorted neighborhood approach [18] creates blocking
keys that are suitable for ordering them in such a way that
similar entities are placed in neighboring positions. In

another line of research, HARRA [21] introduces a hybrid,
LSH-based technique for building blocks and processing
them iteratively.

A common drawback of all these methods is that their
performance depends on the fine-tuning of many applica-
tion- and data-specific parameters [5], [7]. To avoid this,
tuning methods based on machine learning algorithms have
been proposed in the literature [3], [26]. Another common
characteristic of most blocking methods is that they are
crafted for homogeneous information spaces. As a result,
they are able to extract blocking keys of high quality on the
condition that schema information about the input data and
the properties of its individual attributes are available.
However, this assumption is impractical in the context of
large-scale HHIS, for which attribute-agnostic blocking
methods are needed.

3 DATA MODEL

Our framework operates over collections of entities that
describe real-world objects. We follow a recently intro-
duced model [17], [19] that is schema-independent and
flexible enough to support a wide spectrum of entity
representation formats. It is also capable of representing
multivalued attributes as well as entity relationships, thus
accommodating any Web and data space application [23].
We assume infinite sets of attribute names N , values V,
and identifiers I .

Definition 1. An entity collection Ei is a tuple hNi; Vi; Ii; Pii,
where Ni � N is the set of attribute names appearing in it,
Vi � (V [ I ) is the set of values used in it, Ii � I is the set of
global identifiers contained in it, and Pi � Ii � }ðNi � ViÞ is
the set of entity profiles that it comprises. An entity profile pi
is a tuple hi, Apii, where Api is the corresponding set of name-
value pairs hn, vi, with n 2 N and v 2 ðV [ IÞ.

Among two individually clean entity collections, E1 and
E2, two entity profiles, p 2 E1 and q 2 E2, are said to be
matching if they refer to the same real-world entity. They are
collectively called duplicates and their relationship is
denoted with p � q.

Given two duplicate-free, but overlapping entity collec-
tions, E1 and E2, clean-clean ER needs to detect the matching
entity profiles they contain as effectively (i.e., with high
recall) and efficiently (i.e., with few entity comparisons) as
possible. This is a problem of quadratic time complexity, as
the naive solution compares each entity from the one
collection with all entities from the other. To ensure
scalability, approximate techniques skip some comparisons,
sacrificing effectiveness to a limited and controllable extent.
In the following, we consider the most prominent of these
techniques, namely, data blocking.

3.1 Blocking-Based Entity Resolution

The goal of blocking is to make ER scalable by grouping
similar entities into blocks (i.e., clusters) such that it suffices
to execute comparisons only between entities of the same
block. Blocks are created according to a blocking scheme
that consists of two parts: first, a transformation function ft
that derives the appropriate representation for blocking
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from every entity profile, and second, a set of constraint
functions F c that encapsulate the conditions for placing
entities into blocks. For each block bi, there is a function
fic 2 F c that decides for every entity profile whether it is
going to be placed in bi or not.

Definition 2. Given two entity collections, E1 and E2, a blocking
scheme s comprises a transformation function ft:E1 [ E2 7! T
and a set of constraint functions F c:T 7! {true, false}, where T
represents the space of all possible blocking representations for
the given entity profiles.

Applying the blocking scheme s on the entity collections
E1 and E2 yields a set of bilateral blocks B, which is called
block collection. Each bilateral block bi 2 B is the maximal
subset of E1 � E2 that is defined by the transformation
function ft and the constraint function fic of s. Depending
on the origin of its entities, it is internally separated into two
nonempty inner blocks, bi;1 and bi;2, where bi;j ¼ fp j p 2 Ej,
ficðftðpÞÞ ¼ trueg.

Given the absence of duplicates in the individual entity
collections, it suffices to compare only entities between
different inner blocks. In the remaining text, every compar-
ison in a bilateral block bk between the entities pi and pj is
denoted by ci;j and requires that pi 2 bk;1 and pj 2 bk;2. The
total number of comparisons entailed in bi is called
individual cardinality and is equal to kbik ¼ jbi;1j � jbi;2j, where
jbi;jj denotes the number of entities contained in the inner
block bi;j. The total number of comparisons contained in B
is called aggregate cardinality and is symbolized by kBk,
i.e.,

P
bi2B kbik.

Example 1. Consider the entity collections in Fig. 1a. The
used transformation function ft represents each entity as
the set of tokens contained in its attribute values. The
constraint function f91;456

c places an entity in block b91;456

only if token “91,456” is contained in the result given by
ft. Similarly, the participation to the rest of the blocks is
defined by the constraint functions fAntonyc , fGrayc , fGreenc ,
fprogrammerc . Consider now block b91;456 of Fig. 1b. It can be
separated into two inner blocks, i.e., b91;456 ¼ fb91;456;1,
b91;456;2g, where b91;456;1 ¼ fp1, p2g and b91;456;2 ¼ fp3; p4g.

The performance of a blocking scheme depends on two
competing aspects of the blocks it produces: their efficiency
and their effectiveness. The former expresses the number of
pairwise comparisons a block collection entails and is
directly related to the aggregate cardinality of the resulting
B. Effectiveness depends on the cardinality of the set DB of
the detected pairs of matching entities (i.e., the pairs of
matching entities that are compared in at least one block
of B). There is a clear tradeoff between these two measures:
the more comparisons are executed within B (i.e., higher
kBk), the higher its effectiveness gets (i.e., higher jDBj), but
the lower its efficiency is, and vice versa. Thus, a blocking
scheme is considered successful if it achieves a good
balance between efficiency and effectiveness. This balance
is commonly measured through the following metrics [3],
[7], [26], [29]:

Pair completeness (PC) expresses how many of the
matching pairs of entities have at least one block in
common (otherwise they cannot be detected). It is defined

as PC ¼ jDBj=jDE1\E2
j � 100%, where jDE1\E2

j denotes the
number of entities shared by E1 and E2 according to the
golden standard. PC takes values in the interval ½0%; 100%�,
with higher values indicating higher effectiveness of the
blocking scheme.

Reduction ratio (RR) measures the reduction in the
number of pairwise comparisons contained in a block
collection B with respect to a baseline block collection B0. It
is defined as RRðB;B0Þ ¼ ð1� kBk=kB0kÞ � 100%, thus taking
values in the interval ½0%; 100%� (for kBk � kB0k). Higher
values denote higher efficiency of the blocking scheme.

This work focuses on blocking methods for overlapping,
but individually clean entity collections, defined as follows.

Problem Statement (Blocking-Based Clean-Clean ER).
Given two duplicate-free, but overlapping entity collections,
E1 and E2, along with a baseline block collection B0 of high PC
value, cluster the entities of E1 and E2 into blocks and process
them such that both RRðB;B0Þ and PC are maximized.

High RR values mean that the ER process can be
efficiently applied to large data sets, while high PC values
satisfy the application requirements (i.e., the acceptable
level of effectiveness over HHIS). Note that the requirement
for maximizing PC and RR simultaneously necessitates
that the efficiency enhancements stem from the careful
removal of unnecessary comparisons between irrelevant
entities, rather than from a blind process. In the following,
we address this optimization problem through a set of best
effort strategies.

3.2 Metric Space for Clean-Clean ER Blocking
Methods

The PC and RR of a given block collection B can only be
measured through a-posteriori examination of its blocks;
that is, through the execution of all pairwise comparisons in
B. However, estimating their actual values a-priori is crucial
for certain tasks, such as the functionality of block
processing methods. To cover this need, we now introduce
a metric space that provides a close approximation of PC
and RR without examining analytically the given block
collection B; instead, it simply inspects the external
characteristics of its elements (i.e., size and individual
cardinality per block).

The blocking cardinality-comparison cardinality (BC-CC)
metric space constitutes a 2D coordinate system that is
illustrated in Fig. 2. Its horizontal axis corresponds to
blocking cardinality (BC) and its vertical one to comparison
cardinality (CC). BC quantifies the redundancy of a block
collection as the average number of block assignments4 per
entity. CC is orthogonal to it, deriving the efficiency of a
block collection through the distribution of comparisons
per block (i.e., the average number of block assignments per
comparison). As was experimentally verified in [32], BC is
positively correlated with PC (i.e., higher BC values lead to
higher effectiveness), while CC is directly related to RR
(i.e., higher CC values convey higher efficiency).

The value of BC depends not only on the blocking
scheme at hand, but also on the data collection(s) it applies
to; the same blocking scheme can yield different levels of

4 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. X, XXXXXXX 2013

4. A block assignment is the association between a block and an entity.



redundancy, when applied to different entity collections.
Thus, given a block collection B derived from E1 and E2, we
distinguish two different versions of BC: the blocking
cardinality of the individual entity collections (BCind) and
the blocking cardinality of their conjunction (BCov).5 Their
formal definitions are, respectively, the following:

Definition 3. Given a block collection B, the individual
blocking cardinality of Ej is defined as the average number
of inner blocks bi;j 2 B an entity p 2 Ej is placed in

BCindðEjÞ ¼
P

p2Ej jfbi 2 B : p 2 bi;jgj
jEjj

¼
P

bi2B jbi;jj
jEjj

;

where j 2 f1; 2g and jEjj denotes the size of the entity
collection Ej (i.e., number of entities it contains).

Definition 4. Given a block collection B, its overall blocking
cardinality is defined as the average number of blocks bi 2 B
an entity p 2 ðE1 [ E2Þ is placed in

BCov ¼
P

p2ðE1[E2Þ jfbi 2 B : p 2 bigj
jE1j þ jE2j

¼
P

bi2B jbij
jE1j þ jE2j

;

where jE1j þ jE2j denotes the total size of the given entity
collections E1 and E2, and jbij is the size of block bi.

BCind and BCov are defined in the intervals ½0; 2 � jE1j� and
½0; 2�jE1j�jE2j
jE1jþjE2j �, respectively, since their maximum, reasonable

values correspond to the naive method of associating every
entity of E1 with all entities of E2 in blocks of minimum size
(i.e., 8bi 2 B : jbi;1j ¼ 1 ^ jbi;2j ¼ 1). Values lower than 1
indicate blocking methods that fail to place each entity in
at least one block; this is possible, for example, with
blocking techniques that rely on a single attribute name
and ignore entity profiles that do not possess it. A value
equal to 1 denotes a technique that is close to a partitioning
blocking method (i.e., one that associates each entity with a
single block, thus producing a set of nonoverlapping
blocks). Values over 1 indicate redundancy-bearing blocking
methods, with higher values corresponding to higher
redundancy.
CC estimates the efficiency of a block collection through

the number of block assignments that account for each
comparison; the higher this number is, the more efficient is
the given block collection. The rationale behind this
approach is that a large set of individually small blocks is
substantially more efficient than a set of few, but extremely
large blocks that has the same number of block assignments.
CC relies, therefore, on the distribution of comparisons per

block and depends on both the blocking scheme at hand
and the input entity collection(s); that is, the same blocking
scheme results in different comparison distributions, when
applied to different entity collections. Formally, CC is
defined as follows:

Definition 5. Given a block collection B, its comparison
cardinality is defined as the ratio between the sum of block
sizes and the aggregate cardinality of B and is given by CC ¼P

bi2B jbij / kBk.

CC takes values in the interval ½0; 2�, with higher values
corresponding to fewer comparisons per block assignment,
and, thus, higher efficiency (i.e., smaller blocks, on average).
Its maximum value CCmax ¼ 2 corresponds to the ideal case
of placing each pair of matching entities in a single block
that contains no other entity: CC ¼ 2�DB

DB ¼ 2.6 On the other
hand, a blocking method that places all given entity profiles
in a single block corresponds to CC ¼ jE1jþjE2j

jE1j�jE2j 	 CCmax.
Thus, the closer CC is to CCmax, the more efficient the
corresponding blocking method is.

Note that the combination of BC and CC effectively
captures the tradeoff between the orthogonal measures of
PC and RR: the more redundancy a blocking method
entails, the higher its BC gets and, thus, its effectiveness
(i.e., PC); the resulting blocks, however, involve a propor-
tionally higher number of pairwise comparisons, down-
grading its CC and, thus, its efficiency (i.e., RR). This means
that the BC-CC metric space is suitable for a-priori
estimation of the balance between PC and RR. The block
purging method (see Section 5.2.1) offers an illustrative
example of how to exploit this functionality.

The BC-CC metric space can be used for comparing a-
priori the performance of blocking schemes, as well. As a
reference, we employ the point (1,2) in Fig. 2, which is
called ideal point. It corresponds to the mapping of the
optimal blocking method, which builds a block of minimum
size for each pair of matching entities (i.e., it involves no
unnecessary comparison). The closer a blocking method is
mapped to (1,2), the better its performance is [32].

To illustrate this functionality, consider the blocks in
Fig. 1b; their PC is equal to 100 percent, while their RR is
0 percent with respect to the Cartesian product of E1 and
E2. Their poor efficiency is reflected on their BC-CC
mapping—the point ð3; 1:5Þ—which lies 2.06 away from
the ideal point. Imagine now a block processing method
that discards all comparisons in the blocks “Gray,”
“programmer,” and “91,456.” It has no impact on effec-
tiveness (i.e., PC remains 100 percent), but it reduces the
executed comparisons to 2 (i.e., RR ¼ 50%). This efficiency
enhancement is clearly depicted at the new BC-CC
mapping, which now coincides with the ideal point.

On the whole, two are the main advantages of employing
the BC-CC metric space: first, it a-priori approximates the
actual performance of a block collection with high accuracy,
thus providing insights on how to improve its processing.
Second, it allows for a-priori selecting among a collection of
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Fig. 2. The BC-CC metric space, illustrating the mapping of the two
main categories of blocking methods (black dots) in comparison with the
ideal one (gray dot).

5. Note that the horizontal axis of the BC-CC metric space corresponds
to the overall blocking cardinality BCov of B.

6. CCmax also corresponds to any other blocking method that exclusively
considers blocks of minimum size: CC ¼ 2�jBj

jBj ; where 8bi 2 B : jbi;1j ¼
1 ^ jbi;2j ¼ 1. In this case, though, BCov takes its maximum value, as well,
thus placing the corresponding blocking method to the farthest point from
the ideal one (i.e., (1,2)).



blocking methods the most appropriate one for the
application at hand. Both functionalities involve a negligible
computational cost, as the corresponding metrics are
computed in linear time—OðjBjÞ—through a single pass
over the given blocks.

4 BLOCKING FRAMEWORK FOR ENTITY

RESOLUTION

Our framework for blocking-based clean-clean ER over
HHIS is depicted in Fig. 3. It consists of two orthogonal, but
complementary layers: the effectiveness layer that groups
entity profiles into blocks to achieve high PC, and the
efficiency layer that aims at achieving high RR.

The effectiveness layer encompasses a set of blocking
schemes that build blocks of high robustness in the context
of HHIS. Their input consists of the two duplicate-free entity
collections that are to be resolved, E1 and E2, while their
output comprises the block collection B that results after
applying one of the available blocking schemes on E1 and
E2. To achieve high PC over HHIS, the block building
methods of this layer typically have the following two
characteristics: First, attribute-agnostic functionality, disre-
garding any a-priori knowledge about the schemata of the
input entity profiles so as to ensure their applicability to
HHIS. Second, redundancy-bearing functionality, placing each
entity in multiple blocks; this guarantees the high BCov that
is required for reducing the likelihood of missed matches
(i.e., high PC), but produces a set of overlapping blocks that
involves unnecessary comparisons.

The efficiency layer takes as input the set of blocks B that
is derived from the effectiveness layer. Its output comprises
the detected pairs of duplicates DB, along with their cost in
terms of the number of executed comparisons; in the
following, we denote this measure by jCj, where C is the set
of all executed comparisons ci;j. The goal of this layer is to
enhance efficiency (i.e., RR) by reducing the cardinality of C
at a controllable impact on PC. This can be accomplished by
removing entire blocks or individual comparisons, a
practice that moves the BC-CC mapping of a blocking
method closer to the ideal point; as depicted in Fig. 4, its
BCov value decreases toward the x ¼ 1 axis, since its
numerator decreases, while its denominator remains stable.
On the other hand, its CC value increases, since its
denominator decreases faster than its numerator.

To ensure high performance, the efficiency layer en-
compasses a set of techniques that target specific types of
pairwise comparisons. Given a bilateral block bk 2 B, every

pairwise comparison ci;j it entails belongs to one of the

following types:

1. Matching comparison, if pi � pj.
2. Repeated comparison, if pi and pj have already been

compared in a previously examined block.
3. Superfluous comparison, if pi or pj or both of them

have been matched to some other entity profile and
cannot be duplicates (i.e., clean-clean ER).

4. Nonmatching comparison, if ci;j is neither repeated nor
superfluous and pi 6� pj.

Based on this taxonomy, the goal of the efficiency layer is

threefold: 1) to eliminate the repeated comparisons, 2) to

discard all the superfluous comparisons, and 3) to restrict

the execution of nonmatching comparisons.
The first two targets can be achieved without any effect

on the matching comparisons and, thus, PC. This does not

apply, though, to the third target: there is no safe way to

determine whether two entities are duplicates or not,

without actually comparing their profiles. Therefore,

methods that target nonmatching comparisons are inher-

ently approximate and partially discard matching compar-

isons, as well, incurring lower PC.
In this context, the block processing methods of the

efficiency layer can be categorized according to the

comparison type they target as follows:

1. Repeat methods, which aim at discarding repeated
comparisons without affecting PC,

2. Superfluity methods, which try to skip superfluous
comparisons without any impact on PC,

3. Nonmatch methods, which target nonmatching com-
parisons at a limited and controllable cost in PC, and

4. Scheduling methods, which enhance efficiency in an
indirect way, specifying the processing order that
boosts the effect of superfluity and nonmatch
methods.

A complete clean-clean ER approach should encompass

techniques of all these types to ensure high-efficiency

enhancements. Combined with a block building method,

such a collection of complementary efficiency methods is

called ER workflow. Its composition typically depends on

two factors: 1) The resources that are available for handling

the time and space requirements of the selected efficiency

methods, and 2) the performance requirements of the

underlying application with respect to both PC and RR.
To facilitate the compilation of blocking methods into

highly performing workflows, we introduce an additional

categorization of block processing methods according to the

granularity of their functionality:
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Fig. 3. Outline of our two-layer framework for clean-clean ER.

Fig. 4. Illustration of the effect of the efficiency techniques on the BC-CC
mapping of a blocking method.



1. block-refinement methods, which operate at the coarse
level of individual blocks, and

2. comparison-refinement methods, which operate at the
finer level of individual comparisons.

The granularity of functionality constitutes a decisive
parameter for both factors affecting the composition of ER
workflows. Block-refinement methods exhibit limited ac-
curacy when discarding comparisons, but they consume
minimal resources, as they typically involve low time and
space complexity. Thus, they offer the best choice for
applications with limited resources, where entity compar-
isons can be executed in short time (e.g., due to entity
profiles of small size). On the other hand, comparison-
refinement techniques are more precise in the identification
of unnecessary comparisons, but their higher accuracy
comes at the cost of higher time and space complexity.
They are suitable, therefore, for applications with time-
consuming entity comparisons (e.g., due to large profiles),
which can afford high complexity block processing.

On the whole, the comparisons’ type and the granularity
of functionality define a 2D taxonomy of efficiency methods
that facilitates the combination of blocking methods into
comprehensive ER workflows. Its outline is illustrated in
Fig. 5, along with a complete list of the techniques that are
analyzed in Section 5.2.

We stress that all efficiency methods of our framework
share the same interface: they receive as input a block
collection and return as output an improved one that
involves fewer blocks, or fewer comparisons, or has its
elements appropriately ordered.7 In this way, an ER
workflow can be simply created by specifying the methods
that are included in it; regardless of its composition, its
methods are applied consecutively, in the order they are
added, so that the output of the one constitutes the input of
the other. We elaborate on the creation of such workflows in
the following section.

4.1 Using Blocking Framework to Build ER
Workflows

As mentioned above, a core characteristic of our framework
is its flexibility in combining blocking methods into highly
performing ER workflows. The choice of the methods
comprising them is only limited by the available resources
and the performance requirements of the underlying
application. In this section, we introduce a general proce-
dure for composing ER workflows that can cover a variety
of performance and resource requirements. It consists of five

steps, outlined in Fig. 6, which are all optional—with the
exception of the first one (i.e., the creation of blocks).8 We
elaborate on each step in the following.

The first step selects the most suitable block building
method for the application at hand. Given that all methods
of the effectiveness layer are competitive to each other,
serving exactly the same need, it suffices to include only one
of those depicted in the left-most column of Fig. 6.

The second step is to include the two core efficiency
methods: block purging (see Section 5.2.1) and duplicate
propagation (see Section 5.2.2). They are indispensable for
an ER workflow, since they consume minimal resources,
while yielding significant improvements in efficiency at a
negligible cost in PC.

The third step opts for a scheduling method, which
determines the processing order of blocks or comparisons
that boosts the performance of duplicate propagation and
block pruning (where applicable). Three are the valid
options: block scheduling (see Section 5.2.1), comparison
scheduling (see Section 5.2.2), and the merge-purge
algorithm, on the condition that it is applicable to HHIS.
Block Scheduling is better integrated with block-refinement
efficiency techniques, whereas comparison scheduling
exclusively operates in conjunction with comparison-
refinement ones. Thus, the scheduling method constitutes
a critical part of an ER workflow, determining its overall
granularity of functionality and, consequently, its complex-
ity and performance.

The fourth step incorporates the technique that elim-
inates all repeated comparisons, i.e., comparison propaga-
tion (see Section 5.2.2). Due to its high space complexity, it
should be skipped in the case of ER workflows that can only
afford minimal space requirements (i.e., workflows that
exclusively involve block-refinement methods).

The last step determines the technique that—in addition
to block purging—deals with nonmatching comparisons.
The options can be restricted, though, by the method
selected in the third step; workflows involving block
scheduling can choose between block pruning and compar-
ison pruning, whereas those involving comparison schedul-
ing can only opt for comparison pruning. Note that in the
latter case, it is good practice to add comparison propaga-
tion, as well, since it shares exactly the same space and time
complexity with comparison pruning.
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Fig. 5. Taxonomy of efficiency methods according to the type of
comparisons they target and the granularity of their functionality.

Fig. 6. Steps for creating a complete blocking-based ER approach.

7. The only method that does not comply with this interface is
duplicate propagation, which in practice operates as a data structure
(see Section 5.2.2).

8. Note that the same procedure can be applied to Dirty ER, as well, by
excluding the third step (i.e., scheduling methods) and duplicate propaga-
tion from the second step. All other blocking techniques merely need to
adapt their internal functionality to unilateral blocks (i.e., blocks where all
entities are comparable to each other).



As stressed in the previous section, the actual execution
order of the methods comprising an ER workflow coincides
with the order they are added to it. This rule applies to the
procedure of Fig. 6 with one exception: Comparison
Scheduling is added at the third step, but is the last to be
executed in the workflows that involve it. Duplicate
propagation constitutes a special case, since it is integrated
into the entity comparison process, thus being executed
together with the last method of each workflow.

4.2 Existing Methods in Blocking Framework

Any block building technique can be incorporated into the
effectiveness layer, regardless of its internal functionality
(e.g., whether it is signature-based or not), on the sole
condition that it shares the same interface; that is, it should
receive as input two clean, but overlapping entity collec-
tions and should return as output a set of bilateral blocks.
Note, however, that the intricacies of HHIS are usually
tackled through an attribute-agnostic functionality that
employs redundancy. Given that the suffix array [7], the
StringMap [20], and the q-grams [15] blocking methods
already involve a redundancy-bearing functionality, they
only need to be adapted such that they operate in an
attribute-agnostic manner; that is, instead of deriving the
blocking key(s) from the values of selected attributes, they
should apply on all values of entity profiles. The same
applies to canopy clustering [25]; a string similarity metric
that considers the entity profiles in their entirety turns it
suitable for our framework.

On the other hand, block processing methods can be
readily integrated into the efficiency layer. The core method
for eliminating redundant comparisons (i.e., comparison
propagation [30]) has already been added, and so does part
of the iterative processing method of [33] (i.e., duplicate
propagation).

Hybrid blocking methods can be added, as well, after
dividing their functionality in two separate processes that
can be mapped to the respective layers: the creation of
blocks and their processing. For instance, the LSH-based,
block building technique of the HARRA framework [21]
could be integrated into the effectiveness layer, whereas its
iterative processing fits in the efficiency one. Similarly,
decoupling the schema-specific functionality from the block
building technique of the merge-purge algorithm [18] turns
it suitable for the effectiveness layer, while its ordering
technique can be mapped to the efficiency layer (see Fig. 6).

Equally important is the extensibility of our framework.
Novel methods can be seamlessly plugged into it on the sole
condition that they implement the same interface and serve
the same goal as the corresponding layer. Methods fulfilling
this requirement can be integrated into an ER workflow
without any further modifications. To facilitate the devel-
opment of such new methods, Sections 5.1 and 5.2 analyze
the functionality of existing techniques and explain how the
BC-CC metric space can be used to guide this process.

5 APPROACH

5.1 Effectiveness Layer

This layer currently encompasses two block building
techniques: token blocking (see Section 5.1.1), the only

existing blocking method that is applicable in the settings
we are considering, and attribute clustering blocking (see
Section 5.1.2), which is a novel blocking technique that
improves on token blocking. They both entail an attribute-
agnostic and redundancy-bearing functionality, being
mapped to the right of the x ¼ 1 axis on the BC-CC
metric space.

5.1.1 Token Blocking

Token blocking [29] is based on the following idea: every
distinct token ti creates a separate block bi that contains all
entities having ti in the values of their profile—regardless of
the associated attribute names. The only condition is that ti
is shared by both input sets of attribute values, so that the
resulting inner blocks are nonempty: ti 2 ðtokensðV1Þ \
tokensðV2ÞÞ, where tokensðVjÞ represents the set of all
tokens contained in the values Vj of the entity profiles in
collection Ej. In this way, blocks are built independently of
the attribute names associated with a token (attribute-
agnostic functionality), and each entity is associated with
multiple blocks (redundancy-bearing functionality).

More formally, the transformation function ft of this
scheme converts an entity profile into the set of tokens
comprising its attribute values: ftðpÞ ¼ fti : 9ni; vi : hni;
vii 2 Ap ^ ti 2 tokensðviÞg, where tokensðviÞ is a function
that returns the set of tokens comprising the value vi. Its set
of constraint functions F c contains a function fic for every
token ti that is shared by both input entity collections (i.e.,
ti 2 ðtokensðV1Þ \ tokensðV2ÞÞ); fic defines a block bi 2 B
that contains all entities of E1 and E2 having ti in at least
one of their values. Thus, every fic encapsulates the
following condition for placing an entity p in block
bi: f

i
cðftðpÞÞ ¼ ðti \ ftðpÞÞ 6¼ ;, where p 2 ðE1 [ E2Þ. On the

average case, the time complexity of this method is
OðBCov � ðjE1j þ jE2jÞÞ, while its space complexity is Oðj�bij�
ðtokensðV1Þ \ tokensðV2ÞÞÞ, where j�bij is the mean block size.

This approach has two major performance advantages:
first, it can be efficiently implemented with the help of
inverted indices, even in the case of large entity collections.
Second, it is robust to noise and heterogeneity, because the
likelihood of two matching entities sharing no block at all is
very low. Indeed, this can only be the case when two
matching entities have no token in common, a very unlikely
situation for profiles describing the same real-world entity.

5.1.2 Attribute Clustering Blocking

We now describe attribute clustering, a novel blocking
scheme that we introduce in this study, which exploits
patterns in the values of attribute names to produce blocks
that offer a better balance between PC and RR. At its core
lies the idea of partitioning attribute names into nonover-
lapping clusters, according to the similarity of their values.
The resulting groups, denoted by K, are called attribute
clusters and are treated independently of each other: given a
cluster k 2 K, every token ti of its values creates a block
containing all entities having ti assigned to an attribute
name belonging to k. As a result, the partitioning of attribute
names into clusters leads to the partitioning of tokens into
clusters, as well. Compared to token blocking, the resulting
block collection B is larger in size (i.e., contains more
blocks), but of lower aggregate cardinality (i.e., contains
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smaller blocks on average)—assuming that they are both
applied to the same input entity collections. Therefore,
attribute clustering is expected to involve higher CC values
than token blocking, while maintaining similar values of
BC. This means that its BC-CC mapping lies closer to the
Ideal Point, offering a PC-RR balance of higher efficiency.

To understand the difference of this approach from the
previous one, consider a token ti that is associated with n
attribute names, which belong to k attribute clusters. Token
blocking creates a single block for ti, with all entities that
have it in their values; that is, regardless of the associated
attribute names. On the other hand, attribute clustering
blocking creates k distinct blocks—one for each attribute
cluster; each block contains all entities having at least one
attribute name that is associated with ti and belongs to the
corresponding cluster. Given that the number of associated
entities remains the same in both cases, the blocks of
attribute clustering are expected to be more and individu-
ally smaller, thus having a higher CC value than Token
Blocking. In fact, the higher k is, the higher is the resulting
value of CC.

The functionality of attribute clustering is outlined in
Algorithm 1. In essence, it works as follows: each attribute
name from N1 is associated with the most similar attribute
name of N2 (Lines 2-5), and vice versa (Line 6). The link
between two attribute names is stored in a data structure
(Line 5) on the sole condition that the similarity of their
values exceeds zero (Line 4), a value that actually implies
dissimilarity. The transitive closure of the stored links is
then computed (Line 7) to form the basis for partitioning
attribute names into clusters: each connected component of
the transitive closure corresponds to an attribute cluster
(Line 8). The resulting attribute clusters are examined for
singleton clusters, which contain a single attribute name that
was associated with no other. All these clusters are merged
into a new one, called the glue cluster and symbolized as
kglue (Line 10). In this way, we ensure that no attribute
names, and, thus, no tokens are excluded from the block
building procedure.

Algorithm 1. Attribute Clustering Blocking

The time complexity of the overall procedure is
OðjN1j � jN2j), while its space complexity is OðjN1j þ jN2jÞ,
where jN1j and jN2j stand for the number of distinct
attribute names in E1 and E2, respectively. Note that at the
core of attribute clustering lies an attribute-agnostic

functionality, which partitions attribute names into clusters

without considering schema information at all; instead, it

merely relies on the similarity of their values. Similar to

token blocking, it is based on redundancy, as well,

associating each entity with multiple blocks.
We note that attribute clustering is different from schema

matching techniques in three aspects. First, the latter are

inapplicable to HHIS [29]. Second, our goal differs from that

of schema matching; instead of trying to partition the input

set of attribute names into clusters of semantically equiva-

lent attributes, we rather aim at deriving attribute clusters

that produce blocks with a comparison distribution that has

a short tail (i.e., high CC values). Third, our algorithm

associates singleton attributes with each other, a practice

that is incompatible with the goal of schema matching.
Attribute name representation models. The functionality of

attribute clustering relies on two components: 1) the model

that uniformly represents the values of an attribute name,

and 2) the similarity measure that captures the common

patterns between the values of two attribute names. We

consider the following established techniques for text

classification (their performance is reported in Section 6):

1. The term vector representation model in conjunction
with the cosine similarity metric. According to this
model, the input sets of values, V1 and V2, form a
Cartesian space, where each dimension corresponds
to a distinct token contained in both of them. Thus,
each attribute name is represented by a (sparse)
vector whose ith coordinate denotes the TF ðtiÞ �
IDF ðtiÞ weight of the corresponding token ti [24].
TF ðtiÞ stands for the term frequency of ti (i.e., how
many times ti appears in the values of the attribute
name), while IDF ðtiÞ is equal to logðjN j=jNðtiÞjÞ,
where NðtiÞ � N stands for the set of attribute
names containing ti. The similarity of two attribute
names is defined as the cosine similarity of the
corresponding vectors.

2. The character n-grams representation model in
conjunction with the Jaccard similarity metric. This
model represents each attribute name as the set of
n-grams (i.e., substrings of n consecutive charac-
ters) that appear in its values. The value of n is
typically set equal to 3 (i.e., trigrams); in this way,
the value v ¼ ‘‘home phone’’ is represented as
fhom; ome; me ; ph; pho; hon; oneg. The similarity
between two attribute names ni and nj is defined as
their Jaccard similarity:

Jðni; njÞ ¼
jtrigramsðniÞ \ trigramsðnjÞj
jtrigramsðniÞ [ trigramsðnjÞj

;

where function trigramsðnkÞ produces the trigrams

representation of the attribute name nk.
3. The n-gram graphs representation model [13] in

conjunction with their value similarity metric. This
model is richer than the character n-grams model,
since it additionally incorporates contextual infor-
mation by using edges to connect neighboring n-
grams: these are n-grams that lie within a sliding
window of n characters. Similar to the above
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method, n is usually set equal to 3. To illustrate
their functionality, the graph for the value v ¼
‘‘home phone’’ is shown in Fig. 7. Individual n-gram
graphs are combined in a single graph comprising
the union of the nodes and edges of the original
graphs, with the edges weighted with the mean
value of the original weights [14]. To estimate the
relevance of two n-gram graphs, we employ their
value similarity, a graph metric that essentially
expresses the portion of common edges sharing
the same weight.

5.2 Efficiency Layer

Similar to the effectiveness layer, the efficiency layer
internally consists of two parts: 1) the algorithms that define
the processing of the given block collection, and 2) the data
structures that facilitate their functionality. A typical
example of the latter is the entity index, which associates
each entity with the blocks containing it (see Fig. 8). On the
other hand, the algorithms’ part encompasses a wide
diversity of efficiency techniques, with each one targeting
a particular category of comparisons. We now review the
best performing methods in the related literature, and
introduce a novel approach, comparison scheduling.

5.2.1 Block-Refinement Methods

Block purging. The notion of block purging was introduced
in [29] as a means of discarding nonmatching comparisons
by removing oversized blocks. These are blocks that contain
an excessively high number of comparisons, although they
are highly unlikely to contain nonredundant duplicates, i.e.,
matching entities that have no other—smaller—block in
common. Thus, they decrease RR, but have a negligible
contribution to PC. The gist of block purging is, therefore,
to specify a conservative upper limit on the individual
cardinality of the processed blocks so that oversized ones
are discarded without any significant impact on PC. This
limit is called purging threshold.

For our framework, we adapted the method that was
employed in [32] for determining the purging threshold in
the case of dirty ER. It relies on the CC metric and the
following observation, in particular: assuming that blocks
are sorted in descending order of individual cardinality, the
value of CC increases when moving from the top block to
the ones in the lower ranking positions. The reason is that its
denominator (i.e., aggregate cardinality) decreases faster
than its numerator (i.e., number of block assignments). The
purging threshold is specified as the first individual
cardinality that has the same CC value with the next
(smaller) one; discarding blocks with fewer comparisons

can only reduce PC, while having a negligible effect—if
any—on RR.

The outline of this approach is presented in Algorithm 2.
Line 1 orders the given block collection B in ascending
order of individual cardinality, thus making it possible to
calculate the CC for each distinct cardinality with a single
pass (Lines 4-10). Lines 11-12 ensure that the last block is
also considered in the computation of the statistics. Starting
from the largest individual cardinality, the CC values of
consecutive ones are then compared (Lines 14-17). The
procedure stops as soon as the value of CC remains stable
(Lines 15-17).

Algorithm 2. Computing the Purging Threshold

Apparently, the time complexity of this algorithm is
dominated by the initial sorting and is equivalent to
OðjBj � logjBjÞ. Its space complexity is dominated by the
array that stores the statistics for every individual cardin-
ality and is equal to OðjBjÞ.

Block scheduling. This technique was introduced in [29] as
a means of sorting the input block collection B so that its
processing makes the most of duplicate propagation (see
Section 5.2.2). To this end, it associates each block bi with a
block utility value, uðbiÞ, which expresses the tradeoff
between the cost of processing it, costðbiÞ, and the corre-
sponding gain, gainðbiÞ. The former corresponds to the
number of comparisons entailed in bi (i.e., costðbiÞ ¼ kbik),
while the latter pertains to the number of superfluous
comparisons that are spared in the subsequently examined
blocks—due to the propagation of detected duplicates. The
actual value of the block utility uðbiÞ for a bilateral block
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bi 2 B has been estimated through a probabilistic analysis
to be equal to:

uðbiÞ ¼
gainðbiÞ
costðbiÞ


 1

maxðjbi;1j; jbi;2jÞ
:

To incorporate this measure in the processing of blocks,
we employ a ranking function r : B 7! < that defines a partial
order on B, sorting its elements in descending order
according to the following implication: uðbiÞ � uðbjÞ )
rðbiÞ � rðbjÞ. Therefore, its complexity is equal to OðjBj�
logjBjÞ, while its space complexity is OðjBjÞ.

Block pruning. This method, coined in [29], constitutes a
coarse-grained approach to saving nonmatching compar-
isons. Instead of examining the entire block collection, it
terminates the ER process prematurely, at a point that
ensures a good tradeoff between PC and RR.

The functionality of this method relies on the block
processing order defined by block scheduling; this ordering
ensures that blocks placed at the highest ranking positions
offer high expected gain at a low cost. In other words,
blocks that are processed earlier involve a low number of
comparisons, while entailing a high number of duplicates.
In contrast, the lower the ranking position of a block is, the
fewer the duplicates it contains and the more nonmatching
comparisons it involves. Therefore, blocks placed at the low
ranking positions are unlikely to contain new, yet uni-
dentified duplicates. This means that there is a break-even
point where the possibility of finding additional matches is
no longer worth the cost; blocks lying after this point can be
excluded from the ER process to enhance its efficiency (i.e.,
RR) at a negligible cost in the missed matches (i.e., small
decrease in PC).

Block pruning aims at approximating this point to
discard blocks dominated by nonmatching comparisons. It
keeps track of the evolution of duplicate overhead, h, which
assesses the (average) number of comparisons that were
performed to detect the latest match(es). Its value after
processing the kth block containing duplicates is defined as:
hk ¼ jCk�1j=jDkj, where jCk�1j represents the number of
comparisons performed after processing the k� 1th block
with duplicates, and jDkj stands for the number of new
matches identified within the latest block (i.e., jDkj � 1).

As explained in [29], h takes low values (close to 1) for
the blocks placed at the top ranking positions; that is, every
new pair of duplicates they contain merely requires a small
number of comparisons. Its value increases for duplicates
discovered in blocks of lower ranking positions. As soon as
it exceeds the maximum duplicate overhead—a predefined
threshold denoted by hmax—the entire ER process is
terminated; this indicates that the cost of detecting new
duplicates is excessively high and the few remaining
matches are not worth it. Although this threshold can be
adapted to the requirements of the application at hand, a
value that provides a good estimation of the break-even
point was experimentally derived from hmax ¼ 10logkBk=2,
where kBk is the aggregate cardinality of the input block
collection B. The intuition behind this formula is that the
comparisons required for detecting a match are considered
too many, when they reach half the order of magnitude of
all possible comparisons in the considered blocks.

Given that block pruning can be integrated in block
processing, its time complexity is equal to OðjBjÞ, where jBj
is the number of blocks remaining after block purging.

5.2.2 Comparison-Refinement Methods

Comparison propagation. This method, introduced in [30],
constitutes a general technique for discarding all repeated
comparisons from any set of blocks, without any impact on
PC. In essence, it propagates all executed comparisons
indirectly, avoiding the need to explicitly store them. Its
functionality relies on two pillars: the process of block
enumeration and the data structure of entity index (EI). The
former is a preparatory step that assigns to each block a
unique index, indicating its processing order. As a result, bi
symbolizes the block placed in the ith position of the
processing list. On the other hand, EI constitutes a
structure that points from entities to the blocks containing
them (see Fig. 8). It is actually a hash table, whose keys
correspond to entity ids, while each value lists the indices of
the blocks that contain the corresponding entity.

A comparison ci;j is recognized as repeated if the least
common block index condition (LeCoBI) does not hold. This
condition ensures that the current block is the first to
contain both entities pi and pj. It returns true only if their
lowest common block index is equal to the current block’s
index. Otherwise, if the least common index is lower than
the current one, the entities have already been compared
in another block, and the comparison should be discarded
as redundant.

As an example, consider the entities p1 and p3 in Fig. 8.
Two blocks are in common, namely, b1 and b5 and, thus,
their LeCoBI is 1. This means that the LeCoBI condition is
satisfied in b1, but not in b5, saving in this way the repeated
comparison of p1 and p3 in the latter case.

The examination of the LeCoBI condition is linear with
respect to the total number of blocks associated with a pair
of entities. This is achieved by iterating once and in parallel
over the two lists of block indices, after sorting them
individually in ascending order. For higher efficiency, this
sorting is executed only once, during the construction of
the EI.

The time complexity for building this data structure is
linear with respect to the number of given blocks and the
entities contained in them; in the average case, it is equal to
OðBCov � jBjÞ). Its space complexity, on the other hand, is
linear with respect to the size of the input entity collections,
depending, of course, on the overall level of redundancy; on
average, it is equal to OðBCov � ðjE1j þ jE2jÞÞ.

Duplicate propagation. This method is inspired from the
technique introduced in [33] as a means of increasing PC in
the context of dirty ER. It was adapted to clean-clean ER in
[29], which converted it into a method that reduces the
superfluous comparisons at no cost in PC. In this form, it
relies on a central data structure, called duplicates index (DI),
that contains at any time the profile ids of all the entities
that have already been matched to another one. Before
performing a comparison ci;j, we check whether either of
the entities pi and pj is contained in DI. If this applies to at
least one of them, duplicate propagation discards the
comparison as superfluous. Otherwise, if none of them is
contained in DI, the comparison is executed. Note, though,
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that the performance of this technique (i.e., the portion of
superfluous comparisons that are discarded) depends on
the block processing order. To boost its effect, it is typically
employed in conjunction with a scheduling method.

Its time complexity is constant, i.e., OðcÞ, as it merely
involves a couple of look-ups in a hash-table. Its space
complexity depends on the size of the hash table of DI. It is,
therefore, equal to the cardinality of the set of duplicates
contained in the given block collection: OðjDE1\E2

jÞ.
Comparison pruning. This technique was initially intro-

duced in [31], offering another method to discard non-
matching comparisons at a controllable cost in effectiveness
(i.e., PC). It can be conceived as an improved version of
block pruning, which, instead of considering entire blocks,
operates on the level of individual comparisons: it prunes a
comparison if the involved entities are deemed highly
unlikely to be a match. Its decision relies exclusively on the
blocks associated with the given entities and their overlap,
in particular.

In more detail, the overlap of two entities pi and pj is
called entities similarity—symbolized by ESðpi; pjÞ—and is
defined as the Jaccard similarity of the list of block indices
that are associated with them. Thus, it is derived from the
following formula:

ESðpi; pjÞ ¼
jindicesðpiÞ \ indicesðpjÞj
jindicesðpiÞ [ indicesðpjÞj

¼ jindicesðpiÞ \ indicesðpjÞj
jindicesðpiÞj þ jindicesðpjÞj � jindicesðpiÞ \ indicesðpjÞj

;

where indicesðpkÞ denotes the set of block indices associated
with the entity profile pk. This formula indicates that we
only need to estimate the number of indices that are shared
by pi and pj to compute ESðpi; pjÞ. As explained above, this
process is facilitated by EI and is linear with respect to the
total number of indices: it suffices to iterate over the two
lists of indices just once and in parallel, due to their sorting
in ascending order.

A pair of entities, pi and pj, is considered similar enough
to justify the comparison of their profiles if ESðpi; pjÞ
exceeds the predefined threshold that represents the
minimum allowed similarity value, denoted by ESmin.
The actual value of its threshold depends on the redun-
dancy of the individual entity collection(s) and is derived
from the following formula:

ESmin

¼ a �minðBCindðE1Þ; BCindðE2ÞÞ
BCindðE1Þ þBCindðE2Þ � a �minðBCindðE1Þ; BCindðE2ÞÞ

;

ð1Þ

where a takes values in the interval ð0; 1�. Intuitively, this
threshold demands that two entities are analytically
compared if their common blocks amount to a � 100% of
the minimum individual blocking cardinality (i.e., the
average number of blocks an entity of the collection with
the lowest level of redundancy is placed in). As demon-
strated in [31], the performance of comparison pruning is
robust to the fluctuation of a, with higher values corre-
sponding to stricter similarity conditions, and vice versa.

Given that comparison pruning relies on the same data
structures and operations as comparison propagation, it
shares the same space and time complexity with it.

Comparison scheduling. We now introduce a novel
technique that aims at reducing the superfluous compar-
isons to increase RR at no cost in PC. Similar to block
scheduling, it achieves its goal indirectly, by boosting the
effect of duplicate propagation. However, it is more
effective than block scheduling, due to the finer granularity
of its functionality: instead of handling entire blocks, it
considers individual comparisons, ordering them in such a
way that those involving real matches are executed first.
Thus, more superfluous comparisons are saved in the
subsequently processed blocks.

To this end, it first gathers the set of valid comparisons,
which is denoted by Cv and encompasses all pairwise
comparisons of B that remain after filtering the initial set
of blocks with a combination of the aforementioned
efficiency methods (typically, comparison propagation,
and comparison pruning). Then, it associates each pairwise
comparison ci;j with a comparison utility value, uðci;jÞ,
which—similar to the block utility value—is defined as
uðci;jÞ ¼ gainðci;jÞ=costðci;jÞ; the denominator corresponds
to the cost of executing ci;j which is unary for all
comparisons (i.e., costðci;jÞ ¼ 1). Thus, uðci;jÞ ¼ gainðci;jÞ,
where gainðci;jÞ represents the likelihood that the entities
to be compared, pi and pj, are matching. Several
approaches are possible for estimating gainðci;jÞ; in this
work, we consider a best effort scoring mechanism that is
derived from the following measures:

1. The entities similarity ESðpi; pjÞ, which is the same
measure employed by Comparison Pruning, i.e., the
portion of common blocks between entities pi and pj.
The higher its value is, the more likely are pi and pj
to be matching. Hence, uðci;jÞ is proportional to
ESðpi; pjÞ.

2. The Inverse Comparison Frequency (ICF ) of each entity.
Following the same rationale as the Inverse Docu-
ment Frequency of Information Retrieval, this metric
is based on the idea that the more valid comparisons
are associated with a specific entity, the less likely it is
to be matching with one of the associated entities. In
other words, the lower the number of valid compar-
isons entailing an entity is, the higher is the likelihood
that it is matching with one of the associated entities.
The ICF ðpiÞ for an entity pi is computed by dividing
the size of Cv by that of its subset CvðpiÞ, which
contains only comparisons involving entity pi
(i.e., CvðpiÞ ¼ fci;k 2 Cvg). More formally: ICF ðpiÞ ¼
log jCvj=jCvðpiÞj. The more comparisons entail pi, the
higher is the value of the denominator and the lower
is the value of ICF ðpiÞ. Thus, the utility of compar-
ison ci;j is proportional to both ICF ðpiÞ and ICF ðpjÞ.

On the whole, the utility of a comparison ci;j is equal to9:
uðci;jÞ ¼ ESðpi; pjÞ � ICF ðpiÞ � ICF ðpjÞ.

To incorporate comparison scheduling in the ER process,
we employ a ranking function r : Cv 7! < that defines a
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9. Note that, in our experimental evaluation, we considered linear
combinations of the three measures comprising comparisons utility, but
they did not result in higher performance.



partial order on Cv, sorting its elements in descending order
according to the following implication: uðci;jÞ � uðck;lÞ )
rðci;jÞ � rðck;lÞ. Therefore, its time complexity is equal to
OðjCvj � logjCvjÞ, while its space complexity is OðjCvjÞ.

6 EXPERIMENTAL EVALUATION

The goal of our evaluation is threefold. First, to identify the
best performing method of the effectiveness layer, by
comparing token blocking with attribute clustering blocking
(AC Blocking in the remainder of the paper) and a baseline
clustering method (see Section 6.1). Second, to examine the
behavior of the block purging algorithm in the context of
clean-clean ER, by applying it on top of all block building
approaches (see Section 6.2). Third, to compare the
performance of three different efficiency workflows: two
that were tested in the literature on top of token blocking
and a new one that relies on comparison scheduling and
operates exclusively on the level of comparisons. Our goal is
to investigate the benefits of operating at the finest level of
granularity, that of individual comparisons (see Section 6.3).

Measures. To evaluate the behavior of our approaches, we
employ two kinds of measures: the performance and the
technical ones. The former comprise the PC and RR of a
blocking method, which capture its effectiveness and
efficiency, respectively (see Section 3.1). The technical
metrics encompass more practical measures that highlight
internal aspects of a blocking method and affect its space
and time complexity; these are: the total number of blocks it
produces, the average number of comparisons per block, its
BCov and CC values, as well as the disk space it occupies.

Note that we do not consider the performance of entity
matching in terms of precision and recall. Entity matching is
crucial for ER per se, but is orthogonal to the task of
blocking for ER, which is the focus of our work. We follow
the best practice in the related literature [3], [26], [29], [31],
examining blocking methods independently of the profile
matching techniques, by assuming the existence of an oracle
that correctly decides whether two entity profiles are
duplicates or not. Note that a highly performing blocking
method with respect to PC and RR guarantees that the
quality of a complete ER solution will be as good as the
employed matching algorithm.

Data sets. In the course of our experimental study, we used
two real-world, large-scale, heterogeneous data sets, which
are presented in Table 1. They were also used in previous
works [28], [29], [31], thus allowing for a direct comparison
with prior results. TheDmovies data set comprises a collection

of movies from IMDB10 and DBPedia,11 which have been
interlinked through the “imdbid” attribute in the profiles of
DBPedia movies. Dinfoboxes is the largest data set, comprising
more than 3 million entities that stem from two different
versions of the DBPedia Infobox Data Set.12 They have been
collected by extracting all name-value pairs from the
infoboxes of the articles in Wikipedia’s english version.
Theoretically, it may seem straightforward to resolve two
versions of the same data set, but in practice it constitutes a
quite challenging task; the older version (DBPedia1) dates
from October 2007, whereas the latest one (DBPedia2) is a
snapshot of October 2009. In the intervening two years,
Wikipedia Infoboxes have evolved to such an extent that a
mere 23.67 percent of all name-value pairs and 48.62 percent
of the attribute names is common among both versions. To
build the ground-truth, we considered as matching those
entities that had exactly the same URL.

Baseline methods. As explained in Section 1, schema
matching methods are not applicable to HHIS. Moreover,
previous studies have demonstrated that schema-based
methods exhibit high efficiency (i.e., very few entities per
block), but suffer from remarkably poor PC in the context of
HHIS (more than half of the matching entities do not share
any common block) [29]. In this paper, we do not repeat the
comparison experiments with such blocking methods.
Instead, we use as baseline for our experiments the token
blocking approach, which was verified to outperform
schema-based techniques when applied to HHIS [29].

To evaluate the performance of our attribute clustering
algorithm, we compare it with an established clustering
technique that can offer the same functionality. In principle,
any clustering algorithm is applicable, on the sole condition
that it involves an unconstrained functionality (i.e., it does not
require as input the number of returned clusters). For this
reason, we have selected as our baseline method a variation
of the expectation maximization (EM) algorithm [8], which
specifies the number of clusters through an unsupervised
procedure that relies on cross-validation.13 EM can be
combined with the term vector and the character n-grams
model, and these combinations are denoted by term vector
EM and trigrams EM, respectively, in the following. How-
ever, it is incompatible with the n-gram graphs, since this
representation model is only suitable for pairwise compar-
isons (i.e., it does not produce features in a vector format).

Experimental setup. All approaches and experiments
were fully implemented in Java, version 1.6. For the
implementation of the blocking functionality (i.e., inverted
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TABLE 1
Technical Characteristics of the Data Sets

Used in the Experiments

TABLE 2
Execution Time for the Attribute Clustering Algorithms

10. http://www.imdb.com.
11. http://dbpedia.org.
12. http://wiki.dbpedia.org/Datasets.
13. For more details, see http://weka.sourceforge.net/doc/weka/

clusterers/EM.html.



indices), we used the open source library of Lucene,14 version
2.9. The functionality of the n-gram graphs was provided by
the open source library of JInsect.15 For the implementation
of the unconstrained EM clustering algorithm, we employed
the open source library of Weka,16 version 3.6. All experi-
ments were performed on a desktop machine with Intel i7,
16 GB of RAM memory, running Linux (kernel version
2.6.38).

6.1 Block Building

We start the evaluation by comparing token blocking with
the three variations of AC Blocking: 1) the combination of
the term vector model with the cosine similarity, symbo-
lized by term vector AC, 2) the combination of character
trigrams with Jaccard similarity, denoted by trigrams AC,
and 3) the combination of trigram graphs with the value
similarity metric, which is represented as trigram graphs AC.
We also compare it with term vector EM and trigrams EM.

Before analyzing the performance of the blocks they
create, it is worth probing into the applicability of all
clustering algorithms with respect to their time complexity.
We actually recorded the execution time of EM and AC
blocking across both data sets and in combination with the
term vector and the trigrams representation models. The
outcomes are presented in Table 2. We can notice that AC
is substantially faster than EM, requiring around 1/20 and
1/6 of its running time in the case of Dmovies and Dinfoboxes,
respectively. In fact, EM in conjunction with trigrams was
not able to process Dinfoboxes within a time frame of 200
hours. Thus, we consider this particular combination to be
inapplicable to large-scale HHIS and do not report its
performance in Tables 4 and 6. In the following, we
examine the performance of the blocks created by the other
EM-based methods to find out whether their quality is
worth the high computational cost.

Table 3 presents the performance of all methods on
the Dmovies data set. We can see that all variations of the
clustering algorithms produce a limited number of attri-

bute clusters, since Dmovies contains only 11 distinct
attributes (see Table 2). As a result, there are minor
differences in the behavior of the blocking methods (e.g.,
they all occupy the same disk space). Nevertheless, we can
identify the following pattern: the higher the number of
clusters is, the more blocks are produced and the less
comparisons they entail, on average. This results in higher
efficiency and moves the BC-CC mapping of the blocking
methods closer to the ideal point: their BCov decreases,
while their CC increases. This effect has a direct impact on
their actual performance, reducing PC by less than
2 percent and decreasing comparisons to a considerable
extent. The only exception to this pattern is trigrams EM,
which involves the least number of comparisons, but fails
to place in a common block almost one out of four pairs of
duplicates. Thus, it constitutes the only clustering approach
with inferior performance to token blocking. All others
offer a better balance between PC and RR, with trigram
graphs AC exhibiting the best tradeoff.

Table 4 offers stronger evidence for the differences in the
performance of the individual blocking methods. The reason
is that the high number of attribute names ofDinfoboxes allows
for higher variation in the attribute clusters. It is noteworthy,
though, that the performance pattern of Dmovies applies in
this data set, as well: the higher the number of attribute
clusters is, the higher is the resulting number of blocks and
the less comparisons they entail, on average. This effect leads
to substantially higher CC values (even by an order of
magnitude) and, thus, higher RR values, while PC remains
practically stable. Unlike Dmovies, however, the increase in
the number of attribute clusters results in substantial
increase in the values of BCov and the space occupied on
the disk, due to the significantly higher number of blocks. It
is also worth noting that all variations of AC blocking
provide a better tradeoff between PC and RR than token
blocking, while term vector EM exhibits the worst perfor-
mance: it involves more comparisons than all other methods
for practically identical PC with them.

On the whole, we can argue that AC Blocking substan-
tially improves on token blocking, offering higher efficiency
for the same levels of effectiveness. It also outperforms EM-
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TABLE 3
Statistics and Performance of the Blocking Building Methods on Dmovies

RR values were computed based on token blocking.

TABLE 4
Statistics and Performance of the Blocking Building Methods on Dinfoboxes

RR values were computed based on token blocking.

14. http://lucene.apache.org/.
15. http://sourceforge.net/projects/jinsect.
16. http://www.cs.waikato.ac.nz/ml/weka/.



based blocking methods in many aspects: it is applicable to
large entity collections, it can be combined with the n-gram
graphs representation model, and it produces blocks of
higher quality. The last aspect is probably caused by the
“blind” functionality of EM: unlike our attribute clustering
algorithm, EM does not guarantee that every cluster
contains attribute names from both input entity collections.
Instead, it is possible that clusters exclusively contain
attributes stemming from the same source, thus rendering
their values useless for blocking. Regarding the relative
performance of the three established representation models,
the n-gram graphs clearly exhibit the best performance
across both data sets. This is because their noise-tolerant and
language-agnostic functionality turns them more suitable
than the other models for tackling the intricacies of HHIS.

6.2 Block Purging

This section examines the effect of our block purging
algorithm on all blocking methods across both data sets. Its
performance for Dmovies and for Dinfoboxes is presented in
Tables 5 and 6, respectively.

We notice that BCov decreases for all methods across
both data sets, thus getting closer to the x ¼ 1 axis. On the
other hand, CC increases to a great extent, getting closer to
its maximum value (i.e., CCmax ¼ 2). All approaches move,
therefore, closer to the ideal point, improving their balance
between effectiveness and efficiency across both data sets:
although PC decreases by less than 1 percent in all cases,
the overall number of comparisons is reduced by 68 percent
in Dmovies and by 98 percent (i.e., two orders of magnitude)
in Dinfoboxes, on average. This behavior means that block
purging accurately detects the oversized blocks, performing
a conservative, but valuable cleansing.

Note that, in each data set, block purging removes almost
the same portion of blocks from all approaches: in Dmovies it
discards between 0.10 and 0.17 percent of all blocks and in
Dinfoboxes around 0.03 percent of them. Given that it triggers
similar quantitative effects on the technical and the
performance metrics of all methods, we can conclude that

they all involve similar power-law distributions of compar-
isons: few blocks are oversized, containing the largest part
of the comparisons, while their vast majority entails a
handful of entities.

The outcomes of Tables 5 and 6 clearly indicate that
trigrams AC maintains the best balance between PC and
RR even after block purging. It has the smaller—on
average—blocks, thus requiring by far the lowest total
number of pairwise comparisons. In addition, its PC
remains well above 99 percent in all cases, exhibiting the
highest value across all approaches for Dinfoboxes. For this
reason, we employ trigrams AC as the block building
method that lies at the core of all efficiency workflows we
analyze in the following.

6.3 Efficiency Workflows

We now analyze the performance of three different
efficiency workflows, which share the same core workflow:
they are all based on trigram graphs AC for the creation of
blocks and on block purging and duplicate propagation for
their processing. They differ, though, in the other methods
they involve: the first one, WF1, adds exclusively block-
refinement methods to the core workflow, namely, block
scheduling, and block pruning [29]. The second one, WF2,
combines block-refinement methods with comparison-re-
finement ones, namely, block scheduling with comparison
propagation and comparison pruning [31]. The third
workflow, WF3, is the only one that employs comparison
scheduling, operating exclusively on the level of individual
comparisons; it additionally involves comparison propaga-
tion and comparison pruning.17

We selected these workflows for a number of reasons.
WF1 and WF2 have already been examined in [29] and [31],
respectively, over token blocking; given that we employ the
same data sets, our results are directly comparable with
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TABLE 5
Block Purging on Dmovies

RR values were computed based on the original performance of each method in Table 3.

TABLE 6
Block Purging on Dinfoboxes

RR values were computed based on the original performance of each method in Table 4.

17. In all cases, the ESmin threshold for comparison pruning was
specified by setting a ¼ 0:20 in (1), which is a conservative value lying very
close to a ¼ 0:25 that induces a minor reduction in PC, while boosting RR
[31]. The slightly lower value of a is justified by the substantially higher
number of blocks produced by attribute clustering techniques.



prior work. WF3 is a novel workflow, but it is based on
WF2, modifying it so that it is compatible with comparison
scheduling. Collectively, these workflows cover all effi-
ciency methods presented in Section 5.2. They also differ
significantly in the complexity of their functionality: WF1

conveys minimum space and time requirements, whereas
WF3 involves the most complex methods with respect to
both aspects. WF2, on the other hand, lies in the middle of
these two extremes. Last but not least, all workflows were
formed according to the guidelines of Section 4.1.

The performance of all workflows over Dmovies and
Dinfoboxes is presented in Tables 7a and 7b, respectively,
with the individual methods of each workflow appearing in
the order they are executed. We can notice that methods
targeting the repeated and superfluous comparisons (i.e.,
block scheduling, comparison propagation, and compar-
ison scheduling) have no effect on PC, although they
significantly enhance RR. It is worth clarifying at this point
that the performance of the two scheduling methods is
actually derived from their combination with duplicate
propagation; it denotes, therefore, how many comparisons
are saved just by ordering the block’s or comparisons’
execution and propagating the detected duplicates. This
explains why block scheduling appears below comparison
propagation in WF2.

It is interesting to compare the performance of the only
methods (apart from block purging) that affect PC: block
and comparison pruning. This is done by contrasting the
performance of WF1 and WF2. We can identify the
following pattern across both data sets: block pruning has
a negligible effect on PC, reducing it by less than
1.5 percent, whereas comparison pruning has a consider-
able impact on it, conveying a decrease of 5 percent. Both
have RR values over 99 percent, but comparison pruning
actually involves around 50 percent less comparisons than
block pruning. Thus, the former discards more comparisons
than the latter, sacrificing PC to a larger extent in favor of
higher efficiency (i.e., RR). The main advantage of
comparison pruning, though, is that it can be seamlessly
combined with comparison scheduling (WF3), which
further reduces comparisons by around 10 percent, at no
cost in PC.

Regarding the execution time of the workflows, we can
notice the following patterns: WF2 and WF3 share almost
the same time requirements across both data sets, with the
latter taking slightly longer to complete its processing. On

the other hand, WF1 is around 100 times faster, due to its
coarse granularity of functionality. Even in the worst case
for Dinfoboxes, though, WF3 requires less than 12 hours for
processing more than 3 millions of entities. Among the
individual blocking methods, comparison propagation and
comparison pruning involve the most time-consuming
processing. Compared to them, all other techniques require
at least 10 times less time.

On the whole, both data sets advocate that WF3 requires
the lowest number of comparisons per entity, followed by
WF2 and WF1. Its substantially higher efficiency, though,
comes at the cost of slightly lower effectiveness, as it detects
around 4 percent less duplicates than WF1. It also consumes
more resources, due to comparison scheduling, and
involves the highest execution time. For small data sets—
with millions of comparisons—its computational cost is
affordable, and typically WF3 constitutes the best option.
However, for large-scale applications—with billions of
comparisons—the choice depends on the performance
requirements and the available resources of the application
at hand. In contrast, WF1 is suitable for applications that
have limited access to resources or are very strict with
respect to effectiveness. Given that it involves the fastest
processing, it is also suitable for applications with small
entity profiles that can be efficiently compared; in this case,
it can compensate for the higher number of comparisons it
involves in comparison to WF2 and WF3. Finally, WF2 lies
in the middle of these two extremes, offering the same
effectiveness as WF3 at slightly lower blocking efficiency
and time complexity.

7 CONCLUSIONS

We presented a generic and extensible framework for
blocking-based clean-clean ER over HHIS, composed of the
effectiveness and efficiency layers. We elaborated on the
characteristics of each layer, showed how existing methods
map to them, proposed novel techniques in this context,
and discussed how to combine these methods into
comprehensive ER workflows. We conducted a thorough
experimental evaluation with 3.3 million entities, demon-
strating the efficiency of the proposed approach, which
requires just 13 pairwise comparisons per entity for a pair
completeness of 93.80 percent. In the future, we plan to
extend our framework with techniques that deal with dirty
ER as well as incremental ER, and to explore ways of
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TABLE 7
Perfomance of Three Different Workflows on the Dmovies and Dinfoboxes

on Top of Block Purging and Block Building with Trigram Graphs AC

Baseline method for computing RR is block purging. The required time is measured in minutes for Dmovies and in hours for Dinfoboxes.



parallelizing our approach on the basis of the MapReduce
paradigm. We also intend to investigate ways of incorpor-
ating mediated schemas in the process of attribute cluster-
ing with the aim of yielding blocks of higher quality.
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